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The genomic landscape of reference gen-
omes of cultivated human gut bacteria

Xiaoqian Lin1,2,10, Tongyuan Hu 1,10, Jianwei Chen 1,3,4, Hewei Liang1,
Jianwei Zhou3, Zhinan Wu1,5, Chen Ye1, Xin Jin 1, Xun Xu 1, Wenwei Zhang1,
Xiaohuan Jing6, Tao Yang6, Jian Wang1,7, Huanming Yang 1,7,
Karsten Kristiansen 1,3,4,8 , Liang Xiao 1,3,9 & Yuanqiang Zou 1,3,4,9

Culture-independent metagenomic studies have revolutionized our under-
standing of the gut microbiota. However, the lack of full genomes from cul-
tured species is still a limitation for in-depth studies of the gut microbiota.
Here we present a substantially expanded version of our Cultivated Genome
Reference (CGR), termed CGR2, providing 3324 high-quality draft genomes
from isolates selected from a large-scale cultivation of bacterial isolates from
fecal samples of healthy Chinese individuals. The CGR2 classifies 527 species
(179 previously unidentified species) from 8 phyla, and uncovers a genomic
and functional diversity of Collinsella aerofaciens. The CGR2 genomes match
126 metagenome-assembled genomes without cultured representatives in the
Unified Human Gastrointestinal Genome (UHGG) collection and harbor 3767
unidentified secondary metabolite biosynthetic gene clusters, providing a
source of natural compounds with pharmaceutical potentials. We uncover
accurate phage–bacterium linkages providing informationon the evolutionary
characteristics of interaction between bacteriophages and bacteria at the
strain level.

Accumulating evidence has emphasized the key role of the gut
microbiota in human health and disease1,2. Over the past few decades,
associations between the composition of the gut microbiota and
complex metabolic traits and diseases have been well documented3,
and fecal transplantation has been shown to hold promises for ther-
apeutic interventions by remodeling of the gut microbiota4. Even-
tually, however, transplantation with designed well-characterized
bacterial communities is desirable for clinical interventions.

Culture-independent methods provide an opportunity for the
discovery of uncultivated organisms in the gut microbiota, expanding
our knowledge of the composition and functional potential of gut

bacterial species. The Unified Human Gastrointestinal Genome
(UHGG) collection has delivered unprecedented numbers of bacterial
genomes,providing informationon4644prokaryotic species included
in thehumangut. However,more than 70%of the species inUHGG lack
cultivated isolates5. Furthermore, the existing limitations associated
with metagenome-assembled genomes (MAGs), such as incomplete
genomes and chimeric contigs, affect the accuracy of high-resolution
taxonomic and functional inferences6.

Cultivation-dependent studies have continued to provide new
perspectives on the biology of human gut bacterial communities7,8.We
previously presented a reference catalog of genomes of cultivated
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human gut bacteria (CGR) improving taxonomic annotation and
functional inferences9. Cultivated gut microbial resources enable bet-
ter bioprospecting of the gut microbiota including identification and
isolation of carbohydrate-binding enzymes, bioactive molecules, bac-
teriophages, and next-generation probiotics.

Here we present a substantially expanded Cultivated Genome
Reference, termed CGR2, of the human gut microbiota. The CGR2
comprises 179 previously unidentified species with high-quality gen-
omes. We provide information on carbohydrate-active enzymes and
secondarymetabolite biosynthetic gene clustersof the gutmicrobiota,
assigning specific taxa to functions, and accurate linkages between
viruses and microbial hosts. Finally, we conducted a genome-wide
analysis of a representative species.We envisage that this collection of
bacterial genomes will constitute a valuable source for future studies
on the gut microbiota furthering in-depth knowledge of the gut
microbiota.

Results
The expanded repertoire of isolate genomes in CGR2
In continuation of our previous work on cultivation and sequencing
gut-resident microbes, a total of ~20,000 bacterial isolates were cul-
tivated. 4066 of these isolates were selected for whole-genome
sequencing generating 3324 high-quality genomes with more than
90% completeness and less than 10% contamination (Supplementary

Fig. 1, and Supplementary Data 1). We subsequently clustered the 3324
genomes into 527 species-level clusters on the basis of 95% average
nucleotide identity (ANI), of which 189 clusters (1804 genomes) were
not included in the CGR. The clusters were distributed between 8
phyla, of which Bacillota represented more than half of the clusters
(1805 genomes, 343 clusters). Notably, Synergistota, Thermo-
desulfobacteriota, and Verrucomicrobiota were newly included in
CGR2 compared to CGR (Fig. 1a). Of the 527 species-level clusters, 179
were not classified at the species-level, and 21 lacked a genus-level
match (Supplementary Data 2), indicating that these clusters harbor
previously unidentified species.Whereas some important specieswere
clearly underrepresented in CGR, CGR2 encompasses a large number
of high-quality genomes of Bifidobacterium longum, Bifidobacterium
pseudocatenulatum, Bifidobacterium adolescentis, Escherichia coli, and
Enterococcus faecalis, which can be used for species pan-genome and
diversity analyses (Supplementary Fig. 2).

