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An integrated single cell and spatial
transcriptomic map of human white
adipose tissue
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Jesper Bäckdahl1, Narmadha Subramanian1, Takuya Sekine4, Alastair G. Kerr 1,
Ben T. P. Tseng1, Jurga Laurencikiene1, Marcus Buggert 4, Magda Lourda 4,5,
Karolina Kublickiene 6, Nayanika Bhalla 7, Alma Andersson7,
Armand Valsesia 8, Arne Astrup 9, Ellen E. Blaak 10, Patrik L. Ståhl 7,
Nathalie Viguerie 11,12, Dominique Langin 11,12,13,14, Christian Wolfrum 2,
Matthias Blüher3,15, Mikael Rydén 1,16 & Niklas Mejhert 1,16

To date, single-cell studies of human white adipose tissue (WAT) have been
based on small cohort sizes and no cellular consensus nomenclature exists.
Herein, we performed a comprehensivemeta-analysis of publicly available and
newly generated single-cell, single-nucleus, and spatial transcriptomic results
from human subcutaneous, omental, and perivascular WAT. Our high-
resolution map is built on data from ten studies and allowed us to robustly
identify >60 subpopulations of adipocytes, fibroblast and adipogenic pro-
genitors, vascular, and immune cells. Using these results, we deconvolved
spatial and bulk transcriptomic data from nine additional cohorts to provide
spatial and clinical dimensions to themap. This identified cell-cell interactions
as well as relationships between specific cell subtypes and insulin resistance,
dyslipidemia, adipocyte volume, and lipolysis upon long-termweight changes.
Altogether, our meta-map provides a rich resource defining the cellular and
microarchitectural landscape of human WAT and describes the associations
between specific cell types and metabolic states.

White adipose tissue (WAT) is a uniquely plastic organ that can expand
or shrink in response to caloric supply and demand. The ability to
function across pronounced variations in tissue mass is governed by a
plethora of resident and recruited cell types1. Disturbed WAT remo-
deling leads to changes in the cell composition of the tissue, which in
turn increases the riskof developing insulin resistance, type 2diabetes,
and other cardiometabolic complications2. Defining the cellular land-
scape and microarchitecture of human WAT in health and disease is
therefore of considerable clinical relevance.

To determine cell composition, single-cell technologies have
been applied to WAT obtained from different depots. Together,

these studies have identified novel specialized cells in adipose tissue
such as: (i) adipogenic precursor cells with anti-adipogenic effects3–5,
(ii) lipid-associated macrophages (LAMs) with central roles in
metabolic health6 and (iii) adipocyte subtypes with distinct sensi-
tivities to insulin7 or thermogenic effects8. However, a caveat with
most single-cell studies is that issues related to data production
restrict sequencing depths and the number of samples that can be
processed. Consequently, most published reports in the adipose
field are based on small cohort sizes and even the largest ones
have, so far, included fewer than 15 individuals9,10. This, together
with qualitative differences between technical platforms and
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bioinformatic approaches, limits the generalizability of the observed
findings.

To address this, we performed a comprehensive meta-analysis of
newly generated and publicly available data where we integrated
single-cell (scSeq) and single-nucleus (snSeq) RNA sequencing results.
Based on this, we created a cellular meta-map which we used to
deconvolve spatial andbulk transcriptomic data fromwomen andmen
spanning over a very broad range in age, BMI, andmetabolic states. By
mining this rich resource, we provide a nomenclature of cells residing
in human WAT, their localization and how they relate to metabolic
health.

Results
Human WAT contains four major cell classes
To define the cellular landscape of human WAT, we retrieved scSeq,
snSeq and spatial transcriptomic (STx) results from ten published
reports comprising samples from subcutaneous, visceral, and peri-
vascular WAT6–15. We combined this with unpublished data from four
additional cohorts (Massier et al. #1–4), resulting in a total of 17 data-
sets across studies and depots (Supplementary Table 1). As displayed
in Fig. 1a, together these included 401,320 quality-filtered cells/nuclei
(hereafter referred to as objects) obtained from 103 samples of 83
donors spanning over a broad range in age (22–77 years) and body
mass index (BMI, 17–55 kg/m2).

To create ameta-map, wefirst defined cell clusters by processing
all datasets individually using Seurat v4.116 (Supplementary Fig. 1a and
Supplementary Data 1). Based on these results, we calculated a Jac-
card index comparing cell cluster marker genes between studies. We
found that all data, except the one from Hildreth et al.11, largely
overlapped (Fig. 1a). This demonstrates that: (i) most cell types were
present across the different cohorts/depots and (ii) snSeq, scSeq,
and STx on average capture similar trends. Because STx is a spot-
based approach that requires specific tools for data deconvolution17,
we analyzed the Bäckdahl et al.7 study separately. For the remaining
snSeq/scSeq datasets, we performed a high-level topological analy-
sis, which revealed that clusters identified in the individual studies
separated into four major cell classes: adipocytes, fibroblast and
adipogenic progenitors (FAPs), vascular and immune cells (Fig. 1b).
To validate our findings, we applied CellTypist18 to the immune cells
which confirmed our annotations for this class (Supplemen-
tary Fig. 1b).

Our comprehensive classification allowed us to estimate the cel-
lular composition ofWAT (Fig. 1c, d). For this, wefirst used snSeq data,
as this method, in contrast to scSeq, captures fat cells. After quanti-
fying the number of adipocytes in each dataset, we next compared the
proportions of the other cell classes between methods. We found that
FAPs constituted the largest class of ~40% of the total cell population
according to both snSeq and scSeq. This was followed by adipocytes
and immune cells, which were present in a 1:1 ratio and together
constituted ~40% of the cells. For adipocytes, this is in line with what
has previously been reported in the literature19. About 15% of the
objects were vascular cells, but the recovery of this cell class was
strongly influenced by methods where the proportion was approxi-
mately three times higher with snSeq compared to scSeq. This could
be due to pre-selection bias introduced by enzymatic digestion as has
been shown before for endothelial cells in mouse kidney20. Compar-
isons across depots showed that there were no significant differences
in cell class abundance. As expected, scSeq studies where cells had
been enriched for either FAPs (CD45−)13 or immune cells (CD45+)14 prior
to sequencing displayed markedly higher proportions of these cell
types compared to the rest of the datasets, supporting the validity of
our classification (Supplementary Fig. 1a). Of note, for perivascular
WAT, snSeqdatawere only available fromone cohort implying that the
generalizability of the results from this depot needs to be further
validated.

Cell class-based analyses successfully integrates data across
studies
As much of the biological variability overlapped between cohorts, we
performed data integration across studies. In contrast to the label-
centric analysis presented in Fig. 1b, this approach facilitates the
identification of rare cell types which risk being omitted in more
sparsely sampled datasets. Many tools are available for integrative
analyses and all of them introduce different biases where a trade-off
between overfitting vs. insufficient integrationmust be considered21,22.
In a first step, we applied single-cell annotation using variational
inference (scANVI) as prior knowledge of cell type annotations can
improve integration results23. In line with the findings in Fig. 1a, b, data
from Hildreth et al. could not be integrated with scANVI and this
dataset was therefore excluded from all subsequent analyses (Sup-
plementary Fig. 1c). After removing Hildreth et al. the scANVI results
mirrored the high-level topological analysis shown in Fig. 1b (Supple-
mentary Fig. 1d).We therefore split the data into these four classes and
tested different integrative frameworks. We included reciprocal prin-
cipal component analysis (rPCA)16, batch balanced k-nearest neighbors
(BBKNN)24,Harmony25 and single-cell variational inference (scVI)26, as all
of them have benchmarked well in prior systematic comparisons27,28.
To evaluate these methods across the main confounders (techniques,
depots and cohorts), we calculated the adjusted Rand index (ARI)29, k-
nearest-neighbor batch-effect test (kBET)30 and Local Inverse Simpson
Index (LISI)25,31. In comparison tousing all objects as input, we obtained
enhanced integration results when splitting the data into immune
cells, vascular cells, FAPs, and adipocytes. Our results showed that (i)
Harmony performed well for FAP integration, (ii) scVI and rPCA pro-
vided the best results across all scores for methods, cohorts, and
depots, and (iii) kBET showed overall the lowest rejection rates for scVI
(Fig. 1e, Supplementary Fig. 2a, b). This in combination with a previous
report suggesting that scVI works best for complex data27, prompted
us to apply thismethod to all four cell classes separately. Given that the
included datasets varied in object number, we capped them to contain
similar object counts to reduce bias and enhance integration (Sup-
plementary Fig. 2c, d). Based on this, we included an optimal number
of objects for each cell classwhich resulted in cell clusters represented
by most studies and methods (Supplementary Fig. 2d, e). With these
criteria, we created WAT annotation models which are publicly avail-
able and can be applied in future studies (see Methods).

