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Interplay between oceanic subduction
and continental collision in building
continental crust

Di-Cheng Zhu1 , Qing Wang1, Roberto F. Weinberg 2, Peter A. Cawood 2,
Sun-Lin Chung 3, Yong-Fei Zheng4, Zhidan Zhao1, Zeng-Qian Hou5 &
Xuan-Xue Mo1

Generation of continental crust in collision zones reflect the interplay between
oceanic subduction and continental collision. The Gangdese continental crust
in southern Tibet developed during subduction of the Neo-Tethyan oceanic
slab in the Mesozoic prior to reworking during the India-Asia collision in the
Cenozoic. Herewe show that continental arcmagmatism startedwith fractional
crystallization to form cumulates and associatedmedium-K calc-alkaline suites.
This was followed by a period commencing at ~70Ma dominated by remelting
of pre-existing lower crust, producing more potassic compositions. The
increased importance of remelting coincides with an acceleration in the con-
vergence rate between India and Asia leading to higher basaltic flow into the
Asian lithosphere, followed by convergence deceleration due to slab breakoff,
enabling high heat flow and melting of the base of the arc. This two-stage
process of accumulation and remelting leads to the chemical maturation of
juvenile continental crust in collision zones, strengthening crustal stratification.

Continental collision zones generally develop from an initial phase of
oceanic subduction generating continental arc magmatism to a
phase of continental collision reworking the arc lithosphere1–3. These
zones record the generation of continental crust of andesitic to
dacitic bulk composition and record the key geodynamic processes
leading to the growth and preservation of continental crust on
Earth4,5. Continental arc magmatism before collision records recy-
cling of the subducting oceanic crust, fluid-fluxed melting of the
mantle wedge, and the generation of juvenile mafic crust6. In con-
trast, continental collision generally results in reworking of both
juvenile and ancient continental crust, melting of the crust, and the
formation of mature felsic crust1,3. However, it remains unclear how
this reworking of continental arc lithospheremodifies the nature and
composition of the crust and why this process occurs in colli-
sion zones.

The Gangdese magmatic belt in southern Tibet (Fig. 1a) was part
of an accretionary orogen resulting from subduction of the Neo-
Tethyan oceanic lithosphere that generated continental arc mag-
matism in theMesozoic. It then becamepart of a collisional orogen as
a result of the India-Asia collision in the Cenozoic7–9. The Gangdese
belt is a superb site for studying the growth and reworking of con-
tinental crust along collision zones. This is because the entire mag-
matic record, from growth of the continental arc crust during the
Mesozoic8–10, to its reworking during the Cenozoic (Fig. 1b) is well-
preserved, well-exposed, and well-dated7–12. Furthermore, the kine-
matic framework (i.e. the India-Asia convergence direction and rate
as well as associated driving mechanisms) responsible for the for-
mation of this belt is well-established9,13,14. Themagmatic rocks in this
belt can be subdivided into pre-collisional (>60Ma), syn-collisional
(60−45Ma), and post-collisional (45−10Ma) suites. This subdivision
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is based on themultiple lines of evidence that constrain the timing of
initial collision between India and Asia to ~60 Ma15,16. It is also based
on post-collision being defined as the time following complete loss of
the pull force from the subducting oceanic slab due to its breakoff,
which terminated at ~45 Ma8.

In order to explore the processes of generation and reworking of
continental crust in continental collision zones, we focus on the
100−10Ma old magmatic rocks from the central to eastern Gangdese
belt (longitude E84°−E95°) (Fig. 1c). Our dataset consists of 2630 plu-
tonic samples including new and published data of whole-rock and
mineral geochemistry, zircon U-Pb age and Hf-O isotopes (Supple-
mentary Table 1–8). The data contain 981 pre-collisional, 978 syn-col-
lisional, and 671 post-collisional plutonic samples with an excellent
spatial coverage along and across the strike of the belt, effectively
reducing potential sample bias in the estimation of average crustal
composition.

