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Population genomics of Puccinia graminis
f.sp. tritici highlights the role of admixture
in the origin of virulent wheat rust races

Yuanwen Guo 1, Bliss Betzen1,6, Andres Salcedo 1,7, Fei He1,8,
Robert L. Bowden 2, John P. Fellers2, Katherine W. Jordan 1,2,
Alina Akhunova 1,3, Mathew N. Rouse4, Les J. Szabo 4 &
Eduard Akhunov 1,5

Puccinia graminis f.sp. tritici (Pgt) causes stem rust disease in wheat that can
result in severe yield losses. The factors driving the evolution of its virulence
and adaptation remain poorly characterized. We utilize long-read sequencing
to develop a haplotype-resolved genome assembly of a U.S. isolate of Pgt.
Using Pgt haplotypes as a reference, we characterize the structural variants
(SVs) and single nucleotide polymorphisms in a diverse panel of isolates. SVs
impact the repertoire of predicted effectors, secreted proteins involved in
host-pathogen interaction, and show evidence of purifying selection. By ana-
lyzing global and local genomic ancestry we demonstrate that the origin of 8
out of 12 Pgt clades is linked with either somatic hybridization or sexual
recombinationbetween thedivergeddonorpopulations.Our study shows that
SVs and admixture events appear to play an important role in broadening Pgt
virulence and the origin of highly virulent races, creating a resource for
studying the evolution of Pgt virulence and preventing future epidemic
outbreaks.

Puccinia graminis f.sp. tritici (Pgt) is an obligate biotrophic pathogen
causing stem rust disease in wheat. Epidemics of stem rust have been
reported worldwide, including in Africa1, the Middle East2, North
America3, Asia2, Europe4, and other regions5. The high levels of varia-
bility in virulence (i.e., ability to overcome individual resistance genes)
and frequent emergence of races with new virulence combinations
have been well-documented among Pgt populations1,6,7. However,
many factors contributing to the evolution of Pgt virulence remain
poorly understood8.

The first genome-scale diversity analyses performed on a limited
number of agricultural pathogens, including pathogens of several

cereal crops, such as Puccinia coronata f. sp. avenae9, Zymoseptoria
tritici8, and Parastagonospora nodorum10, start uncovering the role of
variation in a special class of genes, which encodes secreted proteins
referred to as effectors, in adaptation to diverse crop genotypes.
Fungal effectors are responsible for establishing a compatible inter-
action with the host by suppressing defense responses11 and mod-
ulating cellular processes12,13. The ability to sense these effectors is one
of the strategies used by plants to recognize pathogens and trigger
the immune response. The sequence divergence or loss-of-function
mutations in effector-encoding genes or their complete deletion could
render a resistant host unable to recognize a pathogen14,15. The
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interaction between the host immune system and the pathogen was
postulated to diversify the arsenal of effector-encoding genes in
pathogen populations13. The signatures of diversifying and direct
selection detected in the effector-encoding regions from Para-
stagonospora nodorum and Puccinia coronata fungi further corrobo-
rate the effectors’ involvement in adaptation to genetically diverse
hosts9,10. Thus, processes affecting the pathogen’s effector content
should play a critical role in the evolution of new virulent strains
adapted to resistant crop varieties.

Recent genomic studies revealed the importance of structural
variants (SVs) in effector complement evolution14–18. SVs are more
likely to affect effector-encoding genes and contribute to pathogen
evolution and adaptation than other types of variation19,20. Inter-
species comparisons showed that the location of many of these
effectors in the repetitive portions of the genome appears to pro-
mote a high rate of evolution18, which led to the development of the
concept of a “two-speed genome”21,22. However, SVs in the pathogen
populations remain poorly characterizeddue to the limitations of the
short-read-based genome assemblies. The diversity analysis of the
agricultural fungal pathogens has been largely focused on small
SVs8–10, or detecting gene presence/absence variation based on the
depth of read coverage10. Only recently, a reduction in the cost of
long-read sequencing allowed for assembling multiple ~40-Mb-size
genomes of the wheat pathogen Zymoseptoria tritici and character-
izing population-scale SVs23. Characterization of the scope and dis-
tribution of SVs in Pgt populations could help to understand their
impact of effector complement and potential role in the origin of
virulent strains.

Both somatic hybridization24 and sexual recombination between
diverged isolates are among two other factors that have the potential
to diversify effector complements in Pgt and lead to the origin of new
virulent strains. The origin of the Ug99 lineage of Pgt, showing a broad
virulence spectrum, was associated with somatic hybridization25.
Likewise, the Pgt isolates collected fromanalternate hostBerberis spp.,
which is required for the sexual reproduction of Pgt, showed broad
virulence and the potential to cause stem rust epidemics6. However,
the relative contribution of somatic hybridization and sexual recom-
bination to the evolution of new Pgt lineages and virulent strains
remains to be investigated.

In this study, the dikaryotic genome of Pgt, which has two nuclei,
is sequenced using a combination of long-and short-read sequencing
technologies. We use Oxford Nanopore long-read sequence data to
construct a chromosome-level haplotype-resolved ~180Mb genome
assembly of the 99KS76A-1 isolate (race RKRQC). This assembly is
combined with the previously assembled haplotypes of the Pgt21-0
isolate25 to use as a pan-genome reference for characterizing genomic
diversity in a global panel of Pgt isolates. We analyze the patterns of
single nucleotide polymorphism (SNPs) and SVs across the Pgt gen-
ome to characterize the genetic composition of and genetic differ-
entiation among regional samples of Pgt isolates with the goal of
tracing their origin and identifying adaptive variation. Using com-
parative analysis of the haplotype-resolved Pgt assemblies, we char-
acterize SVs in the diverse panel of Pgt isolates. Our results indicate
that SVs, many of which harbor effector-encoding genes, are under
stronger purifying selection than neutral variants in the genome. In
combination with the enrichment of effectors in the highly repetitive
regions of the Pgt genome, which are prone to generate new SVs at an
elevated rate, our findings suggest that SVs contribute to the fast
evolution of the effector repertoire in Pgt and likely facilitate adapta-
tion to new host genotypes from distinct geographic regions. By
studying global and local ancestry in the Pgt panel, we show that the
origin of 8 out of 12 phylogenetic clades is associatedwith inter-lineage
admixture in the populations undergoing either somatic hybridization
or sexual recombination. The virulence of the Pgt panel is character-
ized by a diverse set of wheat lines carrying distinct stem rust

resistance genes. The increase in virulence observed in the group of
admixed isolates suggests that hybridization between distinct linea-
ges likely play an important role in the evolution of Pgt virulence.

Results
99KS76A-1 genome assembly and annotation
The 99KS76A-1 isolate was collected in Kansas, USA, in 1999 and was
used for identifying one of thefirst Pgt effectors recognizedby awheat
resistance gene14. It was formerly identified as race RKQQC but was
recently re-phenotyped and reclassified as race RKRQC. To create a
haplotype-resolved assembly of the 99KS76A-1 genome, we used the
combination of theHi-C technique, long-readOxfordNanopore (OXN)
sequencing with short-read Illumina sequencing (2 × 300bp). A two-
step pipeline was utilized for scaffolding the contigs generated using
Canu assembler26 as described in theMethods. The first stepwasbased
on a bin-assignment strategy25 (Supplementary Tables 1, 2), which
resulted in 120 contigs assigned to 33 bins with a total contig length of
~150Mb. Step twowas based on the ALLHiC assembler27,28 that utilized
Hi-C reads to create a chromosome-level assembly of the 99KS76A-1
genome, which resulted in 36 chromosomes with a total length of ~161
Mbp (Fig. 1a). The assembled chromosomes were assigned to haplo-
types from distinct nuclei using Hi-C data, as previously described25,29.
Out of 36 chromosomes, 34 could be assigned to distinct haplotypes.
The 99KS76A-1 haplotypes were designated as “E” and “F” (Supple-
mentary Fig. 1), which showed 97.1 and 96.8% similarity, respectively,
to haplotype “A” of Ug99, and 96.7 and 97.4% similarity, respectively,
to haplotype “C” of Ug99 (Fig. 1b). Our chromosome assemblies were
largely collinear with the Pgt21-0 genome25 (Supplementary Fig. 2 and
Fig. 1c), except for chromosome 8. The comparative analysis of
homologous chromosomes suggests that one of the haplotypes of
chromosome8 in Pgt21-0 is likely rearranged relative to the 99KS76A-1
genome (Supplementary Fig. 2 and Fig. 1d). Together with the 985
contigs not assigned into chromosomes, the final assembly of
99KS76A-1 includes 1021 scaffolds/contigs with the total length of
181Mb. The N50 of assembled scaffolds was 4.5Mb, with the largest
scaffolds being 7.0Mb (Supplementary Table 2).

