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The ability to move has introduced animals with the problem of sensory
ambiguity: the position of an external stimulus could change over time
because the stimulus moved, or because the animal moved its receptors. This

ambiguity can be resolved with a change in neural response gain as a function
of receptor orientation. Here, we developed an encoding model to capture
gain modulation of visual responses in high field (7 T) fMRI data. We char-
acterized population eye-position dependent gain fields (pEGF). The infor-
mation contained in the pEGFs allowed us to reconstruct eye positions over
time across the visual hierarchy. We discovered a systematic distribution of
pPEGF centers: pEGF centers shift from contra- to ipsilateral following pRF
eccentricity. Such a topographical organization suggests that signals beyond
pure retinotopy are accessible early in the visual hierarchy, providing the
potential to solve sensory ambiguity and optimize sensory processing infor-
mation for functionally relevant behavior.

Around 600 million years ago animals populating the ocean’s floor
started moving, leaving fossilized trails that can be observed at the
present day. Self-motion brings fundamental evolutionary advantages,
as animals that move can find new sources of food or flee from hazards.
However, the ability to move comes at a cost: it introduces ambiguity
about the source of sensory input. Here, we focus on visual processing
and eye movements as a paradigmatic example of sensory ambiguity.

Consider looking at “La nuit étoilée” by van Gogh (Fig. 1A). When
watching complex scenes like in the painting, we constantly move our
eyes'. As we are scanning the town’s illuminated skyline, each neuron in
our visual cortex responds to only a small portion of the visual field”.
This portion is their receptive field, which is anchored to the center of
gaze. Thus, with each movement of our eyes, the receptive fields are
displaced from their former locations. A receptive field that is covering
a star at one fixation, might be covering a part of the dark night sky at
the next (Fig. 1B).

In visual areas, the arrangement of photoreceptors in the retina is
maintained, giving rise to visual field maps, or retinotopy’. As the
example illustrates, the mere topography of photoreceptors is not
sufficient to accurately localize objects in space because eye move-
ments create sensory ambiguity. How does the visual system solve this
ambiguity? One hypothesis is that it encodes information about the

orientation of the eyes and combines it with the retinotopic location of
the visual input, implemented in the response gain of visual neurons:
identical retinotopic stimulation leads to different response strengths
when eye orientations are different* (Fig. 1D). The strength of gain
modulations for different eye positions can be described by an eye-
position dependent gain field (EGF; Fig. 1C). Computational work has
demonstrated that such gain modulation of visual responses by eye
position allows for accurate localization of sensory events beyond
their retinotopic location, transforming purely retinotopic coordi-
nates into eye-position invariant coordinates®”.

Evidence for EGFs has been found with neurophysiological
recordings in primate areas 7a**°, LIP®'°, V6", V3A?, MT/MST'*,
V18, and V4"“. In humans, similar gain modulations of visual
responses have been observed with functional magnetic resonance
imaging (fMRI) when observers fixated at different positions for a
prolonged time while neural responses to visual stimuli were
measured” 2. Moreover, electrophysiological recordings have star-
ted to shed light on aspects of the organizational principles of
EGFs'. However, our understanding of EGF properties at the
population level has been partially restricted by the scope of the
recording technique (e.g., electrophysiological recordings of a few
hundred neurons) or the experimental paradigm (e.g., examining
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Fig. 1| Conceptualization of eye-position dependent gain fields and methods.
A Series of fixations (red points and lines) made across “La nuit étoilée” (van Gogh,
1888). B Example receptive field to the upper right of the fixation point. C Example
gain field. D Given the series of fixations in A and the receptive field location in B, a
star from the painting stimulates the receptive field on fixations 1, 2, and 4. The gain
modulation, that follows from the gain field in C, is strongest on fixation 2. The
multiplication of stimulus strength and eye-position dependent gain modulation
determines the response strength. E In our fMRI experiment, we measured popu-
lations of neurons contained within a single voxel. We first mapped population
receptive fields (pRF) using a standard moving bar paradigm. Next, we used version
A of a novel eye-movement task (black) to map population eye-position dependent
gain fields (pEGF): pEGF mapping. While the participants were performing eye
movements, high-contrast flickering bars were presented at various times in
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different configurations. After estimating each voxel’s pRF and pEGF, we recon-
structed eye movements using version B of the eye- movement task (yellow). The
trajectory of the eyes and the presentation of the bars was uncorrelated between
the version A and B. The black lines represent eye positions in version A of the pEGF
mapping paradigm, yellow lines represent eye positions in version B. The same
color coding is used in the timeseries. In the timeseries, the gray shaded areas
represent time windows when high-contrast bars were displayed on the screen in
version A; the yellow shaded areas show the same for version B. F To capture the
visual input in the eye-movement tasks, we created a retinotopic representation
that included both the bars and various elements that were present in the per-
ipheral visual field. A movie of the retinotopic representation of each task can be
seen in Mov. S1-3. Source data are provided as a Source Data file.

modulations for a limited set of separate and static eye positions).
A systematic characterization of gain-field properties allows us to ask
questions about the distributional features of EGFs (e.g., are there
biases for a particular viewing direction?) and its extension to human
parietal cortex. Moreover, it offers the possibility to probe the exis-
tence of a potential underlying topographical organization for EGFs.
This idea has been originally put forward in the discussion of
Andersen and colleagues (1985), and has been a point of debate ever
since, with some studies describing hints of topography in some
cortical areas>”'® and others observing no systematicities at the
population level®*1"1,

Here, we present an encoding model that characterizes visual
responses and EGFs at the level of single voxels in human 7 T functional
magnetic resonance imaging (fMRI) data. EGFs have been generally
studied under static conditions both in human and non-human pri-
mates, with participants keeping stable fixation while being presented
with a visual stimulus®*?2, However, we cannot a priori assume that a
mechanism studied in a passive setting would transfer in an active
setting following the same principles. We introduce a novel approach
by probing EGFs in an active setting, with participants moving their
eyes along given trajectories while being presented with high contrast
visual stimuli.

The model follows a parsimonious approach and is built on first
principles: the retinotopic organization of visual cortex and its
response to contrast. First, we show that the population receptive field
model (pRF)* can capture visual responses elicited by eye movements
that bring a stimulus into a pRF, capturing contrast-based responses
from visual cortex in an active setting. Second, building upon the pRF
responses, we estimate population eye-position dependent gain fields
(pEGF) as two dimensional gaussians, which we validate by using the
pEGFs to reconstruct eye positions from an independent dataset.
Third, our encoding model allows for the exploration of previously
unknown, large-scale systematicities in the distributions of EGF para-
meters at the population level. In early visual areas we observed that
PEGF centers follow a topographic organization along the eccentricity
of pRFs.

Results

Population receptive fields capture visual responses induced by
eye movements

Before incorporating EGFs into our encoding model, we first needed to
establish that the model captures visual responses adequately. To this
end, our model starts with the estimation of population receptive
fields (pRF)—i.e., voxel-based receptive fields*. A pRF can be described
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Fig. 2 | Creating the optimal retinotopic representation of the visual input to
capture responses in visual cortex during the eye- movement task. A Left
hemisphere surface of an example participant showing the variance explained (R?)
by the pRFs for the moving bar paradigm—these data were used to estimate the
PRFs. B Same example hemisphere as in A, now overlaid with the variance
explained for different configurations of the retinotopic representation of the
visual input during the eye-movement task. In all configurations, the contrast of the
peripheral stimuli increased to the same level as the vertical bars after a saccade
and was reduced to a lower contrast level during periods of fixation (ranging from O
to 100%). The different contrast levels of the peripheral elements are displayed at
the bottom. The white vertical bar is the high-contrast flickering checkboard bar.
The point in the center is the fixation point. C Example BOLD time series from the
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same participant (black). Lines from yellow to dark red represent scaled predicted
time series based on this voxel's pRF. For all predictions, the contrast of the per-
ipheral stimuli was increased to 100% after a saccade. The contrast levels during
fixation vary according to the legend. D Group level average variance explained for
all contrast configurations in V1. First, we selected the voxels whose time series
were explained best by their pRF, as estimated with the moving bar paradigm
(median split). Next, we took the median R? of those voxels per participant and per
contrast configuration. Finally, we computed the group median (color values in
bottom left, and lines in top and bottom right) and interquartile range (shaded gray
area). The check mark indicates the contrast configuration that was used in the
other analyses. Source data are provided as a Source Data file.

by four parameters: center (x, y), standard deviation and an exponent
for compressive spatial summation®**, Notably, the pRF locations are
expressed in retinotopic coordinates. Neurophysiological recordings
have previously demonstrated that visual receptive fields shift along
with the direction of gaze, staying anchored to the fovea®*°, Moreover,
an abrupt change to the input in a neuron’s receptive field leads to
consistent responses, irrespective of whether the change was passive
(i.e., a flashed stimulus) or active (i.e., as the result of a saccade)” .
Thus, we set out to verify whether pRFs can capture active visual
responses when eye movements relocate a stimulus into the pRF of
a voxel.