Results and discussion
Pre-collisional suites dominated by fractional crystallization of
mantle-derived magmas
The pre-collisional magmatic rocks form batholiths dominated by
hornblende-rich rocks with coeval ultramafic cumulates9,17,18. The
temporal changes in the nature of magmatism are shown by whole-
rock composition plots using bivariate kernel density (Fig. 2a–c). The
pre-collisional suite defines a Z-shaped trend in the plot of Mg# vs
SiO2 (Fig. 2a) and an S-shaped trend in the plot of Al2O3 vs SiO2

(Fig. 2b). These trends are similar to those from the Kohistan and
Talkeetna arcs19,20, and result from the sequential accumulation of
olivine (Ol) → orthopyroxene (Opx) + clinopyroxene (Cpx) → horn-
blende (Hbl) + Fe-Ti oxide → plagioclase (Pl)21. Such a sequence is
controlled by hydrous fractional crystallization, resembling the
Southern Plutonic Complex of the Kohistan arc19 and the Chelan
Complex of the incipient Cascades arc (Ol + Cpx→ Cpx +Hbl→Hbl)22,
as well as results from H2O-saturated crystallization experiments at
1.0 GPa19. This sequence differs from that of mature magmatic arcs,
as exemplified by the Sierra Nevada in the North Cordillera, which

shows a sequence of crystallization from high-Mg pyroxenites
(with minor Grt) to low-Mg, garnet- or plagioclase-rich pyroxenite
depending on pressure23. These results indicate that the pre-
collisional mafic rocks were derived from wet fractional crystal-
lization of basaltic melts from the metasomatized mantle wedge17,18

with high initial H2O content, likely in excess of 3.0 wt%24,25 in an
immature arc.

In such a hydrous system, hornblende forms initially through
hydration of pyroxene, and continued crystallization of hornblende
leads to significant enrichment of SiO2 in the residual melt20. This
mechanism may be responsible for the origin of pre-collisional med-
ium-K, calc-alkaline, intermediate to felsic plutonic rocks in the
Gangdese belt (Fig. 2c). This interpretation is supported by the exis-
tence of Late Cretaceous (~110−70Ma) compositionally continuous
cumulates (Supplementary Fig. 1) ranging from dunite to wehrlite,
pyroxenite, hornblendite, hornblende gabbro, and gabbronorite
(Fig. 1c) at the arc base, and the occurrence of granitoids at shallower
levels18,26.

Syn-collisional suite dominated by remelting of arc crust
The syn-collisional suite is characterized by hornblende-poor rocks
and range in composition from mafic to felsic. Whole-rock Mg# and
Al2O3 versus SiO2 plots for both syn- and post-collisional samples
(Fig. 2d, e and g, h) lack the Z-shaped and S-shaped trends found for
the pre-collisional samples. This is because of the absence of dunitic to
pyroxenitic rocks among these samples. Other striking features of the
syn-collisional samples include: (1) small amounts of hornblendites
and cumulate hornblende gabbros suggesting limited accumulation,
(2) widespread 58−45Ma mafic microgranular enclaves and dykes
indicative of basaltic injections and magma mixing/mingling8–10,
(3) voluminous high-K felsic rocks (SiO2 > 60wt%) (Fig. 2f), and
(4) cumulate hornblende gabbro (~50Ma) with petrographic rela-
tionships indicating crystallization starting with olivine and ending
with hornblende along this sequence:Ol→Opx→Opx + Pl→Hbl + Fe-Ti
oxide (Fig. 2j, k). The appearance of plagioclase before hornblende is
typical of damp fractional crystallization19,24 of mantle-derived melts

Fig. 1 | Present-day topography of the Earth and the tectonic framework of the
Tibetan Plateau. a Etopo1 topography showing the locations of major collisional
zones andmagmatic arcs.b Locationof theGangdesemagmatic belt (including the
Gangdese Batholith and Linzizong volcanic succession) in the context of the

TibetanPlateau7. c Sample localities of the Gangdese Batholith in this study8 aswell
as the outcrops of (ultra)mafic cumulates marked by colored and numbered star
symbols.
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with low initial H2O contents of 1−2wt%27 compared to >3wt% H2O for
wet fractional crystallization24,25.

