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Regulation associated modules reflect
3D genome modularity associated with
chromatin activity

Lina Zheng 1 & Wei Wang 1,2,3

The 3D genome has been shown to be organized into modules including
topologically associating domains (TADs) and compartments that are pri-
marily defined by spatial contacts from Hi-C. There exists a gap to investigate
whether and how the spatial modularity of the chromatin is related to the
functional modularity resulting from chromatin activity. Despite histone
modifications reflecting chromatin activity, inferring spatial modularity of the
genome directly from the histone modification patterns has not been well
explored. Here, we report that histone modifications show a modular pattern
(referred to as regulation associated modules, RAMs) that reflects spatial
chromatin modularity. Enhancer-promoter interactions, loop anchors, super-
enhancer clusters and extrachromosomal DNAs (ecDNAs) are found to occur
more often within the same RAMs than within the same TADs. Consistently,
compared to the TAD boundaries, deletions of RAM boundaries perturb the
chromatin structure more severely (may even cause cell death) and somatic
variants in cancer samples are more enriched in RAM boundaries. These
observations suggest that RAMs reflect a modular organization of the 3D
genome at a scale better aligned with chromatin activity, providing a bridge
connecting the structural and functional modularity of the genome.

Histone modifications are critical to shaping the chromatin structure
and regulating gene expression1,2. Active marks such as H3K27ac and
H3K4me3 open up chromatin to allow access to transcription factors
(TFs) and transcription machinery to promoters or enhancers.
Repressive marks such as H3K9me3 and H3K27me3 condensate
chromatin to block TF binding and suppress gene expression. DNA
marked by active and repressive histone modifications form euchro-
matin and heterochromatin that are distinct on the compactness.
These observations suggest that histone modifications have an
important impact on organizing the regional and global 3D genome.

Accumulating evidence has revealed the association of histone
modifications with the topologically associating domains (TADs)3–6

and compartments7,8 derived from the Hi-C contact maps showing
plaid patterns. TADs represent genomic domains forming dense

internal contacts but fewer contacts with neighboring regions. The
TAD boundaries are demarcated with CTCF sites or active transcribed
DNA sequences. The Hi-C data also show that the 3D genome is par-
titioned into transcriptionally active (compartment A) and suppressed
(compartment B) compartments. Active and repressive histone marks
are enriched, but do not exclusively appear, in the A and B compart-
ments, respectively7,8. Computational models have shown that histone
modification signals are predictive of Hi-C contacts particularly
for enhancer–promoter interactions9, TAD boundaries10 and
compartments11. Histone modifications are tightly associated with
transcriptional activity12–14 while transcription and proteins involved in
transcriptional regulation including RNA polymerase and TFs have
been shown to contribute to compartmentation and active promoters
and enhancers tend to form clusters in the nucleus15–18.
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Despite the mechanisms underlying the interplay between his-
tone modifications and chromatin organization remain elusive, his-
tonemodifications can indicate the spatial organization of the genome
as readout signals for regulatory modules. However, the current ana-
lysis has been limited to associating histone marks to Hi-C derived
TADs and compartments. An unfilled gap is to use histone modifica-
tions to directly elucidate themodular organization of the 3Dgenome.
We propose here to define the spatial module of the genome organi-
zation resulting from the chromatin activities reflected by histone
modifications.

We find that the frequency profiles of the H3K27ac peaks present
a modular structure (referred to as regulation-associated modules,
RAMs). A large number of these modules are shared across cell types
and can be independently derived using other active histone marks,
including H3K4me3 and H3K4me1. We uncover several lines of evi-
dence to support the hypothesis that the RAMs are spatial modules
resulting from functional activities: the enhancer–promoter interac-
tions, loop anchors and super-enhancer clusters dominantly occur
within RAMs; the extrachromosomal DNAs (ecDNAs) tend to be ori-
ginated from the same RAMs rather than split in multiple RAMs; RAMs
are resistant to cohesin degradation. These properties of RAMs dis-
tinguish them fromTADs and compartments. Furthermore, deletionof
RAMboundaries is predicted to alter the chromatin organizationmore
significantly than the deletion of TAD boundaries by a deep learning
model. In addition, deletion of RAM boundaries likely interferes with
cellular functions and even affects cell viability. Consistently, the
somatic genetic variations in cancer patients are enriched in RAM
boundaries, suggesting a possible mechanism of tumorigenesis
involved in altering the chromatin modules.

Results
Regulation associated modules (RAMs) detected by the histone
modification peaks
We analyzed the density profile of H3K27ac peaks (i.e. peak count in a
sliding window) from chromatin immunoprecipitation assays with
sequencing (ChIP-Seq) experiments as using the peak density instead
of read count density can better remove the noise from the back-
ground signals. We downloaded ChIP-seq data of 93 normal and 19
cancer samples from Roadmap Epigenomics Project (http://www.
roadmapepigenomics.org/)19 and ENCODE portal (https://www.
encodeproject.org/)20 (Supplementary Table 1). Using a sliding win-
dow (a fixed flanking size of 500kbp and step size varying from 10kbp
to 500kbp), we computed the H3K27ac peak densities in the linear
genome. Regardless of the step size, the H3K27ac peak densities were
not evenly distributed and showed a modular pattern (Fig. 1a). The
active marks of H3K4me1, H3K4me3, and H3K36me3 showed similar
peak density profiles to H3K27ac in the 93 samples, indicated by high
Pearson correlations between them, whereas the repressive marks of
H3K27me3 and H3K9me3 had less consistent patterns (Fig. 1b). Given
the highly correlated active mark patterns, we focused on analyzing
the H3K27ac signals as the other active marks show similar modular
structures.