We estimated a pRF for each voxel using a standard pRF mapping
paradigm. In the scanner, participants were shown a moving bar sti-
mulus as they maintained fixation at the center of the screen (Fig. 1E),
while we measured the blood-oxygenation-level-dependent (BOLD)
signal. We created 5400 hypothetical pRFs and calculated a corre-
sponding predicted signal given the stimulus that was shown to the
participants (Supplementary Movie 1). We then compared each of
the predicted time series to the measured BOLD signal. The pRF whose
prediction most closely matched the measured signal of a voxel
(highest variance explained, R?) was assigned to that voxel. The pRF
parameters were used to define the borders between visual areas’. As

expected, pRF size scales with eccentricity (F(1,1047.2)=835.2,
p <0.0001) and visual area (F(9,1046.1) =51.89, p < 0.0001). Here, we
combined relatively smaller visual areas into single regions of interest
(ROI) with approximately the same number of voxels as the larger
areas. We obtained a median variance explained (R?) varying between
0.66 (V2) and 0.40 (IPS2-3-4).

After estimating each voxel’s pRF, we tested to what extent the
PRF could capture visual responses elicited during an eye-movement
task. In this task, visual stimulation was retinotopically similar to the
standard moving bar paradigm. In the standard paradigm, a high-
contrast bar moves across the screen in small steps. In our eye-
movement task, participants were making eye movements across the
screen in small steps while high-contrast, flickering bars were pre-
sented statically (Fig. 1E). The retinotopic stimulation is comparable: in
both tasks, the bars sweep across the retina in small steps. See Sup-
plementary Movie 1 and 2 for an example of the moving bar task and
the eye-movement task (version A), respectively.

To predict a voxel’s response given its pRF, we created a retino-
topic representation of the visual input presented in the scanner as the
participants performed the eye-movement task. The retinotopic
representation was a downsampled movie (22 x40° compressed to
149 x 267 pixels, 6 Hz) in which all the visual elements present within
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Fig. 3 | Population eye-position dependent gain fields (pEGF) improve pre-
dicted BOLD signal time series based on population receptive fields (pRF).

A Two example BOLD time series from V1. Eye position time series (top black, gray
lines) and bar displays (gray rectangles) of version A of the eye-movement task are
plotted for reference. Example I, voxel for which the pRF-only prediction (green)
markedly improved when the pEGF was added to the pRF (yellow). Arrows indicate
parts of the time series where the prediction was most notably improved. Example
11, voxel that is representative of the median adjusted R? in V1, both for the pRF-only
and the pRFxpEGF models. B Change in adjusted R? per visual ROL. Per ROI, the
light, left boxplot represents the pRF-only model, the right, dark boxplot repre-
sents the pRFxpEGF model. Gray lines and points represent single participants
(N=11).In the box plot, the center is the median, the box bounds are Q1 and Q3, the
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whiskers extend to the highest/lowest values with a max/min of 1.5x the IQR, data
beyond these limits are shown as points. Because pRFs were initially fitted on the
moving bar data, we computed the median adjusted R? (R%,q;) for this figure from
the 50% of most visually responsive voxels in each ROI. The Rzadj adjusts for the
number of parameters in a model, as such it can be lower than zero. Horizontal bars
with an asterisk indicate that the difference in adjusted R? is larger than zero (i.e., a
difference of zero is outside the Bonferroni-corrected bootstrapped 95%-con-
fidence interval). C Surface maps from one example participant of the change in
adjusted R? from the pRF-only model to the pRF x pEGF model. Warm colors indi-
cate an increased fit, cool colors indicate a decreased fit. Black and white lines
indicate the manually drawn boundaries between ROIs. Source data are provided as
a Source Data file.

the scanner moved with respect to the point where the participant was
fixating (Supplementary Movie 2). These elements included the high-
contrast bars and the fixation point, as well as various elements in the
peripheral visual field, such as the screen edge, coil, and the mirror
(Fig. 1F). Because visual responses are evoked when abrupt changes
occur in the receptive field”’, we explored how the peripheral elements
could be best incorporated into the retinotopic representation of the
visual input.

First, we varied the contrast of the peripheral elements from O to
100% with respect to the contrast of the bars. There were two moments
of contrast increase of these elements: one after a saccade (for 333 ms,
i.e., two frames at 6 Hz) and one during fixation (all the other frames).
The contrast change was implemented instantaneously, without con-
tinuous transition (i.e., contrast incrementally increased between
frames), because this would not be an accurate representation of
contrast change between two consecutive frames after a saccade.

To capture the saccade latency in the retinotopic representation
of the stimulus, the fixation point jumped to its next location before
being recentered. The saccade latency was 1 frame at 6 Hz or 166 ms
(cf. actual median latency =135 ms, Supplementary Fig. 1D). Next, we
passed the differently configured retinotopic representations of the
visual input through the pRFs of each voxel to create a predicted BOLD
response for each configuration. We scaled all predictions to the data
using ordinary least squares regression and computed the resulting R?
(see Methods - Retinotopic representation of visual input in eye-
movement tasks).

Example cortical surface maps of variance explained by different
contrast configurations are displayed in Fig. 2B. Qualitatively, these

maps follow the same pattern as the map of variance explained
obtained by estimating the pRFs from the moving bar paradigm (see
Fig. 2A, B, leftmost surface). Example time series of a single voxel,
combined with a set of predictions from three different stimulus
configurations are shown in Fig. 2C. We used the optimal configuration
of contrasts during fixation and after saccade offset based on the
median over all participants’ V1 voxels. The optimal contrast of the
peripheral elements during fixation was 0%, after a saccade the con-
trast was increased to 100% of the contrast of the flickering checker-
board bars (Fig. 2D).

After establishing the optimal contrast levels, we examined how
long the contrast of the peripheral elements should be increased after
each saccade in the retinotopic representation of the visual input. For
this, we used a post-saccadic contrast increase of 100% and a contrast
of 0% for the periods of fixation. Because we created the retinotopic
representations with 6 frames per second, we examined durations of
167, 333, 500, 667, 1000, 1333, 2000, 4000, and 5333 ms. Again, we
generated predictions from the combination of each voxel’s pRF and
the different configurations of the retinotopic representation. For all
further analyses, we used the contrast increase duration of 500 ms,
which was the average optimum for voxels in early visual cortex
(Supplementary Fig. 1F). Please note that the optimization (contrast
and time after saccade) of the stimulus and model fitting were per-
formed on task version A (see Fig. 1E). Reconstruction was performed
on task version B (see Fig. 1E) without further optimization to test
generalization and avoid overfitting.

The optimal configuration of the peripheral elements incorpo-
rated into the stimulus model consisted of post-saccadic contrast
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Fig. 4 | Eye position reconstruction. A Horizontal (top) and vertical (bottom)
components of the median reconstructed eye position (black) and actual target
position (yellow) of version B of the eye-movement task. Reconstruction was per-
formed using all visual ROIs. Dark gray shaded area represents the interquartile
range. Gray rectangles are periods when the flickering bars were on the screen.

B Scatter plots of reconstructed eye position against the actual eye position for an
example participant. C Pearson’s correlation coefficients for all participants
(points). Violins represent kernel density estimates. Black line is the group median.
D Stacked kernel density estimates of the correlation coefficients from the per-
mutation (N=1000). Colors represent single participants. Points represent the
correlations obtained with the true, estimated pEGF parameters (same is in C). The
height of the points is arbitrary but follows the order of the stacking of the kernel
density estimates. E Correlations between actual eye position and reconstructed
positions from single visual ROIs and a control area in the dorsolateral prefrontal
cortex (DLPFC). The horizontal and vertical components were combined into a
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single correlation estimate (the Fisher transformed average of the two compo-
nents) to compare the ROIs with each other. Correlations per ROl were estimated
by bootstrapping a fixed number of voxels of each ROI per participant (V=11
participants). This ensures that differences in reconstruction quality are not due to
differences in size of the ROIs. Box plots made with the same conventions as Fig. 3B.
Yellow asterisks above the boxplot indicate that the group median is significantly
different from zero (i.e., that zero is outside the Bonferroni-corrected bootstrapped
95%-confidence interval). F Bootstrapped pairwise comparison of the reconstruc-
tion quality between the different ROIs. Red/yellow indicates that the correlation
estimate of the ROI in the row is higher than that of the ROI in the column. Colors
represent the median difference across the eleven participants. White asterisks
indicate a significant difference (alpha = 0.05, Bonferroni corrected for multiple
tests, see Supplementary Information - Statistics Output). Source data are pro-
vided as a Source Data file.

increases (for 500 ms, from O to 100%) and no contrast during periods
of fixation. The optimal configuration was set based on the increase in
R%in V1 voxels. This stimulus configuration led to a significant increase
in R? of approximately 0.035 in V1, V2, IPSO-1, IPS2-3-4 and TO1-2, but
not in the other areas (Fig. S2; Supplementary Note 1).

To summarize, in line with single cell recordings”, the static
peripheral elements act as a visual stimulus when they are brought into
a pRF after a saccade (Fig. 2D). The median variance explained by the
PRF model in combination with the optimized stimulus configuration
(pRF-only model) varied between 0.30 (V1, V2, V3) and 0.14 (LO1-2)
across all visual areas. Thus, pRFs can be used to capture visual
responses in active eye-movement tasks when the visual input is
modeled adequately.

Eye-position dependent gain fields increase variance explained
of pRF model in an eye-movement task

In the previous section, our encoding model was based only on reti-
notopic pRFs (pRF-only model). In this section, we examined whether
the BOLD signal also reflects the eye-position dependent gain mod-
ulation observed in neurophysiological recordings. To do so, we
extended the pRF-only model with population eye-position dependent
gain fields (pEGF). In this extended model (pRFxpEGF model), the gain
of the predicted pRF response is modulated by eye position given a
specific pEGF (Fig. 1D).