In a damp system, significant SiO2 enrichment is suppressed by
the peritectic reaction Ol + melt = Opx20 (Fig. 2k). This means that the
voluminous syn-collisional, high-K calc-alkaline, intermediate to felsic

plutonic rocks in the Gangdese belt cannot be ascribed to fractional
crystallization. The Linzizong calc-alkaline, high-Al2O3 basalts and
K-rich basalts (55−50Ma)28, as well as the Gangdese syn-collisional
mafic plutons (58−45Ma) (Fig. 2d, e), suggest repetitive injection of
basaltic magmas during continental collision, causing melting of the

Fig. 2 | Whole-rock Mg#, Al2O3, and K2O vs. SiO2 plots and photomicrographs
of samples from the Gangdese Batholith. a–c Plots of pre-collisional samples
(100–60Ma). Mafic and ultramafic samples define a Z-shaped trend in a and an
S-shaped trend in b, similar to Kohistan (dashed red line) and Talkeetna (dashed
green line) trends19,20. d–f Plots of syn-collisional samples (60–45Ma). g–i Plots of
post-collisional samples (45–10Ma). Colored background indicates sample density
distribution as measured by bivariate kernel density, where red background cor-
responds to increased sample concentration or density. The same is true for Fig. 3.
Comparison between c, f, and i shows the temporal evolution of the magmatic
rocks towards higher silica and higher potassium contents, accompanied by the
loss of samples with SiO2 < 55wt%. Photomicrographs of a syn-collisional, ~50Ma

Hbl gabbro from Dabu, where j shows Pl included in Opx surrounded by Hbl, and
k showsHbl formedbyOpx+ liquid reaction andOpx rims aroundOl causedby the
peritectic reaction Ol + liquid = Opx. These relationships indicate a damp envir-
onment where Hbl is last to crystallize at the end of the sequence Ol → Opx →

Opx + Pl → Hbl. l Detail at the contact between a syn-collisional dioritic dyke
(~48Ma) and an older tonalite (~79Ma) resulting in the remelting of the tonalite
and back-veining of the dyke. Mg# = molar 100×Mg2+/(Mg2++TFe2+), where TFe2+

represents total Fe. Whole-rock and mineral compositions are given in Supple-
mentary Table 1, and 3. Mineral abbreviation: Ol olivine, Cpx clinopyroxene, Opx
orthopyroxene, Hbl hornblende, Pl plagioclase.
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pre-existing crust. As these mafic magmas crystallize Ol + Px, H2O
concentrates in the melt but is prevented from increasing significantly
because it diffuses out into the surroundings during slow crystal-
lization in a hot crust29–31. Thiswould cause themagma to remaindamp
(1−2wt%27), rather than wet (>3wt% H2O

24,25), and also cause water-
fluxedmelting of the pre-existing crust to generate felsicmagmas, that
would mix with the newly-injected mafic magmas30–33. Field evidence
for melting is shown by back-veining of a ~48Ma dioritic dyke by felsic
magma derived from the melting of its ~79Ma wall-rock (Fig. 2l), and
hybridization is indicated bywidespreadmaficmicrogranular enclaves
containing entrained coarse-grained K-feldspar and quartz xenocrysts
from the host felsic magma8,9,34.

Post-collisional suite dominated by remelting of arc crust plus
subducted Indian continental material
Partial melting of pre-existing intrusions and mixing, accompanied by
some fractional crystallization may also be applicable to the post-
collisional suite, dominated by high-K felsic rocks (SiO2 > 60wt%)
(Fig. 2g–i). This is because: (1) the formation of volumetrically insig-
nificant post-collisional hornblende gabbros may indicate a dimin-
ished role of fractional crystallization, (2) the early appearance of
plagioclase followed by hornblende in hornblende gabbro35 also sug-
gests damp fractionation, (3) evidence for Miocene migmatization of
syn-collisional dioritic gneisses accompanied by post-collisional
granitic rocks with xenocrysts from the dioritic gneisses, collectively

recording anatexis36, and (4) more enriched radiogenic isotope com-
positions compared to the pre- and syn-collisional samples, along with
high Cr and Ni contents, and Mg# (Fig. 2g) in some Miocene
intermediate-to-felsic samples, indicate hybridization between melts
derived from the pre-existing Gangdese crust and ultrapotassic mag-
mas from the Gangdese lithospheric mantle metasomatized by sub-
ducted Indian continental material12.