The completeness of the 99KS76A-1 assemblywas evaluated using
BUSCO30. The proportion of fragmented and missing genes was lower
in the 99KS76A-1 genome assembly compared to that of the Pgt21-0
and Ug99 genomes25 (Fig. 1e and Supplementary Table 3). The pro-
portion of complete single-copy genes was nearly two times higher in
our assembly compared to the previously reported Pgt21-0 and Ug99
assemblies, which is consistentwith the reduced number of duplicated
genes in BUSCO analyses for individual haplotypes E and F (Supple-
mentary Table 3). There was a slight decrease in the number of
duplicated genes in 99KS76A-1 compared to Pgt21-0 and Ug99
assemblies (Supplementary Table 3). This difference could possibly be
explained by the lower divergence between some regions of the two
99KS76A-1 haplotypes, which does not allow for assembling fully
resolved scaffolds. In this case, the single-copy genes detected by
BUSCO in the assembly are potentially located within the regions
where reads from both haplotypes, due to high similarity, were col-
lapsed together by an assembler. However, if some reads still overlap
with the sites that distinguish one haplotype from another, they could
be detected as heterozygous SNPs in the alignment of the 99KS76A-1
reads to the genome assembly. The 346 single-copy genes detected by
BUSCO in the assembly overlapped with 5412 SNPs segregating in the
entire Pgt diversity panel. These single-copy genes were randomly
distributed across the genomewith an average interval of 0.4Mb.Only
20 of these sites (0.3 %) were heterozygous in the 99KS76A-1 isolate,
indicating thatmost of these genes are either indeed single copy in our
assembly, or they have nearly identical haplotypes between the
homologous chromosomes from distinct nuclei.

The alternative haplotypes in the 99KS76A-1 genome assembly
were validated by aligning annotated genes among scaffolds. All
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36 scaffolds identified in our previous analyses were shown to repre-
sent distinct haplotypes, with each homologous pair sharing at least
200 genes. Based onBUSCOanalysis, eachhaplotype assembly carried
1,266 duplicated genes suggesting thatmost of the 99KS76A-1 genome
was haplotype-resolved (Fig. 1e). These results are consistent with
alignments between the 99KS76A-1 genome scaffolds (Supplementary
Fig. 3), which indicates that assembly is haplotype-resolved. Evidence-
based annotation using previously developed resources14,25,31,32 pre-
dicted 22,974 genes with an average CDS length of 929 bp (Supple-
mentary Table 4). Among them, 3952 effector-encoding genes were
predicted with an average CDS length of 957 bp (Supplementary
Table 5 and Supplementary Data 1).

Genetic diversity and linkage disequilibrium in the Pgt panel
We investigated the patterns of genomic diversity in a panel of 77
diversePgt isolates collected in theUnitedStates andother parts of the
world, including a group of isolates from the Ug99 lineage (Supple-
mentary Data 2). The panel includes isolates collected from 1959 to
2014 in Europe, the Middle East, Africa, Asia, and North America and
represents entries assigned to eight previously identified Pgt
clades33–35. In total, we generated 1,471,824,965 raw read pairs for the
entire panel, with an average of 18,869,551 read pairs per isolate.
Because structural variation (SV) between the two haplotypes of
99KS76A-1 might affect the variant discovery rate, read mapping was
done to each of the E and F haplotypes separately. On average, about
40% of read pairs were uniquely mapped to individual haplotypes
providing ~25X coverage per haploid genome. SVs between the hap-
lotypes were identified by aligning haplotype F against haplotype E36

(see Methods). After filtering for read depth and allele frequency (see
Methods), we identified 2,208,026 SNPs and small-scale indels in
haplotype E. After adding variants discovered in the scaffolds missing
in one of the haplotypes, we obtained 2,325,518 variants (2,197,381
SNPs and 128,137 indels). Using this data, the average estimates of
genetic diversity (π) in the Pgt panel were 4.6 × 10−3 for the introns,
3.4 × 10−3 for the genic regions, and 3.0 × 10−3 for exons.

The potential functional effects of 2,229,058 variants were pre-
dicted using the SnpEff37 (Fig. 2a and Supplementary Tables 6–8). Only
a small proportion of variant effects were high impact (0.17%) or
nonsense (0.59%) mutations (Supplementary Tables 6, 7). We identi-
fied 187,085 nonsynonymous (3.4%), and 272,321 synonymous muta-
tions (4.9%) (Supplementary Tables 9, 10). The site frequency
spectrum (SFS) of SNPs with strong effects resulting in stop codons
and splice site disruptionswas shifted towards rare variants,whichwas
different from the frequency spectrum of nonsynonymous and
synonymous variants (p values were 0.05 and 0.02, respectively)
(Fig. 2b, c). These differences in SFS between various SNP types
remained detectable in even more genetically homogeneous geo-
graphic subpopulations, after the Pgt panel was split into the US and
non-US groups (Supplementary Fig. 4). These results are suggestive of
purifying selection acting against strong effect mutations in Pgt.

Recombination and demographic aspects of population history
(population size changes, admixture, population structure) affect
linkage disequilibrium (LD), making it a useful summary of diversity
patterns in the populations. We compared LD decay in the United
States and non-US samples of Pgt isolates by fitting the LD decay
model described by ref. 38. This comparison revealed a slow rate of LD
decay in both samples. However, the rate of LD decay in the United
States was slower than in the non-US samples, where LD reduced from
r2 ~ 0.5 to r2 ~ 0.25 within 1.8Mb compared to 4.5Mb in the United
States (Fig. 2d). Among factors explaining such differences in LD decay
could be either change in effective population size due to population
bottleneck or reduced frequency of inter-lineage recombination in the
US linked with the eradication of barberry39, which is required for Pgt
to accomplish sexual cycle.

Effector-encoding genes are enriched in the genomic regions
subjected to selection
Previous studies showed that fungal effectors evolve faster than
other genes10, likely in response to high selection pressure associated
with the need to evade recognition by the host’s resistance genes.

Fig. 1 | Summaryof the99KS76A-1 genome assembly. aCumulative length versus
the size-ranked scaffolds. b Pairwise comparison of sequence similarity among Pgt
haplotypes A, B, C, E, and F. cWhole-genome sequence comparison of haplotype E
from 99KS76A-1 with haplotype F from 99KS76A-1, and haplotypes A and B from

Pgt21-0. d Sequence alignment of homologous chromosomes in 99KS76A and
Pgt21-0 suggests that one of the haplotypes on chromosome 8 in Pgt21-0 is rear-
ranged compared to 99KS76A-1. e Assessment of the 99KS76A-1 assembly com-
pleteness using Benchmarking Universal Single-Copy Orthologs (BUSCO).
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While in the entire Pgt panel, effector-encoding genes show a sig-
nificantly lower difference in the levels of diversity (π = 3.2 × 10−3)
compared to non-effector-encoding genes (π = 3.4 × 10−3) (Fig. 3a),
the relative ratio of nonsynonymous to synonymous mutations
(pN/pS) was substantially higher in effector-encoding genes (Fisher’s
exact test, p = 3.3e-16) (Supplementary Table 11 and Fig. 3b). This
result is consistent with either the relaxed or positive selection for
nonsynonymous mutations. However, because the relative ratio of
mutations creating stop codons and splice site disruptions to
synonymous mutations was similar between the effector-encoding
genes (0.015) and other genes (0.013), it is likely that the accumula-
tion of nonsynonymous mutations is driven by positive selection
rather than by the relaxation of selection, which would lead to
accumulation of mutations rendering effectors non-functional.

To better understand the role of effectors in adaptation to both
region-specific host genotypes and local environments, we calculate
effector enrichment within the genomic regions showing the sig-
natures of selection. We performed selective sweep scans across the
Pgt genome by comparing a sample of the US isolates with the
reference population composed of isolates from Africa, Europe, and
Asia. These twogroups included only those Pgt isolates that show low
levels of inter-group admixture at the optimal K = 6 (Supplementary
Table 12). To reduce the proportion of falsely detected selective
sweeps, we conducted selection scans using two different methods,
the cross-population composite likelihood ratio test (XP-CLR v1.0)40

and SweeD41, and detected common outliers in both scans. Both
methods were previously shown to be robust to variation in demo-
graphic models and recombination rate40,41. However, to reduce the
chance of demographic events affecting the results of selection
scans, we investigated the selection scans’ test statistics thresholds
by conducting selection scans in the simulated datasets considering
the demography of the two Pgt samples (see Methods and Supple-
mentary Material).

The analyses of simulated data suggested that empirical
thresholds defined in both scans as the 95th percentiles of test sta-
tistic distribution are conservative and should not increase the rate
of falsely detected selective sweeps. We identified 1602 genomic
outlier regions shared by both the XP-CLR and SweeD scans, and

among them, 159 genomic regions overlapping with 120 effectors
(Supplementary Table 13). The number of selected regions over-
lapping with effectors (159) is nearly two times higher than the
average number of randomly selected regions of equal size over-
lapping with effectors (80) (Fig. 3c). These results suggest that
region-specific selection in the US population preferentially targeted
effector-encoding genes. Consistent with this hypothesis, previously
identified AvrSr3514 and AvrSr5015 were located within 0.8 and 9.2 kb
from the nearest outlier regions (Fig. 3d). The effect of selection on
the candidate effector geneswas also evident from the (1) statistically
significant reduction of Tajima’s D and π in the United States
compared to the non-US samples and (2) significant increase in inter-
population genetic differentiation FST compared to the effector-
encoding and other genes located outside of the selective sweep
regions (Fig. 3e–g).