At the level of single neurons, EGFs have classically been descri-
bed as planar (i.e., two-dimensional planes)*. However, they have also
been described as various other shapes*** to account for observed
spatial non-monotonic features in EGFs”**. Here, we opted to model
pEGF at the level of single voxels with an isotropic two-dimensional
gaussian described with four parameters: center (x, y), standard

deviation and amplitude. We chose this option for three reasons. First,
it is a bounded function (in contrast to planar or polynomial func-
tions), which is convenient to model changes in the BOLD time series.
Second, it can account for spatial non-monotonicities in the EGF.
Third, at the same time it can approximate planar shapes, in the case of
an eccentric 2D gaussian with a (relatively) wide standard deviation®.
In our modeling strategy we also constrained the pEGFs to be larger
than a voxels’ pRFZ.

For each voxel, the gain modulation corresponding to the eye
positions in the eye-movement task was extracted from this pEGF. We
used the same eye positions for every participant, assuming that they
were, on average, accurately following the fixation target (as con-
firmed by the eye-tracking data collected in the scanner; Supplemen-
tary Fig. 1A-E). To create a predicted BOLD-signal time series, the
predicted response from the pRF-only model was multiplied with the
gain modulation, convolved with the hemodynamic response function
(HRF), and finally downsampled to 0.5 Hz. We created 3888 hypothe-
tical pEGFs and obtained the best fitting parameters for each voxel (see
Methods - Population eye-position dependent gain fields). Impor-
tantly, we did not estimate each voxel’s pRF again, instead we used the
independent pRF estimates from the moving bar paradigm.

To evaluate the extent to which the pEGF improved the fit, we
compared the goodness of fit of the pRF-only model and pRFxpEGF
model. For this comparison we used the adjusted R* (R%q;), which
corrects for the number of parameters in each model. We examined
the changes in R%,q; in the visual areas and an area in the dorsolateral
prefrontal cortex (DLPFC) that served as a non-visual control area,
where the pRF-only model did not explain the data well (median
R?>=0.01, R%q;=-0.02). Across all participants and visual areas, the
median R?,q; increased from 0.20 to 0.27 after the pEGF was added to
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the encoding model. At the time series level, the pEGF improved the
PRF model by amplifying and suppressing the prediction at various
time points (Fig. 3A).

Across all cortical voxels, the increase in median R?,q; mapped
onto the visual areas identified with the moving bar stimulus (Fig. 3C).
The change in median R%g; (AR?,q;) was larger in all visual ROIs than in
the non-visual control area in the DLPFC, where the AR?,4; was 0.004
and not significantly different from O. This indicates that the pEGF is
only of added value when the pRF already captures the visual
responses adequately. In addition, there were substantial differences
between visual ROIs in the extent to which the pRFxpEGF model
improved the R%q; (Fig. 3B). These differences were tested using a
linear mixed-effects model of the difference in R%,q; between the pRF-
only and pRFxpEGF models, per participant and ROI. There was a
significant effect of ROI (F(9,90) = 30.77, p<0.001). The R%q; in the
early visual areas (V1, V2, V3) increased significantly more (AR%q;
V1=0.059, V2=0.053, V3=0.055) than in higher visual areas (AR?g;
between 0.025 and 0.039; see Supplementary Note 2).

These findings demonstrate that our encoding model with a pRF
and pEGF captures signal fluctuations compatible with an eye-position
dependent gain modulation. Moreover, they indicate that the eye-
position dependent gain modulation is a ubiquitous feature of
responses throughout the human visual system®, including higher
intra-parietal sulcus locations.

Eye position can be reconstructed continuously from fMRI data
If the pEGF captures a modulation of the visual response that is cor-
related with eye position, we should be able to reconstruct eye posi-
tion using the pEGF parameters. We tested this on an independent,
second version of the eye-movement task (version B; Fig. 1E; Supple-
mentary Movie 3), in which the eye-movement trajectory was uncor-
related from the trajectory of the first version (version A) that was used
to estimate the pEGF parameters.

For the reconstruction, we provided our algorithm with three
sources of information: (1) the predicted responses of the pRF-only
model for version B of the eye-movement task, (2) the pEGF para-
meters of each voxel, estimated from version A of the eye-movement
task and (3) the obtained BOLD signal time series from version B of
the eye-movement task. Importantly, the algorithm did not have
access to the eye positions of version A or B of the eye-movement
task. In brief, we divided the measured BOLD time series by the
predicted time series from the pRF-only model to estimate the gain
modulation over time. Then, we scaled each voxel’s two-dimensional
pEGF by the estimated gain and summed the scaled pEGFs of
all voxels. We also computed a normalizer, which was the sum of all
pEGFs scaled by the average gain at each time point. The scaled sum
was then divided by the normalizer. After normalization, we esti-
mated eye positions from the peak of the summed pEGFs (see
Methods - Reconstructing eye position). For the reconstruction,
we only included voxels where the pRF x pEGF model outperformed
the pRF-only model for version A of the eye-movement task
(AR%,q; > 0) and where the pRF-only model explained at least 10% of
the variance in both versions of the eye-movement task (R*=0.1).

The average reconstructed eye position is displayed in Fig. 4A. We
assessed the quality of the reconstructed eye position by correlating it
with the actual eye position using Pearson correlation (Fig. 4B). First,
we cross-correlated the reconstructed and actual eye position with
lags ranging from —10 to 10 TRs, as the reconstruction could lag the
actual eye position because the gain is estimated from the uncon-
volved BOLD signal. The highest median correlation was obtained for a
lag of 1 TR, equaling to 2 s (Supplementary Fig. 1G). This lag is similar to
the lag we obtained using simulated time series, which indicates that
the lag arises within our reconstruction algorithm (Supplementary
Fig. 3). Thus, we used this lag in the rest of the analysis to assess the
quality of the reconstructed eye position.

The median correlation across participants between recon-
structed and actual eye positions for the horizontal component was
r,=0.77 (inter-quartile range, IQR=0.68-0.84), and for the vertical
component r,=0.64 (IQR=0.59-0.67) (Fig. 4C). To test the sig-
nificance of these correlations, we repeated the reconstruction with
permuted pEGF parameters, thus breaking the mapping between
voxel’s pRF and pEGF. In this permutation test, we included the same
voxels as we did for the original reconstruction. For each reconstruc-
tion with permuted pEGF parameters, we computed correlations to
obtain a null distribution of correlation values. Next, we computed
p-values per participant and eye- position component (X, y) as the
proportion of the null distribution that was larger than or equal to the
true correlation (Fig. 4D). All p-values were <0.01 (see Supplementary
Note 3), except for the vertical component of one partici-
pant (p =0.084).

Because we—and others previously*“'—have been concerned that
the presumed eye-position modulations may have resulted from
unaccounted retinotopic stimulation, we simulated four scenarios, in
which retinotopic stimulation was not completely accounted for, and/
or the pEGFs were simulated to be non-existent. The simulation results
indicate that the accurate reconstruction of eye position over time
observed in our data most likely resulted from the presence of pEGFs,
not from unaccounted retinotopic stimulation (for details and dis-
cussion, see Methods: Simulation 1: leftover retinotopic input and
Supplementary Fig. 3).

As mentioned above, neurophysiological studies have demon-
strated that the gain of visual responses is modulated by eye position
in various visual areas. Our results also demonstrated that the
pRFxpEGF model provides a better fit for the observed BOLD
time series than the pRF-only model for all visual ROIs. To evaluate the
quality of the pEGFs across the visual hierarchy, we assessed if and to
what extent eye position can be reconstructed from single ROIs. We
computed correlation estimates between reconstructed and actual eye
positions by bootstrapping a fixed number of voxels (=150) per ROL.
This ensures that potential differences in reconstruction quality are
not due to the number of voxels used for the reconstruction. We
combined the correlations for the horizontal and vertical eye-position
components into a single, Fisher transformed average coefficient per
ROL. Eye position could be reconstructed from all visual ROIs, but not
from the visually non-responsive control DLPFC (Fig. 4E; Supplemen-
tary Note 4). Moreover, there was a significant difference in recon-
struction quality between ROIs (F(9,90)=38.03, p<0.0001). The
reconstruction quality of all ROIs was superior to that of the DLPFC.
Interestingly, reconstruction quality was higher in V1, V2, V3, and V3AB
than in the other ROIs (Fig. 4F). The reconstruction quality in V3AB is
notably high, at the same level as early visual cortex and higher than
the other visual ROIs such as V4, even though there was no significant
difference in R%,q; between V3AB and V4 (Fig. 3B). A similar pattern was
observed in a previous fMRI study that reconstructed static eye posi-
tion from fMRI data’®. Moreover, area V3A has been shown to com-
pensate for pursuit eye movements in case of visual motion*.

To summarize, we accurately reconstructed eye position over
time by modeling contrast-based responses and implementing a
multiplicative gain field. Successful reconstruction was possible
throughout the human visual system, indicating EGFs are ubiquitous
along the visual hierarchy in humans.