At a given step size, we identified the valley or minima of the
H3K27ac peak profile that was smoothed using local polynomial fit in
each chromosome and in each cell type (see “Methods”). These valleys
demarcated the boundaries of the modular domains (called Regula-
tion AssociatedDomains or RAMs).We varied the step size from 10kbp
to 500kbp and fixed the window size to 500kbp. It is not surprising
that, with the increasing step size, the RAM size increased and a higher
percentage of RAMs were shared between samples (Supplementary
Figs. 1, 2). We observed that the number of common RAMs in all the
chromosomes reached a plateau at 250kbp step size in both normal
and cancer samples, which indicates the identified RAMs are most
conserved acrossdiverse cell types (Supplementary Fig. 3a, b).We thus
used this step size of 250kbp for the remaining analyses. A RAM

boundary is called a consensus-RAM (cRAM)boundary if it is shared by
>25% of the samples (see “Methods”). This way, 711 cRAMs were
detected in the normal samples and 771 cRAMs in the cancer samples
(see “Methods”). On average, 60% of the RAMs in a cell type are con-
sensus (referred to as cRAMs) and the remaining cell-type specific (see
“Methods”, Supplementary Fig. 3c).

One example of the identified RAMs in chr12 of the GM12878 cell
by IGV software21 is shown in Fig. 1c–e. Obviously, the RAMboundaries
have lower signals of the active histone marks (H3K27ac, H3K4me1,
H3K4me3, H3K36me3) and higher repressive marks (H3K9me3 and
H3K27me3) compared to the within RAM regions. Consistently, they
tend to align with the B compartment or subcompartments (B1, B2,
B3). Furthermore, by counting the number of the 3D contacting
neighbors for each locus using the 10 kb resolution Hi-C data in
GM12878 (contacts with log(P-value) ≤ = −10), we found that the RAM
boundaries tend to harbormany 3D contacts, indicated an enrichment
with densely packed DNA sequences forming many spatial con-
tacts (Fig. 1c).

Characterization of the consensus regulation associated mod-
ules (cRAMs)
As cRAMs are largely shared between diverse cell lines, we further
characterized them. Among the cell lines that have both active and
repressive marks (all are normal cells), as expected, we found that the
cRAM boundaries have a lower peak density of the active marks
(H3K27ac, H3K4me3, H3K4me1, and H3K36me3) and slightly higher
peakdensities of repressivemarks (H3K27me3 andH3K9me3) than the
cRAM regions (see examples in GM12878 and HUVEC cell lines in
Fig. 2a). To quantify the difference of the histonemodifications among
the cRAM boundaries and the non-boundary regions, we counted the
peak density using a sliding window, and compared the histone
modifications enrichment across 93 normal samples. The p-value <
0.05 from the Wilcoxon Rank Sum test indicated that cRAM bound-
aries have significantly lower activemarks and higher repressivemarks
than the non-boundaries of cRAMs (Fig. 2b–g). Furthermore, using the
available 10kb-resolution Hi-C data in the K562, GM12878, A549,
IMR90, NHEK, HUVEC, HMEC, and HCT116 cell lines, we found that the
cRAM boundaries have significantly more Hi-C contacts (intrachro-
mosomal contacts with log(p-value) ≤ = −10) compared to the whole
genome (Fig. 2h), which is consistent with the genome browser view
for any RAM boundary in Fig. 1c. These observations suggested that
the cRAM boundaries are formed by densely packed DNA sequences
harboring many 3D contacts.

We next investigated how RAMs are related to the previously
identified chromatin modules. First, the median size of cRAMs
(~3.3Mbp) is larger than TADs (~600kbp) and one RAM often spans
across multiple TADs (Fig. 2i). Second, using the Hi-C data, we identi-
fied the A/B compartments at 250kb resolution (see “Methods”). We
calculated the percentage of the A and B compartments in each cRAM
(250kb bin size) across the cell types. While the A compartments
account around 50–75% in each of the cRAM, a single cRAM is largely
composed of a mixture of A and B compartments, indicating a dis-
tinction between cRAMs and compartments (Fig. 2j). Consistently, the
cRAM boundaries are enriched with B-compartment but also with a
significant portion of A compartments (Fig. 2j). Third, we checked the
Lamin-B1 signals for the cRAM boundaries. Lamin-B1 is a scaffolding
component of the nuclear envelope22,23. A positive signal for Lamin-B1
suggests a closedistance to the nuclear lamina, which could be used to
define lamina-associated domain (LAD). When aligning the cRAM
boundaries with the Lamin-B1 signals (see “Methods”), we found on
average69%of the cRAMboundaries overlappedwith Lamin-B1 signals
across the cell types and meanwhile on average 62.7% of the LADs
identified from each cell type overlapped with cRAM boundaries
(Fig. 2k), indicating that LADs and cRAMs are also different. Taken
together, the cRAM boundaries are formed by densely packed DNA
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sequences; while they are enriched with B compartment and Lamin-B1
signals, RAMs are clearly distinct from previously reported domain
structures such as TADs, LADs, and A/B compartments.