Immune cells with different origins and activation states are
present in human WAT
The immune cell class integrated well across techniques, studies, and
depots (Fig. 1e, Supplementary Fig. 2b). As displayed in Supplementary
Figures 3a, b, we annotated two major groups containing distinct
subpopulations of: (i) T, natural killer (NK), and NKT cells (28.8%) and
(ii) monocytes, macrophages, and dendritic cells (67.3%) as well as
threeminor populations includingmast (2.94%), B (0.87%), andplasma
B cells (0.16%).

The large number of objects allowed us to further dissect these
groups separately to provide a high-resolutionmapof thedifferent cell
populations. In the major lymphocyte group, we identified 11 different
clusterswhichwere denoted lyC0-10, in order of abundance fromhigh
to low (Fig. 2a, b, Supplementary Table 2 and Supplementary Data 2).
These included subtypes of (i) Th1-polarized (lyC0), tissue-resident
memory (TRM, lyC01), naive/early differentiated (lyC04), and naive/
regulatory (TREG, lyC08) CD4

+ T cells (ii) CD8+ T cells including early-
(lyC02) and late-differentiated (lyC03) cells, (iii) NKT cells (lyC05), as
well as (iv) CD16+ (lyC06) and CD16− (lyC09) NK cells. Multiple cell
classes, including TREG and TRM, could be further subdivided based on
their differentiation states (Fig. 2a, lower panel). We confirmed these
data by flow cytometry (Supplementary Fig. 3c) using a panel of anti-
bodies identified in the transcriptomic analyses (see Methods). Com-
parisons across depots revealed that all identified T and NK cell
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populations were present in subcutaneous, omental, and perivascular
WAT albeit with slightly different proportions (Fig. 2b). For example,
Th1 CD4+ T cells (lyC0) were more abundant in omental while late-
differentiated CD8+ T cells (lyC03) enriched in subcutaneous WAT
(Fig. 2b). These observations were confirmedby deconvolution of bulk
transcriptomic data in two independent cohorts32,33 (Fig. 2c).

We next classified themyeloid group. This resulted in 16 different
clusters (myC0-15) includingmacrophages, non-classical (myC05) and
classical (myC14) monocytes, as well as class 2 dendritic cells (myC03)
(Fig. 2d, Supplementary Table 2 and Supplementary Data 2). In-depth
analyses of macrophages revealed several M2-like subpopulations
(myC0-01, myC04, myC07-09, myC11-13) out of which two (myC08
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and −12) have not been previously reported inWAT (Fig. 2d, e).We also
identified mixed M1/M2-like (myC06), lipid-associated (LAM, myC02),
metabolic-regulated (MMe, myC10) and redox-regulatory metabolic
(Mox, myC15) macrophages (Fig. 2d). Similar to lymphoid cells, our
flow-cytometry-based follow-up studies confirmed the presence of
several of the identifiedmyeloid subpopulations in subcutaneousWAT
(Supplementary Fig. 3d). Analyses over the three depots revealed that
LAMs (myC02) were present in both subcutaneous and omental WAT
but were virtually absent in the perivascular depot, while Mox (myC15)
were only present in the subcutaneous region (Fig. 2f). The omental
regionwas enriched for different types ofM2-like cells (myC07-08 and
myC12), observations which were confirmed by deconvolution of bulk
transcriptomic data (Fig. 2g). In addition to these larger groups, we
also analyzed B and mast cells (Supplementary Fig. 3e, f, Supplemen-
tary Data 2). B cells separated into activated (bC01, characterized by
upregulation of genes related to regulation of T cell-mediated cyto-
toxicity) and non-activated states (bC0). While mast cells could not be
clearly subdivided, there were trends in the data indicating that both
MCT (tryptase-positive) and MCTC (positive for chymase and carbox-
ypeptidase) cells were present.

WAT contains vascular cells with angio- and adipogenic
expression profiles
For vascular cells, our data integrated well between techniques,
studies, and depots (Fig. 1e, Supplementary Fig. 2b). We identified 12
distinct cell populations (vC0-11), which were broadly split into four
major groups including several blood (vC0-03, vC05, vC08-11), and
lymphatic (vC06) endothelial cells as well as vascular smoothmuscle
cells (vC07) and pericytes (vC04) (Fig. 3a, Supplementary Table 2
and Supplementary Data 2). Based on nomenclatures from several
scSeq atlases, blood endothelial cells were further classified into the
classical capillary (vC0), venous (vC01 and vC11), mixed capillary/
venous (vC03), and arterial (vC02) subpopulations (Fig. 3b). Three
subtypes (vC08-10) separated from the major endothelial cell
populations. Top marker genes for these revealed that vC08 dis-
played a considerable overlap with the herein-identified myC08
(Jaccard index: 0.33), indicating that they may represent cells with
similar function or intermediate cell states. Two of the shared mar-
ker genes were TIMP1 and ITLN1 which encode secreted proteins
inhibiting neovascularization34,35, suggesting that these cells may
exert anti-angiogenic effects (Fig. 3c). vC09 was enriched for genes
previously described in “early endothelial progenitor cells” (e.g.,
TYROBP, FCER1G), a hematopoietic cell type that promotes angio-
genesis via paracrine mechanisms (Fig. 3d)36,37. Thus, human WAT
may contain vascular cells that either stimulate or inhibit vascular-
ization. One vascular subtype (vC05) expressed multiple marker
genes for committed preadipocytes (e.g., CXCL14, APOD, and CFD)
and was the only vascular population that expressed PDGFRA
(Fig. 3e). In mice, all peri-aortic adventitial fibroblasts are PDGFRA+

and give rise to perivascular adipocytes15. It is therefore possible that
vC05 represents an intermediate cell state between endothelial and
adipocyte precursor cells. Admittedly, this notion needs further

functional studies. Comparisons between depots revealed that all
cell types, including vC05, were present in the three regions. How-
ever, lymphatic (vC06) and TIMP1-expressing (vC08) endothelial
cells were enriched in omental and perivascular WAT (Fig. 3f),
observations which were confirmed by deconvolution of bulk tran-
scriptomic data (Fig. 3g).

Subcutaneous FAPs include subpopulations distinguished by
degree of commitment
Although FAPs include fibroblasts and stem cells at different stages of
commitment, an established nomenclature for this class is still lacking.
This, in combination with their pronounced heterogeneity and depot-
specific contribution to WAT expansion (at least in mice38), prompted
us to analyze this cell class depot-by-depot. The subcutaneous FAPs
separated into 17 clusters (sfC0-16) distributed into four smaller
(sfC03, −11, −13, and −16) and one very large (86.5% of all FAP objects)
group (Fig. 4a and Supplementary Data 2). The former included
mesothelial-like cells (sfC11), CD74+ stromal cells (sfC13) reported to
have antifibrotic properties39, and late committed preadipocytes
(sfC16). One cluster (sfC03) enriched for cell adhesion molecules and
was the only FAP that did not express CD34, PDGFRA, or
PDGFRB (Fig. 4b).