Compositional changes from subduction to collision
In order to explore temporal changes in the average chemical com-
position ofmagmatic rocks from the Gangdese belt, we employMonte
Carlo analysis with weighted bootstrap resampling approach. This
approach effectively minimizes sampling bias and achieves a best
estimate of the average composition of exposed continental crust
through time37. The results, coupled with the bivariate kernel density
of sample distribution, are illustrated in Fig. 3. The most intriguing
finding is a compositional shift at ~70Ma from values below to values
above the estimated composition of bulk continental crust38 in terms
of SiO2, K2O/SiO2, K2O/Na2O, and Th/La ratios (Fig. 3). This shift is not
reflected concurrently by zircon Hf-O isotope values. Zircon εHf(t)
displays a delayed decrease in values that occurs only at ~55Ma
(Fig. 4a), while zircon δ18O values remain nearly constant ranging
between 5.5−7.2‰ from 100 to 30Ma (Fig. 4b), typically ~1‰ higher
than igneous zircons in equilibrium with mantle-derived magmas
(5.3 ± 0.6‰, 2σ39). The compositional shift in whole-rock geochemistry
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Fig. 3 | Evolving composition ofmagmatic rocks from the Gangdese Batholith.
a–d Gray dots show composition of individual samples and larger green dots with
green vertical lines are average compositions and 2 s.e. uncertainties of samples in
2Myr bins (obtained using the Monte Carlo analysis with weighted bootstrap
resampling)37 normalized by bulk continental crust. Values of bulk38 are shown by
purple horizontal lines. The India-Asia convergence velocity since 110Ma (black
line) is from ref. 13 and is shown for comparison with the changes in magmatic

compositions. Notice an abrupt increase in the India-Asia convergence velocity at
~70Ma, contemporaneouswith the change inchemistryof themagmatic rocks, and
post-dating a period of magma paucity14. This acceleration is inferred to mark the
onset of slab rollback8,9,14. Notice also the concentration of data at ~50Ma sug-
gesting a magmatic flare-up, coeval with the slowdown of the Indian plate, both of
which are inferred to be related to slab breakoff 8.
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may represent a shift in the average exposure level of the arc crust to
shallower crust since ~70 Ma40. However, we consider it more likely
that this shift reflects changes in magma source, magmatic processes,
and geodynamics, as discussed in the following sections.

Role of recycled supracrustal component in generating the
compositional change
The isotopic changes of arc magmas have generally been interpreted
to result from increased input of subducted sediments, as proposed
for syn-collisional rocks in southern Sulawesi (Indonesia)41, and/or
enhanced involvement of ancient basement rocks from the overriding
plate, as suggested for arc rocks from the Cordilleran orogenic
systems42. For the Gangdese Batholith, the fact that the zircon δ18O of
pre-collisional samples is overall higher than zircons in equilibrium
with the mantle (median at 6.4 ± 0.2‰, 182 analyses, compared to
5.3 ± 0.6‰, 2σ39) suggest the addition of ~5wt% of subducted sediment
(Curve A in Fig. 4c; see Supplementary Materials for modeling
assumptions). In parallel, the data also show a gentle increase in δ18O
accompanied by a decrease zircon εHf(t) that cannot be explained by
subduction sediments alone and requires 0−20wt% from Gangdese
ancient basement (compare Curves A and B in Fig. 4c). This inter-
pretation is further supported by the presence of ~340Ma xenocrystic
zircons in some 80–74Ma samples (red diamonds in Fig. 4c).