The distribution of 527 species-level clusters in 3 representative
metagenomic cohorts of different origins, including China (a part of
4D-SZ)10, the Netherlands11, and HMP (Human Microbiome Project) is
shown in Fig. 1b. The prevalence of Flavonifractor plautii, Bacteroides
uniformis, and Bacteroides caccae exceeded 95% in three cohorts
(Supplementary Data 3). Beta diversity showed that there were sig-
nificant differences between the 527 clusters in the three cohorts
(R2 = 0.2984, P <0.001), especially between the cohorts from China
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Fig. 1 | Taxonomic profile of CGR2. a Phylogenetic analysis of 3324 genomes.
Color range indicates the 1804 newly sequenced genomes (blue) and the 1520 CGR
genomes (pink). Singleton genomes are marked with red dots at the end of the
clade. The first layer depicts the GTDB phylum annotation, the second layer
describes the matching to the GTDB database at the species and genus level, and
the circumferential bar plot (dark blue) illustrates the genome size. b Abundance
andprevalenceof 527 representative clusters inhealthy cohorts of China,HMP, and

the Netherlands. Gray box, Log10 (relative abundance); Dot, median of log10
(relative abundance); Bar, prevalence; Color, phylum. c Matching of CGR2 to the
hGMB andUHGG genome collections. The Venn diagrams are colored according to
the origin of the samples and the numbers are indicated.d The ratio of the genome
length (median: 88.84%) and gene number (median: 89.33%) of the UHGG-
Uncultured relative to CGR2 in the mapped genomes of each family. A dot repre-
sents a UHGG genome, and different colored dots indicate different family.
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and the Netherlands (Supplementary Fig. 3a). The correlations
between the 527 clusters and the coordinates of microbial commu-
nities suggested that Prevotella sp. (Cluster 62), Bacillus luti, Paeniba-
cillus sp. (Cluster 281), and Paenibacillus macerans had the most
significant impact on the distribution of these clusters (P <0.001,
Supplementary Fig. 3a, and Supplementary Data 3). Species of Pre-
votella are important members of the human gut microbiota, and
recent studies suggested a reclassification of Prevotella into seven
genera12,13, which display different metabolic characteristics. In addi-
tion, comparedwith the cohort from theNetherlands, themedians and
means of the 527 clusters in the cohort fromChina and theHMPcohort
were more similar (Supplementary Fig. 3b, c). Examining the dis-
tribution of the 179 previously unidentified species in the different
populations, we found that the average abundance of these previously
unidentified species in the Chinese population was 0.08%, which was
significantly higher than that in the other two cohorts (P < 0.0001,
Supplementary Fig. 4a). However, the occurrence is much lower than
that in the cohort from the Netherlands (P <0.001, Supplementary
Fig. 4b). 42 species were significantly enriched in the Chinese cohort
(Supplementary Fig. 4d). Of note, the inclusion of previously uni-
dentified species in CGR2 significantly improves metagenomic reads
mapping rate in Chinese and non-Chinese populations, especially for
the cohort from the Netherlands (P <0.0001, Supplementary Fig. 4c,
and Supplementary Data 3).

Mapping the CGR2 genomes against the 3312 genomes repre-
senting uncultured species and 438 genomes of cultured species from
other sources, we found that 146 CGR2 genomes matched 126 UHGG
genomes of uncultured species, and that 136 CGR2 genomes matched
48 genomes of cultured species from other sources in UHGG, illus-
trating how our collection increases the taxonomic diversity of culti-
vable microorganisms in the human gut (Fig. 1c). Comparing the
matches from146CGR2genomes and 126UHGG-unculturedgenomes,
we found not surprisingly that the gene number and scaffold N50 of
the genomes obtained by sequencing of cultivated isolates were sig-
nificantly higher than those from MAGs (P < 0.0001, Supplementary
Fig. 5). We compared genome length and gene differences of the
genome sets to explore the assembly gaps between genomes based on
isolates andMAGs. In general, less than 90% of the genome length and
gene number of culture-based genomes were covered by the corre-
sponding MAGs (Fig. 1d). Comparing genomes based on isolates with
the corresponding MAGs, we identified 1543 unique genes present in
the isolate-based genomes, but absent in theMAGs with Erm being the
gene most frequently missing in the MAGs (Supplementary Fig. 6, and
Supplementary Data 4). Only 286 CGR2 isolated genomes (91 clusters)
mapped to 89 human gut culture-based genomes originating from
non-Chinese samples in the UHGG, possibly reflecting the differences
in the composition of the gut microbiota in individuals of different
ethnicity and/or living in different geographical locations14. The Broad
Institute-OpenBiome Microbiome Library (BIO-ML)15 is a human gut
strain collection established fromFMTdonors. A comparison revealed
that 82 of the BIO-ML species-level clusters were also included in
CGR2, and only 22 BIO-ML species-level clusters were not included in
CGR2, implying an84.44% taxonomic novelty in CGR2 (Supplementary
Fig. 7a).We also compared the genomes ofCGR2with hGMB16, a recent
cultured genome collection based on Chinese samples, showing that
2306 of the CGR2 genomes covered 57.92% of the hGMB genomes,
including 49 of 108 newly characterized and classified species. Overall,
144 clusters from CGR do not exist in any existing collection, and the
newly sequenced genomes of CGR2 contributes with 45 unique clus-
ters (Supplementary Fig. 7b). Further, we found that 89 of 179 pre-
viously unidentified species were not represented in UHGG, BIO-ML or
hGMB, including one cluster being annotated only at the class-level
(Supplementary Fig. 8a, and Supplementary Data 2). It is worth noting
that these underrepresented previously unidentified species may be
widely distributed in the cohorts fromChina and the Netherlands, and