Structural variants (SVs) show evidence of selection in the
Pgt panel
The impact of SV on the Pgt effector content remains poorly char-
acterized. Here, we used MUMmer36, Assemblytics42, and custom
scripts for detecting four types of SVs (insertion, deletion, contraction,
and expansion) among the four assembledhaplotypes of the 99KS76A-
1 and Pgt21-0 isolates. A total of 20,576 SVs affecting 79Mbp of the
genome were detected. The size of each SV ranged from 50bp to
1.3Mbp, with most SVs being smaller than 5 kbp (Fig. 4a). In the
99KS76A-1 genome, detected SVs overlappedwith 5824 genes and 947
effectors (Supplementary Data 3), indicating that SVs could affect the
Pgt isolates’ effector content.

Some of the large-scale SVs affected multiple effectors. For
example, a 657,961 bp-long contraction on chromosome 12-F causes
the loss of 18 effectors (Fig. 4b). In addition to these 18 effectors, a total
of 79 effectors (35%) on chromosome 12 of 99KS76A-1 genome were
affected by SVs (Fig. 4b). There were additionally 27 effectors (12%)
present in only one copy of the four homologous haplotypes from
99KS76A-1 and Pgt21-0 but were not captured by our SV detection
process. This result might be associated with the low levels of
sequence collinearity between the regions of homologous chromo-
somes that may complicate the detection of SVs.

Fig. 2 | The patterns of genetic diversity and linkage disequilibrium in the Pgt
panel. a Classification of SNPs based on their effect and location relative to gene
models (intergenic, 5 kb upstream and downstream of a gene, UTRs, first and last
exons, and introns). b MAF (minor allele frequency) of nonsynonymous and
synonymous SNPs. A two-sided Kolmogorov–Smirnov test was applied to compare

MAF spectra between these two types of SNPs. SEMstrong effectmutations include
stop codon gain and splice site disruption. c MAF of synonymous and nonsynon-
ymous SNPs located within predicted effectors and non-effectors. d The rate of LD
decay in the Pgt samples from theUS (15 isolates) andoutside of theUS (22 isolates)
was modeled as a function of the physical distance between SNPs.
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Further, we compared the relative distribution of SVs, TEs, and
effector-encoding genes across the genome. The proportion of the Pgt
genome affectedby SVwas directly related to theTE content (r2 = 0.67)
(Fig. 4c), consistent with the TE-mediated mechanisms of SV origin43.
The parts of the Pgt genome subjected to structural variation tended
to be enriched for effector-encoding genes (Fig. 4c), indicating that
TEs could contribute to the evolution of Pgt effector repertoire and
thereby affect Pgt virulence.

To characterize the genomic distribution and frequency of SVs
in the Pgt panel, we applied k-mer-based analysis to the raw Illumina
sequencing data generated for the Pgt isolates (described in Meth-
ods). A diagnostic set of 31 nucleotide-long k-mers tagging
both presence and absence alleles at each of the 11,517 SV sites
(insertion and deletion) (Supplementary Fig. 5) was used to call
SVs the Pgt panel. The NJ tree based on SV genotypes in the panel
(Supplementary Fig. 6) was in good agreement with the tree con-
structed using the SNPs (Fig. 5a). A total of 173 SVs genotyped in the
Pgt panel overlap with the 190 predicted effector-encoding genes
(Supplementary Data 4).

To further test whether the SVs affecting effectors are under
selection, we compared the allele frequency spectra between
synonymous SNPs and SVs. For this purpose, SNPs between the four
haplotypes of 99KS76A-1 and Pgt21-0 were detected with MUMmer36

show-snps, generating an SNP set which is comparable with the
SV dataset. In these datasets, SV frequency was shifted towards

more rare variants compared to the frequency of synonymous SNPs,
suggesting that SVs are likely under purifying selection (Fig. 4d).
To assess the potential adaptive value of SVs, we calculated single-
locus pair-wise estimates of FST between the Pgt samples from
different geographic regions (Fig. 4e). Although, the average of FST
for SVs (0.2) was lower than that for SNPs (0.3), there were SVs
showing high levels of genetic differentiation between the United
States and non-US Pgt populations. Among 38 highly differentiated
SVs with FST values above 95th percentile (FST = 0.7) of genome-wide
FST distribution, we identified two SVs (insertion sites at chr5-E:
4106919-4106921 and chr14-E: 562512-562513) overlapping with
the effector-encoding genes (asmbl_25804.p1, asmbl_3632.p1). This
result, combined with the enrichment of effector-encoding genes
within the selective sweeps regions (Fig. 3c, g), suggests that varia-
tion in the effector content induced by SVs could potentially be
adaptive.

Two previously characterized effectors, AvrSr3514 and AvrSr5015

have also been detected in this SV analysis and labeled as
asmbl_4405.p1 and asmbl_4399.p1 on chromosome 14 group 2 (Sup-
plementary Data 3, 4). The geographic distribution of SV alleles shows
that the 408-bp-long AvrSr35 MITE insertion is more frequent in the
US, whereas the AvrSr50with the 26,789 bp insertion ismore common
in Africa (Fig. 4f, g). Combined with the results of selection scans
(Fig. 3f) showing evidence of the selective sweep at the AvrSr35 locus,
the association of SV alleles with specific geographical regions may

Fig. 3 | The regions of the Pgt genome showing evidence of adaptive selection
are enriched for predicted effector-encoding genes and overlap with aviru-
lence factors. a Violin plots of genetic diversity π for effector/non-effectors (Two-
sided Mann–Whitney U-test p value = 0.016). b Density plot of gene-based pN/pS
ratio calculated for effector and non-effector-encoding genes (Two-sided
Mann–Whitney U-test p value = 3.3e-16). The mean and SEM (standard error of the
mean) for effectors is 0.54 and 0.05, mean and SEM for non-effectors is 0.45 and
0.024. Outliers of pN/pS greater than 1.5 are not displayed. c Density plot showing
the number of genomic windows overlapping with effectors in the random sample
of genomic windows. Random sampling was performed 1000 times. The 95th
percentile of the density plot is highlighted in purple. The number of selective
sweep outlier windows overlapping with effector-encoding genes (159) is shown by
a vertical dashed line. A selective sweep is performed using 15 isolates from the US

and 22 isolates from Africa, Europe, and Asia. d The distribution of SweeD and XP-
CLR test statistics (top plots, outlier regions exceeding the 95th percentile
threshold are represented with black dots, while others are gray dots), π, FST,
Tajima’s D (bottom plot) for the AvrSr35 region on chromosome 14.
e–g Distribution of Tajima’s D, π, and FST among the three sets of genes in the Pgt
samples used for theXP-CLRand SweeD selection scans, 15 isolates from theUnited
States and 22 isolates outside of the United States. Three groups of genes include
effectors within the selective sweep regions (XS-effectors), effectors, and non-
effectors outside of the selective sweep regions. Groups with different letters
correspond to statistically significant differences based on the results
Kruskal–Wallis (KW) test (p value = 2.2e-16 in all comparisons presented in 3e–g)
followed by the Dunn’s test with the Benjamini–Hochberg correction.
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result from adaptation to local host genotypes. The SV in AvrSr35 has
an impact on the isolates’ virulence on Sr35 (Fig. 4h), consistent with
the previously published results14,15.

Population structure analyses of Pgt isolates
We used whole-genome diversity data to investigate the genetic rela-
tionships among the Pgt isolates using ADMIXTURE44. The mean and
variance of cross-validation error rate in ADMIXTURE suggest that the
most optimal value of K in the Pgt panel was close to 6 (Supplementary
Fig. 7). We compared the results of ADMIXTURE with the previously
identified phylogenetic clades of Pgt isolates33,34,45, and a new clade IX
that includes a group of isolates related to Pgt21-0 (Fig. 5a, b).

At K = 2, clades III, IV, and VII, including isolates from Europe,
Africa, and South America, are clearly separated from the North
American clade VI-C. At K = 8, isolates from clades III and IV split into
two distinct groups with only small fractions of their genomes sharing
membership in the samecluster (Fig. 5a, b). Two isolates fromclade VII
showed an admixed origin at K ranging from 3 to 7, with significant
proportions of their ancestry shared with isolates from clades VI-A, III,
and IV. The isolates from clade VI-C were largely assigned to the same
cluster for K ranging from 3 to 7, and only a small fraction of their
genomes were assigned to other clusters at K values of 8 and 9 (Fig. 5a,
b). The remaining clades I, II, and VI-A, comprising isolates from Africa
and North America, showed varying proportions of their genomes

assigned to distinct clusters for all values of K ranging from 2 to 9
(Fig. 5a, b and Supplementary Figs. 8 and 9).

At K = 7, clade I, which includes some of the most virulent isolates
of Pgt from the Ug99 group capable of causing severe rust
epidemics1,45, showedmixed ancestry withmembership in two clusters
(Fig. 5a, b). One of these clusters shares ancestry with isolate Pgt21-0,
which was recently shown to be a tentative donor of one of the Ug99
haplotypes25. The second cluster shares membership with a group of
isolates fromcluster II (Fig. 5a, b), suggesting that this cluster or closely
related isolates could be the likely source of the second Ug99 haplo-
type, which so far remained unknown.