In contrast to the smaller clusters, the larger group included
multiple extracellularmatrix- andCD55/PI16-expressing cells (Fig. 4a, c,
Supplementary Fig. 4a). The latter marks a universal fibroblast popu-
lation that can differentiate into more specialized cells40, including
adipocytes13. Therefore, we used them as a starting point in pseudo-
time analyses which identified two distinct trajectories (routes 1–2)
branching into opposite directions at the first step (Fig. 4d). To test if
these trajectories were recapitulated during de novo adipocyte for-
mation, we deconvolved bulk RNAseq data from human CD55+ cells
undergoing adipogenesis in vitro41 (Fig. 4e, f).Our results show that the
CD55/PI16 gene cluster (sfC02) was highly expressed prior to differ-
entiation and was markedly downregulated upon adipogenic induc-
tion (Fig. 4g). This was followed by a transient upregulation of route
1-localized clusters (sfC04-05 and sfC07-08), which thus constitute
transient cell states. Route 1 ended in sfC0, a cell population enriched
for genes that were upregulated at late stages of differentiation (e.g.,
APOD and CFD) and most likely represent committed preadipocytes
(Fig. 4a, d, g). In contrast to route 1, the cell populations in route 2
(sfC01, sfC06, sfC09-10, sfC12, and sfC14-15) could not be detected
during in vitro adipogenesis. These results were recapitulated in three
additional cell models41–43 (Supplementary Fig. 4b), suggesting that
under standard in vitro conditions, CD55+ adipocyte precursor cells
cannot recapitulate the full FAP heterogeneity observed in
subcutaneous WAT.

To improve our FAP annotations and determine inter-species
similarities, we systematically compared our findings with scSeq data
obtained from mouse inguinal WAT (which is frequently used as a
proxy for human subcutaneous WAT)3,5,44. We found that mouse early
adipocyte progenitors (P1-1 and P1-2) overlapped with CD55/PI16-
expressing adipocyte precursors (sfC02), while more committed

Fig. 1 | A meta-map to define human WAT composition. a For each included
cohort, number (n) and gender of subjects, age (years) and bodymass index (BMI)
ranges (min–max) as well as number of objects (cells/nuclei), method (single-
nucleus Seq [snSeq], single-cell Seq [scSeq] or spatial transcriptomics [STx]) and
Jaccard index are displayed. Massier et al. #1–4 refer to data generated for the
present meta-analysis and gray bars (n/a) indicate that no information was
obtained. Boxes for age and BMI represent a range (min–max), boxplots are pre-
sented as interquartile range plus median and Tukey whiskers. Summarizing sta-
tistics are displayed in the right panels as mean± S.D. b Network displaying nodes
(subclusters from each study) and edges (marker gene overlap). Data were dis-
tributed into four major classes and named based on prominent marker genes.
Node sizes are reflecting cluster proportions. The displayed network does not

include results fromHildreth et al.11, as data from this study overlapped poorly with
the others. c, d Cell class proportions comparing c) methods (snSeq vs. scSeq) and
d depots (subcutaneous [sc]WAT vs. omental [om] vs. perivascular [pv]). Note that
adipocytes are only available by snSeq. Data are shown as mean ± S.D. Statistical
differences were calculated by two-sidedMann–WhitneyU test between sc (n = 10)
and om (n = 4) WAT or scSeq (n = 6) and snSeq (n = 8). Because of fewer cases, no
statistics were calculated for adipocytes and pvWAT. e K-nearest-neighbor batch-
effect test (kBET) and adjusted Rand index (ARI) for raw or integrated data using
the indicated methods displayed according to method, depot, and cohort. BBKNN
batch balanced k-nearest neighbors, scVI single-cell variational inference, rPCA
reciprocal principal component analysis. Source data are provided as a Source
data file.
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preadipocytes (P2-1 and P2-2) resembled sfC0 (Fig. 4h). The gene
expression profile of the P3 population, which has been defined as
FAPs with anti-adipogenic properties (AREG), showed overlap with one
of the transient cell clusters along route 1 (sfC04). There were no
overlaps with any of the route 2-localized FAPs indicating that clusters
along this trajectory are not overlapping with the Lin-/SCA+ cells pre-

selected in the studies by Schwalie et al.3 and Dong et al.5. However,
DPP4, which is an establishedmarker of pro-adipogenic FAPs inmouse
inguinal WAT44, projected onto route 2 and was enriched in sfC06 and
−10 (Supplementary Fig. 4c). This demonstrates that specific FAPs in
this trajectory overlap with murine PDGFRB+ cells with adipogenic
capacity.
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Fig. 2 | Analyses of the WAT immune cell panorama reveal novel subtypes.
a Nomenclature (upper panel) and expression patterns of selected marker genes
(lower panel) for T,NKT, andNKcells (lyC0-10).bProportions (%) of T,NKT, andNK
cells (lyC0-10) in subcutaneous (sc), omental (om), and perivascular (pv) WAT
depots. c The enrichment of lyC0 in omental and lyC03 in subcutaneous WAT was
supported by deconvolution of bulk transcriptomic data from Arner et al.32 (left
panel) and Krieg et al.33 (right panel). p values were calculated by two-sided Wil-
coxon signed-rank test. d Same visualization as a, but for monocytes and
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differentiated, LAM lipid-associated macrophages, MMe metabolic-regulated
macrophages, Mo monocytes, Mox redox-regulatory metabolic macrophages, NK
natural killer cells, NKT natural killer T cells, Th helper T cells, TREG regulatory
T cells, TRM tissue-resident memory T cells. Source data are provided as a Source
data file.
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Omental and subcutaneous FAP signatures largely overlap
The omental FAPs separated into 15 clusters (ofC0-14) (Fig. 4i, Sup-
plementary Data 2). To annotate these, we compared their signatures
to subcutaneous FAPs. We found that several cell populations shared
overlapping marker genes between depots (Fig. 4j, Supplementary
Fig. 4c-d). Thus, CD55/PI16-expressing adipose precursors (sfC02)
matched ofC07, and APOD/CFD-expressing committed preadipocytes
(sfC0) corresponded to ofC02. All FAPs in route 2 showed strong
similarities to three omental clusters (ofC05, ofC09, and ofC14). CD74
was highly enriched in sfC13 and ofC10 (Supplementary Fig. 4d), but
theoverall Jaccard indexbetween these twocell typeswasmodest. The
mesothelial-like cell signature in subcutaneous WAT (sfC11) was reca-
pitulated in multiple omental FAPs (ofC03, ofC06, and ofC11-12). Of
note, DPP4 was enriched in these omental clusters, but not in the
corresponding subcutaneous cells, indicating that this gene marks
different subsets of FAPs in the two depots (Supplementary Fig. 4c), a
notion previously suggested in mice44. Flow cytometric analysis of
subtype-specific surface markers in the stromal vascular fraction of
WAT biopsies from subcutaneous and omental WAT confirmed the
presence of sf02/ofC07 (CD55+), sfC0/ofC02 (APOD+), sfC13/ofC10

(CD74+) and mesothelial-like cells (EZR+) in both depots (Fig. 4k, Sup-
plementary Fig. 4d). We did not find any expression profiles similar to
the fibro-inflammatory progenitors previously described in mouse
epigonadal WAT4 (Supplementary Fig. 4e). Data from the perivascular
depot separated into eight clusters (pf0-pf07) (Supplementary Fig. 4f).
While pfC0 resembled ofC07 (adipose precursors) and ofC12, pfC03
was linked to ofC02 (committed preadipocytes). The remaining clus-
ters did not display strong similarities to any of the other FAP subtypes
identified in subcutaneous WAT.

Adipocytes display inconsistent heterogeneity between studies
In contrast to scSeq, snSeq allows for analyses ofmature adipocytes. In
the present study, we analyzed snSeq datasets from subcutaneous
(n = 4), omental (n = 2), and perivascular (n = 1) fat depots. As with the
other cell classes, we jointly analyzed objects classified as fat cells first.
However, this resulted in poor ARI, kBET, and LISI indices (Fig. 1e,
Supplementary Fig. 2b), suggesting that complete data integrationwas
not possible to achieve between studies and depots (Supplementary
Fig. 5a). As a next step, we analyzed the depots separately. This,
however, did not improve our integration as most clusters separated
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according to studies rather than biological similarities between data-
sets (Supplementary Fig. 5b).