in the HMP cohort (Supplementary Fig. 8b–d). In addition, there are
still 31 previously unidentified species in CGR2 that are only repre-
sented by MAGs, while we provide the cultured strains to facilitate
subsequent taxonomic characterization (Supplementary Fig. 8a).

The distribution of carbohydrate-active enzymes (CAZymes)
To examine the function of the culture isolates of CGR2, we performed
a comprehensive in-depth analysis of carbohydrate-active enzymes.
Notably, isolates of the Bacteroidota phylum harbored the largest and
most diverseCAZyme repertoires (Fig. 2a, and Supplementary Fig. 9a),
consistent with previous studies17,18. 86.08% of the predicted CAZyme
genes in CGR2 belong to the glycoside hydrolases family (GH) and the
glycosyltransferases family (GT) (Supplementary Data 5). We next
explored thepotential for utilizationof dietaryfibers (includingpectin,
cellulose, and inulin) in the 3324 genomes. Bacteroidota contained
more GH or polysaccharide lyase (PL) genes reported to potentially be
involved in the degradation of dietary fiber (Supplementary Fig. 9b).
Bacteria belonging to the Bacteroidota phylum are able to utilize a
broad range of carbohydrate substrates19, and they may play a role in
initiating the primary breakdown of dietary polysaccharides in the
human gut.

We next collected all enzymes involved in decomposition path-
ways of pectin, cellulose and inulin, and synthetic pathways of the
three short chain fatty acids (SCFAs), acetate, propionate, and buty-
rate, from the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database to screen for potential glycan-degrading and SCFA-
producing strains (Supplementary Fig. 10). The result showed that
most strains in CGR2 had potentials for breaking down inulin (96%)
and producing SCFAs, acetate (100%), propionate (97%), and butyrate
(79%) (SupplementaryData 6). 193 Strains belonging to 42 generawere
predicted topossess at least one complete enzymaticpathway foreach
of these metabolic pathways (Fig. 2b). Ten genera, Bacteroides, Bifi-
dobacterium, Enterococcus, Phocaeicola, Blautia, Collinsella, Strepto-
coccus, Enterocloster, Escherichia, and Mediterraneibacter contained
the majority of strains with complete pathways for decomposing gly-
cans or synthesizing SCFAs.

Human milk oligosaccharides (HMOs) play important roles in the
early nutrition of beast-fed infants and serve as substrates supporting
the growth of important members of the Bifidobacterium genus dom-
inating the gut in early life20. Large type I and II HMOs, twomain types of
HMOs, can be broken down by GH95 AfcA, GH29 AfcB, and GH33 SiaBb
releasing lacto-N-tetraose (LNT) and lacto-N-neotetraose (LNnT)21,22

(Fig. 2c). GH136 (lacto-N-biosidase) and GH112 (lacto-N-biose phos-
phorylase) are the core hydrolases in type I HMO degradation, and
GH2/42 (β-galactosidase) andGH20 (β-N-acetylhexosaminidase) are the
core hydrolases in type II HMO degradation21–23. The two carbohydrate-
binding module families, CBM32 and CBM51, are possibly relevant to
HMOdegradation21.Wenext explored thedistributionof theseCAZyme
families in our genome collection. In CGR2, GH2 is the most widely
distributed GH, present in 81.6% of the genomes. Notably, 337 and 1546
genomes contained complete CAZyme families for degradation of type
I and II HMOs, respectively (Supplementary Data 7). Members of the
phylumBacteroidota possessGH2,GH20,GH29,GH95, andCBM32, but
lack GH112 andGH136, the key CAZyme families involved in type I HMO
degradation (Fig. 2c). In addition to the presence and absence of
CAZyme families involved in HMO degradation, unconstrained princi-
pal coordinate analysis (PCoA) was used to explore the similarity of the
gene numbers of these CAZyme families. This analysis showed that
members of Bacteroidota formed a distinct central cluster (Fig. 2d).

For bifidobacteria, GH2 and GH42 are the twomost prevalent GH
families, included in all genomes of this genus (Supplementary
Fig. 11a). B. bifidum and B. longum contain type I and II HMOdegrading
CAZyme families. In addition, B. bifidum harbors more hydrolases and
CBMs belonging to CAZyme families involved in HMO degradation,
suggesting that this species is highly adapted for use of HMOs21. In
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addition, our analyses demonstrated that Roseburia, a butyrate pro-
ducer possessingmultipleHMOutilization CAZyme families, also has a
potential for metabolizing HMOs consistent with a previous study23

(Supplementary Fig. 11b). These analyses support the notion that
Bacteroidota together with bifidobacteria, belonging to the Actino-
mycetota, in CGR2, play a key role in promoting the release of HMO
central moieties, consistent with previous reports21,24.