To ensure that ADMIXTURE analysis was not affected by the
inclusion of closely related Pgt isolates, we repeated the analysis using
a reduced set of individuals, includingonly one isolate fromeachof the
previously defined asexual lineages33–35,46 (Supplementary Fig. 10). The
ADMIXTUREanalysis with theoptimal valueofK = 4 for this set showed
that most isolates showing mixed ancestry also showed mixed ances-
try in the analysis of the full dataset at K = 6.

The clustering of Pgt isolates based on the virulence profiles on a
set of Sr genes and genetic divergence (Supplementary Fig. 11) were
largely consistent. Most Pgt isolates from the samegeographic regions
tended to show similar virulence profiles, except for Asian isolates,
which fell into distinct clusters. This outcome is likely associated either
with the admixed origin of Asian isolates that likely resulted in new

Fig. 4 | The SV size, SV distribution, and pairwise genetic differentiation at SV
sites between the groups of Pgt isolates from different geographic regions.
a SV size distribution. Outliers of SV size greater than 20 kbp are not displayed.
b The panel shows the synteny map of effector-encoding genes between the four
homologous chromosomes from the 99KS76A-1 and Pgt21-0 isolates. Effectors
affected by SVs are represented with coral dots, green dots show effectors that are
present in only one haplotype, and blue dots show the remaining effectors. The
effector-encoding genes collinear between the Pgt haplotypes are connected using
gray lines. c Relationship between the TE content, structural variation, and pre-
dicted effector content. The proportion of TEs and SVs within each non-

overlapping 1Mb window was calculated across the 99KS76A-1 genome. The best-
fit regression line (blue) and standard error intervals (light blue) are shown on the
graph. Those dMAF spectrum of SVs (insertions and deletions) affecting effectors,
non-effectors, comparedwith synonymousSNPs. e Pairwise estimatesof FST for SVs
and SNPs between Pgt isolates from the United States and outside of the United
States. f,gThegeographic distributionof theAvrSr35 (f) andAvrSr50 (g) alleleswith
and without SV. h The SV in both Avr genes leads to increased virulence on wheat
lines carrying the Sr35 (left side of panel h) and Sr50 (right side of panel h)
resistance genes.
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combinations of virulence factors or with the accumulation of muta-
tions in avirulence genes within this group of isolates.

Fine-scale local ancestry analyses of Pgt lineages
The relative contribution of sexual recombination and somatic
hybridization to the origin of Pgt lineages, often showing distinct
virulence profiles, remains unknown. To investigate which of these
two factors accompanied admixture events and detect the sources of
ancestral haplotypes underlying the origin of main Pgt clades, we

performed fine-scale analyses of local ancestry along the genome in
the entire Pgt panel usingMOSAIC47.We inferred the local ancestry of
isolates derived from a cross between isolates CDL 78-21-BB463
and CDL 775-36-700-3 using F2 isolates as targets and two parental
isolates as admixing sources. As expected, the local ancestry along
chromosomes clearly shows a mosaic of source haplotypes, con-
sistent with recombination between parental isolates, with a high
level of correlation (r2 = 0.88) between inferred and true ances-
try (Fig. 6a).

Fig. 5 | The genetic relationship and population structure of isolates in the Pgt
panel. a The neighbor-joining tree was constructed based on the genetic distance
estimated using SNPs. The tree branch lengths are scaled to have the same length
from the root to the tips and do not reflect the actual mutation rate along the
branches. The bootstrap support values for the phylogenetic tree of the Pgt panel
are shown above the branches. The previously used clade designations34,35 are

shownasRomannumerals. Four smaller groupsof isolates (1–3 isolates/group) that
were previously unassigned to clades were given temporary labels UN1-UN3. b The
population structure was analyzed using ADMIXTURE for K values ranging from 2
to 9. The average estimates of ancestry proportions in K populationswerebasedon
ten independent runs of ADMIXTURE.
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For analyzing admixture between the populations of isolates in
the Pgt panel, we used previously defined phylogenetic clades I, II, III,
VI-A, VI-B, VI-C, VII33–35,45,48 (Fig. 5a and Supplementary Data 5). Several
groups of isolates with three or less samples that cluster separately
from the known clades were temporarily labeled UN1, UN2, and UN3.
The group of four isolates, including Pgt21-0, one of the donors of the
Ug99 Pgt race, was named Clade IX. Comparison of two-, three-, and
four-way admixture models indicate that all admixture events are best
explained by a two-way model. By applying the two-way admixture
model to 12 Pgt clades, we showed that eight clades (I, II, VI-A, VII, IX,
VI-B, UN1, and UN2) show evidence of admixture between the pairs of
distinct donor sources (Fig. 6b and Supplementary Table 14). The

MOSAIC results were, in general, consistent with the results of
ADMIXTURE analysis at optimal K = 6 (Fig. 5b).

To further characterize admixture events, we examined the dis-
tribution of local ancestry along the chromosomes for individual iso-
lates from each of these eight admixed clades. MOSAIC fitted clade
UN2 (including two Asia isolates) as a two-way admixture (r2 = 0.82)
between Clades IX and UN1 (Fig. 6b, c and Supplementary Fig. 12). The
local ancestry along the chromosomes of isolates from this clade
represents a mosaic of contiguous chunks of genome inherited from
these two donor populations (Fig. 6c and Supplementary Fig. 12). This
result is consistent with sexual recombination between the ancestral
haplotypes from Clades IX and UN1 contributing to the origin of

Fig. 6 | Analysis of local ancestry using MOSAIC. a Local ancestry of three F2
isolates along chromosome 16 (top panel) expressed as the probability of copying
(E[ancestry]) from the twoparental isolates 4 A and 7 A (bottompanel). Thebottom
panel’s x-axis shows the copying probabilities of two ancestries from isolates 4 A
and 7 A. The proportions of ancestry in the two-way admixturemodel in the sample
of three isolates is shown on the top (0.608 and 0.392). b Copying matrix for the
clades in the Pgt panel modeled as two-way admixture. Row names show clades
used as target panels, and columns show reference panels. The proportions are
scaled as % of the most copied within rows. The numbers listed on the left are the
averaged copying proportions across the reference panels in a two-way admixture
model. Based on the analysis of the local ancestry of individual Pgt isolates, we

inferred whether the origin of a clade is linked with sexual recombination (SR),
somatic hybridization (SH), or lack of admixture (non-admixed - NA). c The
genome-wide estimates of local ancestry in the 83PAK03-2 isolate from clade UN2.
d The genome-wide estimates of copying proportions in two-way admixture for
clade VII, which is ancestral to isolate 13ETH18-1. e The genome-wide estimates of
Ug99 ancestry in two groups of isolates from clades II and IX (includes Pgt21-0).
fGenotype ofUg99 in comparisonwith the genotypes of isolates from two sources,
a group isolates from clades II and IX. SNPs used in the analysis showed homo-
zygous genotype calls (0|0 and 1|1) in the source isolates and heterozygosity (0|1 or
1|0) in Ug99.
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83PAK03-2 and 83IND4A. Likewise, Clade VI-A (r2 = 0.87) and UN1
(r2 = 0.85) could be modeled as a two-way admixture between Clades
UN1 andVII, and betweenClades VI-A andUN2 (Supplementary Figs. 14
and 15). The chromosomal distribution of local ancestry in individual
isolates from clades VI-A and UN1 was also consistent with sexual
recombination between the source populations (Supplementary
Figs. 13–15).

The 2013–2014 Pgt outbreak in Ethiopia, leading to nearly 100%
yield loss in the fields planted with a major local wheat cultivar, was
attributed to a new race TKTTF (isolate 13ETH18-1 collected in 2013)33.
On the phylogenetic tree, isolate 13ETH18-1 clustered with isolates
from clade IV (Fig. 5a). Inference of local ancestry using MOSAIC sug-
gestednon-admixedorigin of clade IV,with themajority of the isolates’
genomes sharing ancestry with clade VII (Fig. 6b). However, earlier
study suggests that the group of isolates from clade IV collected in
2013 could bederived from sexually recombining Pgt population34. It is
possible that our inability to detect recombined haplotypes in the
MOSAIC analyses of clade IV could be associatedwith the high levels of
similarity among recombined haplotypes. The analysis of isolates from
clade VII using MOSAIC detected evidence for two-way admixture
(r2 = 0.88) between clades VI-A and VI-B (Fig. 6d and Supplementary
Fig. 16). The distribution of copying proportions from donor clades
along the chromosomesof isolates fromcladeVII (Fig. 6d) is consistent
with the lack of recombination between donor haplotypes, suggesting
that the origin of clade VII could be linked with somatic hybridization.