A possible reason for incomplete data integration is that there are
few common features between studies, even in the low-dimensional
space21. To test if data harmonization was influenced by a limited
degree of overlap, we next analyzed the studies individually. We

focused on data produced by Emont et al.9 and our own results
(Massier et al. #1) generated in subcutaneous WAT as they contain the
largest number of subjects and objects.We selected the top 50marker
genes for all clusters and found that adipocytes displayed lower fold-
changes compared to the other cell classes (Fig. 5a, left panel). This
indicates that the degree of cell heterogeneity is less pronounced in
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adipocytes. However, there may still be consistencies between the
studies. We, therefore, transferred cell type classifications between
datasets. In comparison with the other cell types where marker genes
displayed clear enrichments and overlap between studies, we found a
low overlap and a limited set of reproducible adipocyte marker genes
across studies (Fig. 5a, right panel). These included a cluster of genes
encoding proteins involved in lipid metabolism e.g., ABCD2, ACACB,
CD36, DGAT2, GPAM, HACD2, and LPL (Fig. 5b).

Because of the modest heterogeneity and low reproducibility
across studies of adipocytes, we benchmarked the snSeq data and our
recently published STx-based results7 against rRNA-depleted45 and
cap-trapped41 bulk RNAseq of isolated human mature fat cells. This
revealed that the STx data were positioned close in space to the bulk
results, while all snSeq datasets clustered together with considerably
fewer similarities to the other samples (Fig. 5c, upper panel). To test
the reproducibility of these results, we generated snSeq, STx, and bulk
RNAseq from the same individual and repeated the analyses. This
confirmed that STx correlated better with bulk RNAseq data than
snSeq (Fig. 5c, lower panel). We characterized this further by using the
FANTOM5 expression atlas46, where we identified 218 transcripts that
were enriched at least 50-fold in adipocytes compared to other cell
types (Supplementary Fig. 5c). These genes included multiple estab-
lished adipocyte markers and we analyzed their expression levels in
data from the threeplatforms (Fig. 5d).Weobservedmarked variations
in the expression between methods. By filtering based on genes that
displayed ahighdiscordance (>5 |Δ z-scores|) between snSeq andSTx,we
found that several STx adipocyte subpopulation marker genes were
less expressed or not detected by snSeq, but highly abundant in bulk
RNA and STx data (Fig. 5e, Supplementary Fig. 5d). These included
marker genes of previously described7 adipocyte subtypes (Fig. 5e).
Conversely, PPARG, WDPCP, and PDE3B were higher in snSeq. These
types of platform-specific biases may contribute to the low reprodu-
cibility and heterogeneity scores as has been shown previously for
adipocytes47. In subsequent analyses, we, therefore, pooled the adi-
pocyte snSeq data into one class.

Multiple FAP-relayed signals target M2-like macrophage
subpopulations
Having defined cell types present in WAT through our meta-map, we
inferred their communication routes using CellChat48. We first sum-
marized the expression of ligands vs. receptors across the different cell
types and next identified specific cell-cell interactions via ligand-
receptor patterns in the subcutaneous and omental depots (Fig. 6a, b,
Supplementary Fig. 6a). Our analysis suggested that FAPs were mainly
relaying information, which in turn was primarily received by M2
macrophages. Clustering of pathways by functionality allowed us to
link these FAP-myeloid communication routes to for example com-
plement, chemerin, and IL16 signaling (Supplementary Fig. 6b).
Another striking finding was thatMox (myC15), which are only present
in subcutaneous WAT and characterized by exceptionally high
expression levels of various pro-inflammatory cyto- and chemokines
(Fig. 6c), both relayed and received CCL, CXCL and TNF signals. Thus,

these cells received CCL5 input from different CD8+ T cells (in parti-
cular lyC02-03) via CCR1, and signaled to vascular cells (vC01 and vC11)
via ligands (CCL2, CXCL2, CXCL8) recognized by ACKR1 (Fig. 6d). For
TNF, Mox signaled to adipocytes and myeloid cells via TNFRSF1A, and
to CD8+ T cells/NK cells (lyC03, −06, −09) and endothelial cells (vC01-
03) via TNFRSF1B (Fig. 6d). The validity of these in silico analyses was
supported by the observation that, the KIT receptor was only present
in mast cells49 while periostin was solely relayed from pericytes50

(Supplementary Fig. 6c).

Spatial distribution of FAPs suggest distinct adipogenic niches
To add a spatial dimension to our meta-map, we re-analyzed pre-
viously generated STx data of subcutaneous human WAT from ten
individuals7 using six deconvolution tools: DestVI, stereoscope, Tan-
gram, RCTD, cell2location and SPOTlight. Although all six frameworks
provided similar results (Supplementary Fig. 7a), we opted to use
cell2location as it has been shown to be a robust deconvolution tool17.
In contrast to FAPs, lymphocytes, and adipocytes, we found that vas-
cular and myeloid cells were concentrated in specific areas of the tis-
sue (Fig. 7a). For the latter, these regions included classicalmonocytes
(myC14) and M1-like macrophages (LAMs [myC02], Mmes [myC10]
and Mox [myC15]) but were devoid of M2-like macrophages (Fig. 7a).
We confirmed clustering of LAMs in specific areas of WAT by immu-
nofluorescence (Fig. 7b), thereby confirming previous findings in
mice6. To complement these studies, we systematically identified
within-spot colocalization patterns. For this, we correlated deconvo-
lution scores for each cell type across all spots and identified three
clusters (Fig. 7c, Supplementary fig. 7b). These included endothelial
cells as well as two groups of FAPs. Further analyses showed that one
FAP subtype (sfC12) was enriched in areas close to endothelial cells
(Fig. 7d). This contrastedwith the other FAPs, which displayed strongly
negative relationship to vascular cells. In addition, another FAP sub-
type (sfC08) was found close to LAMs (myC02) (Fig. 7d). These asso-
ciations were present in multiple individuals (Supplementary Fig. 7c)
and were confirmed by immunofluorescence (Fig. 7e). Altogether, this
suggests that FAPs have specific tissue distributions, possibly to form
different types of adipogenic niches.

Two clusters of cells are reciprocally associated with metabolic
health
A major weakness of most transcriptional studies with single-cell
resolution is that the clinical relevance of the identified cell types is
difficult to determine. To address this limitation, we used single-cell
marker genes to deconvolve subcutaneous WAT bulk transcriptomic
data from eight independent studies comprising a total of 864 indi-
viduals. As displayed in Fig. 8a and further detailed in Supplementary
Table 3, together these cohorts included both adult men and women
with a broad range in age, BMI, waist-to-hip ratio, circulating trigly-
cerides, HDL-cholesterol, and leptin levels as well as insulin sensitivity
estimated by HOMAIR. We also retrieved data on fat cell volume and
lipolysis (basal and isoprenaline-stimulated), which are two measures
linked tometabolic health51. By clustering the correlations between cell

Fig. 4 | FAPs display different levels of commitment in human WAT.
a Nomenclature and proportions for subcutaneous FAPs (sfC0-16) including a
UMAPwith selectedmarker genes (leftpanel) and a stackedbar chart displaying the
proportion (%) of different subtypes in subcutaneous white adipose tissue (WAT)
(right panel). b, c Selected FAP marker gene expression profiles displayed in
UMAPs.dPseudo-time trajectory analysis initiated fromtheCD55/PI16-enriched cell
cluster (sfC02). Twomain trajectories were discovered: route 1 (upper) and route 2
(lower). e–g CD55+ positive human adipose-derived stem cells were e analyzed by
flow-cytometry and f imaged before/after adipogenic induction in vitro. Nuclei are
stained by Hoechst (blue) and lipid droplets by BODIPY (green). Experiment was
repeated three times with similar results. Scale bar is 20μm. g deconvolution of
bulk RNAseq data from these cells shows how the expression of marker genes for