Identification of genes involved in the synthesis of secondary
metabolites in the gut microbiome
We performed a comprehensive analysis of secondary metabolite
biosynthetic gene clusters (SMBGs) using anti-SMASH (v4.2.0)25.
Notably, 4132 gene clusters involved in the generation of secondary
metabolites were identified in 2049 genomes (Supplementary Data 8
and “Methods”). Of these gene clusters, the most abundant were
inferred to participate in the biosynthesis of sactipeptides (907), fol-
lowed by non-ribosomal peptide synthetases (NRPSs, 804) and bac-
teriocin (740). A total of 24 different biosynthetic typeswerepredicted
to be present in the 8 phyla present in CGR2, with Bacillota harboring
the highest abundance of SMBGs and a broad distribution of specia-
lized metabolites (Fig. 3a).

4132 SMBGs clustered into 7 classes (978 gene cluster families,
GCFs). Only 46GCFs are included in theMIBiGdatabase referencewith
known functions, indicating thatmost of the SMBGs we predicted lack
experimental verification and might potentially represent novel func-
tions (Supplementary Fig. 12). The largest class is ribosomally pro-
duced and post-translationally modified peptides (RiPPs), which

include bacteriocins, lantipeptides, and sactipeptides. To better
understand the diversity of SMBGs of relevance for RiPPs, sequence
similarity networks were constructed for 2303 SMBGs (528 GCFs). The
networks showed that most predicted RiPPs were from the Bacillota
phylum, indicating that Bacillota could be a potentially abundant
source of RiPPs (Fig. 3b).

Ruminococcin A (RumA), naturally produced by the strictly
anaerobic bacterium Ruminococcus gnavus E1, has high activity against
pathogenic Clostridium spp, and has been used for clinical treatment26.
However, due to low production yields (<1μg/L) and difficult cultiva-
tion of R. gnavus E1, high-quality production of RumA is challenging27.
Our results showed that 7 SMBGs mined from Faecalimonas umbili-
cata, Mediterraneibacter faecis, Fusicatenibacter saccharivorans, Blau-
tia sp., and Waltera intestinalis harbor genes related to the
biosynthesis of RumA, suggesting that these bacteria may be used as a
potential alternative source for the production of RumA (Fig. 3c).
NRPSs constituted the second largest class, containing 816 SMBGs (198
GCFs), mainly from the Bacillota and Pseudomonadota phyla (Sup-
plementary Fig. 13a). By analyzing 8 clans containing SMBGs with
reliable experimental evidence, we discovered that one of the clans is
related to dipeptide aldehydes, highly potent cell-permeable protease
inhibitors, initially detected in Ruminococcus sp28, while the SMBGs of
this clan were all derived from Blautia (Supplementary Fig. 13b).
Similarly, for the other 5 classes of SMBGs, we also conducted a net-
work similarity analysis (Supplementary Fig. 14). These results revealed
an unexplored novelty and diversity of SMBGs from human gut
microbes.
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Prediction of prophages in the isolated genomes and phage-
bacteria interactions in the gut microbiota
To construct detailed networks between phages and the host bacteria,
we identified bacteriophages in the culture-derived genomes of CGR2
using VirSorter29. A total of 14,249 potential viral sequences were
predicted from 3324 genomes, with 6274 being considered as “most
confident” and “likely” phages and prophages30. After quality evalua-
tion by CheckV, 22 phage genomes were assigned as complete, 150 as
high-quality, and 2648 as medium-quality, representing the Viruses of
the Cultivated Genome Reference (termed CGRv) (Supplementary
Fig. 15a, and Supplementary Data 9). Comparing with the Gut Phage
Database (GPD)31 and Metagenomic Gut Virus (MGV)32, 60.53% of the
phages in CGRv were not reported previously (Supplementary
Fig. 15b). In addition, we discovered three jumbo phages (>200 kb of
length), a group of phages rarely described previously33.

A phylogenetic tree was constructed to explore the evolutionary
characteristics of phages in the gut microbiota. Notably, phages from
Actinomycetota clustered within a single clade (Fig. 4a). However,
phages from Bacillota were widely distributed throughout the phylo-
genetic tree, reflecting a high level of variation of phages in this phy-
lum. To investigate the phage diversity of the CGRv, we conducted a
clustering and taxonomic approach using VConTACT v2.034 (Supple-
mentary Data 10). In total, 2117 clustered phages were divided into 317
virus clusters (VCs), hosted by 315 bacterial species (59.8% in CGR2).
For the taxonomy of phages in CGRv, only 269 phage genomes (12.7%)
could be assigned to known families, including Siphoviridae (135),

Myoviridae (108), and Podoviridae (26), whereas the vast majority of
the phages were previously unidentified at the family level.