20,21

Systematic relationship between pEGF centers and pRF
eccentricity

Next, we explored the distributions and organization of pEGF para-
meters. Three distinct observations have been described in the lit-
erature regarding the organization of RFs and EGFs: (1) they have both
been found to be contralaterally organized in V1'** and V3A%, (2) EGFs
have been found to be ipsilateral, which in combination with con-
tralateral RFs could give rise to a ‘straight-ahead’ bias in V1**, and (3)
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Fig. 5 | Coupling between pRF center and pEGF center. A Example surface maps
of one participant. Black and white dashed lines mark the borders of V1. Top:
horizontal component (Xo) of the pRF center, in degrees from the fovea. Bottom:
Xo of pEGF center, in degree from fixating straight ahead. See Figure S4 for surface
maps of all participants. The pEGF X, shows a gradient from contralateral to ipsi-
lateral along the posterior-anterior axis, the same direction as eccentricity of the
PRFs. B Density distribution across all participants of pEGF X, binned for different
PRF eccentricities in V1. Density estimates are split between pRFs in the left and
right hemifield. At pRF eccentricities lower than ~6°, pEGF centers are biased
towards the side of the accompanying pRF. At higher pRF eccentricities this pattern

Left
B Right

—

1.65 3.0

LAnd Ly o A abd rad

V3AB

LO1-2 TO1-2

IPS2-3-4

p————— N
5 - “\#
A

IPS0-1

reverses. C Median pEGF X, as a function of pRF eccentricity in V1. Colors follow the
same conventions as in B. Circles and triangles represent the group median pEGF
Xo per pRF eccentricity bin and are scaled according to the number of voxels in that
bin. Lines represent the least squares solution through the points. D Median pEGF
Xo as a function of pRF eccentricity for the other visual ROIs, all drawn to the same
scale as in C. In all panels, the lighter color and circles represents pRFs in the left
hemifield, the darker color and triangles represents pRFs in the right hemifield. See
Figure S6A for the same plots for individual participants and S6C for the same
results using a different configuration of the retinotopic representation of the
visual input. Source data are provided as a Source Data file.
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Fig. 6 | Simulations of coupling between pRF center and pEGF center. A Density
distributions of simulated pEGFs (Xo), using the pRF parameters from each parti-
cipant’s V1. This simulation was performed to check for biases in our encoding
model that would give rise to the features of the observed pEGF X, density dis-
tributions in Fig. 5B. In this simulation, pEGF parameters were randomly assigned to
each pRF (light blue). Our encoding model estimated the pEGF parameters (dark
blue). B Median estimated pEGF X as a function of pRF eccentricity. Colors follow
the same conventions as in A. Similar to Fig. 5C, we binned pRF eccentricity and
computed the median pEGF X, per pRF eccentricity bin and are scaled according to
the number of voxels in that bin. Lines represent the least squares solution through
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the points (data points are not plotted because they cause too much visual clutter
around 0). In this simulation, no inversion like in Fig. 5C was present. C Like A, but in
this simulation the pEGF was completely omitted, yet we asked our encoding model
to estimate the pEGF parameters (dark blue). Two features are present in the dis-
tributions obtained with either simulation: a central peak and two peaks at the tails.
Notably, the shift between pRFs in the left or right hemifield is not present. See
Fig SS for simulation results with different noise levels. R%,q; Like B but for the
simulation where the pEGF was omitted (right). In this simulation, also, no inversion
was present. Source data are provided as a Source Data file.

no organization is found at the population level in V6", LIP, area 7a°,
MT and MST®. In humans, evidence for a straight-ahead bias along the
vertical axis was found in V1 and V2.

When we visualized the horizontal component (Xo) of the pEGF
location we discovered a notable gradient in V1 from contra- to ipsi-
lateral (Fig. 5A). This appears to follow a similar gradient as the

eccentricity of pRFs. We quantified this gradient by plotting the den-
sity distributions of pEGF X, for different pRF eccentricities, where the
density plots are split between pRF hemifield (Fig. 5B). There are three
notable features in the distributions. First, there is a bias of pEGFs
centers at central eye positions—note that this is different from
the straight-ahead bias which refers to the location of pRFs at
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straight-ahead, not gaze. Second, there seems to be a smaller bias at
the two the tails of the distribution. Third, the center of density seems
to be contralateral for pRFs with small eccentricities and shifts to
ipsilateral for pRFs with an eccentricity of 6° to 8° from the fovea (see
Supplementary Note 7).

The observed features in the distributions of pEGF parameters
could arise from true underlying biological characteristics but could
also be a consequence of the interactions between different para-
meters in our encoding model. Fox example, because our encoding
model builds on pRFs, features of pEGF parameter distributions could
be inherited from the distributions of pRF parameters, e.g., the rela-
tionship between pRF size and eccentricity”. To investigate such
interactions in our encoding model, we examined which pEGF X, the
model would yield when we simulated uniformly distributed pEGF Xo.
In addition, we simulated which results we would obtain if there were
no pEGFs driving our measured BOLD signals at all (for details, see
Methods, Simulation 2: pEGF parameter distribution). From both
simulations, we observed two of the three features: a bias at the center
and a bias at the tails (Fig. 6A, C). The same pattern was observed for
different noise levels (Supplementary Fig. 5). As such, it is likely that
these two features arose from our modeling framework and do not
represent biological features. However, the third feature, an inversion
of pEGF laterality with pRF eccentricity, is present only in our data but
not in the results from the simulation.

The inversion can be visualized more directly by binning voxels by
PRF eccentricity and then showing the median pEGF X, per bin
(Fig. 5C). There is a clear inversion in pEGF X, between pRFs in the left
and right hemifield. This is not present in the results of the simulation
(Fig. 6B, D). Visualizations for the other ROIs point towards a similar
pattern (Fig. 5D). We tested the interaction between pRF eccentricity
and visual hemifield per ROI using a linear mixed-effects model. For V1,
V2, V3, V4, V3AB, IPSO-1, LO1-2, and TOI1-2 there were significant
interactions (p < 0.0001), but not for IPS2-3-4 and DLPFC (p > 0.2; see
Supplementary Note 5).

Next, we examined the interaction between pRF eccentricity and
the vertical component (Yo) pEGF centers. The distribution of pEGF Y,
was more heterogeneous across visual ROIs and participants (Sup-
plementary Fig. 7). We ran a linear mixed-effects model of the inter-
action between pRF eccentricity and visual hemifield (upper/lower)
per ROL. This analysis showed significant interactions for V1, V2, V3,
and IPSO-1 (p < 0.02; see Supplementary Note 6), but the pattern of the
interaction was different between these ROIs (Supplementary Fig. 7).
As such, we are cautious in interpreting this heterogeneous interac-
tion. It could be that the estimates of the vertical position are less
reliable because the range of eye positions in the vertical direction
(6.3°) was smaller than in the horizontal direction (12°).

To summarize, we observed a large-scale systematicity in the
distribution of gain field centers at the population level that follows a
topographical organization. We did not examine the size of the pEGF
because we restricted the size to be larger than a voxel’s pRF. As such,
any systematicity in pEGF size might reflect a systematicity in pRF size,
e.g., the known scaling of pRF size with eccentricity®.

Discussion

Here, we investigated the modulation of visual responses in human
visual cortex as a function of eye position. We developed an encoding
model that includes voxel-wise pRFs and population eye-position
dependent gain fields (pEGF), probing the gain field mechanism in an
active setting, while participants move their eyes and are presented
with high contrast visual stimuli. First, we established that static stimuli
elicit a visual response when they are brought into a pRF after a sac-
cade, as expected from non-human primate data?. Then, we optimized
the retinotopic representation of the stimulus to ensure that we
accurately captured retinotopic visual responses. Inclusion of the
multiplicative pEGF in the model improved the goodness of fit along

the human visual hierarchy, but not in a control area. As a more
stringent validation, our encoding model allowed us to accurately
reconstruct eye position over time. To test generalization and avoiding
overfitting, model optimization and fitting were performed on one
version of the task (task A) while reconstruction was performed on a
different dataset, with independent eye trajectories (task B) and
without further optimization.

The systematic characterization of pEGF properties was possible
throughout the human visual system, also including the human par-
ietal cortex. We examined the distribution of pEFG parameters at the
population level and discovered a large-scale organization of pEGF
centers: following the gradient of pRF eccentricity, pEGF centers
shift from contralateral (for central pRFs) to ipsilateral (for
peripheral pRFs).

An important aspect in studying gain modulations of retinotopic
responses is to properly account for the retinotopic input. Failure to
do so could result in true retinotopic activity being wrongly inter-
preted as the result of gain modulation. Previous fMRI studies that
studied eye position responses or modulation of visual responses by
eye position have been performed in complete darkness®, with the use
of motion-defined instead of luminance defined stimuli and covering
the inside of the scanner bore with black felt*® or only examining
voxels responsive to a central region of the visual field”-*>. Here, we
took a different approach. We implemented a design where partici-
pants were actively performing eye movements in the scanner and
factored peripheral visual stimulation into the retinotopic repre-
sentation of our stimulus. We examined how the peripheral, static
elements in the visual field should be incorporated into the repre-
sentation. With this approach, we were able to adopt a relatively nat-
uralistic eye-movement task for the participant, without the need to
fixate at a single point for several minutes.