FAP subtypes in panel a vary during adipogenesis (colors are matched in a and g).
h Heat map displaying similarities (Jaccard index) of gene expression profiles
between inguinal WAT from mice (P1.1 to P4) and subcutaneous FAPs (sfC0-16).
Note that human cells displayingoverlapwithmouse FAPs areonly found in route 1.
Explanatory legend is visualized in j. i Same as a, but for omental FAPs (ofC0-14).
j Same as in h; but for comparisons of subcutaneous and omental human FAPs.
k Flow cytometric analysis of CD55+, APOD+, CD74+, and EZR+ FAPs from stromal
vascular cells (CD45−, CD31− and CD34+) of subcutaneous and omental WAT,
respectively. Percentages represent the frequency of all gated live single cells in the
representative sample. APC adipose precursor cell, CPA committed preadipocytes,
FAP fibroblast and adipogenic progenitor cells, MSL mesothelial-like cells. Source
data are provided as a Source data file.
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types and thementioned parameters, we identifiedmajor trends in the
data. Thus, while cluster A included six cell types that associated
positively with ametabolically beneficial profile, cluster B contained 15
cell types that correlated negatively with the same parameters
(Fig. 8b). Cluster C included 37 cell types which displayed weaker links
to metabolic states. Of note, age was not associated with any specific
cell type (Fig. 8b).

In more detailed analyses, we found that cluster B was over-
represented by immune cells, e.g., LAMs (myC02), Mmes (myC10),
DC2 (myC03), six out of nineM2-likemacrophages (myC0-01, myC07-
08,myC11 andmyC13), early differentiatedCD8+ (lyC02) andCD16+ NK
cells (lyC06) (Fig. 8b, c). These results are in line with previous data

demonstrating that specific immune cell subtypes are enriched in
states of insulin resistance and obesity1. In contrast to cluster B, cluster
A enriched for FAPs and vascular cells (Fig. 8b, c). The latter included
blood endothelial capillary cells (vC0) and could be due to capillary
rarefaction, a phenomenon characterized by reduced capillary beds
previously reported in WAT from people with obesity52. For FAPs, we
observed that CD55/PI16-expressing adipose precursors (sfC02) were
the only cells present in cluster B while some intermediate/late states
(sfC04, −14, and −16) were found in cluster A. This suggests that adi-
pogenesis may be impacted by metabolic health at several different
levels. To reveal associations between adipocytes and clinical mea-
sures, we used STx marker genes as this platform reflects the
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transcriptional profiles of adipocytes more closely than snSeq. In
concordance with previous results obtained in a small cohort7, we
found that AdipoPLIN correlated negatively with BMI, insulin resistance
and circulating leptin levels while AdipoLEP was positively associated
with all these measures (Supplementary Fig. 8a). In contrast, AdipoSAA

displayed weak correlations with all investigated parameters.

Finally, to test if clusters A and B were impacted by weight chan-
ges induced by bariatric surgery, we retrieved WAT transcriptomic
data from twoof the studieswhere subjects were followed two and five
years post-operatively (n = 52)53,54. Our results revealed that in both
cohorts, clusters A and B were stable and normalized by weight loss
(Fig. 8d, Supplementary Fig. 8b). One exception was blood endothelial
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capillary cells (vC0), which remained unaltered byweight loss (Fig. 8e).
These data53 also allowed us to assess effects of weight regain com-
paring follow-ups at two and five years. As displayed in Supplementary
Figure 8c, subdividing subjects into tertiles based on long-termweight
regain or stability showed that except for vC0, several cell subtypes
followed the changes in body weight. Altogether, these observations
suggest that the cellular landscape of WAT is dynamic and mirrors
alterations in fat mass.

Discussion
Our meta-analysis integrates existing and newly generated single-cell
data with bulk sequencing of in vitro adipogenesis and intact WAT
from large clinical cohorts. By overlapping this with spatial tran-
scriptomics and data from human and murine single-cell resources
generated in different organs, we provide ameta-mapof cell types and
their spatial organization in humanWAT. Altogether, this allowed us to
define >60 distinct cell types including immune cells with diverse
activation states, intermediate vascular cell types with hybrid tran-
scriptional profiles, and FAPs displaying distinct tissue localization and
different levels of adipogenic commitment.

To create a cellular nomenclature across adipose depots, we
included data from subcutaneous, omental, and perivascular WAT in
our meta-analysis. Based on depot comparisons, we found that
although proportions differed, most cell subpopulations were present
in all three regions. This was also true for FAPs, even though they have
been suggested to contribute to depot-specific differences in tissue
growth. For example, both adipose precursors and committed pre-
adipocyteswere found in all three sites.However, within subcutaneous
WAT, the FAPs displayed distinct localizations where somewere found
close to vessels and otherswere adjacent to specificmacrophages. The
latter is of interest given that our ligand-receptor analyses suggested
that FAPs relayed multiple signals to myeloid cells. Apart from these
quantitative and microarchitectural aspects, we also observed that a
limited number of cell types were unique to either region, including
Mox and a few M2-like macrophage subtypes. Although we corrobo-
rated these results by deconvolving bulk transcriptomic data from
paired samples of subcutaneous and omental WAT, they need to be
validated in additional cohorts and the function of these cells needs to
be determined. In addition, the spatial analyses presented herein were
only performed in subcutaneous WAT and should be followed-up in
other depots.

In ourmeta-analysis, adipocytes comprised ~20% of theWAT cell
population and displayed a transcriptional fingerprint that was dis-
tinct from FAPs, immune and vascular cells. However, in contrast to
these cell classes, adipocyte data were exclusively generated using
snSeq and the results displayed less pronounced and reproducible
heterogeneity between studies. A possible reason for this lack of
consistency is that snSeq preferentially detects nascent and long
transcripts47. This is further supported by our benchmarking of
technical platforms where snSeq data, in comparison to STx results,
associated poorly with the transcriptional signature of isolated fat
cells. In fact, numerous adipocyte subtypemarker genes identified by
STx (e.g., LEP, PLIN4, SAA1, RBP4)7 were not, or very weakly, detected
by snSeq. We therefore conclude that combined analyses using

different technical platforms are required to confidently identify
adipocyte subtypes.

Although we have combined studies to obtain data at the single-
cell level from approximately 100 samples, we have not determined
the influence of age, anthropometric measures, and disease states on
these results. Instead,we created a cartography of cells present inWAT
and used this framework to deconvolve bulk transcriptomic results
from over 860 samples. This expands previous efforts55,56 and allowed
us to link the identified cell populations to multiple clinical and WAT
parameters. More specifically, we show that CD55/PI16-expressing
adipose precursors as well as a large set of immune cells, including
LAMs and Mmes, were enriched in individuals with markers of a per-
nicious metabolic phenotype, i.e., subjects with large fat cell volume,
high waist-to-hip ratio, high HOMA-IR and impaired lipidmobilization.
Conversely, a group of intermediate FAPs and capillary endothelial
cells associate negatively with the same parameters. Additional ana-
lyses in cohorts before and after bariatric surgery, revealed that mul-
tiple cell clusters enriched inpeoplewith obesity and insulin resistance
arenormalizeduponweight loss. Together, thesedata extendprevious
results onWAT expansion by confidently identifying specific cell types
linked to increased inflammation as well as attenuated adipogenesis
and vascularization. Nevertheless, a limitation with the present work is
that we did not investigate longitudinal data following other types of
interventions including, life-style-related changes, and/or pharmaco-
logical treatments.