Next, we determined the host range of phages and phage-host
network visualized using Cytoscape35 (Supplementary Fig. 16a).
VC_399, a most infectious VC of CGRv, has the broadest range of
bacterial hosts and can infect 31 bacterial species from Bacillota,
Actinomycetota, and Synergistota (Supplementary Fig. 16b). In addi-
tion, Clostridium fessum and Phocaeicola vulgatus were the most tar-
geted species thatmay be infected by 15 different VCs (Supplementary
Fig. 16c). Strikingly, four VCs were contained in the genomes of bac-
teria spanning different phyla, including VC_399, VC_67, VC_195, and
VC_220 (Fig. 4b). This may represent horizontal gene transfer events
between host bacteria in different phyla. For the quantification of the
host range of CGRv, we found that more than half of the VCs (167/317)
may infect multiple species of bacteria (Supplementary Fig. 16d).

We conducted an identification of proteins encoded by CGRv. A
total of 212,369 proteins were predicted and clustered as 25,345 non-
redundant protein clusters (Supplementary Data 11). 169,859 proteins
(79.98%) were uncharacterized, while 7394 proteins (3.48%) were
annotated as related to phage structure. Particularly, PC_000663, a
protein cluster involved in O-antigen conversion and bactoprenol glu-
cosyltransferase, which are considered to be related to polymyxin
resistance, was predicted to be encoded by 34 phages with 34 different
bacterial hosts in theBacillota andPseudomonadotaphyla (Fig. 4c). The
proteomic tree of PC_000663 showed that Lactococcus garvieae TM115-
50 and Lactococcus petaurid TM115-81 phylogenetically formed the
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closest clade. We found that the two species were infected by different
VCs that can encode PC_000663, suggesting that the homology within
PC_000663 may reflect horizontal gene transfer events.

Genome-wide analysis of Collinsella aerofaciens reveals high
genomic and functional variations
Many bacteria exhibit wide variations between different niches. In
this study, we discovered more than 10 clusters of Collinsella aero-
faciens in CGR2, indicating a high level of genomic diversity of these
bacteria. The genomic ANI clusters showed that 130 isolated gen-
omes from CGR2 and 67 genomes retrieved from NCBI (including 10
UHGG isolated strains) were divided into 19 clades, included 8 sin-
gleton clades (Fig. 5a). Interestingly, the distribution of the 19 clades
was inconsistent with their phylogenetic clades in the SNP phyloge-
netic tree. We then clustered these 197 genomes into 5 groups using
CDS sequences highly consistent with the SNP phylogenetic tree, of
which group 2 and group 4 were singletons (Fig. 5b), suggesting that
the mutation in non-protein-coding intergenic regions is one cause
of high genomic diversity. SNPs analysis showed that less than 10%
SNPs were present in the intergenic regions, but more than twice the
number of insertions or deletions (InDels) were detected in the

intergenic regions compared to CDS regions (Fig. 5c, d, and Sup-
plementary Fig. 17a, b), indicating that these species had rapid InDel
structural variations in the intergenic regions. We checked the 10
CDSs with top mutation frequency and found that the variant type
and frequency appeared to correlate with cluster and country (Sup-
plementary Fig. 17c). Furthermore, the gene copy number of several
CAZy enzymes differed significantly between different groups, with
the gene numbers of GH1, GH4, and CE9 in the group 3 strains being
higher than those of group 1 and group 5 strains (P < 0.01, Supple-
mentary Fig. 18), which may underlie the differences in the capacity
for utilization of cellulose36, cleavage of the glycosidic bond37, and
biosynthesis of amino-sugar-nucleotides38. Taken together, we
greatly increased the reported genomic diversity of C. aerofaciens
providing important insights for uncovering the genomic and func-
tional differences of different groups of C. aerofaciens.

Discussion
In this study, we used a large-scale culture-based method to obtain
human gut microbial genomes, expanding the collection of the Culti-
vated Genome Reference (CGR2) released as a valuable resource for
more comprehensive exploration of human gut microbes. CGR2
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presents 3324 high-quality genomes from 527 species, including 179
previously unidentified species. However, laboratory-based pheno-
typic analysis, taxonomic naming and species description of these 179
previously unidentified species are still limited. Correct taxonomy of
previously unidentified species is clearly warranted, and therefore,
polyphasic taxonomy studies of these previously unidentified species
will be conducted in our future studies. When aligned with metage-
nomic samples from healthy individuals in cohorts fromChina and the
Netherlands, and the HMP cohort, we found that 527 species were
widely distributed in the Chinese cohort and the HMP cohort, but less
prevalent in the cohort from the Netherlands. The bacterial commu-
nity structure in the Chinese cohort and the HMP cohort were more
similar than that of the cohort from the Netherlands. The CGR2 gen-
omes exhibit limited matches with the previous comprehensive col-
lections, UHGG, BIO-ML, and hGMB, which highlights the taxonomic
novelty. Recently, the recovery of genomes via cultivation-
independent methods has greatly expanded the reported diversity
of microorganisms5,39. In our collection, 40.42% of the species were
represented as singletons containing only one strain, limiting the
strain level diversity analysis of these species. We also report on a bias
in species cultivated from samples from individuals of different eth-
nicity and geographical location consistent with a previous study5,
suggesting that extensive culture-based studies are indispensable for a

comprehensive understanding of the human gut microbiota globally.
It is conceivable that the differences between the isolated strains and
MAGs that we have found may also be caused by strain differences
within the species pan-genome, especially for genomes collected from
different geographic locations. Further studies are clearlywarranted to
elucidate to what extent different ethnicities and geographic location
contribute to the observed differences.