A somatic hybridization between divergent isolates was proposed
previously as the most likely mechanism of the Ug99 isolate’s origin,
with Pgt21-0 carrying oneof the donorhaplotypes and the other donor
remaining unknown25. By fitting a two-way admixturemodel (r2 = 0.72),
we identified that Ug99 race haplotypes from clade I share ancestry
with isolates from clade II (87KEN3018-1, 84KEN8B, 09ETH8-3, and
99EGY4A) and clade IX (including Pgt21-0) (Fig. 6b, e and Supple-
mentary Figs. 17 and 18). Since the previously established donor of the
Ug99 haplotype, Pgt21-025, clustered with other isolates in clade IX
(Fig. 5a), we hypothesized that isolates fromclade II is the second likely
donor source of the Ug99 haplotypes. The local ancestry along the
Ug99 chromosomes shows an equal probability of copying from both
donor groups (Fig. 6e and Supplementary Figs. 17 and 18), indicating
that hybridization between these two sources contributed to theorigin
of Ug99. To validate this conclusion, we selected a set of 2320
homozygous SNP sites, which are fixed for alternative alleles in each of

the two donor populations. Out of these SNPs, 2221 (95.7%) were
heterozygous in Ug99 (Fig. 6f), which confirms the hybrid origin of
Ug99 and suggests that an isolate closely related to the clade II con-
tributed to the second Ug99 haplotype.

In summary, by examining the local ancestry of individual Pgt
isolates from clades showing evidence of admixture, we showed that
the origin of three clades (VI-A, UN1, and UN2) is linked with sexual
recombination between the diverged Pgt lineages (Fig. 7 and Supple-
mentary Figs. 12, 13 and 15). The other five admixed clades (I, II, VII, IX,
and VI-B) displayed patterns of local ancestry consistent with somatic
hybridization (Fig. 7 and Supplementary Figs. 16, 17, 19–20).

Relationship between admixed origin and virulence in the
Pgt panel
It has been hypothesized that both admixture and sexual recombina-
tion between isolates from distinct lineages may lead to increased
levels of virulence25,34,49,50. To assess the impact of inter-lineage
admixture on virulence, we compared the virulence scores (Supple-
mentaryData 6) collectedon apanel ofwheat lineswith 47 Srgenes for
the Pgt isolates from the source and admixed clades identified by
MOSAIC (Fig. 7). For each trio of clades (one admixed and two source
clades), we have identified resistance genes (Sr) that were effective
against all Pgt isolates fromboth source clades. Within this group of Sr
genes, we counted how many Sr genes became ineffective against at
least half of the isolates from the corresponding admixed clade. This
loss of Sr gene efficiency could most likely be attributed to post-
admixture processes affecting Pgt virulence. For example, out of 13 Sr
genes, which are effective against all Pgt isolates from source clades IX
and II, four (30%) lost their efficiency against Pgt from the admixed
Ug99 clade (clade I). Using this approach, we show that, on average,
15% of Sr genes could have lost their efficiency after admixture among
distinct Pgt lineages (Supplementary Table 15).

To assess the impact of sexual recombination on virulence, we
compared the virulence profiles of the two isolates from races BFBJC
and SCCLC and their F2 progeny

51 on a set of six wheat lines carrying
resistance genes Sr7b, Sr11, Sr6, Sr9b, Sr30, and Sr24, all effective
against both parental races. Our analyses show that the virulence of
some of the F2 isolates on the panel of wheat lines increased compared
to the parental isolates (Supplementary Table 16), which resulted in an
overall increase in the virulence of the F2 population (Fig. 8b). In a set
of 20 recombinant F2 isolates, 11 isolates showed virulence against Sr6,
six isolates were Sr30 virulent, four isolates showed virulence against
Sr7b and Sr9b, two isolates acquired virulence against Sr11, and one F2
isolate became Sr24-virulent. In summary, 18 out of 20F2 recombinants

Fig. 7 | Admixture events between clades in the Pgt panel. For each of the eight
admixed clades identified by MOSAIC, its two distinct donor sources are shown
with arrows. The admixtureevents accompaniedby somatic hybridizationor sexual
recombination between donor populations are shown with different colors. The
reciprocal admixture between the pairs of clades suggests that they share a hap-
lotype with similar ancestry.

Fig. 8 | Relationship between Pgt virulence, admixture, and sexual recombi-
nation. a Violin plot showed increased virulence of the F2 Pgt progeny on disease
resistance genes Sr7b, Sr11, Sr6, Sr9b, Sr30, and Sr24 compared to two parental
isolates (4a or CDL 78-21-BB463, race BFBJC; 7a or CDL 75-36-700-3, race SCCLC).
b Genetic diversity (π) was lower in the sample of North American Pgt isolates
(n = 15) than in the sample of isolates outside of North America (n = 22). (Two-sided
Mann–Whitney U-test p value = 2.2e-16). Outliers of π greater than 0.015 are not
displayed. c Virulence was reduced in the isolates from North America (n = 15)
compared to the remaining population (n = 22) (Two-sidedMann–WhitneyU-test p
value = 2.15e-09). Box plots show the median and interquartile ranges (IQR). The
end of the top line is the maximum or the third quartile (Q) + 1.5 × IQR. The end of
the bottom line denotes either the minimum or the first Q − 1.5 × IQR. The dots are
either more than the third Q + 1.5 × IQR or less than the first Q − 1.5 × IQR.
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became virulent to at least one of these six resistance genes. If we will
assume that the loss of avirulence in the F2 progeny is associated with
the homozygosity for virulent alleles of genes, then the observed
results could be explained by the presence of each of the avirulence
loci in heterozygous state in both parental Pgt isolates and by the
segregation of these loci in the progeny. In this case, we can expect
higher levels of heterozygosity coinciding with the virulence of a
smaller number of resistance genes.

We compared the level of heterozygosity and virulence to multi-
ple resistance genes (Fig. 8c, d) between the North American and non-
North American Pgt isolates (isolates from the F2 population were
excluded). The North American group of isolates showed lower levels
of mean observed heterozygosity (Ho = 0.16), inbreeding coefficient
(FIS = 0.03), and genetic diversity (π) than isolates outside of the US
(Ho =0.21, FIS = 0.08) (Fig. 8c). However, contrary to the expectation
based on the analysis of F2 population (Fig. 8b), the North American
isolates were virulent on a smaller number of resistance genes than
non-North American isolates (Fig. 8d). The positive relationship
between the levels of heterozygosity and virulence suggests that the
homozygosity for the virulent alleles of avirulence factors in the Pgt
panel is unlikely the only factor driving an increase in virulence to stem
rust resistance genes.

Discussion
The comparison of the genomic distribution of the predicted effector-
encoding genes and patterns of selection and genetic differentiation
between the groups of Pgt isolates from distinct geographic regions
suggests that effectors aremore likely the selection targets of regional
adaptation than other groups of genes. The signatures of selection
around effector-encoding genes were evident for Pgt isolates grouped
based on either virulence specificity or geographic regions, indicating
that effectors could be associated with adaptation to new environ-
mental conditions as well as adaptation to new genotypes of wheat
cultivars. The latter is consistent with the earlier studies that showed
that some fungal effectors display the signatures of selection in
populations adapted to specific hosts10,52–54.

A set of highly contiguous haplotype-resolved genome
assemblies25 generated using long-read sequence data allowed us to
investigate the impact of SVs on effector repertoire in the Pgt diversity
panel. The overlap between effectors and SVs that show the high levels
of inter-population genetic differentiation is suggestive of SV’s
importance in adaptive evolution55. The overlap of effector-encoding
genes and some of the known avirulence factors (AvrSr3514 and
AvrSr5015) with the regions affected by SVs supports this hypothesis.

Previously, the comparative genome analysis between different
species of fungi showed that the distribution of effector-encoding
genes across the genome is not random and tends to be physically
associatedwith the TE-rich repetitive regions21. Though several studies
of fungal genomes found no evidence for this “two-speed genome”
architecture25,56,57, our analyses of intraspecies genomic variation
appear to be compatible with this model. We show that effectors tend
tobe enriched in the regions showinghigh levels of structural variation
and TE content. This observation is consistent with the role of TEs in
promoting structural variation through mechanisms associated with
DNA recombination and replication processes58,59. Combined, our
results indicate that the TE-driven SVs could have contributed to the
evolution of the Pgt effector content.

The relative roles of sexual recombination and somatic hybridi-
zation in shaping Pgt diversity and the evolution of new virulence are
poorly understood. Here, we model local fine-scale ancestry as a two-
way admixture and show that chromosomal patterns of ancestry could
be used to ascertain the contribution of sexual recombination and
somatic hybridization to the origin of the Pgt lineages. We show that
admixture between the distinct genetic groups of isolates is common
in Pgt and that both sexual recombination and somatic hybridization

impacted the genetic composition of Pgt isolates. The MOSAIC ana-
lyses suggest that the origin of 8 out of 12 phylogenetic clades in our
Pgt panel could be modeled as a two-way admixture. The analyses of
local ancestry distribution along the chromosomes of individual iso-
lates from each of these eight clades suggest that admixture events
leading to the origin of clades I, II, VII, IX, and VI-B were likely asso-
ciated with somatic hybridization (Fig. 7), whereas the origin of clades
VI-A, UN1, and UN2 was likely associated with sexual recombination
between the donor clades (Fig. 7).