Next, it was necessary to exclude the possibility that our results
were driven by biases introduced by our modeling strategy per se. For
example, it could be that starting from uniform distributions of pEGF
parameters, the modeling and fitting procedure would introduce dis-
tributional features not present at the input stage (Fig. 6A). Moreover,
it is possible that our representation of the retinotopic input was either
incomplete (i.e., some elements providing strong visual responses
were omitted) or included elements that did not provide strong sti-
mulation. To account for these possible confounds, we worked
extensively on model simulations.

First, we assessed how eye-position reconstruction would be
affected by leftover retinotopic activity (Supplementary Fig. 3). The
result of this simulation showed that the most accurate reconstruction
would be obtained if visual responses are truly modulated by eye
position. Moreover, omitting several peripheral elements would barely
affect reconstruction quality, but only if the visual responses are truly
modulated by eye position. Indeed, in the simulations where we
excluded pEGFs, reconstruction quality substantially decreased.
Additionally, reconstruction from only left-over retinotopic input and
without gain modulation was entirely unsuccessful (see Supplemen-
tary Fig. 3 for further discussion). Together, these simulations indicate
that accurate reconstruction of eye position over time is tightly cou-
pled to the existence of eye-position dependent gain modulation of
visual responses and is not a result of unaccounted retinotopic
stimulation.

This type of approach comes inevitably with a level of technicality,
as we needed to formalize the model, the starting distributions, and
the readout strategy. However, all these choices allowed for a careful
disentanglement of genuine and spurious findings and were justified
according to parsimony and first principles: the known underlying
retinotopic organization of visual cortex and its response to contrast.

We observed a gradient in pEGF centers from contralateral to
ipsilateral along pRF eccentricity, which was unlikely to have arisen
from hidden interactions in our encoding model (as demonstrated by
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the simulations). The gradient of pEGF centers is most prominent in
early visual areas (V1, V2, V3), but is also present in higher areas (V3AB,
V4). The gradient becomes less pronounced but is not absent further
downstream the visual hierarchy (e.g., IPSO-1, LO1-2).

Although the modulation of visual responses by eye position has
been demonstrated with neurophysiological recordings in many visual
areas of non-human primates, there has been uncertainty whether EGFs
are organized macroscopically (cf. retinotopic maps®), microscopically
(cf. orientation columns®) or not at all*. In some recordings in V1' and
V3A" a contralateral bias of EGFs has been observed, while others have
observed an ipsilateral bias in V17, This latter bias has also been
measured with human fMRI”. For neurons with central RFs in V1, it is
unclear why some have observed a contralateral bias', some an ipsi-
lateral bias*, and some no bias”. In most higher visual areas no pro-
minent bias in EGF centers has been observed, including LIP and area
7a%%, MT and MST", V4%, and V6. It is important to note that the
majority of these studies did not examine a relationship between RF
location and EGF location, but rather examined the distribution of EGFs
in their recorded sample of neurons. It is possible that an explicit rela-
tionship is only visible when EGF centers are expressed as a function of
RF eccentricity. Otherwise, a bias in EGF centers would only be visible if
the RFs of neurons in the recorded sample would be clustered around a
single eccentricity. Moreover, both contra- and ipsilateral biases in EGF
centers have been observed. Our data reconcile these findings with the
demonstration of a topographic gradient of pEGF centers from contra-
to ipsilateral following pRF eccentricity. Thus, corroborating the origi-
nal idea of a topographic organization in gain-field position initially put
forward in the discussion of Andersen and colleagues (1985).

Although there is currently no consensus as to why topographic
maps exist in the brain, there are three non-exclusive hypotheses®™>’.
Firstly, it could be that throughout an animal’s development, neigh-
boring neurons are more likely to receive similar input as the result of
chemical principles of axon guidance and local connections, thus
giving rise to gradients in their later tuning profile. Secondly, topo-
graphy might be metabolically and computationally efficient, limiting
the need for long range connections to perform operations in a local
sensory domain. Thirdly, the topography could be of functional rele-
vance. In the case of EGFs, it has been suggested that ipsilateral EGFs
for peripheral RFs lead to a “straight-ahead bias” which could serve
prioritized processing of stimuli that are directly in front of an
animal*’. However, it is currently unclear whether this “straight-ahead
bias” is related to the topographic relationship between pRF eccen-
tricity and pEGF X, observed here.

Several candidate sources might underlie the modulatory signal
that we observed along the visual hierarchy. A corollary discharge
might inform the visual system about an impending eye movement,
providing information about its amplitude and direction*"*>. However,
if the representation of eye position would depend exclusively on such
a mechanism, the variability of the eye-position estimate would accu-
mulate with each eye movement, making the system unstable over
time*. Proprioceptive signals arising from the eye muscles reaching
the visual cortex represent another source that could provide infor-
mation about the current eye position**. Lastly, one possibility is that
none of these signals are exclusively responsible for providing eye-
position information to the visual cortex, but rather the signal is
derived by integrating multiple sources*’. Because in our task partici-
pants made an eye movement every few seconds and our measure is
the BOLD signal, which evolves slowly over time, our data and the
derived pEGF parameters could be influenced by both sources of eye-
position information.

It has recently become clear that retinotopic responses in visual
cortex are not only modulated by eye position'*"® but also by the
position of an animal in space®*¢. Thus, gain modulation of topo-
graphically organized sensory neurons appears to provide a general
principle by which sensory inputs from different sources are

transformed into a common reference frame. Uncovering the organi-
zational principles of gain modulations can provide key insights into
how this transformation can be so rapid and accurate, allowing animals
to solve the ambiguity of sensory input during self-motion. Here, we
provided evidence that EGFs are ubiquitous along the visual hierarchy
in human neocortex and they exhibit remarkable organizational
properties that follow a topographic organization.

Methods

Participants

Eleven healthy, human participants took part in this study after giving
written informed consent (three authors and eight naive, each scan
session of approximately 2h). All experimental procedures were
approved by the local ethics committee at the School of Medical,
Veterinary and Life Sciences of the University of Glasgow (reference
number: 200180191 and GN19NE455). Participants completed at least
two scanning sessions, with one additional training session being
completed before the first scanning session, giving a total of 22 scan-
ning sessions and 11 training sessions.

Projector & eye tracker

Stimuli were projected at 120 Hz with a PROPixx projector (VPixx
Technologies, Saint-Bruno, QC, Canada) onto a translucent screen
(dimensions 320 x 400 mm) at the end of the scanner bore. Partici-
pants viewed the screen through an angled mirror at 8.89° visual angle
from a distance of 959 mm (57.0 pixels/degree) and the infrared mirror
of the eye tracker. Eye-position data were acquired with an MR com-
patible Eyelink 1000 at 250 Hz (SR Research, Ottawa, ON, Canada).
Stimuli were presented with MATLAB (The Mathworks, Natick, MA)
using the Psychtoolbox**° and the Eyelink extension®.

pRF mapping - moving bar

Visual field mapping stimuli consisted of contrast-defined bars of
cardinal and diagonal orientations, similar to those used in previous
pRF mapping studies®**, Participants fixated at a central gray fixation
target (r=0.65° Thaler et al., 2013) while a high-contrast bar with a
checkerboard pattern (-0.6° checks) swept across a uniform gray
background in 20 equally spaced steps (Fig. 1E). Each step lasted 1.6 s.
Bars had a width of 1.75°, exposing approximately three rows of
checks. Alternating rows moved in opposite directions of each other
with a speed of 0.5°™. Bars were presented with four different orien-
tations and swept across the screen in eight different directions (two
horizontal, two vertical, four diagonal). After 1 or 2 sweeps there was a
baseline period of 12's, in which no bars were presented, and partici-
pants kept fixation. The experiment included a total of 8 baseline
periods. The total duration of the entire run was 310 s, during which
155 volumes were acquired. Participants completed at least 5 pRF
mapping runs.

pEGF mapping - active eye movements

Participants were instructed to follow a yellow fixation target across
the screen with their gaze. The fixation target made 13 sweeps across
the screen with 8 steps per sweep. Steps were between 1.28° and 1.40°,
and lasted 1.5 or 1.67 s. Each sweep went from left to right or right to
left, with some degree of variation over the vertical axis (Fig. 1E). There
were 9 baseline periods of 20 to 25 s, one at the start of each run, one at
the end, and seven in between. In addition to the fixation target, a bar
with high-contrast, flickering, randomized checkerboard pattern was
presented horizontally or vertically in the center of the screen, and/or
diagonally in the corner of the screen. These bars were presented in
various configurations at seven instances (Fig. 1E, Supplementary
Movie 2 and 3). There were two versions of the task (version A and B).
The eye-movement trajectories were uncorrelated between the two
task versions (horizontal component: r(177) =-0.07, p = 0.35, vertical
component: r(177) =-0.09, p = 0.24, Fig. 1E) and the bar configurations
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were different. Participants completed at least 5 runs of version A and
at least 4 runs of version B, in two scan sessions on different, non-
consecutive days.

Training session

Participants completed a behavioral training session before the scan-
ning sessions to make them acquainted with the tasks. The training
consisted of up to two runs of each task that would be performed in
the scanner: (1) the moving bar, (2) active eye-movements version A
and (3) active eye-movements version B. During the training, partici-
pants were seated in front of a BenQ XL2411 screen (540 x 300 mm) at
adistance of 600 mm (39.6 pixels/degree). Their heads were stabilized
using a chin-head rest. Eye movements were recorded with an Eyelink
1000 at 1000 Hz. Verbal feedback was provided to make sure partici-
pants were maintaining fixation when required and were not making
anticipatory saccades in the eye-movement tasks.