For syn-collisional samples, the nearly unchanged zircon δ18O is
accompanied by decreasing zircon εHf(t) (Fig. 4d). This results from
0−10wt% input of Indian crust, rather than the involvement of the

Gangdese ancient basement materials (compare Curves C and D in
Fig. 4d). While assimilation of Indian material can explain the isotopic
composition of syn-collisional magmatism (Fig. 4d), it is unlikely to
account for the increase in SiO2, K2O/SiO2, K2O/Na2O, and Th/La
recorded by these samples. This is because the compositional changes
occurred at 70–68Ma, prior to the initial India-Asia collision
(60–55Ma8,16) and the onset of contribution from the Indian crust (~55
Ma; Fig. 4a). We ascribe this change in whole-rock composition to
increased importance of remelting of arc rocks immediately preceding
collision and continuing afterwards (next section).

Most post-collisional rocks have the same values of both zircon
δ18O and εHf(t) as earlier (Fig. 4e). Their origin and nature of the source
canbe explained as for the syn-collisional rocks.However, theMiocene
lamprophyres form a separate group that have higher δ18O and lower
εHf(t). These rocks indicate the involvement of subducted Indian
lithosphere (up to ~40wt%; Curve E in Fig. 4e).

The median zircon δ18O of 6.4 ± 0.2‰ (433 analyses) and calcu-
lated sediment contribution (~5wt%) for the pre- and syn-collisional
samples of the Gangdese belt are significantly lower than those for the
Cretaceous gabbros and granitoids from the Sierra Nevada batholith
with zircon δ18O of 7.8 ± 0.7‰, for which more than 18% supracrustal
contribution has been inferred43. Such low supracrustal inputs in the
Gangdese belt are inconsistent with crustal relamination, which
involves the recycling of high-δ18O buoyant subducted supracrustal
rocks44. Thus, relamination canbe discarded as the cause of changes in
geochemistry at ~70Ma (Fig. 3a–d).
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mentary Table 4). The methods for selecting Hf abundances and Hf-O isotopic
compositions of each end-member are given in Supplementary Materials.
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Compositional changes caused by remelting pre-existing arc
lower crust
Arc lower crustal rocks are composed mainly by underplated basaltic
rocks and (ultra)mafic cumulates formed predominantly by fractional
crystallization of mantle-derived magmas17,18,45,46. If enough potassium
has been incorporated into such a mantle-derived magma due to melt
metasomatism from subducted sediment, it may form a hornblende-
rich cumulate (metamorphosed to amphibolite) when it stalls at the
base of the crust47. Experimental studies and thermodynamic model-
ing show that partial melting of medium-to-high K basaltic/amphibo-
litic compositions can directly produce K-rich felsic melts at lower
crustal conditions33,47–49. This is due to the nature of the melting
reactions that tend to consume felsic minerals47,50, as well as K-rich
biotite and/or hornblende33. Similar to global continental arcs, basaltic
underplates and cumulates from the Gangdese continental arc are
characterized by high K2O contents (mostly > 0.5 wt.%) compared to
the Kohistan-Ladakh oceanic arc19,51 and to global oceanic arcs in
general, typically having low K2O content (mostly <0.5 wt.%) (Supple-
mentary Fig. 2). It follows that the remelting of the pre-collisional K-
rich rocks in the Gangdese arc lower crust would have played a critical
role in generating the compositional changes at ~70Ma (Fig. 3) gen-
erating voluminous K-rich felsic magmas. Remelting would also
account for the increase of Th/La in syn- and post-collisionalmagmatic
rocks (Fig. 3d), as Th ismore incompatible than La and concentrates in
the melt during remelting52.

Further evidence for remelting of arc rocks since 70Ma is found in
the following igneous rocks: (1) the Late Cretaceous (95–85Ma)
Mainlingmetagabbros with∼68Ma irregular leucosomes generated at
pressure of >1.0 GPa53; (2) the ∼52Ma Zedong rhyolite (Fig. 1c) with
∼63Ma inherited cores (Supplementary Fig. 3), indicating the melting
of ∼63Ma rocks at∼52Ma, similar to the ~50Mamelting of the ~58Ma
rocks recorded by the Ladakh batholith in the western continuation of
the Gangdese belt51; and (3) the Nyingchi complex with coeval melting
of crustal rocks at pressure of ∼1.1 GPa between 69 and 41 Ma54.