Our results suggest that the origin of the highly virulent TKTTF
race (clade IV) from Ethiopia appears not linked with a population
admixture. However, considering the results of an earlier study, which
suggested that clade IV isolates sampled in 2013 originated from the
sexually reproducing population33, it is likely that the TKTTF origin
involves recombination betweenhaplotypeswithin the sameclade and
step-wise accumulation ofmutations in avirulence factors. The isolates
from closely related clade VII, which share about half of its ancestry
with clade IV, show evidence of two-way admixture, which, based on
the chromosomalpatterns of local ancestry, likely results fromsomatic
hybridization between isolates from clades VI-A and VI-B (Fig. 7).
Interestingly, the origin of clade VI-B is likely associated with somatic
hybridization between clades VII and VI-C (Fig. 7). The reciprocal
hybridization events inferred by MOSAIC between clades VII and VI-B
suggest that these clades share the same haplotype, though the actual
order of hybridization events could not be determined and needs
further investigation.

Previously, it was shown that somatic hybridization also con-
tributed to the origin of the Ug99 race, with one of the haplotypes
tracing its origin to isolate Pgt21-025. The origin of the second Ug99
haplotype remained uncertain. The analyses of local ancestry and
clade-specific SNP alleles in our Pgt panel confirmed somatic hybridi-
zation as one of the most likely mechanisms of the Ug99 origin and
Pgt21-0 as a possible donor of one of the haplotypes. This isolate
belongs to a groupof isolates fromnewclade IX, also including isolates
from Ethiopia and Turkey. We identified the unknown source of the
secondUg99haplotype,which includes a groupof isolates fromKenya
and Ethiopia that are part of the previously defined clade II45.

The analysis of ancestry segments in the isolates from clades VI-A,
UN1, and UN2 revealed recombinant chromosomes, suggesting their
origin in populations undergoing sexual reproduction. The role of
sexual recombination in the origin of new virulence specificities was
confirmed by phenotyping the progeny of two Pgt isolates51 using the
panel of wheat lines carrying the previously characterized stem rust
resistance genes60,61. These results were consistent with earlier work
suggesting that sexually reproducing Pgt isolates collected from bar-
berry could be linked with rust epidemics6 and high levels of virulence
diversity34.

There are severalmechanismsbywhich sexual recombination and
somatic hybridization could contribute to the origin of new virulent
isolates. The loss of dominant avirulence factors in sexually recom-
bining populations with some minor contribution from the sup-
pressors of avirulence genes were previously postulated as the main
driving factors behind the origin of virulent Pgt isolates51. One of the
expected consequences of recent selection for recessive alleles of
avirulence genes in populations with the prevalence of asexual
reproduction is genome-wide loss of heterozygosity and diversity.
These diversity trends were observed for the US sample of Pgt isolates
and are consistent with the prevalence of asexual Pgt reproduction in
the United States39 due to the eradication of the alternate Pgt host,
barberry. Using thesemechanisms, however, it is harder to explain the
loss of efficiency against admixed Pgt isolates observed for 15% of Sr
genes, which otherwise are highly effective against ancestral source
Pgt clades. Though, it is possible that admixture could promote viru-
lence by bringing together two haplotypes carrying virulent alleles of
effectors unrecognizable by the host’s immune system. Alternatively,
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we could consider the scenario where broader virulence of admixed
isolates is associated with their improved ability to suppress the host’s
immune responses. In this case, admixture likely promotes virulence
by combining avirulence suppressors evolved in distinct lineages. This
strategy of new virulence origin was proposed for inter-specific
hybrids of Blumeria graminis and Zymoseptoria tritici62,63. To what
extent it is applicable to virulence evolution at the intra-specific level
remains to be investigated. Further studies aimed at cloning and
characterization of pathogen effectors from diverse pathosystems are
needed to uncover the entire diversity of mechanisms that contribute
to the evolution of virulence in agricultural pathogens. Resources
generated in our study, including sequenced and phenotyped Pgt
isolates, have the potential to facilitate the characterization of the Pgt
avirulence factors, deepen our understanding of how this important
pathogen evolves and adapts, and ultimately contribute to efforts
aimed at reducing the risk of Pgt pandemics.

Methods
DNA extraction and sequencing for 99KS76A-1
The wheat cultivar “Morocco” was used for spores grow-up and col-
lection of 99KS76A. To obtain both high quality and high quantities of
fungal DNA, collected urediniospores were dusted in a fine layer over
the top of the diluted germination solution using a 40 µmmetal sieve,
and germinated spore mats were collected after 16 h. A high-quality
fungal DNA isolation protocol64 was used, with minor modifications.
We used a lysis buffer prepared by mixing 5ml of Buffer A, 5ml of
Buffer B, 2ml of Buffer C, 1ml of 10% PVP 40, and 1ml of sterile ddH2O.
Buffer A composition: 0.35M sorbitol, 0.1M Tris-HCl (pH 8.0), 5mM
EDTA (pH 8.0) (autoclaved to sterilize). Buffer B composition: 0.2M
Tris-HCl (pH 8.0), 50mM EDTA (pH 8.0), 2M NaCl, 2% CTAB (auto-
claved to sterilize). Composition of Buffer C: 5% Sarkosyl N-laur-
oylsarcosine sodium salt (Sigma L5125) (filtered through 0.22-micron
membrane to sterilize). The lysis buffer was heated to 50 degrees after
mixing and cooled to room temperature. Samples were grinded and
added to the lysis buffer before adding 50 µl of RNAse A (10mg/ml).
Samples were rotated on Rotator Genie at the slowest speed at room
temperature for 1 h, followed by adding 200 µl of Proteinase K and
rotating for an additional 1–2 h. The tube was incubated for 5min on
ice, and then 200 µl of Proteinase K was added, mixed, and incubated
for another 5min. The samples were centrifuged at 5000×g for 12min
at 4 °C, supernatant was removed and placed into a new tube after
adding 15ml of phenol/chloroform/isoamyl alcohol (P/C/I, 25:24:1),
followed by rotating for 5min at the slowest speed. The sample was
centrifuged at 4000×g for 10min at 4 °C, followed by removing the
supernatant and adding 15ml P/C/I. Sodium acetate and isopropanol
were added and mixed, followed by incubation at room temperature
for 5–10min, and centrifugation at 8000×g for 30min at 4 °C. Super-
natant was poured slowly, and the pellet was washed with 70% ethanol
and dissolved in 100 ul of 10mM Tris-HCl buffer (pH 8.5)64.

Oxford Nanopore (OXN) LSK-109 ligation sequencing kits with
flow cell 9.4.1 was used to generate sequencing data for 99KS76A-1.
Long-read DNA sequence data were generated using five flow cells
using a MinION device. Raw fast5 files were converted to fastq files
using guppy software. Resulting fastq reads were passed through the
NanoFilt program to retain sequencing reads with a quality score >6
and read length >1500bp.

For Hi-C sequencing, a spore mat was sent to Dovetail Genomics
for library preparation and sequencing. In addition, previously pub-
lished Miseq and PacBio data developed for the 99KS76A-1 isolate14

were used in this study.

Genome assembly of the 99KS76A-1 isolate
To create haplotype-resolved assembly of the 99KS76A-1 isolate (race
RKRQC), we have used the combination of High-throughput Chro-
mosome Conformation Capture (Hi-C) technique, long-read Oxford

Nanopore (OXN) sequencing with short-read Illumina sequencing
(2 × 300 bp). The previously generated Illumina MiSeq reads
(2 × 300 bp)14 were trimmed using Trimmomatic v0.3865 with the fol-
lowing parameters: LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15
MINLEN:36. A total of 163,655,621 Hi-C read pairs, 4,175,267 OXN reads
with the average length of 4258 bp, 264,532 PacBio reads with an
average length of 2350 bp, and 31,390,809 Illumina read pairs
(2 × 300 bp) were generated. Assembly was performed using Canu
v1.726 followed by correcting assembly errors by aligning MiSeq reads
(2 × 300 bp) to the assembled contigs using Pilon v1.2219 (4.36% error
rate of the assembly was corrected). For this purpose, the trimmed
MiSeq reads were aligned to the Canu assembly using BWA-mem
v0.7.1766 with default settings and sorted with the samtools v1.867.