MRI - data acquisition

MRI data were acquired with a 7 T Siemens Magnetom Terra system
(Siemens Healthcare, Erlangen, Germany) and a 32-channel head coil
(Nova Medical Inc., Wilmington, MA, USA) at the Imaging Centre of
Excellence (University of Glasgow, UK). We collected T1-weighted
MP2RAGE anatomical scans (anatomy) for each participant (0.625 mm
isotropic, FOV =160 x 225 x 240 mm?, 256 sagittal slices, TR =4.68 ms,
TE=0.00209ms, TI=0.84ms, TI1=TI2=2.37, flip angle 1=5, flip
angle 2 =6, bandwidth = 250 Hz/px, acceleration factor =3 in primary
phase encoding direction).

During the tasks, functional data were acquired as T2*weighted
echo-planar images (EPI), using the CMRR MB (multi-band) sequence
with the following acquisition parameters: resolution = 1.5 mm isotropic,
FOV =192 x 192 x 84 mm?’, repetition time (TR)=2000 ms, echo time
(TE)=25ms, flip angle =72°, multiband acceleration factor=2, phase
encoding direction = anterior to posterior. For the pRF mapping task we
collected 155 volumes per run (310 s), and for the eye-movement tasks
(versions A and B) 179 volumes (358s). For each MRI session, we
recorded 5 volumes with the same EPI sequence parameters with the
phase-encoding direction inverted (posterior to anterior; top-up EPI) to
correct for susceptibility-induced distortions and facilitate co-
registration with the anatomical data. We acquired the top-up EPIs at
the beginning of the MRI session (between the first and the second EPI
run) and at the end of the MRI session (before the final EPI run).

MRI - EPI preprocessing and coregistration

All analyses were performed in AFNI, R and Python (Nighres)* .
Functional scans were slice timing corrected using the AFNI function
3dTshift.

For each MRI session, we computed a warp field to correct for
geometric distortions from the original (non-motion corrected) EPI
volumes, using the function 3dQwarp: we averaged the first 5 volumes
of the EPI following the acquisition of the top-up EPI, and averaged the
5 volumes of each top-up EPI run. The resulting undistorted (warped)
EPI volume is the halfway warping between the two average volumes™.

Motion parameters between runs in a session were estimated by
aligning the EPI volumes to the first volume of the first EPI run using the
function 3dvolreg. To minimize interpolation applied to the EPI data,
the motion estimates and warp field results were combined and
applied in a single step, using the function 3dNwarpApply. Then, we
computed the motion correction and warped mean EPI volume of the
MRI session by averaging over all warped and motion corrected EPI
volumes between runs and collapsed over all time points in the
‘moving bar’  paradigm. This resultant mean EPI volume was co-
registered to the anatomy. First, we brought the anatomy and the
session mean EPI volume into the same space by aligning their
respective centers of mass. Next, the ‘Nudge dataset’ plugin in AFNI
was used to manually provide a good starting point for the automated

coregistration. This registration consisted of an affine transformation,
using the local Pearson correlation as cost function®® in the function
3dAllineate. The individual motion-corrected runs were then de-spiked
(using the function 3dDespike), scaled to obtain percentage BOLD
signal change, and detrended with a 3" order polynomial (using the
function 3dDetrend). We averaged all processed EPI runs per task and
participant to increase the signal to noise ratio.

EPI volumes from the active eye-movement task A and B were co-
registered to the EPI volumes of the moving bar to obtain a voxel-by-
voxel correspondence between tasks. The outcome of the coregistra-
tion for each participant and session was visually checked by evaluat-
ing the location of anatomical markers as gray matter/white matter
(GM and WM, respectively) and GM/cerebro-spinal fluid (CSF)
boundaries in the calcarine sulcus and the parietal cortex. All analyses
on the functional data were performed on GM voxels in EPI space. For
each voxel in the GM mask, we computed its normalized cortical
depth, ranging from 0 (GM/WM surface to 1 (GM/cerebro-spinal fluid
surface), based on a volumetric model*’. We excluded the inner and
outer 10% of GM to exclude effects of partial volume. EPI time series
were smoothed at the single voxel level with a 3-point Hamming win-
dow over time. No spatial smoothing was applied.

MRI - anatomy segmentation

The GM and WM were automatically segmented based on the anato-
mical scans using in-house software. Segmentation was performed on
a downsampled resolution of the anatomical data (0.7 mm, isotropic,
downsampling performed with the function 3dResample). T1-w images
were co-registered to an atlas®® to remove the cerebellum and sub-
cortical structures. We separated the T1-w images in 6 different sec-
tions from posterior to anterior, with each section being used
separately as an input for the 3dSeg function in AFNI to isolate the WM.
The WM masks obtained from each part were summed together
resulting in a whole brain WM mask. To derive the GM segmentation,
we started from the obtained whole brain WM segmentation and an
atlas co-registered to the Tl-w images to acquire 35 regions per
hemisphere®. Next, a distance map from the WM/GM boundary to the
pial surface was built computing the Euclidean distance of each voxel
from the WM/GM border. Negative distances were assigned inside the
WM and positive distances were assigned from the WM borders out-
wards. For each region, the coordinates were divided into four sepa-
rate subparts using k-means clustering. This step was necessary to
accurately delineate the boundaries on small portions of each region
(subregion), with a highly homogeneous T1-w signal. For each sub-
region, voxels within -2 and 7 mm from the WM/GM border were
selected and their T1-w intensity was stored for further analysis. For
each region’s subregion, we obtained 10 bins between -2 and 7 mm
from the WM/GM border. For each bin, we computed the inter-quartile
estimate of T1-w intensity. We calculated the 75% quantile of the inter-
quartile estimates and computed the associated Euclidian distance
from the WM/GM border. This Euclidean distance was taken as the
cortical depth associated with the subregion. To improve the obtained
GM segmentation, the WM and GM masks were fed to the “Cortical
Reconstruction using Implicit Surface Evolution” (CRUISE) algorithm
in Nighres.

Population receptive fields
PRFs of voxels in the GM mask were estimated as 2D isotropic gaus-
sians with compressive spatial summation®*,

_ (e x0)* + 0 -3r0)?
PRF (x,y,) =€ o @

. o
size= —L

)

Sl
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The pRF (Eq. (1)) is defined as a function of retinotopic coordi-
nates (x,, y;) with four parameters: horizontal center (xo), vertical
center (y,o), standard deviation (o,), and compressive component (n).
The compressive component, n, is an exponent (<1) that is applied
after multiplying the pRF with the stimulus (Sp,,) and summing over x
andy (Eq. (3)). The size of the pRF is defined with both ¢ and n (Eq. (2)).

n

r(t)= Z pRF (Xr'Yr)Sbar(eryrvt) 3)

X Yr

To create a predicted response (r), the pRF is multiplied ele-
mentwise with a spatially (12 pixels/°) and temporally (6 Hz) down-
sampled version of the moving bar stimulus (Spa; Supplementary
Movie 1), binarized to a contrast-defined image (Eq. (3)).

y®=r(t) * h(®) “@)

We convolved the predicted response (r) for the moving bar sti-
mulus with a standard hemodynamic response function (HRF; hy;
n;=6.0, t,=09s., n,=12.0, t,=0.9s., a,=0.35;"") to get a predicted
BOLD response (¥, Eq. (4)). After the convolution, the predicted BOLD
time series (V,4) were further downsampled to match the TR (0.5 Hz).
We estimated the pRF parameters for each voxel (xo, Yo, 0, n) by taking
the prediction that yields the maximum variance explained (R2).
Parameters were found using an exhaustive grid search over 5400
predefined parameter combinations (12 Xo, 9 Yo, 10 G, 5 n).

ROI definition
After the pRF analysis, we plotted the resulting polar angle map on
each participant’s inflated hemisphere and identified the regions of
interest (ROIs) based on the reversals in polar angle of visual field
position preference**>®*, In the current study, we selected the follow-
ing ROIs: V1, V2 (combination of V2v and V2d), V3 (combination of V3v
and V3d), V3A and V3B combined (V3AB), V4, lateral occipital cortex 1
and 2 combined (LO1-2), temporal occipital cortex 1 and 2 combined
(TO1-2), intraparietal sulcus areas 0 and 1 (IPSO-1, combination of IPSO
and IPS1) and higher intraparietal sulcus areas insofar as they were
defined by the angle maps (IPS2-3-4, this included IPS5 for some par-
ticipants). In addition to these visual areas, we also defined an area that
had no clear visual response (i.e., low variance explained by the best
fitting pRF), located in the dorsolateral prefrontal cortex (DLPFC) and
that approximately matched the size of the primary visual cortex (V1)
ROIs were initially defined on the surface and projected into the
underlying anatomy using the function 3dSurf2Vol. ROIs were drawn
by hand on a high-resolution anatomical surface which was compu-
tationally inflated using SUMA®*. Anatomical ROIs were projected into
the EPI volume of the moving bar task by inverting the co-registration
affine transformation (see section: EPI preprocessing and MRI - EPI co-
registration)

Retinotopic representation of visual input in eye-

movement tasks

Before modeling pEGFs, we captured the visual input in the active eye-
movement task (A and B) that was elicited by the retinotopic stimu-
lation of each voxel's pRF. We created retinotopic, contrast-defined
representation of the visual input to model the data from the active
eye-movement tasks. These representations were downsampled to
6 Hz, and a resolution of 6.7 pixels/deg. Because the eyes of the par-
ticipants were following the fixation target, we centered the stimulus
around the fixation target with a lag of one frame (166 ms) to capture
the median saccade latency (135 ms, 141 ms; Supplementary Fig. 1D).
We included various elements in the participant’s peripheral visual
field based on a sketch of the view from inside the scanner (Fig. 1F;
Supplementary Movie 2). These objects included the screen edge, the

coil-mirror, the eye tracker, and the bore. The dimensions of the field
of view of the modeled stimuli were 40° x 22°.