RAMs are functional units
If RAMs are functional modules, we reasoned that the majority of the
promoter-enhancer interactions should occur within the same RAMs.
We downloaded 970 high-confidence promoter-enhancer interactions
in the K562 cell line that were experimentally validated in refs. 24, 25
and 95% of them are located within the same RAMs, compared to 75%

of them in the same TADs4,6,8,26 (Fig. 3a, b). Two examples of promoter-
enhancer interactions are shown in Fig. 3g: the enhancer–promoter
interactions of STEAP1B and VGF are across multiple TADs but within
the same K562 RAMs marked by continuous strong H3K27ac peaks.
This observation suggests that RAMs may represent regulatory mod-
ules and RAM boundaries insulate promoter-enhancer contacts across
RAMs at a scale more appropriate than TADs to capture the functional
modularity of chromatin activity.

We further investigated how the modularity defined by RAMs
affects gene expression. To this end, we examined whether the

Fig. 1 | Regulation associated module (RAM) identification. a H3K27ac peaks
density of chr12 in GM12878 (bin size=250kb). b Pearson correlation between
histone modification marks (H3K27ac, H3K4me1, H3K4me3, H3K36me3,
H3K27me3, and H3K9me3) for the Roadmap samples. c Examples of histone

modifications, A/B compartments, subcompartments, number of the 3D contacts,
TAD boundaries and RAM boundaries in chr12 for GM12878. d The zoom-in
genomic view for chr12:40Mb-80Mb in hg19. e The zoom-in genomic view for
chr12:90Mb-120Mb in hg19.
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enhancer–promoter pairs located within the same K562 RAMs but
separated by RAM boundaries in other cells would specifically impact
gene expression in K562.When comparing K562 to the normal cell line
GM12878, we found 885 K562 enhancer–promoter interactions were
within the same RAMs in both cell lines and 39 only in K562 (Fig. 3c).
The majority of the genes regulated by the 39 enhancer–promoter
interactions are upregulated in K562 compared to inGM12878 (p-value
= 0.0002 by Hypergeometric Test, see ”Methods”) (Fig. 3d), indicating
that the RAM organization facilitates promoter-enhancer interactions
to activate gene expression. For example, the RAB31 promoter inter-
acts with an enhancer that is located within the same RAM in K562 but
in a RAMboundary in GM12878 where the enhancer would be silenced
in GM12878; the PRELID2 promoter and its interacting enhancer are
located within the same K562 RAM but reside in a GM12878 RAM
boundary indicating suppression in GM12878 (Fig. 3h). In fact, the
RAB31 and PRELID2 normalized expression levels are 34.29 and 5.37
folds higher inK562 than inGM12878, respectively. All the upregulated

gene expressions involved in enhancer–promoter interactions that
occurred in the same RAM in K562 but in different GM12878 RAMs are
shown in Supplementary Table 2. We had a similar observation by
comparing K562 and HEPG2: while the majority of the promoter-
enhancer pairs are intra-RAM in both cell lines, 28 of them only
occurred in the same RAM in K562 but in different HEPG2 RAMs
(Fig. 3e) and the corresponding genes have higher expressions in K562
than in HEPG2 (p-value = 0.0006 by Hypergeometric Test) (Fig. 3f,
Supplementary Table 3). Furthermore, we examined the K562
enhancer–promoter pairs in K562-specific RAMs and the cancer con-
sensus RAMs (cancer cRAMs). 750 pairs were identified as intra-RAM
interactions in both K562 RAMs and cancer cRAMs (Supplementary
Fig. 4a). 76 geneswere involved in the 174 pairs that are only intra-RAM
interactions in K562, and 19 of themwere detected as K562 specifically
highly expressed genes across 92 cancer cell lines (hypergeometric
test p-value = 0.03) documented in the Harmonizome database27

(Supplementary Fig. 4b). These observations further illustrated that

Fig. 2 | Characterization of the cRAMs and boundaries. a Genome browser
examples of normal cRAM boundaries and the histone modifications in genomic
region chr12:40Mb-90Mb in hg19 for GM12878 and the HUVEC cells. b–g The
genome-wide enrichment of the histonemodificationmarks (n = 93 samples/cells).
b H3K27ac, (c) H3K4me1, (d) H3K4me3, (e) H3K27me3, (f) H3K9me3, and (g)
H3K36me3 in cRAMboundaries andnon-boundaries. Thep-valuewas computedby
two-sided Wilcoxon Rank Sum test. h The contacting neighbors distribution of
cRAM boundaries and whole-genome locus in the 3D contact network in a diverse

of the cell types (n = 8 cell lines). The bounds of all boxplots showed the 25 per-
centile, median, 75 percentile of the dataset; the maxima andminima were defined
excluding the outliers. i Sizes of the TADs and cRAMs. j cRAM boundaries dis-
tribution over A/B compartments (n = 8 cell lines). The bounds of all boxplots
showed the 25 percentile, median, 75 percentile of the dataset; the maxima and
minima were defined excluding the outliers. k cRAM boundaries distribution over
LaminB1 signals (LAD).
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RAMs representmodularity directly associatedwith functional activity
of the chromatin.