A two-step pipeline was utilized for scaffolding the contigs gen-
erated by Canu. The first step was based on a bin-assignment
strategy25. The gene models predicted in our 99KS76A-1 assembly
were aligned against the assembled contigs using BLASTN v2.9.068 and
results were filtered to retain alignments with identity ≥95% and gene
coverage ≥50%. In Puccinia spp., somatic cells are dikaryotic, consist-
ing of two physically distinct haploid nuclei25,56,57. If two contigs shared
at least 25 genes, they were considered to represent haplotypes from
distinct Pgt nuclei. These homologous contigs were grouped into
distinct bins (Supplementary Table 1). In total, we identified 33 bins,
including 120 contigs, with the total contig length of ~150Mb.
Sequence collinearity between contigs in each bin was assessed using
MUMmer v4.036 with nucmer (--maxmatch) and plotted by mummer-
plot (Supplementary Fig. 23). Step two was based on the ALLHiC
assembler v0.9.827,28 that started with raw Hi-C reads mapped to the
Canu contigs using BWA-MEM v0.7.1766. The contigs representing
allelic variants from distinct nuclei were identified by aligning gene
models from theCanu assembly to the assembled chromosomesof the
Pgt21-0 isolate25. This information was also used to group contigs into
18 homologous groups (HGs). For eachHG, noisy inter-allelic andweak
Hi-C density signals (number of read pairs/length (contigA + contigB)
<0.35) were removed by the ALLHiC Pruning function. Subsequently,
together with information gathered from the previous bin-assignment
step, contigs in each HG were partitioned into two groups (or haplo-
types) through the ALLHiC Partition routine. The ALLHiC27 scaffolding
resulted in a chromosome-level assembly of the 99KS76A-1 genome
consisting of 36 chromosomes with a total length of ~161Mbp (Fig. 1a).
The assembled chromosomes were assigned to haplotypes from dis-
tinct nuclei usingHi-C data. This approach has been previously applied
for assembling the haplotype-resolved assemblies of Puccinia triticina
and P. graminis25,29. Out of 36 chromosomes, 34 could be assigned to
distinct haplotypes. The 99KS76A-1 haplotypes were designated as “E”
and “F” (SupplementaryFig. 1),which showed97.1 and96.8%similarity,
respectively, to haplotype A of Ug99, and 96.7 and 97.4% similarity,
respectively, to haplotype C of Ug99 (Fig. 1b).

The haplotype assignment for the 99KS76A-1 genome scaffolds
was performed by counting Hi-C links between the scaffolds (Supple-
mentaryFig. 1). Hi-C readswereprocessedwithHiCUPpipeline v0.8.269

to filter out non-unique alignments and experimental artefacts, using
Bowtie270 as aligner and the 99KS76A-1 assembly as a reference. The
resulting haplotypes correspond to genomes of individual nuclei in a
dikaryotic fungus. The assembled genome KSU_Pgt_99KS76A_2.0 is
available at NCBI (accession number PGFY02000000).

Assessment of the 99KS76A-1 genome assembly quality
Completeness of the 99KS76A-1 assembly was assessed by BUSCO30 in
the genome mode using a basidiomycota_odb10 set of genes. The
Pgt21-0 assembly was aligned against the chromosome-level assembly
of 99KS76A-1 usingMUMmer v4.036 with nucmer (--maxgap= 10,000),
and alignment results were plotted using Dotplotly (-l -m 10000) to
evaluate the collinearity between assemblies (Supplementary Fig. 2).
We also aligned the 99KS76A-1 assembly against itself using the
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MUMmer’s nucmer with settings --maxmatch --maxgap= 10,000 to
validate matches between the haplotypes (Supplementary Fig. 3).

Gene prediction and functional annotation
RepeatMasker v4.1.0 with Repbase v. 25.12. was used to mask trans-
posable elements in the final assembly. The evidence-based gene
prediction was performed with the PASA pipeline v.r2014041771. For
gene prediction we used (1) 295,186 transcripts previously assembled
using the RNA-seq data generated for the Pgt-infected leaf tissues
(includes both the wheat and Pgt transcripts)14, (2) 37,843 CDS
reported for Pgt21-0 genome25; (3) 37,820 CDS reported for ug99
genome25; (4) 15,979 gene models reported for the genome of Pgt
strain CDL 75-36-700-332; (5) 22,391 transcripts thatwere generated for
the Australian Pgt isolates31. Genes encoding effector proteins were
predicted using SignalP v5.072, ApoplastP v1.0.173, and Phobious v1.0174,
with the removal of proteins targeted to mitochondria or having
transmembrane domains by running TargetP v2.075 and TMHMM
v2.076,77.

Variant calling in the Pgt panel
Adiversecollectionof 77 rust isolates (SupplementaryData 2) fromthe
USDA Cereal Disease Lab (CDL) was sequenced using paired-end
sequencing run on HiSeq2500 (2 × 150 bp). DNA was extracted as
previously described33. Illumina reads were aligned to the non-
redundant set of the 99KS76A-1 scaffolds using HISAT2 program78

with option --no-spliced-alignment. After removing reads mapping to
multiple locations and marking duplicates, multi-sample variant call-
ing was performed using the HaplotypeCaller of GATK v4.1.4.179 with
the default settings. The variable sites have been filtered to remove
those that (1) had more than two alleles, (2) minimum depth of total
read coverage was below 3, (3) more than 25% of isolates have no
genotype calls, or (4) minimum depth of alternative allele read cov-
erage below 3. To improve the accuracy of rare variant calling with the
minor allele present in only single isolate (singleton variants), we
removed sites with a minimum depth of read coverage below 10. To
assess the accuracy of genotype calling, we compared the allelic var-
iants called for 99KS76A-1 bymapping short-readdata to the reference
genome of 99KS76A-1. Both SNP and indel calling showed 99% con-
cordance, indicating the high accuracy of variant calling in our dataset.

Genetic diversity analyses
The Pgt panel includes 18 F2 isolates derived from a biparental cross
between isolates CRL 78-21-BB463 and 75-36-700-351. These isolates
were excluded frommost of the genetic diversity analyses.Minor allele
frequency (MAF) for each SNP site was computed using BCFtools v.1.9
fill-tags function. R package PopGenome v2.7.580 was used to calculate
nucleotide diversity (π), TajimaD, and pairwise FST statistics. In these
calculations, sites with missing data or located within the regions
overlapping with repeated sequences identified by RepeatMasker
v4.1.0 were excluded.

LD analyses were performed on a dataset after removing variants
with MAF <0.025 and heterozygous SNPs. Plink v1.981 was used to
randomly pick 5% of SNPs for LD calculation with the following para-
meters: --ld-window 20000, --ld-window-kb 7000, --ld-window-r2 0,
--allow-extra-chr, --keep-allele-order, --thin 0.05. To reduce the effect
of population structure on the estimates of the rate of LD decay, r2 was
calculated for two samples of Pgt isolates (15 from the United States
and 22 outside of the United States) that show no evidence of
admixture at the optimal value of K = 6. LD decay was modeled by
fitting the estimates of r2 to a model described in ref. 38.

Selection scans
To reduce the rate of detecting false selection events, we conducted
selection scans using two different approaches implemented in XP-
CLR40 andSweeD41. Bothmethodswere shown tobe robust to variation

in demographic history and recombination rate heterogeneity across
the genome. The datasets used for both XP-CLR and SweeD analyses
were filtered by vcftools with –remove-indels –maf 0.01 and –max-
missing 0.75. XP-CLR40 was run with a grid size of 100 bp, sliding
window size of 0.05 cM,maximumof 50 SNPswithin eachwindow, and
pairwise correlation coefficient of 0.8. The SweeD was run with the
same grid size of 100. To select test statistic thresholds for detecting
outliers, we conducted selection scans using both approaches in the
simulateddatasets, taking into account the demographic history of the
two Pgt samples, 15 from the United States (US isolates) and 22 from
Africa, Europe, and South America (non-US isolates). The two sets of
Pgt isolates were selected to be genetically uniform and have no
admixed genotypes at the optimal value of K = 6. The population size
and split time history of these Pgt samples was inferred using the
SMC+ + tool82 using the processdescribed in the softwaremanual. The
effective population sizes of non-US and US isolates were estimated to
be 124,000 (N0) and 50,840 (N1), respectively, with a split time of
95,000–110,000 generations ago. These estimates of population his-
tory were used to simulate diversity datasets for 37 individuals (22
individuals in population 1 and 15 individuals in population 2) using the
followingMaCS83 command: macs 37 5e5 -i 1 -t 0.003 -r 0.00001 -I 2 22
15 -n 2 0.41 -ej 0.22 2 1 2. Effective population size-scaled diversity −t
was calculated using the mutation rate of 5 × 10−984. The 4N-scaled
recombination rate parameter -r was tested for ranges between 0.001
and 0.00001 and shown not to have a significant impact on the results
of selective sweep statistics. Thus, we used a more conservative
approach to simulate data with the lower value of -r 0.00001. The
effective size of population 2 (N1) was 0.41 of the effective size of
population 1 (N0). For each simulated dataset, we calculated Tajima’s D
and diversity statistics using msstats program based on the C + +
libsequence library85 and selected for downstream selective sweep
analyses only those sets that match the observed diversity statistics
within one standard deviation of Tajima’s D (0.74 ±0.75) and diversity
(3.3 × 10−3 ± 3.0 × 10−3). The selective sweep analyses using both
methods were conducted for a total of 1000 datasets. The 95th per-
centiles of the distributions built using the highest test statistic values
from each simulated dataset were 53.48 for XP-CLR and 4.27 for
SweeD. Since these values were lower than the 95th percentiles of the
test statistic distribution for XP-CLR (72.26) and SweeD (17.68) in the
real-life dataset, the empirically defined thresholds were used in the
study. The outliers above the XP-CLR and SweeD scan thresholds were
identified, and the adjacent outlier regions were merged. The regions
shared by both scans were classified as genomic regions under selec-
tion and the number of effector-encoding genes overlapping with
these regions was calculated. To assess the chance of obtaining the set
of genomic regions overlapping (159) with effector-encoding genes,
we counted the number of genomic regions overlappingwith effectors
in 1000 randomized datasets (Fig. 3c).