To evaluate to what extent the estimated pRFs could be translated
to the active eye-movement task, we computed the variance explained
of a pRF-only model to various configurations of the contrast-defined
stimulus (Fig. 2). This also allowed us to examine how the contrast-
defined retinotopic visual input should be represented before we
continued to include the pEGFs into the models.

We considered two ways by which the elements within the
scanner bore (and the bore itself) could provide visual stimulation in
addition to the checkerboard bars. First, they could provide a tran-
sient input after saccade offset that is similar to a stimulus onset
during fixation”. Second, the elements could provide input con-
tinuously, as a result of drift and microsaccades®. Although both
effects have been observed in neurophysiological recordings, we do
not know whether they are reflected in BOLD responses, and we do
not know to what degree they elicit visual responses relative to the
response generated by the flickering checkerboard bars (which
provide a strong visual stimulus). For example, the elements could
generate a strong transient response after saccade offset and only a
weak response during fixation, but in both cases, they only generate a
response smaller than the response elicited by the flickering bars. To
find the optimal representation, we examined the variance explained
of different versions of the stimulus model where we systematically
varied (1) the contrast of the elements after a saccade and during
fixation, relative to the contrast of the bars, and (2) the duration of
the postsaccadic window in which the elements should be
considered.

We first examined the contrast levels of the peripheral elements
after a saccade and during fixation. The contrast of the elements in the
retinotopic representation was set to a value between O (absent) to
100% (equal to bars) for 2 frames (333 ms) after a saccade (with the
levels O, 5, 10, 20, 50, 90, 100%). In the remaining frames, during
fixation, the contrast was independently varied between 0 and 100%
(same levels). For each of the 49 contrast combinations (7 contrast
levels after a saccade, 7 contrast levels during fixation), we generated
predicted BOLD time series based on: (1) that particular stimulus
model, (2) the trajectory followed by the eyes in the active eye-
movement task A, and (3) each voxel’s pRF estimated from the moving
bar experiment. We then fitted the predictions to the data using
ordinary least-squares regression. For all further analyses, we used the
contrast configuration that yielded the highest R2 in V1 voxels. The
best configuration was at a fixation contrast = 0% and a postsaccadic
contrast =100% (Fig. 2D).

Next, we examined the duration of the postsaccadic contrast
increase. We varied the duration of the postsaccadic contrast increase
of the peripheral elements from166 ms (1 frame at 6 Hz) to 5333 ms (32
frames), with the levels 1,2, 3,4, 6, 8,12, 16, 24 and 32 frames. Following
the same approach as described above, we generated predictions from
the combination of each voxel’s pRF and the different configurations
of the retinotopic representation. For all further analyses, we used the
contrast configuration of 500 ms (3 frames), which approximated well
the model fits in early visual cortex (Supplementary Fig. 1F).

Following this strategy, we accounted for the signal variability in
the active eye-movement task (A and B), elicited by the retinotopic
stimulation of each voxel pRF while participants were performing eye
movements within the scanner.

Population eye-position dependent gain fields
We modelled eye-position dependent gain fields (pEGF) as 2D iso-
tropic gaussians:

_(te—%e0)* +(Ye~Yeo)”
PEGF (XY, ) =ae 20.2 +(1-a) (3)
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Each pEGF was described as a function of eye-position coordi-
nates (Xe, Ye) With four parameters: horizontal eye position (Xeo), ver-
tical eye position (yeo), standard deviation (o.), and amplitude (a),
with respect to the center of the screen (Eq. (5)).

gt)= pEGF(XeyeA (t)vyeyeA ()] (6)

Gain modulation (g) was obtained by passing the eye positions
during version A of the active eye-movement task (Xeyea, Yeyea) through
the pEGF (Eq. (6)). Note that the pEGF of each voxel was estimated on
top of the already estimated pRF.

n

1= Z pPRF (erYr)seyeA (erYrrt)

XrYr

*g(t) @)

The predicted response in the active eye-movement task A (Eq. (7))
is the product of the predicted response from the pRF to the down-
sampled, binarized version of the active eye-movement stimulus (Seyea,
see section Retinotopic representation of visual input during active eye-
movement task) and the gain modulation generated by the pEGF (g).

y(©=r(®)*h(t) ®

The predicted response (r) was convolved with the standard HRF
(h, Eq. (8)). After the convolution, the predicted BOLD time series (y)
were further downsampled to match the TR (0.5 Hz). We estimated the
PEGF parameters for each voxel (Xeo, Yeo, Oe, 3e) by taking the pre-
diction that yielded the maximum variance explained (R2). Parameters
were found using an exhaustive grid search over 3888 predefined
parameter combinations (12 Xeo, 9 Yeo, 6 Oc, 6 ac).

Reconstructing eye position

If the pEGF parameters that we had estimated truly correlate with eye
position and are not resulting from a confound in the time series of our
task, then the pEGF parameters should be informative about eye
position in a different context (i.e., generalize to a different eye-
movement task). After we fitted pEGF parameters to the data of version
A of the active eye-movement task, we reconstructed eye position
from version B. Please note that eye-position trajectories were uncor-
related between the two versions of the eye-movement task and the
bar configurations were different (see section ‘pEGF mapping—active
eye-movements’; Fig. 1E).

As a starting point for the reconstruction, we assumed the mea-
sured BOLD response in each voxel would be generated by the response
of the underlying neural population (r). The population response can in
turn be characterized by the product of its pRF with the stimulus (Seyeg),
multiplied with an eye-position dependent gain factor (g, Eq. (9)):

r(t)= {Z PRF (X,,Y;)Seyen (Xr.yrrt)} x g(t) 9

XrYr

From this definition, we can estimate the gain factor () for every
time point (Eq. (10)).

r(t)

{ Z PRF (Xr'yr)seyeB (Xf’yl”t)

XpYr

g(t) = n
} (10)

However, because our measured signal is the BOLD signal, not the
direct population response (r), we approximated the gain factor with

an HRF-convolved version of the denominator (Eq. 11).
. t
&= Yo ;
Z pRF(Xr'yr)SeyeB (erYrrt) *h(t)

XeYr

an

y(t) is the measured BOLD response in version B of the active eye-
movement task and h(t) is the standard HRF. We accounted for the
retinotopically elicited response by first bounding both the data (y)
and the pRF-only prediction between O and 1. Then we linearly scaled
the predicted time series (y) based on the pRF-only model. Finally, we
divided the data by the scaled predicted time series from the pRF-only
model to estimate got). We removed values falling below the 1** or
above the 99™ percentile of each voxel’s & and set them to range within
the 1* or 99'" percentile of the values (with an absolute minimum and
maximum of 0.05 and 2.5).

Next, we scaled the 2D pEGF with the estimated gain (&) for every
time point (Eq. (12)). We then summed the scaled pEGFs of all voxels
(N) and divided that sum by the sum of all pEGFs scaled by the
average gain across voxels (g) at that time point (Egs. (13) and (14)).
For each time point, we estimated the eye position (X,y) to be the
location where the scaled sum of all pEGFs was maximal (Egs. (15)
and (16)).

scaled(X,,Ye t) = igi(t)pEGFi (XerYe) (12)
N

unscaled(x,,y.t) = &(t) ;pEGFi(xe,ye) (13)

e etedage s

X(t)= max fG.Ye,t) as)

yv= max f(xe kD) (16)

Note that with this approach eye position is inferred from the
estimated gain and pEGF. Eye position cannot be estimated from a
single pEGF because its maximal value would always be the center of
the 2D gaussian that defines the pEGF. The potential precision of the
reconstructed eye position depends on the number of pEGFs used,
provided that their parameters are uniformly distributed over the
parameter space. This principle resembles eye-position reconstruction
from single unit recordings®**. For the reconstruction of eye-
movement trajectory (of version B of the eye-movement task) we
only included voxels where:

1. R’ (Eq. 17) for the pRF x pEGF model > R?,4; for the pRF-only
model for version A of the active eye-movement task. Where R? is
the variance explained, n is the number of time points in the BOLD
time series, k is the number of parameters. This measure of
variance explained accounts for the number of parameters in the
different models.

a7

2 _,_ |@=RHn-1
Rag=1- {ﬁ}

2. the pRF-only model yielded R* > 0.1 for version A of the active eye-
movement task.