Furthermore, we reasoned that themajority of loop anchors and
super-enhancer clusters should occur within the same RAMs. We

downloaded the loop anchor data (HCC1599_DMSO_GSI,
MB157_DMSO_GSI_WO, and REC1_DMSO_GSI) and the contact
domains (HCC1599_DMSO, HCC1599_GSI, MB157_DMSO, MB157_GSI,
MB157_WO, REC1_DMSO, and REC1_GSI)28. As the HCC1599, MB157,

Fig. 3 | RAM is a functional unit. a K562 enhancer–promoter pairs distribution
over K562 RAMs. b K562 enhancer–promoter pairs distribution over K562 TADs.
cK562 enhancer–promoter pairsdistributionover K562RAMs andGM12878RAMs.
d Genes regulated by the 39 enhancer–promoter interactions only within K562
RAMs tend to have higher expressions in K562 compared to GM12878. The p-value
was derived from hypergeometric test. e K562 enhancer–promoter pairs distribu-
tion over K562 RAMs and HEPG2 RAMs. f Genes regulated by the 28

enhancer–promoter interactions only within K562 RAMs tend to have higher
expressions in K562 compared to HEPG2. The p-value was derived from hyper-
geometric test. g Examples of K562 enhancer–promoter pairs relative to K562 TAD
and RAM boundaries. h Examples of K562 enhancer–promoter pairs relative to
K562 and GM12878 RAM boundaries. i ecDNA distribution over TADs. j ecDNA
distribution over cancer cRAMs.
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and REC1 cell lines are cancer cells we examined cancer cRAMs for
them. We found that on average 80% of loop anchors occur within
the same cRAMs (intra-domain loop anchors), compared to only 42%
on average within the same TADs (Supplementary Fig. 4c). Similarly,
for the super-enhancers identified across 86 human cell and tissue
samples29, 81% and 84% of super-enhancers are located within the
same cancer and normal cRAMs, respectively. (Supplementary
Fig. 4d). Taken together, these observations suggested that cRAMs
representmodularity of the genome at a scale better alignedwith the
chromatin activities.

RAMs are insensitive to cohesin degradation
Previous studies showed that cohesin degradation would disrupt loop
domains and topological associated domains (TADs) but largely not
change histone modifications and gene expression30,31. Therefore,
RAMs are not expected to be affected by cohesin degradation. For
confirmation, we identified RAMs using H3K27ac data in the HCT-116
RAD21-mAC cells untreated and treated for 6 h with IAA. The RAM
patterns for each chromosomewerehighly correlatedbetween treated
and untreated cells (Supplementary Fig. 5a) and the recall rate for the
RAM boundaries was 0.9 on average for all the chromosomes (Sup-
plementary Fig. 5b). Thisobservation indicates that theRAM formation
is independent of cohesin, distinguishing RAMs from TADs and loop
domains.

Extrachromosomal DNA (ecDNA) from cancer patients majorly
originated from intra-RAM
Circular extrachromosomal DNAs (ecDNAs) are prevalent in tumors
and their length ranges from 100kbp to megabases, and the genes
encoded in the ecDNAs are often amplified in cancers32–34. We reason
that if RAMs are functionalmodules, ecDNAs would formwithin RAMs
because RAM boundaries are highly condensed DNAs that would
restrain the transcription of genes residing in ecDNAs. To test this
hypothesis, we downloaded the ecDNAs identified from cancer
patients35, andfiltered the ecDNAs corresponding to themedian size of
the cancer cRAM length (2.5Mb), i.e. only ecDNAs with size <2.5Mb
were kept (i.e. 78% of all the ecDNAs). We found that 98% of 2459
ecDNAs were located within the individual RAMs. As a comparison, we
performed the same analysis on TADs. We took the conserved TADs
defined in the Dixon et al. study4 and only kept the ecDNAs shorter
than 880kbp (68% of all the ecDNAs), the median size of the TAD
length. We found that 86% of the 2150 ecDNAs were within individual
TADs (Fig. 3j, k). Because the ecDNAswere filtered to have comparable
length with the RAM and TAD sizes, respectively, this lower intra-
domain percentage for TAD compared to RAM is not due to the larger
size of RAMs. Furthermore, GREAT analysis36 (http://great.stanford.
edu/public/html/) on the ecDNAs that fall into intra-cancer cRAMs but
split in TADs revealed that they are highly enriched in “positive reg-
ulation of DNA replication” with a P-value of 5.1641E−19. There are 12
genes involved in this pathway: ATF1, BMP5, BMP6, EGFR, FGFR1, GLI2,
IGF1, IL6, JUN, KITLG, PDGFA, PDGFRA, which are known important for
cell proliferation and cancer pathogenesis. For example, EGFR is a
driver of tumorigenesis37. Deregulation of the oncogenic FGFR sig-
naling has been frequently observed inmultiple types of cancers38. The
PDGF-mediated signaling has been reported to be involved in the cell
proliferation and invasion39. The observations that ecDNAs tend to
originate from intra-RAMs suggest that RAM is a functional module.