We observed that CAZyme genes involved in degradation of
dietary fibers were more abundant in members of the phylum Bac-
teroidota than in members of the Bacillota phylum, and that these
genes presented smaller presence and absence variation (PAV).
Members of the Bifidobacterium genus contain more core type I or II
HMO degrading CAZyme genes, and notably Bifidobacterium bifidum
possesses a complete HMOmetabolism pathway. In this work, we also
confirmed that Roseburia possesses the metabolic capabilities for
metabolizing HMOs, consistent with a previous report23. Interestingly,
Bacteroidota contains a high number of large HMO genes. Thus, Bac-
teroidotamaypossibly play a key role in the primary utilization of both
dietary fibers and HMOs. The unidentified members of Roseburia and
Bacteroidota in the gut microbiota may also be involved in this pro-
cess, providing new insight into the metabolism of HMOs.

The small biologically active molecules produced by the
microbiota are not only of importance for microbe-microbe and
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microbe-host interactions40, but have also wide applications as
pharmaceutical, agricultural, and dietary agents. Traditionally,
laboratory experiments are used to mine novel natural products
based on specific strains. In recent years, genome-mining approaches
have attracted more and more attention41. Thus, previous studies
have exploited secondary metabolites of environmental
microorganisms42,43, while a few studies have focused on the sec-
ondary metabolite resources of human microorganisms44. The CGR2
genomes have great potential for exploration of secondary meta-
bolites, highlighted by the existence of hundreds of SMBGs without
known functions in the human gut microbiome providing an option
for the discovery of natural products with biological activity in the
human microbiota. With the generation of this massive genome
reference, we are able to explore the interplay between SMBGs and
the human host at the strain level, providing more comprehensive
insight into the possible contribution of gut microbes to host health.

We performed a large-scale analysis of phages in the isolate-based
genomes and constructed a comprehensive gut phage-bacteria inter-
action network identifying a large number of interactions between
phages and host-bacteria. The interaction networks revealed a broad
infection range of phages in the human gut microbiota, particularly in
bacteria from the Bacillota phylum, which demonstrated that most of
the phages (56.47%) in the human gut are not very specific for their
bacterial host. We even identified four VCs able to infect bacteria from
different phyla, adding toour understandingof the specificity of phages.
Such promiscuous transduction behavior of phages may have a pro-
nounced impact on the gut microbiota affecting the potential applica-
tion of phages for combating pathogens with multidrug-resistance.

Our study also provides a comprehensive genomic resource,
which in combination with published genomes from other source
enables a genome-wide analysis of specific species. Thus, we demon-
strate anunexpected genomic diversity ofCollinsella aerofaciens in the
human gut, including the discovery of numerous variations present in
the intergenic regions of C. aerofaciens genomes compared with CDS
regions, highlighting an underestimated genome diversity of this
species. We emphasize that strain-level diversity should be taken into
account for the exploration of function and evolution of specific
bacterial strains.

More and more research is moving from studies of association to
studies of causality and interventions. The cultured isolates enable a
more detailed exploration of the function of specific bacteria in vitro
and in vivo. Most importantly, a large collection of bacteria and gen-
omes offers options to develop probiotics and secondary metabolite
products for use as alternative therapeutic modalities for clinical
interventions.

Methods
Sample collection and culturing
The sample collection was approved by the Institutional Review
Board on Bioethics and Biosafety of BGI under the number BGI-IRB
20106-T2.

299 healthy human donors not taking any drugs during the last
month before sampling were included for fecal collection. Candidate
donors, with reference to Liu et al.16, were considered healthy donors if
they presented without any diagnosed disease, regardless of their sex.
The sampling and culturing method were as described by Zou et al.9.
The 16S rRNA gene sequence of each isolates was amplified and
sequenced as previously described45. The taxonomy of isolates was
determined and checked by blasting the 16S rRNA gene sequences
against reference sequences in the EZBioCloud Server (https://www.
ezbiocloud.net/)46. The study was conducted in accordance with the
Declaration of Helsinki and informed consent was provided by all
donors.

The study conforms to the “Guidance of the Ministry of Science
and Technology (MOST) for the Review and Approval of Human

Genetic Resources”, and the public use of our data has been approved
under the numbers 2022BAT2332 and 2022BAT2377.