Triggers for arc remelting
Although the change in the chemical composition of magmatism at
~70Ma occurs before the timing of continental collision at 60−45Ma,
it coincideswith: (1) a significant increase in the India-Asia convergence
rate at 67Ma lasting to 51 Ma13 (Fig. 3), and (2) an intensification and
southward migration of magmatism after the lull lasting between

80 and 70 Ma, which is ascribed to flat slab subduction8,9,14. These two
changes havebeen linked to the rollbackof the subductingNeo-Tethys
oceanic slab8,9,13,14. Fast subduction is characterized by dehydration of
the subducting slab, thereby increasing slab-derivedfluid supply to the
mantle wedge41. Slab rollback results in faster wedge corner flow
velocities, hence increasing the temperatures of the mantle wedge55.
The increased availability of hydrous fluids and higher temperatures in
the mantle wedge substantially enhance the production of basaltic
magmas by decompression melting56, thereby triggering the partial
melting of pre-existing arc lower crust. This mechanism readily
explains the generation of K-rich felsic magmas with increased Th/La
ratios between 67 and 51Ma.

Subsequent rapid slowdown of the northward movement of the
Indian plate at ∼51Ma (Fig. 3) has traditionally been interpreted as the
onset of the India-Asia collision57. However, it is more likely caused by
the loss of slab pull force, themain driving force of platemotion58, due
to slab breakoff8,13. Slab breakoff would occur at depths close to or
shallower than the base of the overriding lithosphere59 given that the
Gangdese crust was > 50km thick at that time60,61. Shallow breakoff
results in the melting of the mantle wedge and the base of the over-
riding lithospheric mantle induced by the release of water from the tip
of the detached slab as it heats up59. Suchmelting can produce high-K,
high-Al2O3 calc-alkaline and/or shoshonitic basalts as represented by
the ∼51Ma Upper Linziong volcanic succession28 and the coeval
Gangdese mafic rocks (51–45Ma). Injection of such basaltic magmas
provide external heat as well as H2O that can depress the solidus
temperature29–31,46, resulting in extensive water-present remelting of
the lower crust. Such basaltic magmatism will last for several million
years, whereas the resulting crustal felsic magmatism related to
remelting can proceed considerably longer62, explaining the Gangdese
magmatic flare-up at ∼51Ma and subsequent mafic and felsic mag-
matism (51−45Ma).

The decrease in magma productivity accompanied by renewed
increase in the values of SiO2, K2O/SiO2, K2O/Na2O, and Th/La after
∼45Ma, matches the significant decrease in the convergence rate
between India and Asia since ∼45Ma (Fig. 3). This deceleration is a
result of the resistance of the Indian continental slab to subduction
beneath the Gangdese belt13. Slow subduction increases the tempera-
ture of the subducting Indian slab for any given depth, allowing crustal
melts being generated and transferred into the overriding mantle
wedge and continental lithospheric mantle41,63. Decompression
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melting of such metasomatized mantle due to lithospheric
delamination11 and/or tearing of the subducting Indian slab64 could
result in the generation of ultrapotassicmagmas. Thesemagmas could
in turn provide the heat and water necessary for partial melting of the
thickened Gangdese lower crust. Ultrapotassic and crustal felsic
magmas could then mix, forming the post-collisional suite dominated
by high-K calc-alkaline magmas.