Deletion of the cRAM boundaries is predicted to alter the 3D
chromatin structures
To systematically examine the impact of deleting cRAMboundaries on
the chromatin structure, we resorted to computational predictions
using a deep learning model ORCA40 (https://github.com/jzhoulab/
orca) as it is prohibitive to perform hundreds of Hi-C experiments with
sufficient resolution.We took theORCAmodel pre-trainedon thehigh-

resolution Hi-C and Micro-C data in H1-hESC and HFF cell lines to
predict 3D chromatin architecture from kilobase to whole-
chromosome scale using DNA sequences. It also provided perturba-
tion predictions if certain sequences were deleted. cRAM boundaries
shared between cancer and normal samples are apparently important,
therefore we selected all 418 of them that are located at least 16Mb
away from the centromere to predict their impacts on Hi-C contacts if
deleted. As a comparison, we also included 298 H1-hESC and 187 HFF
TAD boundaries (length of the TAD boundaries > = 100kbp; non-
overlap with selected cRAM boundaries; away from centromere at
least 16Mb) in the computational perturbations screening. Consider-
ing that the cRAM boundaries are often larger than the TAD bound-
aries, we only deleted the center 100kbp of cRAMand TAD boundaries
to avoid bias introduced by deletion size.

Tomeasure the similarity between the deletion and wildtype Hi-C
contactmatrices,we calculated the Pearsoncorrelation between them.
Compared to the TAD deletions, deleting cRAM boundaries obviously
resulted in lower correlation coefficients, indicating larger chromatin
alterations, at the highest resolutions the ORCA model could predict
(4 kb and 8 kb resolutions with Wilcoxon Rank Sum test p-values of
2.4E−11 and 2.6E−7, respectively) (Fig. 4b). Deletion of the cRAM
boundary (chr10:115,940,000-116,040,000, in hg38) on Hi-C contacts
in HFF and H1-hESC cells is shown as an example (Fig. 4a, Supple-
mentary Fig. 6). The 3D contacts are severelyweakened by deleting the
cRAM boundary in both cell types.

Furthermore, if theRAM formation is important, deletionof cRAM
boundaries would likely severely interfere with cellular functions and
even affect cell viability. Recently, we deleted 960 5kbp-long non-
coding loci that form a large number of 3D contacts in the Hi-C
experiments in K562 and 35 of them are essential for cell viability41.
Strikingly, 14 out of the 35 essential non-coding loci (40%) reside in the
cancer cRAM boundaries (Two-sample proportional test p-value =
0.01) while the cancer cRAMboundaries only accounted for 20%of the
genome (Fig. 4c, Supplementary Table 4) Note that the median size of
the cRAMboundaries is 750kbp long anddeletionof 5kbp is only a tiny
portion, which highlights the importance of cRAM boundaries in
maintaining the normal cellular functions.

Somatic genetic variations enriched in RAM boundaries
If RAMs are functional modules important for regulating functional
activities, we reason that somatic mutations in cancers may target the
RAM boundaries to disrupt the modular organization of chromatin
leading to aberrant regulation of gene expression and resulting
tumorigenesis. The PCAWG study revealed consensus mutations and
variations from thousands of cancer patients including ~20 millions of
somatic single nucleotide variations (SNVs) and ~1.08millions of indels
(https://dcc.icgc.org/releases)42. We found that, while cancer cRAM
boundaries cover ~21.6% of the genome, they host 25.9% of somatic
SNVs and 23.4% somatic indels. As a comparison, the conserved TAD
boundaries4 covering 6.5% genome contained 5.2% somatic SNVs and
6% somatic indels (Fig. 4d). The cancer cRAM boundaries are sig-
nificantly enrichedwith both somatic SNVs and indels compared to the
TADboundaries (P-value < 1E−5 fromTwo-sample Proportion tests, see
“Methods”), indicating a stronger association with cancer mutations.

To elucidate the sequence features associated with cRAM
boundaries and investigate how the somatic mutations change such
features, we performed motif analysis on the cRAM boundaries using
Homer43. We focused on the cRAMs that are common in cancer (nor-
mal) but not in normal (cancer) samples as cancer (normal)-specific
cRAMs, as they represent changed modularity between cancer and
normal samples. By comparing cancer-specific and normal-specific
cRAMs, we found 73 and 74motifs enriched only in cancer and normal-
specific cRAM boundaries, respectively (example motifs shown in
Fig. 4e, g). We employed FIMO44 to identify the occurrences of the
enriched motifs that counted for 25.8% and 30.1% in base pairs,
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respectively, in the cancer and normal-specific cRAM boundaries
(Fig. 4f, h). We nextmapped the PCAWG somatic SNVs and indels onto
the cancer and normal-specific cRAM boundaries. While somatic SNVs
do not show preferred occurrences within the enriched motifs (24.9%
and 29.9% for cancer and normal-specific cRAM boundaries, respec-
tively), the somatic indels overlapping with the cancer/normal-specific