Structural variant detection and diversity analyses
To detect structural variants among the four haplotypes of the
99KS76A-1 and Pgt21-0 genomes (two haplotypes per genome), four
homologous chromosomes were compared to each other with
MUMmer v4.036 nucmer (--mum). To improve structural variant
detection, two methods were used. First method is based on
Assemblytics42. After filtering the MUMmer results with parameters
setting of -i 90 -r -q, Assemblytics42 was used for detecting SVs with
unique anchor lengths of 500 bp, minimum variant size of 50bp, and
maximumvariant size of 1000 kb. Since Assemblytics ismore accurate
in detecting small-size SVs than the large ones, the large SVs with size
≥30 kb were filtered out if they did not appear as consecutive in terms
of coordinates along the chromosome. The large-size SVs (≥10 kbp)
were identified using the second method. In the filtered MUMmer
alignment results, only those alignments that showed consecutive
coordinates were kept, and gaps between the alignments were
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considered SVs if their size was between 10 and 1500 kb. SVs obtained
using these two methods were combined for further analysis. There
are four types of SVs were detected using both methods: insertions,
deletions, expansions, and contractions42 (Supplementary Fig. 5).

We assessed the accuracy of SV calling by comparing regions
carrying SVs with individual long OXN reads spanning these regions in
the 99KS76A-1 genome. Since each OXN read represents a single DNA
molecule, this approach provides independent validation of identified
SVs. For this analysis, we selected 1947 heterozygous SVs from ten
homologous chromosomes (1E-5E, 1F-5F) of 99KS76A-1. TheOXN reads
were mapped to both haplotypes of the 99KS76A-1 genome using
minimap2, and those reads that span an entire SV and at least 1000 bp
from each side were compared with the SV alleles detected by the
alignment of the Pgt haplotypes. Out of 1889 analyzed SVs, 95% were
confirmed to have both SV alleles at each variable site, indicating that
the SV discovery by whole genome comparison has good accuracy.
The actual concordance rate between the SVs detected by haplotype
and OXN read alignments is likely higher. Due to the repetitive nature
of some of the OXN reads and the high per-read error rate, some SVs
were covered by reads mapping to more than single locations. These
SVs were counted towards unconfirmed SVs.

To genotype SVs in each Pgt isolate, sets of consecutive diagnostic
31 nucleotide-long k-mers that cover the boundaries SV sites were
developed (Supplementary Fig. 5). Because SNP variation at the SV
boundaries in the Pgt panel could affect the results of k-mer analysis, we
have designed k-mers only to those SVs that has no SNPs around their
boundaries, resulting in a set of 10,188 SVs. With the k-mer database
built for each isolate in the Pgt panel using Jellyfish v2.2.1086, the pre-
sence or absence of these diagnostic k-merswas recorded to generate a
matrix of SV genotypes for the whole Pgt panel using the following
rules: (1) if the number of k-mers for the SV presence site (which include
two boundaries) ≥15, and the number of k-mers for the SV absence site
(which includes only one boundary) =0, then genotype is 1/1; (2) if the
number of k-mers for the SV presence site ≥15, and the number of
k-mers for the SV absence site ≥5, then genotype is 0/1;3) if the number
of k-mers for the SV presence site <5, and the number of k-mers for the
SV absence site ≥5, then genotype is 0/0. The genotyping matrix was
converted to the vcf format for constructing the NJ tree after filtering
out SVs with no missing rate and minor allele frequency ≤10%.

The accuracyof k-mer-based SVgenotype calling in the short-read
Illumina datasets was assessed for SVs detected in the 99KS76A-1
genome. We compared the SV calls generated using the k-mer
approach with SV calls identified by the haplotype and OXN-read
alignment and showed these two datasets are 99.9% concordant.

We calculated the correlation between the proportion of the Pgt
genome affected by SV, and the TE and effector-gene content. For this
purpose, the size of the genome affected by SV and TEs, and the
number of effector-encoding genes was calculated within the non-
overlapping windows of 1Mb spanning the entire genome. For com-
paring the MAF spectrum of SVs and synonymous SNPs detected
between 4 haplotypes of 99KS76A-1 and Pgt21-0, SV types corre-
sponding to insertion and deletion (because their genotypeweremore
accurate than expansions and contractions) were filtered to remove
sites with more than 10%missing rate. The SNP dataset comparable to
SVs was built by using only those sites that segregated between the
four haplotypes of 99KS76A-1 and Pgt21-0. These sites were detected
by comparing the 99KS76A-1 and Pgt21-0 haplotypes usingMUMmer36

with the following settings: show-snps -Clr -I -T. The genotypes at these
SNP sites were extracted fromPgt panel. vcftools was used to calculate
the pairwise FST between geographical regions for SVs and SNPswithin
the window size of 1 Mbp.

Population structure
In addition to isolates in the Pgt diversity panel, we have also included
CDL 775-36-700-3 and Pgt21-0 for population structure analysis. For

these two isolates, the genotypes of SNP sites segregating in the Pgt
diversity panel were inferred by aligning 100 bp SNP flanking
sequences to the published genome assembly32. SNP positions were
identified using the blastn2snp tool from JVarkit v.1.0. Since the CDL
775-36-700-3 genome assembly32 is largely haploid with the contigs
from both nuclei collapsed together, genotypes were recorded as
either 1/1 or 0/0 when only one of the two possible alleles is present at
the aligned site. In case if no aligned sequences were detected or
aligned sequences represented both alleles, genotypes are called
missing.

To construct a neighbor-joining (NJ) tree, SNP sites are filtered to
keep those that have no missing data, and a minor allele present in at
least three isolates. Distance-based phylogenetic analysis was com-
puted using R v4.0.0, with vcfR v1.12.087, adegenet v2.1.388, ape v5.489,
and ggtree v2.2.490 packages. Euclideangenetic distance between each
individual isolate was calculated with the function “dist” in adegenet.
NJ estimationof Saitou andNei91wasbuiltwith “nj” functionof ape, and
was plotted using ggtree90.

ADMIXTURE v1.3.044 was performedwith fivefold cross-validation
(CV) for K ranging from 2 to 15 to estimate the optimal number of
populations. At each value of K, ADMIXTURE was run ten times with
different starting random seed numbers. Q matrix for the same values
of K was merged using mean values and plotted using the R package
pophelper v2.3.0. For identifying potential donor sources for each
clade in the whole panel, SNPs were filtered by vcftools with --maf 0.1
and –max-missing 1, and phased by Beagle.28Jun21.220.jar92 with
default settings. For inferring the local ancestry of each clade using
donor sources, SNPs were phased and filtered by vcftools with --maf
0.05 and –max-missing 1 for each dataset. MOSAIC was used to esti-
mate the copying probability of donor sources and infer local ancestry
along chromosomeswith default settings (SupplementaryData 5). The
geographic inbreeding coefficient was calculated with vcftools
(v0.1.13) -het93, and π in different geographic regions was calculated
with PopGenome80 based on gene models.

Phenotyping Pgt isolates on the panel of differential wheat lines
The virulence of each of the Pgt isolates was assessed by infecting the
panel of wheat differential lines carrying known stem rust resistance
genes (Sr). The wheat seedlings were infected and scored at the USDA
Cereal Disease Laboratory (CDL) at a biosafety level-3 facility (Uni-
versity of Minnesota). The Pgt urediniospores stored at −80 °C were
heat-shocked for 6–10min in a water bath at 42 °C and resuspended in
Soltrol 170 light oil (Chevron Phillips Chemical Company, The Wood-
lands, TX). Inoculations were performed by air spray at the one-leaf
stage. Immediately after inoculation, plants were transferred to a dew
chamber and incubated in the dark for 16 h at 22 °C and under 100%
relative humidity. The seedlings were transferred to the greenhouse
and grown at 22 °C day and 18 °C night with 16 h of photoperiod. The
Pgt virulence scores ranging from 0 (highly avirulent) to 9 (highly
virulent) on each differential were assessed 12–14 days after inocula-
tion. According to the North American Pgt nomenclature60, the infec-
tion types inducedbyPgt isolateswere consideredH (High) if the score
was less than or equal 6 and L (Low) if the score was higher than 6.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The full genome assembly of Pgt isolates 99KS76A-1 is available at
NCBI under accession number PGFY00000000.2 and GCA_
002762355.2 associated with BioProject PRJNA313186. Sequencing
data used for genome assembly, including Oxford Nano-
pore SRR18170993, PacBio SRR18170992, Hi-C SRR18170990, and
Miseq SRR18170991] reads, have been deposited to NCBI under
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BioProject PRJNA313186. The Hi-C contact frequency data is available
from NCBI GEO GSE210552. RNA-seq or CDS data for genome anno-
tation were downloaded from NCBI BioProjects PRJNA415853,
PRJNA516922, PRJNA66375, and PRJNA347320. Illumina sequence files
for the Pgt diversity panel were deposited to NCBI under BioProject
PRJNA803546. Variants calls are available from the EBI EVA under
accession PRJEB56443. Phenotypic data were provided in Supple-
mentary Data 6.

Code availability
A custom script used in the study is deposited to GitHub: https://
github.com/akhunovlab/stem_rust_diversity94.
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