Taken together, in thismeta-analysis of 17 datasets and >800 bulk
transcriptional profiles from eight clinical studies, we have compre-
hensively defined the cellular composition of human WAT in health
and metabolic disease. Thus, by jointly analyzing data from multiple
types of studies, we have created a framework that is easily accessible
and includes additional tools for WAT analyses such as new models in
CellTypist. We, therefore, provide a rich resource to facilitate future
studies of specific WAT-resident cell types in relation to aspects not
investigated herein, such as ethnic differences and the impact of
therapeutic interventions.

Methods
Clinical studies
Inclusion and Ethics. This studywas performed in agreement with the
Declaration of Helsinki. Studies of cohorts presented for the first time
herein (Massier et al. #1–4), were approved by the regional ethics
boards in Stockholm (clinical trials identifiers: NCT01785134 and
NCT01727245) and Leipzig (approval numbers: 159-12-21052012 and
004/21-ek) and explained in detail to each participant who gave
informed written consent. For retrospective analyses of published
data, the studies have been approved by the respective ethical boards
where informed written consent was obtained from all participants.
For data detailed in Fig. 8d, e, primary outcomes for both clinical trials
(NCT01785134 (DEOSH) and NCT01727245 (NEFA)) have been descri-
bed at clinicaltrials.gov and previously published7,53,57–59, and the stu-
dies have been completed.

Sample collection and preparation. Samples of cohort 1 and 3 were
collected in Stockholm (Sweden) and processed by T.W. in Zürich

Fig. 7 |WAT contains niches populated by specific sets of cells. a Representative
sections from two subjects displaying areas densely populated by myeloid cells
(left panels). The indicated regions are magnified where the hematoxylin & eosin
stain is shown in the middle and the Visium slide myeloid score is shown. Decon-
volution scores for myeloid subpopulations in the inlay regions are shown in the
right panels. Boxplots are presented as interquartile range plus median and Tukey
whiskers; scale bar is 100 µm. b Representative immunostaining of human sub-
cutaneous white adipose tissue incubated with antibodies targeting LAM marker
proteins TREM2 and CD9, respectively. Nuclei were stained with Hoechst. The
experiment was repeated three times with similar results. Scale bar is 100μm.

c Pair-wise correlation heatmap displaying within-spot associations between cel-
lular subpopulations. Full heatmap is shown in Supplementary Fig. 7b. d Repre-
sentative sections displaying the distributions of selected subpopulations of FAPs
(sfC08 and −12), myeloid (myC02), and vascular cells (vC01). Scale bar is 500 µm.
e Representative immunostaining of human subcutaneous white adipose tissue
incubated with antibodies targeting the sfC12 marker protein SLIT2 as well as the
endothelial protein CD31. Nuclei were stained with Hoechst. The experiment was
repeated seven times with similar results. Scale bar is 50μm in the merged panel
and 10μm in the inlay. Source data are provided as a Source data file.
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(Switzerland). Adipocyte nuclei were isolated following a modified
nuclear isolation protocol60. In total, 50mgof fresh or frozenWATwas
first minced into 1–3mm pieces and then homogenized on ice in 0.1%
CHAPS in CSTbuffer supplementedwith 0.2 U/μl RNAase inhibitor (RI)
using aDouncehomogenizer. After homogenization, sampleswere left
on ice for five minutes following which PBS supplemented with BSA

and0.2U/μl RI was added to obtain afinal concentration of 1%BSA. The
lysates were filtered through 40-μm cell strainers and centrifuged at
500 × g for five minutes at 4 °C. The nuclei pellets were resuspended
with 1% BSA in PBS supplemented with 0.2U/μl RI and centrifuged
again at 50× g for five minutes at 4 °C. This step was repeated once
more. After the final resuspension, nuclei were filtered through 20-μm
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cell strainers and loaded directly on a 10X Chip G. 10X-libraries were
prepared with the Chromium Single-Cell v3.1 reagent kit following the
manufacturer’s protocol (10X Genomics). Suspensions containing
around 1200 nuclei per μl were loaded on Chip G followed by reverse
transcription to obtain cDNA, which subsequently was amplified and
used for library construction. After preparation, the libraries were
sequenced on a NovaSeq 6000 platform (Illumina). For data analysis,
the human genome assembly GRCh38.p13 was used. Mapping was
performed using 10x Genomics Cell Ranger (v6.0.2). CellBender
(v0.2.0)61 was used on ‘raw_feature_bc_matrix’ to remove empty dro-
plets and ambient RNA; scDblFinder (v1.5.11)62 was applied to exclude
potential doublets. Downstream analyses were performed as all other
included studies (see below).

Samples of cohort 2 and4were collected andprocessed in Leipzig
(Germany) by P.A.N.N. Paired samples of omental and subcutaneous
WAT were obtained from female patients with obesity undergoing
different bariatric surgery procedures (Roux-en-Y Gastric Bypass and
sleeve gastrectomy). After collection, samples were washed using PBS,
placed on ice until the end of the surgery procedure, snap-frozen in
liquid nitrogen and stored at −80 °C for later use. Sequencing analyses
were performed on isolated nuclei as detailed above. Single-nuclei
RNAseq. libraries were generated using the Chromium Single Cell 3′ v3
assay (10× Genomics) and sequenced with NovaSeq 6000 S4 flow cell
platform (Illumina). Raw reads were aligned to the human genome
(hg38) and cells were called using 10x Genomics Cell Ranger (v.6.0.1).

Collection of publicly available datasets. Peer-reviewed WAT data-
sets containing either snSeq, scSeq or STx with publicly available
results published until 31.03.2022 were included in the present meta-
analysis (Supplementary Table 1). If not present in the published arti-
cles, the corresponding authors were contacted by email to obtain
information regarding sample numbers andgender aswell as ranges of
age and BMI.

Re-analysis of publicly available datasets. Publicly available datasets
were re-analyzed with Seurat v4.1.016 in R v4.1.263 (pipeline available via
GitHub [https://github.com/lmassier/hWAT_singlecell]). Mitochon-
drial and hemoglobin genes, as well as further confounding tran-
scripts, includingMALAT2 and NEAT1, were removed prior to analysis.
All data were normalized using sctransform64 and corrected for subject
effects using Harmony v0.1.025 before performing independent com-
ponent analysis65. Clusters were determined using FindNeighbors and
FindClusters in Seurat after generating Uniform Manifold Approxima-
tion and Projection (UMAP) data projections using RunUMAP66. Spatial
data were analyzed as described recently7.

Cluster classification and annotation. Cluster classification for indi-
vidual cohorts was assisted by a supervised network analysis where
each cell cluster was represented as a node. Nodes were connected by
edges by calculating overlap percentages of positively enriched mar-
ker genes (FDR-adjusted p value <0.05). Minimum requirements for
edge connectionswere >15% genes overlapped in one of the two nodes
and >5% in both nodes. Based on this, Jaccard similarity scores were

calculated, and edges were created based on the five highest values.
The network was built in R v4.1.2. using igraph v1.2.11 and visualized in
Cytoscape 3.7.1 using Rcy3 v2.14.167. Integrated cluster annotations
were performed manually using multiple reference datasets (Supple-
mentary Table 2).

Data integration and bechmarking
We evaluated the following integration tools: rPCA provided with
Seurat16,Harmony25,BBKNN aswell as scVI. In addition to identification/
clustering of prominent marker genes in the integrated data, bench-
marking included calculations of ARI coefficients, LISI scores, kBET
acceptance rates (1- rejection rate) for integration across methods,
depots and cohorts. ARI was calculated using the adj.rand.index
function in pdfCluster v1.0-3 by supplying factors of either depots,
methods or cohorts in addition to the identified clusters. Average LISI
scores were estimated using lisi v1.0 compute_lisi command adding
embeddings of the UMAPs along the meta data. kBET scores were
calculated using kBET v0.99.6 and the respective integrated reduc-
tions (e.g., Harmony or scVI) in the Seurat object. Data from different
depots ormethodswithin the same studywere treated as independent
cohorts, which was used as batch variable to integrate over, thereby
correcting for differences in methods and sequencing platforms. Of
note, all cohorts except for Acosta et al12. (<0.5% of analyzed cells),
were sequenced in 3’ direction, thereby facilitating integration (Sup-
plementary Table 1). Guided by our testing, we opted to integrate data
individually for adipocytes, FAPs, immune and vascular cells. Based on
these results, scVI integration using the 2000 most variable features
(using VariableFeatures in Seurat) was applied in the final analysis.
Seurat objects were transcribed into anndata objects using the sceasy
v0.0.6 function convertFormat and scVI was run using default settings
in R with reticulate v1.24 (setup_anndata, SCVI, train, get_laten-
t_representation). Subsequent subcluster analyses were performed
based on different depots (omental, perivascular, and subcutaneous
WAT) or lineages (e.g., myeloid and lymphoid cells). When comparing
similarity between individual data sets using Jaccard index, marker
genes were selected based on a log2 fold-change > 0.5, and adjusted p
value <0.05.