cRAMboundaries preferentially hit the enrichedmotifs (52.3% and63%
for cancer and normal-specific cRAM boundaries, respectively), more
than twofold by chance, in the altered cRAM boundaries between
normal and cancer samples. We speculate that the enriched motifs in
cancer and normal-specific cRAM boundaries may respectively facil-
itate disruption and formation of cRAM boundaries in the normal
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samples. Two examples of these motifs overlapping with indels are
shown in Fig. 4i, j. We identified genes within 2.5 kb from the enriched
motifs overlapping with somatic indels and analyzed the enriched
pathways using g:Profiler45. The KEGG over-represented pathways are
shown in Fig. 4k, and the geneontologymolecular functions are shown
in Supplementary Fig. 7. Furthermore, we downloaded the normalized
gene expressions of the TCGA and GTEx samples from Expression
Atlas (https://www.ebi.ac.uk/gxa/home) and identified differentially
expressed genes (DEGs) (p-value ≤ 0.05 by the two-sided Wilcoxon
Rank Sum tests between cancer and normal samples). The top-ranked
pathways associated with cancer and cell proliferation are highly
enriched with the DEGs, such as PIK3AP1, LABM3, AKT1, MYB in “PI3K-
AKT pathway” (32%) and “pathways in cancer” (20%) (Fig. 4l). These
observations suggested that the motifs specifically enriched in the
formation of cancer cRAMboundaries and disruption of normal cRAM
boundaries are close to genes important for tumorigenesis, cell sur-
vival, and cell proliferation. Somatic indels can severely alter these
motifs and may contribute to the cRAM boundary change, affecting
the expressions of the nearby genes.

Discussion
In this study, we analyzed the peak density profiles of histone mod-
ification data and found they show modular patterns. These modules
are clearly defined by active marks such as H3K27ac, H3K4me1, and
H3K4me3, indicating their association with the functional activity of
the genome, and are thus termed regulation-associated modules
(RAMs). While TADs and compartments are identified from the 3D
contacts measured by Hi-C, RAMs are delineated by histone mod-
ifications that are directly related to chromatin accessibility and gene
expression. We showed that RAMs are obviously distinct from TADs,
compartments and LADs although some RAM boundaries do overlap
with TAD, compartment or LAD boundaries.

By surveying 93 normal and 19 cancer samples, we found the
following evidence to support that RAMs are spatial modules resulting
from functional activities. First, we observed that on average 60% of
the RAMs (i.e. consensus RAMs) are largely shared across samples,
while someof themare sample specific. Compared toTADs, consensus
RAMs host a higher percent of experimentally confirmed promoter-
enhancer contacts, loop anchors, and super-enhancer clusters (i.e.
within the same RAMs), suggesting RAMs represent a modularization
of the genome at a scale better aligned with transcriptional regulation.
Second, ecDNAs detected from cancer patients tend to originate from
the same RAMs rather than across multiple RAMs, supporting the
insulation effect of RAM boundaries. Third, deletion of the cRAM
boundaries would result in more severe chromatin alteration than the
TAD boundaries based on in silico predictions of Hi-C contacts, sug-
gesting the importance of cRAM boundaries in maintaining the chro-
matin structure. In addition, deletion of RAM boundaries likely

interferes with cellular functions and even affects cell viability as
revealed by the CRISPR-Cas9 screening experiments. Fourth, cRAM
boundaries are also more enriched with somatic genetic variants of
SNVs and indels than the TAD boundaries. In particular, the somatic
indels tend to disrupt the motifs specifically enriched in cancer or
normal-specific cRAM boundaries, suggesting a possible mechanism
of tumorigenesis involved in altering the chromatin modularity.

To investigate the mechanisms underlying the RAM formation,
we found that the RAMs are separated by densely packed DNA
regions (as shown by their large number of Hi-C contacts) enriched
with repressive histone modifications and lacking open chromatin,
active histone marks, or transcriptional events. Furthermore, unlike
TADs, RAMs are insensitive to cohesin degradation. Taken together,
these observations clearly show that RAMs are distinct from loop
domains and TADs. RAMs are also different from lamina-associated
domains (LADs) defined by measuring the intermediate filament
protein LMNB1 localization. The LADs are formed through interac-
tions between chromatin and lamina, and they are located at the
periphery of the genome. The RAM boundaries are demarcated by
densely packed DNAs and many RAM boundaries are not located in
regions interacting with lamina or overlapping with TAD boundaries,
and thus the mechanism underlying RAM boundary formation
should be different from other chromatin modules including TADs,
LADs and compartments.

Many studies (such as in refs. 46, 47) have shown that multivalent
cations such as calcium, magnesium, and manganese can reduce the
electrostatic repulsions between the DNA chains and induce DNA
condensation. Furthermore, these cations may bind to specific DNA
sequences48 and affect nucleosome positioning49,50. Therefore, a pos-
sible mechanism can be that genomic DNAs become densely packed
around cations such as Ca2+, Mg2+ and Mn2+ to form RAM boundaries
even if they are not marked by H3K9me3 or interacting with lamina.
Proteins such as calcium binding proteins that carry many cations or
their interacting partners may recognize specific DNA sequences such
as those motifs enriched in the cancer or normal-specific cRAM
boundaries to facilitate locus-specific localization of cations. Interest-
ingly, the most enriched molecular function of the genes close to
(<2.5kbp) the enriched motifs overlapping with somatic indels in the
cancer or normal-specific cRAM boundaries is calcium ion binding
(Supplementary Fig. 7), and ~30% of them are differentially expressed
in cancer and normal samples (Supplementary Table 5), implying a
possible feedback mechanism. This hypothesis and the mechanistic
details are awaiting future studies.