Density-sorting of the Gangdese continental crust
The fractional crystallization of pre-collisional arc magmas (Fig. 2a, b)
resulted in the formation of abundant hornblende-rich cumulates (e.g.,
hornblendite and hornblende gabbro) (Supplementary Fig. 1). The long
duration of the Gangdese arc magmatism suggests that these cumu-
lates would be thicker than 30 km45 by the late Cretaceous (Fig. 5a). It is
commonly suggested for other continental arcs that cumulates may
have been delaminated and recycled into the asthenospheric mantle65.
If this was the case for the Gangdese belt, it should have occurred
immediately before 70–68Ma to account for the compositional chan-
ges. However, this is unlikely because (1) the ∼80–70Ma period was
characterized by magmatic paucity with minor felsic magmatism9,10,14,
and (2) the 85–69Ma period was marked by significant crustal
shortening9,14. These are inconsistent with cumulate delamination
models that predict the development of extensive magmatism and
crustal extension66. Cumulate delamination during subsequent colli-
sion may be inhibited by partial subduction of incoming buoyant
continental crust, providing a natural barrier for delamination67.

The basaltic underplates and hornblende-rich cumulates in the
Gangdese lower crust may have provided a fertile source1,68 of felsic
magmas when roll back of the subducting Neo-Tethyan oceanic slab
started at ∼70Ma and then broke off at ~51 Ma7–9,14,69. Partial melting of
the arc’s lower crust to form felsic magmas is likely significant
throughout continental arc magmatism51,70,71. However, it may gain in
importance when significant thermal perturbations occur in response
to changed mantle dynamics during late-subduction and collision72,73.
Such remelting would further differentiate the continental arc crust by
producing a felsic, potassic component that is transferred to themiddle
and upper crust (Fig. 5b), leaving refractory residues in the lower crust.
The felsic component is preserved in the present-day Gangdese crust,
where seismic data reveal the presence of a thick felsic crust74. The large
volume of buoyant felsic melt removed from the lower crust after
∼45Ma would have increased the density of the refractory residue, but
delamination may still have been prevented by the incoming buoyant
Indian continental crust67. Instead, the densified lower crust would
become part of the seismic sub-arc lithospheric mantle (Fig. 5b). This
process is evidenced by the presence of ~85Ma ultramafic xenoliths,
consistingmainlyof hornblendeandbiotite, that experiencedgranulite-
facies metamorphism at 17−13Ma, under P-T conditions of 19−24 kbar
(∼60−80 km) and ∼1100 °C75. Such metamorphism and densification
may now be recorded by a doublet Moho structure at depths of
∼60–80 km76 interpreted here to represent a refractory residual layer.

Thus, the magmatic activity in the Gangdese belt records an
evolutionary path from a system dominated by fractionation and
accumulation during oceanic subduction, to a systemwhere remelting
increased in importance, starting at ~70Ma, during late-subduction
and collisional times. Such accumulation-remelting sequence would
be an efficient process of generating and strengthening chemical and
density stratification, leading to a chemical maturation and thickening
of juvenile continental crusts in collision zones, favoring their long-
term preservation in the geological record.

Implications for other continental collision zones
Hornblende-rich arc cumulates formed through fractional crystal-
lization in the lower crust have been documented in both individual
arcs22,46,77 and global subduction zones68,78. These cumulates and
underplated basaltic rocks provide a fertile source for remelting as a

result of slab rollback and breakoff, which are inevitable during late-
subduction and collision due to the density contrast between the
subducting oceanic lithosphere and the attached buoyant continental
block59,79. We also expect that collision zones in general will undergo a
similar acceleration and deceleration in convergence rate immediately
before and during collision, accompanied by thermal perturbations
andwaterfluxing, as inferredhere. This process could have takenplace
in many major collision zones throughout Earth’s history, such as the
East Kunlun80, Eastern Pontides81, European Variscides82, Newfound-
land Appalachians83, and British Caledonides84 (Fig. 1a). This is indi-
cated by the presence of pre-collisional (ultra)mafic igneous rocks
(including hornblende-rich cumulates) within granitic batholiths
(Fig. 1a, b) and syn- and post-collisional felsic rocks, predominantly
high-K to shoshonitic, similar to the Gangdese belt. The latter are
interpreted as being derived from the remelting of old continental
lower crust withminor addition ofmetasomatized lithosphericmantle
material, geodynamically ascribed to slab rollback or breakoff80,84–86.

Data availability
All data supporting the findings of this study are provided in the
Supplementary Materials.
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