Deconvolution
Deconvolution of bulk transcriptomic data of human WAT was per-
formed using BisqueRNA v1.0.568 using themarker gene approachwith
a minimum gene count of six. To validate depot differences, two
cohorts32,33 with available data from omental and subcutaneous WAT
were used. We also retrieved sequencing as well as clinical phenotype
data from six additional published datasets53,54,69–72 (Supplementary
Table 3). Deconvolved data were compared in a meta-approach using
Hmisc v4.6–0 to calculate Spearman correlation and meta v5.2–0 to
calculate and visualize summarized results using both common and
random models73.

Flow-cytometry staining and analysis of data
The procedures for preparing cells for flow-cytometry have been
described in detail elsewhere74. In brief, stromal vascular fractions

Fig. 8 | Deconvolution of transcriptomic data reveals cluster-specific clinical
associations. a Bulk transcriptomic data from eight cohorts were retrieved, the
distribution in age, BMI, and HOMA-IR are shown in the left panel. Summary sta-
tistics are detailed in the right panels. b Heatmap displaying the association
between individual cell types (denoted by numbers and color according to the
classification in Figs. 2–4) with: anthropometric measures, HOMA-IR, circulating
levels of HDL-cholesterol, triglycerides, and leptin (all in the fasted state), fat cell
volume as well as adipocyte lipolysis (basal, isoprenaline-stimulated and isoprena-
stimulated/basal). Three main clusters (A–C) were identified where cluster A and B
are magnified in the right panel. c Representative Forest plots displaying the
associations between individual measures and cell types. Data are shown as

correlations with 95% confidence intervals for each study and summarized using
both common and random effects models. For all displayed data, p values were
<0.0001. d Stability of clusters A and B were determined in the two indicated
cohorts where WAT bulk transcriptomes were generated before and two years
following bariatric surgery. e Effects of weight loss induced by bariatric surgery in
two cohorts. Panels display deconvolution scores for the indicated cell sub-
populations. p values were calculated by two-sided paired sample t test (n = 15;
Petrus et al.54 and n = 37; Kerr et al.53) and boxplots are presented as interquartile
range plus median and Tukey whiskers with individual, paired data points. Source
data are provided as a Source data file.
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(SVF) were thawed and stained with different antibody combinations
prior to analysis with a flow cytometer. Washing steps were performed
with wash buffer (PBS supplemented with 0.5% BSA [#A4503, Sigma-
Aldrich] and 2mM EDTA [#E7889, Sigma-Aldrich]) and the cells were
centrifuged at 200 × g for 10minutes. To remove red blood cells,
samples were incubated in red blood cell lysis buffer (15.5mM NH4Cl,
0.57mM K2HPO4, 0.01mM EDTA× 2 H2O in PBS) for 6minutes and
subsequently washed with wash buffer. Samples were divided into
aliquots containing approximately one million cells and subsequently
stained with either (i) a lymphocyte antibody cocktail, (ii) an antibody
panel for myeloid cells and fibroblasts combined, or (iii) a separate
antibody panel for FAPs. The antibody-fluorochrome conjugates used
are listed in Supplementary Table 4. Staining with the lymphocyte
antibody cocktail was performed by resuspending the cells first in
stain buffer (1% FBS, 2mM EDTA in PBS) with CCR7-APC-Cy7 and
incubating for tenminutes at 37 °C. Subsequently, the surface marker
antibodies were added to the cell suspension and the incubation was
carried out at room temperature for 20minutes. The cells were
washed oncewith stain buffer, centrifuged at 400 × g for fiveminutes,
and resuspended into 1× fixation/permeabilization solution (#00-
5223-56 and #00-5123-43, eBioscience). After incubating the cell sus-
pensions for 30minutes at room temperature in the dark, they were
washed with permeabilization buffer (#00-8333-56, eBioscience),
centrifuged at 400 × g for 5 minutes, and resuspended with an intra-
cellular staining cocktail in 1× permeabilization buffer for 30minutes
at room temperature in the dark. Lastly, the cells were washed with
permeabilization buffer and fixed with 1% PFA (#22023-20ml, Bio-
tium) for 15minutes prior to analysis with a BD Symphony analyzer
equippedwith 355, 405, 488, 561 and640 nm lasers andDIVA software
(BD Biosciences). Fixable live/dead Aqua stain (#L34957, Invitrogen)
was included in the surface stain cocktail and used for dead cell
exclusion. Gating was performed as outlined in Supplementary Fig-
ure 9a. The cells stained with themyeloid panel were incubated in the
antibody cocktail for 30minutes at 4 °C in the dark, washed once with
wash buffer, resuspended into flow buffer (0.1% BSA, 2mM EDTA in
PBS), and analyzed immediately with the flow cytometer with a pre-
viously set compensation and gating setup. Fixable live/dead yellow
dye (#L34968, Invitrogen) was used to exclude dead cells. The gating
setup preceding the UMAP analysis is outlined in Supplementary
Figure 9b. Cells stained with the FAPs panel were stained in a similar
fashion as with the myeloid panel. 7-AAD (#559925, BD Biosciences)
was used as live/dead exclusion dye and fluorescence minus one
(FMO) controls were used for the gating (Supplementary Fig. 9c). The
results were analyzed with FlowJo Software v10.7.1 and v10.8.0 (BD
Biosciences). Dimensionality reduction for analyzing themyeloid cells
was performed using the UMAP FlowJo plugin v3.1. For this analysis,
1267myeloid cells from each individual were exported into a new file,
barcoded and concatenated. FlowJo Phenograph plugin v3 was
applied for unsupervised clustering, with the optimal k-nearest
neighbors implemented automatically.

Imaging
Lipid droplet staining before and after adipogenesis. For imaging of
CD55+ cells before and after adipogenesis, cells were fixed in 4% PFA
for 15minutes at room temperature and washed twice with PBS. Lipid
droplets and nuclei were stained with PBS containing BODIPY 493/503
(1:2500, ThermoFisher) and Hoechst 33342 (1:5000, #ab228551,
Abcam) for 15minutes. Cells were thenwashed four timeswith PBS and
images were acquired using CREST V3 confocal system (Crest Optics)
mounted on an inverted Nikon Ti2 microscope equipped with a Prime
BSIexpress sCMOS camera (pixel size 6.5 μm) from Photometrics. A
Nikon 20x/0.75 air objective was used to acquire images.