3. the pRF-only model yielded R* > 0.1 for version B of the active eye-
movement task.
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In addition to examining whether eye position can be recon-
structed at all, i.e., using all voxels in the visual cortex, we repeated the
reconstruction for individual ROIs (see Statistics). We applied the same
voxel inclusion criteria for the visual ROIs. For the control area in
DLPFC, we only used non-visually responsive voxels, i.e., where both
the pRF-only and the pRFxpEGF model yielded R? < 0.1. The reason for
using different selection criteria for the control area is to include a non-
visual area and check whether any artifacts that are unknown to us
could have driven the results we obtained from the visual areas. If we
were to apply the same selection criteria for the DLPFC, we would
include on average 1 voxel per participant (0.03%). Such a low number
of voxels would compromise any possibility to reconstruct eye posi-
tion over time. For the other visual areas, the number of included
voxels ranged between 344 (V4) and 1172 (V1) voxels, or in percen-
tages, between 24.5% (IPS2-3-4) and 43.1% (V4). With the separate
inclusion criteria for DLPFC, we included on average 924 voxels
(34.8%), which is comparable to the number of voxels included in the
visual areas, thus making the comparison fair.

Statistics

1. Linear mixed-effects model of change in Rzadj per ROI

We analyzed the median difference in R%,4; between the pRF-only
and pRFxpEGF models using a linear mixed-effects model
(Eq. 18). The analysis we performed in the same manner as
described above. For this analysis, we selected all voxels in the
upper half of a median split based on the R? from the moving bar
paradigm, i.e., how well the pRF described the time series of the
moving bar paradigm. Hence, we use those voxels whose time
series are relatively well characterized by the pRF. From those
voxels, we computed the median R%q; per ROI (i) and participant
(). The medians were analyzed with the mixed-effects model.

ARgde ~Bo +BiX+Z; 18)
Bo represents the R%,q4; in V1 (set as the reference ROI), B; are the
differences in R%gq; (with one coefficient for each row in the
design matrix), X is the design matrix with a column for each ROI,
and Z is the subject-specific deviation from the intercept (o).
This model was compared to a ‘null model’ where the term (3;X
was removed. Models were fitted using the “Ime4” package in R*.
The significance of main effects was tested using the ‘anova’
function. We compared differences in R%,q; between ROIs and
against a correlation of 0 using parametric bootstrapping
(N=10° with the “bootMer” function of the “lme4” package.
Statistical inferences were based on the 95% confidence intervals,
corrected for multiple comparisons with the Bonferroni
correction.

2. Reconstruction correlation coefficients and p-values per
participant
We used Pearson correlation between the position of the fixation
target and the reconstructed eye positions to determine whether
reconstruction was successful. Correlations were computed for
the horizontal (x) and vertical component (y) separately. In
addition, we computed a cross-correlation with different lags to
account for potential delays in the reconstructed eye position
introduced by the HRF.

To test whether the fitted parameters were essential for eye-
position reconstruction, we repeated the reconstruction 1000
times, but with permuted pEGF parameters. The pEGF para-
meters of all voxels that met the inclusion criteria were shuffled
before reconstructing the eye position and computing the
correlations with the actual position of the fixation target. We
computed p values as the proportion of reconstructions that
yielded a higher correlation between the reconstruction and the

actual eye position than the same correlations obtained with the
non-permuted pEGF parameters.
3. Linear mixed-effects model of average correlation per ROI

With our reconstruction method, reconstruction accuracy
increases with an increased number of voxels (see Reconstruct-
ing eye position). To fairly compare the quality of eye-position
reconstruction, we needed to equate the number of voxels used
for the analysis across ROIs. For each ROI, we computed a
distribution of correlation coefficients between the recon-
structed eye position and the position of the fixation target by
bootstrapping a fixed number of voxels from each ROI (90% of
the smallest ROI per participant, with a minimum of 150 voxels; N
bootstrap =1000). We took the Fisher-transformed correlation
coefficient (averaged between horizontal and vertical compo-
nents) per ROI and participant and compared these with a linear
mixed-effects analysis on the group level (Eq. 19).

[arctanh(rx) +arctanh (ry)]

2

where, r, and r, are the correlation coefficients of the horizontal
and vertical components of the eye position and fixation target
positions, per ROI (i) and participant (j). Further inferences were
drawn similarly to the method described in part 1 of this section
(Linear mixed-effects model of change in R2adj per ROI).
4. Linear mixed-effects model of pEGF X, as a function of
eccentricity and hemifield.

19

U~ By +BX+Z,

For each participant, we selected the best half of the voxels per
ROI, where ‘best’ is defined as the highest variance explained by the
pRF x pEGF model. From those voxels, we binned the pRF eccentricity
and computed the average pEGF X,. This was performed for each
visual hemifield separately. Next, we constructed a linear mixed-effects
model for each ROI separately (Eq. (20)). We did not include ROI as a
fixed effect to keep the coefficients interpretable.

PEGF X; ~ By + BX + Z; (20)
where, o represents the pEGF X in the left hemifield at an eccentricity
of, B are the three fixed-effect coefficients for the effects of hemifield,
PRF eccentricity, and the interaction between the two. X is the design
matrix with a column for the fixed effect, and Z is the subject-specific
deviation from the intercept (o). For each ROl model, we compute the
significance of the interaction (and other two fixed effects using the
‘anova’ function.

Simulation 1: leftover retinotopic input
With this simulation, we examined to what extent leftover retinotopic
stimulation could explain the reconstruction results that we obtained.
The simulation consisted of four steps:

1. simulate BOLD time series

2. add noise

3. recover pEGF parameters from simulated time series

4. reconstruct eye position using the recovered pEGF parameters

The pRF and pEGF parameters (if applicable) were obtained
from the estimates in the real data. This way any implicit relation-
ships between pRF parameters or between pEGF and pRF para-
meters remained intact. We only used parameters from voxels
which met the same three inclusion criteria as for the actual
reconstruction:

1. R’ (Eq. (17)) for the pRF x pEGF model > R,q; for the pRF-only
model for version A of the active eye-movement task

2. the pRF-only model yielded R*> 0.1 for version A of the active eye-
movement task.

Nature Communications | (2022)13:7925

13



Article

https://doi.org/10.1038/s41467-022-35488-8

Table 1 | Simulation scenario’s

PEGFs Peripheral stimuli gen-  Peripheral stimuli generate visual

exist erate visual response in  response in retinotopic representation
simulation used to model pEGF parameters

Yes Yes Yes

Yes Yes No

No Yes No

No No Yes

3. the pRF-only model yielded R*> 0.1 for version B of the active eye-
movement task.

We simulated four time series for both versions of the eye-
movement task using different configurations of pEGF existence,
peripheral stimuli strength, and correct or incorrect model assump-
tions about the peripheral stimuli (see Table 1).

These scenarios can be summarized as:

pEGFs exist and retinotopic representation is accurate

pEGFs exist but there is leftover retinotopic stimulation

pEGFs do not exist and there is leftover retinotopic stimulation
pEGFs do not exist and retinotopic representation includes non-
existing elements

P ON =

For each participant, these four simulation scenarios were repe-
ated 100 times with different renditions of noise. The noise was gen-
erated using the “neuRosim” package in R. We used a combination of
physiological noise, system noise and task noise (which depended on
retinotopic stimulation in the pRF of a voxel). The ratio of the noise
components was set to 1:1:0.1, respectively. The sum of these com-
ponents was scaled to have a total amplitude of 0.1 (all simulated time
series were scaled between 0 and 1). From these noisy time series we
estimated pEGF parameters, irrespective of whether they were simu-
lated to exist or not. These estimations were performed using the same
model as we used for the actual data. Finally, the reconstruction was
also performed using the same method as the actual data. Detailed
results of this simulation are reported in the caption of Figure S2.

Simulation 2: pEGF parameter distribution

With this simulation, we examined whether our modeling frame-
work would yield biased pEGF parameters as the result of any
unforeseen interactions. For this simulation, we used parameters
from the pRF fits, such that implicit relationships between pRF
parameters would also be included in the simulation. We selected
voxels from V1 where the pRF explained at least 25% of the variance
in the moving bar paradigm (i.e., that data to which the pRFs were
fitted; pRF-only model).

The simulation consisted of seven steps:

1. create contrast-driven time series based on the pRFs based on the
retinotopic representation of visual input of version A of the eye-
movement task.

2. randomly assign pEGF parameters to each voxel, with the
restriction that the s.d. of the pEGF is larger than the s.d. of
the pRF

3. modulate the contrast-driven time series with the assigned pEGF

4. convolve the time series with the hemodynamic response

function

scale time series between 0 and 1

6. add noise using from the ‘neuRosim’ package. We used a combi-
nation of physiological noise, system noise, and task noise (which
depended on retinotopic stimulation in the pRF of a voxel). The
ratio of the noise components was set to 1:1:0.1, respectively. The
noise was scaled the s.d. of the noise to 0.05, 0.1, and 0.2.

4

7. estimate pEGF parameters using the same framework as we used
for the real data.

The parameters that were estimated from the simulated data were
analyzed and visualized in the same manner as described for the
actual data.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All data are stored by the authors and will be made available upon
reasonable request. Source data are provided with this paper and are
available on Open Science Framework (https://doi.org/10.17605/OSF.
I0/GTDS5R). Source data are provided with this paper.

Code availability

All scripts used to run control the visual presentation of the stimuli and
the scripts to perform the analyses are available on Open Science
Framework (https://doi.org/10.17605/0OSF.I0/GTD5R).
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