Genome sequencing, assembly, quality assessment, and gene
prediction
All the isolates were grouped into species-level clusters based on a
threshold of 98.7% identity of the 16S rRNA gene sequence47. Our
strategy for selecting strains for WGS were (1) representation of can-
didates for unidentified taxa, (2) covering as many taxa as possible of
the strains cultivated in the study, (3) important species from various
donors. Among the 1804 newly sequenced strains, 1282 were
sequenced using theMGISEQ-T7 platform, and the remaining 522were
sequenced by the Illumina Hiseq 2000 platform. The methods of
whole-genomesequencing anddenovo assemblywereas describedby
Zou et al.9. Gene numberswere calculated usingGeneMarkS-2 (v1.10)48.
Genome quality was evaluated using CheckM (v1.1.2)49 ‘lineage_wf’
workflow to select genomes with >90% completeness and <10% con-
tamination as high-quality genomes. The gene prediction and enzyme
annotation of the 3324 genomes were performed on Prokka 1.14.650.

Phylogenetic and taxonomic analyses
The pairwise ANI alignment was performed for the 3324 genomes
using fastANI (v1.32)51, and hclust from the R package was used to
cluster at proposed cutoff species level (ANI ≥ 95%). GTDB-Tk52 (v2.1.0,
database r20753, ‘classify_wf’ function and default parameters) was
used to perform taxonomic annotation of each genome and recon-
struct the maximum-likelihood phylogenetic tree based on 120 con-
served single-copy genes. Taxa nomenclatures have been updated
based on the latest valid published name. The phylogenetic tree was
viewed using the display and annotation tool iTOL (v6.1.1)54.

Comparison of the distribution of species-level clusters in
healthy individuals in cohorts established in China, in the
Netherlands, and in the HMP
Human gut metagenome sequencing data of a Chinese cohort (a part
of 4D-SZ)10 was downloaded from the CNGB Sequence Archive
(CNSA)55 (https://db.cngb.org/cnsa/) of China National GeneBank
DataBase (CNGBdb)56 under the accession code CNP0000426. Gut
metagenome data of healthy individuals from a cohort established in
the Netherlands11 was retrieved from the European Genome-Phenome
Archive under accession EGAS00001005027. Gutmetagenomedata of
healthy individuals from HMP was downloaded following the link
https://portal.hmpdacc.org/. The 527 species-level clusters were built
as a custom genome database by Kraken v2.1.257 and Bracken v2.558.
Kraken2 and Bracken were also used to calculate the read numbers of
the 527 species-level clusters in the cohorts established in China, in the
Netherlands, and in the HMP. Median and mean of the relative abun-
dances of the 527 clusters in the three cohorts were calculated, and the
correlations between the medians and means of the three cohorts
were analyzed based on Spearman’s rank correlation coefficient. To
calculate prevalence, a thresholdof0.01% relative abundancewasused
to define the occurrence of a cluster in one sample59.

Alignment with other genome collections
We downloaded 4644 representative genomes (including 894 human
gut cultured genomes, 3312 uncultured genomes, and 438 other
source cultured genomes) from UHGG (http://ftp.ebi.ac.uk/pub/
databases/metagenomics/mgnify_genomes), 3423 isolated genomes
of Broad Institute-OpenBiome Microbiome Library (BIO-ML, https://
www.ncbi.nlm.nih.gov/bioproject/PRJNA544527), and 404 isolated
genomes from hGMB (https://www.ncbi.nlm.nih.gov/bioproject/
PRJNA656402) as the reference collection. We were unable to per-
form comparisonswith the GlobalMicrobiomeConservancy (GMbC)60

because of restricted access. We performed a pairwise ANI alignment
between CGR2 and the reference collection using fastANI (v1.32). The
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clusters were considered to match if the ANI value was higher
than 95%.

Glycan-degrading CAZyme analysis
CAZymes were annotated with dbCAN (v2.0)61. Cellulose-, inulin- and
pectin-degrading related CAZyme families were identified in the
dbCAN-PUL database62 by the link https://bcb.unl.edu/dbcan_pul/
Webserver/static/DBCAN-PUL/. Preparing for the subsequent pathway
analyses, KofamKOALA63 was used to obtain enzyme information. In
order to obtainmore annotation, the parameter “-f detail-tsv”was set in
KofamKOALA. Complete pathways of inulin-glucose, cellulose-glucose,
pectin-glucose, pyruvate-acetate, pyruvate-propionate, and pyruvate-
butyrate were collected by referring to KEGG pathways, map00051,
map00500, map00040, map00010, map00620, map00640,
map00650, and detailed pathways have been listed in Supplementary
Data 5 and can be found in Supplementary Fig. 10. All enzymes of these
pathways were included as filter criteria to screen for potential glycan-
degrading and SCFA-producing strains. The R function ggtree was used
to visualize the presence and absence of the selected CAZyme families.
Vegdist and pcoa function were used in PCoA on the gene numbers of
CAZyme families involved in HMO degradation.

SMBGs identification, clustering, and network analysis
Identification of SMBGs was performed by anti-SMASH (v4.2.0)25. BiG-
SCAPE v1.0.164 was used to cluster the identified SMBGs and MIBiG
(version 1.4)65 reference BGCs into CGFs (cutoff 0.3) and classes,
“include_singletons” parameter was selected to include SMBGs with a
distancehigher than0.3; other parameterswere thedefault parameters.
The similarity networks of SMBGs in the same class established by BiG-
SCAPE were displayed by Cytoscape (v3.8.2)35,43. Then CORASON64 was
used to reconstruct and visualize the multi-locus phylogeny of gene
clusters of interest to explore their evolutionary relationships.