Immunostaining of LAMs (myC02). For immunofluorescence, WAT
samples were fixed in cold 4% paraformaldehyde (PFA) for 24 hours,

embedded in paraffin and then sliced into 6μm thick sections. Anti-
gens were retrieved by heating up the sections for 20minutes in
10mMcitrate buffer pH 6.0 (tri-sodium citrate in distilled water) using
amicrowave. The samples were subsequently washed three times with
PBS containing 0.3% Triton X-100 and blocked for one hour at room
temperature in PBS containing 0.1% BSA, 0.1% Triton X-100, 50mM
glycine, and 0.05% Tween. Primary antibodies (anti-TREM2 [1:100,
#13483-1-AP, Proteintech] and anti-CD9 [1:500, #60232-1-Ig, Pro-
teintech]) were diluted in 0.1% BSA, 0.1% Triton-X-100, 10mM glycine
and 0.05% Tween in PBS and incubated with the sections overnight at
4 °C. This was followed by three wash steps with PBS containing 0.3%
Triton X-100 and incubations for 10 minutes at room temperature.
After this, slides were incubated with secondary antibodies (donkey α-
rabbit conjugated with Alexa Fluor 594 [1:200, #A-21207, Thermo-
fisher] and donkey α-mouse conjugated with Alexa Flour 488 [1:200,
# A-21202, Thermofisher]) diluted in 0.1% Tween in PBS for an hour at
room temperature. Following three wash steps with PBS containing
0.3% Triton-X-100, 100 µL Sudan Black B in 70% ethanol was added to
each section and the samples were incubated for twominutes at room
temperature. The slides were thereafter rinsed in PBS and incubated
with Hoechst 33342 (1:10000) diluted in PBS for ten minutes to stain
nuclei. Prior to mounting in DAKO Fluorescence mounting media
(S302380-2, Agilent Technologies), the samples were washed with PBS
and swirled in distilled water.

Immunostaining of FAPs (sfC12) and endothelial cells. Sub-
cutaneous WAT blocks embedded in optimal cutting temperature
compound were sliced into 16 μm thick sections, which were then
fixed in 4% PFA for five minutes at room temperature and washed
twice with PBS. After this, glycine was added (100mM final con-
centration) for ten minutes and slides were blocked for one hour in
PBS containing 1% BSA, 0.3% Triton X-100, and 10% normal donkey
serum. Subsequently, the slides were incubated overnight in 4 °C
with primary antibodies (anti-SLIT2 [1:200, #20217-1-AP, Proteintech]
and anti-CD31 1:100, #M082329-2, Agilent Technologies]) in incu-
bation buffer containing 5% normal donkey serum, 1% BSA and 0.3%
Triton X-100 in PBS. Slides were washed three times with PBS con-
taining 0.3%Triton X-100 for five minutes. They were thereafter
incubated with secondary antibodies (donkey α-rabbit conjugated
with Alexa Fluor 594 [1:200, #A-21207, Thermofisher] and donkey α-
mouse conjugated with Alexa Flour 488 [1:200, #A-21202, Thermo-
fisher]) in incubation buffer for 1 hour at room temperature. Addi-
tional washing steps were performed with PBS supplemented with
0.3%Triton X-100. Then, Hoechst 33342 (1:10,000) diluted in PBSwas
added for 10minutes to stain nuclei. Prior to mounting in DAKO
Fluorescence mounting media, the samples were washed with PBS
and swirled in distilled water.

For immunostaining of both myC02 and sfC12/endothelial cells,
images were acquired using the NIS Elements software, a CSU-X1
spinning disk confocal (Yokogawa) mounted on an inverted TiE
microscope (Nikon) equipped with a ×1.2 magnification lens and a
Kinetix back-illuminated sCMOS camera (pixel size 6.5 μm QE95%)
(Photometrics). A Nikon ×20/0.75 air objective was used to acquire
images.

Bulk RNA sequencing of in vitro adipogenesis
To annotate FAP clusters, we retrieved bulk sequencing data of human
subcutaneous adipocyte precursor cells undergoing adipogenesis
from four model systems: (i) adipose-derived stem cells41, (ii) primary
SVF-derived cells from subcutaneous WAT41, (iii) Simpson-Golabi-
Behmel (SGBS) syndrome cells42, and (iv) humanmultipotent adipose-
derived stem (hMADS) cells43. Scores were generated for each FAP
cluster at each timepoint of adipogenesis by calculating expression
fold-changes of top 30 marker genes over the background of the
respective bulk datasets.

Article https://doi.org/10.1038/s41467-023-36983-2

Nature Communications |         (2023) 14:1438 15



Comparing adipocyte-enriched transcripts between platforms
To identify adipocyte-enriched genes unrelated to single-cell approa-
ches, we retrieved bulk RNAseq data of human isolated subcutaneous
adipocytes from the FANTOM5 database46. This was compared to
pseudobulk data, which was retrieved using AverageExpression in
Seurat, of both individual snSeq and STx studies, as well as the inte-
grated snSeq data. We calculated transcript fold-changes in these
samples compared to the complete dataset. In total, 218 genes with
>50-fold enrichment in fat cells compared to all other samples were
considered to be adipocyte-enriched. We compared expression levels
of these genes between snSeq and STx platforms after z-score nor-
malizing each dataset. As an extra control, we included an additional
bulk RNAseq dataset of human isolated subcutaneous adipocytes45. By
filtering for genes with a |Δz-score| >5, we identified genes with the
strongest differences between snSeq and STx.

Spatial deconvolution
We performed cell2location v0.175 for deconvolution of STx by using a
subset of annotated scRNA-seq data as input. We subsampled the
single-cell data set for each cell type according to following criteria: (i)
If a cell type had ≤1500 cells, select all cells; (ii) if a cell type had >1500
cells, randomly select 1500 cells. We compared cell2location with five
additional spatial deconvolution methods: stereoscope v0.2.076,
SPOTlight v0.1.077, RCTD v2.0.078, Tangram v1.0.279, DestVI v0.16.280 to
validate the robustness of deconvolution results. Default parameter
settings were used for deconvolution analysis.

Weused spot-wise Pearson correlation between the estimated cell
type abundances to quantify cell type colocalization pattern. The
Pearson correlations were computed across all spots for each pair of
cell types and each subject. High positive correlation indicated that
two cell types exhibited similar spatial distributions, while negative
correlation suggested distinct spatial distributions between two
cell types.

Cell-cell communication analysis
Cell-cell communication analysis was performed using CellChat
v1.4.048 based on the curated ligand-receptor interaction database
(CellChatDB). In brief, subcutaneous and omental normalized gene
expression matrices were provided as input to CellChat, respectively.
The total numbers of interactions and interaction strengths were
computed by the computeCommunProb function, and the commu-
nication probabilities for each cell signaling pathway were calculated
by computeCommunProbPathway function.

Statistics
As detailed under each subheading above, statisticswereperformed in
R v4.1.2 or GraphPad Prism v9. Data distributions were tested by
Kolmogorov-Smirnov and Shapiro-Wilk tests and parametric vs. non-
parametric tests were used accordingly. Spearman’s rank correlation
was used to assess relationship of two continuous variables. For ana-
lyses requiring family-wise error rate corrections, p value <0.05 after
correcting for false discovery rate using Benjamini-Hochberg was
considered significant.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Processed data generated in this study have been deposited in the
Mendeley database (https://doi.org/10.17632/y3pxvr4xbf.2). The raw
sequencing data generated in this study have been deposited in the
GEO database under the accession code GSE225700. The publicly
available scSeq and snSeq data re-analyzed in this study were obtained
through the GEO database under accession codes: GSE15596011,

GSE156110 11, GSE13623010, GSE12888913, GSE15188914, GSE1285186,
GSE16452815, GSE1351349, GSE1288899 as well as the ArrayExpress
database under accession codes: E-MTAB-91998, E-MTAB-66779. Data
from Acosta et al. were received after communication with the author.
The publicly available RNA sequencing and microarray data of human
WAT re-analyzed in this study were obtained through the GEO data-
base under accession codes: GSE2540269, GSE11308070, GSE19906353,
GSE7639932, GSE5903454, GSE14122171, GSE9564072. Data from Krieg
et al. were retrieved from the original publication [Supplementary
Table 7]33. The data that support the findings of this study are available
on request from the corresponding authors [N.M. and M.R.]. Full
individual clinical data are not publicly available due to them con-
taining information that could compromise research participant priv-
acy or consent. Source data are provided with this paper.

Code availability
Scripts used for the analyses presented in this study are available at
GitHub (https://github.com/lmassier/hWAT_singlecell).
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