Methods
Regulatory associated modules (RAM) identification
Data source. The 93 normal and 19 cancer samples with processed
narrow peaks (H3K27ac, H3K4me3, H3K4me1) and broad peaks

Fig. 4 | The association of the cRAM boundaries with the 3D chromatin struc-
ture and cancer somatic variants. a An example of the Hi-C contact change upon
deletion of the cRAM boundary (chr10:115,940,000-116,040,000 in hg38) in HFF
cells predictedby a deep learningmodelORCA.bPearson correlations between the
predicted Hi-C contacts before and after cRAM boundary and TAD boundary
deletion in HFF cells. A lower correlation indicates a larger perturbation to the wild-
type chromatin structure upon deletion. n = 399 loci in 1Mb resolution and n = 989
loci in 2Mb resolution data for HFF cell line. The p-value was derived from two-
sided Wilcoxon Rank Sum. The bounds of all boxplots showed the 25 percentile,
median, 75 percentile of the dataset; the maxima and minima were defined
excluding the outliers. c Essential non-coding loci enriched in the cancer cRAM
boundaries. d Somatic SNV and indels enrichment in cancer cRAM boundaries and
TAD boundaries. Genome coverage: the total base pairs of the cancer cRAM
boundaries or TADboundaries in thewhole genome; SNV coverage: the percentage
of the SNVs in the cancer cRAM boundaries or TAD boundaries in the whole gen-
ome; INDEL coverage: the percentage of the indels in cancer cRAM boundaries or

TAD boundaries in the whole genome. e Examples of the enriched motifs in the
cancer-specific cRAM boundaries. The motif enrichment p-value was derived from
cumulative binomial distribution with default settings in Homer pipeline.
f Overlaps of somatic SNVs and indels with the enriched motifs in the cancer-
specific cRAMboundaries.g Examples of the enrichedmotifs in the normal-specific
cRAM boundaries. The motif enrichment p-value was derived from cumulative
binomial distributionwith default settings inHomer pipeline.hOverlapsof somatic
SNVs and indels with the enriched motifs in the normal-specific cRAM boundaries.
i The zoom-in genomic view for the enriched motifs with somatic indels in cancer-
specific cRAMboundaries. jThe zoom-ingenomicview for the enrichedmotifswith
somatic indels in normal-specific cRAM boundaries. k KEGG over-represented
pathways for the genes within 2.5 kb from the enriched motifs overlapping with
somatic indels. The p-value was derived from hypergeometric test with
Benjamini–Hochberg FalseDiscovery Rate approach at FDR cutoff 0.05 in g:Profiler
software. l Differentially expressed genes (p-value ≤ 0.05 from two-sidedWilcoxon
Rank Sum test) in KEGG “Pathways in cancer” and “PI3K-AKT pathway”.
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(H3K27me3, H3K9me3, H3K36me3) in hg19 were downloaded from
Roadmap Epigenomics portal (https://egg2.wustl.edu/roadmap/web_
portal/)19 and ENCODE portal (https://www.encodeproject.org/). All
the downloaded data met the ENCODE standards. Supplementary
Table 1 lists the samples used in this study. All the data were obtained
by GNU Wget 1.14.

RAM identification in individual samples. We calculated the H3K27ac
narrow-peak density using a sliding window of step size equal to 10 kb,
50 kb, 100 kb, 250kb, and 500 kb, respectively and 500 kb flanking
size of each window in every sample. The H3K27ac narrow-peak pro-
files were then smoothed by a local polynomial regression fitting51. The
RAM boundaries (valley/minima on the smoothing curves) and peaks
(summit/maxima on the smoothing curve) in the smoothed curves
were then detected using the “findpeaks” function in R package
“pracma” (R v4.1.2).

Consensus-RAM (cRAM) identification. We first identified RAM
boundaries in the 93 normal or 19 cancer samples using different step
sizes (10 kb, 50 kb, 100 kb, 250kb, and 500 kb) and then counted the
percentage of a genomic region identified as RAM boundary in the 93
normal or 19 cancer samples. A genomic region with occuring per-
centage > =25%was considered as a consensus-RAM (cRAM) boundary
in the normal or cancer samples. We merged cRAM boundaries if they
are located <250 kb apart from each other and required cRAMs have a
size >250 kb. All the analysis was done in Python v3.8.

Hi-C data analysis
Hi-C processing. TheHi-Cdata for thewildtype K562, GM12878, A549,
IMR90, NHEK, HUVEC, HMEC, and the HCT116 cell lines were down-
loaded from GEO (GSE63525) and the ENCODE portal (ENCSR662QKG
and GSE104333). All the raw fastq files were aligned to hg19 genome
and then processed using Juicer pipeline (v1.5.6) with the default
settings7,52. The contact reads in a given cell line were further nor-
malized by vanilla coverage (VC) normalization using the Juicer pipe-
line. The significance for a given fragment contact was computed by
Poisson distribution with VC-normalized expected contact reads ver-
sus the VC-normalized observed contact reads. We then used
HiCExplorer53–55 (v2.2.1.1) andHiCplotter56 (v0.8.1) software to visualize
the Hi-C data.

A/B compartment. We performed A/B compartment analysis at
250kb resolution. The eigenvectors for each chromosome in all the
cell lines involved in theHi-Cdata analysis were extracted from the VC-
normalized Hi-C counts processed by the Juicer pipeline with the
default parameters52. POLR2A ChIP-seq data were obtained from the
ENCODE57 portal (https://www.encodeproject.org/). To determine A or
B compartment, we calculated the correlation between the first
eigenvector of each chromosome and thePol II peakdensity58. As there
was no Pol II ChIP-seq data available for HMEC, we used TSS density in
the hg19 genome to assign A/B compartments in HMEC.