Viral sequence prediction, selection, and comparison
VirSorter (v1.0.5) was used to mine viral signals. The results of the
VirSorter mining were classified into 6 categories: category 1 (sure
phage), category 2 (somewhat sure phage), category 3 (not so
sure phage), category 4 (sure prophage), category 5 (somewhat sure
prophage), and category 6 (not so sure prophage). Predictions classi-
fied as category 1, 2, 4, or 5 were evaluated at the level of completeness
with CheckV (v0.7.0), and database of checkv-db-v0.6 for reference.
Sequences classified into complete, high quality (>90% completeness),
or medium quality (50–90% completeness) were selected. We com-
pared the phage genomes with MGV and GPD, using CD-HIT (v4.8.1)66

with parameters ‘-c 0.95 -G 0 -aS 0.75’.

Clustering of phages into VCs/PCs and taxonomic classification
ORFs were called using Prodigal (v2.6.3)67. For the resulting protein
sequences, VConTACT2 (v0.9.19)34 was used to cluster and provide
taxonomic context, with the ‘--raw-proteins --rel-mode ‘Diamond’
--proteins-fp --pcs-mode MCL --vcs-mode ClusterONE --c1-bin
cluster_one-1.0.jar --db ‘ProkaryoticViralRefSeq88-Merged’ -t 8’
option.

Phylogenetic analysis and tree construction of phages
For the CGRv phylogenetic tree, excluding the 901 provirus sequences
in CGRv, the rest of the 1919 sequences were aligned by MAFFT
(v7.407)68, with the ‘--auto --reorder’ option. The maximum-likelihood
phylogenetic tree was constructed by FastTree (v2.1.3)69. The resulting
tree was visualized using iTOL (v6.1.1)54.

Genomics comparison analysis
Mummer (v3.22) and lastz (v1.03.73) were used to align the assembled
genomes to the reference genome (C. aerofaciens ATCC 25986,
GCA_000169035.1) with default parameters to call the homozygous

SNPs and small size insertion and deletion variants as previous
described70. The phylogenetic tree was constructed using the SNP
alignment sequences by TreeBeST (v1.9.2) with “phyml” model and
bootstraps value “1000”, and then all trees were visualized by using
iTOL (v.6.1.1)54. Genomes were clustered into five groups based on the
95% ANI threshold of CDS sequences. For the gene functional anno-
tation, BLAST (v2.2.26) was used to align the gene sequences to KEGG
(v87) for annotation with E-value <1e−5.

Statistical analysis
Statistical tests were performed using R v4.0.3. Hierarchical clus-
tering of genomes was performed using hclust package for R with
distance of 0.05. All P values were calculated using the Wilcoxon
rank-sum test (two-sided), except for the significance analysis of
microbial communities in healthy cohorts of China, HMP, and the
Netherlands. The community ordination of the 527 clusters in all
metagenomes was performed with the R functions vegdist
(Bray–Curtis dissimilarities) and cmdscale (Principal Co-ordinates
Analysis, PCoA). R function envfit was used to test the correlation
between either categorical data or continuous variables with the
coordinates of microbial communities and the significance was
assessed using permutation.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The genome data generated in this study have been deposited into
CNSA55 of CNGBdb56 with accession number CNP0000126 and
CNP0001833, and NCBI under the projects PRJNA482748 and
PRJNA903559. All the bacterial strains in CGR2 have been deposited
in China National GeneBank (CNGB), a non-profit, public-service-
oriented organization in China. The strain information, including
taxonomy, donor, and culture conditions can be found and accessed
through https://db.cngb.org/codeplot/datasets/CGR2. The data-
bases used in this study include GTDB database Release 07-RS207
(https://data.gtdb.ecogenomic.org/releases/release207/), dbCAN-
PUL (https://bcb.unl.edu/dbcan_pul/Webserver/static/DBCAN-PUL/),
KEGG database (https://www.genome.jp/kegg/), MIBiG version 1.4
(https://mibig.secondarymetabolites.org/), checkv-db-v0.6 (https://
portal.nersc.gov/CheckV/), and Genebank (www.ncbi.nlm.nih.gov/
genbank/). The datasets used in this study include human gut
metagenome sequencing data of a Chinese cohort (a part of 4D-SZ)
(https://db.cngb.org/search/project/CNP0000426/), HMP (https://
portal.hmpdacc.org/), the Netherlands cohort (https://ega-archive.
org/studies/EGAS00001005027), UHGG (http://ftp.ebi.ac.uk/pub/
databases/metagenomics/mgnify_genomes), BIO-ML (https://www.
ncbi.nlm.nih.gov/bioproject/PRJNA544527), hGMB (https://www.
ncbi.nlm.nih.gov/bioproject/PRJNA656402), MGV (https://portal.
nersc.gov/MGV/), and GPD (https://ftp.ebi.ac.uk/pub/databases/
metagenomics/genome_sets/gut_phage_database/).
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