Topological associated domains (TAD). To identify topological
associateddomains (TAD), weapplied the insulation scoremethod59 to
the Hi-C data at 50kb resolution in the K562, GM12878, A549, IMR90,
NHEK, HUVEC, HMEC, HCT116, and HFF cell lines. The HFF cell line hic
data were downloaded with accession number 4DNFIMROE6N4) and
its TADs identified with insulation score method59 at 50 kb resolution
data. The H1 cell line TADs were downloaded from ref. 4.

Lamina-associated domains (LADs) data processing
The Lamin-B1 signal data in the K562, HCT116, H1, HAP1, RPE-hTERT,
HFFc6 cell lines generated by the DamID technique were obtained
from the 4DN portal60. We downloaded the mean of the replicates for
each cell line. The Lamin-B1 signals at 50 kb resolution for the K562,

HCT116, H1, HAP1, RPE-hTERT, HFFc6 cell lines were lifted over from
hg38 to hg19.

Cohesin degradation analysis
TheH3K27ac ChIP-seq data in the untreated HCT-116 RAD21-mAC cells
and HCT-116 RAD21-mAC cells treated for 6 h with IAA were down-
loaded from GEO (GSE104888). We processed the H3K27ac data same
as ref. 61. In brief, we aligned the raw data to the hg19 human genome
using the BWA (v0.7.17) software62, and then deduplicated the reads
using PicardTools (Picard v2.17.0). The narrow peaks were called by
comparing the associated input data using MACS263 (v2.2.7.1). All the
parameters were set to the defaults.

Enrichment of upregulated genes in enhancer–promoter pairs
occurring in the same RAM of K562 but split in the background
cell type by hypergeometric test
The hypergeometric test was employed tomeasure the significance of
the upregulated genes involved in the enhancer–promoter pairs
occurring in the same RAM in K562 (foreground cell type) but in dif-
ferent RAMs of the background cell type. The population size N was
the overall genes involved in the K562 and the compared cell type. The
population success size M was the number of all upregulated genes in
the K562 compared to the background cell type. The sampling size n
was the number of the genes involved in the enhancer–promoter pairs
occurring in the same RAM of K562 but in different RAMs of the
background cell type, and the sampling success size m was the upre-
gulated genes involved in the enhancer–promoter pairs occurring in
the same RAM of K562 but in different RAMs of the background cell
type. Enrichment was considered significant if p-value < 0.05.

Enrichment of the somatic variants in cancer cRAM boundaries
compared to the TAD boundaries assessed by Two-sample Pro-
portion Tests
The two-sample proportion test null hypothesis was to test the equal
proportion of the number of the somatic variants relative to the gen-
ome coverage (in base pair) in the cancer cRAM boundaries and TAD
boundaries. The two proportions were calculated separately by the
number of the somatic variants divided by the boundary length (in
base pair) for cancer cRAM boundaries and TAD boundaries. Enrich-
ment was considered significant if p-value < 0.05 at two-sided test.

Somatic mutations and structural variation analysis for cancer
patients from PCAWG
The consensus somatic SNV and indels were downloaded from
PCAWG42,64. The VCF files were transformed to bed files by BEDOPS
vcf2bed tools (bedops v2.4.40) (https://bedops.readthedocs.io/en/
latest/content/reference/file-management/conversion/vcf2bed.
html)65. The number of somatic SNV and indels overlapping with the
RAM and TAD boundaries were then counted.

Motif analysis
The motif analysis was done using the Homer (v4.11.1) pipeline43 with
default parameters. Themotif occurrencewas called using FIMO44with
p-value ≤ = 1E−4. (MEME Suite v5.4.1).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support this study are available from the corresponding
author upon reasonable request. The 93 normal and 19 cancer samples
with processed narrow peaks (H3K27ac, H3K4me3, H3K4me1) and
broad peaks (H3K27me3, H3K9me3, H3K36me3) in hg19 were down-
loaded from Roadmap Epigenomics portal [https://egg2.wustl.edu/
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roadmap/web_portal/] and ENCODE portal [https://www.
encodeproject.org/]. Accession codes for these datasets are listed in
Supplementary Table 1. TheHi-C data for thewildtype K562, GM12878,
A549, IMR90, NHEK, HUVEC, HMEC, HCT116 and HFF cell lines were
downloaded from GSE63525, ENCSR662QKG, GSE104333, and
4DNFIMROE6N4. TheH3K27acChIP-seq data in the untreatedHCT-116
RAD21-mAC cells and HCT-116 RAD21-mAC cells treated for 6 h with
IAA were downloaded from GSE104888. The consensus somatic SNV
and indels were downloaded from PCAWG. The K562, HCT116, H1,
HAP1, RPE-hTERT,HFFc6 cell lines LADdataweredownloaded through
4DNFIJHD22QE, 4DNFIA2LBQCD, 4DNFIJXADI29, 4DNFIDFCY3JN,
4DNFIUVTO2H3, 4DNFIT9W77EE.

Code availability
The RAM identification package (“findRAM”) is available on GitHub
(https://github.com/Wang-lab-UCSD/findRAM).
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