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Advancing our understanding of genetic risk factors
and potential personalized strategies for pelvic
organ prolapse
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Pelvic organ prolapse is a common gynecological condition with limited understanding of its
genetic background. In this work, we perform a genome-wide association meta-analysis
comprising 28,086 cases and 546,291 controls from European ancestry. We identify 19 novel
genome-wide significant loci, highlighting connective tissue, urogenital and cardiometabolic
as likely affected systems. Here, we prioritize many genes of potential interest and assess
shared genetic and phenotypic links. Additionally, we present the first polygenic risk score,
which shows similar predictive ability (Harrell C-statistic (C-stat) 0.583, standard deviation
(sd) = 0.007) as five established clinical risk factors combined (number of children, body
mass index, ever smoked, constipation and asthma) (C-stat=0.588, sd =0.007) and
demonstrates a substantial incremental value in combination with these (C-stat =0.630,
sd = 0.007). These findings improve our understanding of genetic factors underlying pelvic
organ prolapse and provide a solid start evaluating polygenic risk scores as a potential tool to
enhance individual risk prediction.
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elvic organ prolapse (POP) is characterized by a descent of

pelvic organs into the vaginal cavity!. It affects around 40%

of women after menopause’4 and the lifetime risk of
gynecological surgery for POP is up to 19% in the general female
population®. The main symptoms include a bothersome sense of
vaginal bulge, urinary, bowel, and/or sexual dysfunction, which
substantially affects a woman’s quality of life®’. The most com-
mon risk factors are age, number of offspring, operative vaginal
delivery, and BMI3-10. However, despite its health and economic
impact, the etiology of this complex disorder remains poorly
understood and there is a lack of evidence for early detection of
women who are at risk of developing POP.

Genetic factors have been estimated to explain 43% of the
variation for POP risk!!, yet have been poorly characterized. A
recent genome-wide association study (GWAS) of Icelandic and
UK Biobank (UKB) cohorts reported seven loci that associate
with POP!2? and point to a role of connective tissue metabolism
and estrogen exposure in its etiology. Nevertheless, increasing the
sample size is likely to boost the power for the detection of more
common risk variants, promoting the identification of genetic risk
factors and enlightening biological mechanisms underlying POP.

Created based on GWAS results, polygenic risk scores (PRS)
have been utilized as a tool to stratify individuals into different
risk groups in complex diseases!3. However, PRS have never been
used as a tool for predicting POP development. In contrast to
physical examinations, which remain to be the gold-standard for
POP assessment, PRS could serve as a tool to identify women
with higher genetic risk of POP and tailor individualized pre-
ventive strategies even decades before symptomatic POP appears.

In this work, we present the largest GWAS for POP to date
(nearly doubling the number of cases compared to previous
efforts'2) and systematically dissect the association signals to
propose potential causal genes in associated loci. We also devel-
oped for the first time a PRS for POP to evaluate risk stratification
using individual genetic risk and the predictive ability of PRS
alone or in combination with classical risk factors, a tool that
might favor preventive and personalized strategies in the future.

Results

Genome-wide inferences. We performed a meta-analysis with
data from three studies (Icelandic and UKB cohorts, FinnGen
study, and EstBB) including a total of 28,086 women with POP
and 546,291 female controls of European ancestry (Supplemen-
tary Fig. 1). The meta-analysis identified a total of 26 loci, with 30
independent lead signals significantly associated with POP
(P<5x1078) (Supplementary Data 1). From these, 19 loci were
novel findings and we replicated all seven previously reported
loci!2. According to I2, two variants showed large heterogeneity
(rs3820282 I> =76% and rs72624976, I> = 83%, the latter likely
due to differences in allele frequency between cohorts (Supple-
mentary Data 2), although Q-Cochran test showed no hetero-
geneity of effects between the three datasets at any of the lead
signals (Q-Cochran p varying from 0.0023-0.982, with a Bon-
ferroni corrected threshold of 0.05/30 =0.001) (Supplementary
Fig. 2, Supplementary Data 1). All lead variants were present in at
least two out of the three datasets analyzed and were common
variants (MAF >0.05) except for one replicated (rs72624976,
EAF=0.01, p=1.14x107%) and one previously unidentified
association (rs72839768, EAF = 0.02, p = 4.66 x 10~?). There was
no evidence of excessive genomic inflation (A =1.054) in the
GWAS meta-analysis (LDSC intercept= 1.0059 (s.e. 0.0079))
(Fig. 1). The observed SNP heritability estimate was 0.017 (s.e.
0.001), which corresponds to a liability scale SNP heritability of
0.079 given a population prevalence of 0.05 for symptomatic POP
and 0.143 given a population prevalence of 0.40 for overall POP.

The SNP heritability explained by the significant loci identified
was 0.022 given a population prevalence of 0.05.

Gene prioritization. In order to move from genetic variants to
plausible candidate genes, we prioritized genes according to dif-
ferent data layers of evidence, considering at least the presence
from one of the next four main evidence levels: (1) positional
mapping as implemented in FUMAv1.3.6a!4 was used to deter-
mine the nearest gene to the association peak; (2) genes con-
taining variants which showed significant (posterior probability
>0.8) colocalization in eQTL datasets; (3) genes containing non-
synonymous variants or in high LD (r2>0.6) with these;
(4) genes which showed embryo, growth/size/body, muscle,
renal/urinary system, reproductive system, digestive/alimentary
system phenotypes in mutant mice (Mouse Genome
Informatics!>, MGI).

Overall, our results are in line with previous findings, repli-
cating and highlighting associations near WNT4, EFEMPI, FAT4,
IMPDH1, TBX, and SALLI'2. Colocalization analyses allowed us
to highlight an additional candidate gene, LDAH in the previously
reported 2pl6.1 locus. Additionally, significant colocalization
signals allowed us to prioritize potential previously unidentified
candidate genes such as VCL, CHRDL2, DUSP16, LOXLI-ASI,
CRISPLD2, KLF13, ADAMTS5, and MAFF in 2p24.1, 10q22.1,
11q13.4, 12p13.2, 15q24.1, 15q13, 16q24.1, 21q21.3, and 22q13
respectively (Fig. 2 and Supplementary Data 3). Data from mouse
models also supported the roles of previously unidentified can-
didate genes such as ACADVL (AcadvitmlVje/AcadvitmlVije),
PLA2G6  (Pla2g6mISein/Pla2gémlSein), =~ and  HOXDI3
(Hoxd13tm1Ddu/Hoxd13+), which have been associated with
muscle fiber formation, muscle weakness and muscle hypotonia
phenotypes.  Wt1tm2Asc/Wwtm2Asc  mouse models exhibited
abnormal reproductive physiology and GREMI mouse models
exhibited diverse renal and urinary system abnormalities. Addi-
tionally, we confirmed previously reported candidate genes with
substantial evidence from mice model studies such as LOXLI and
EFEMPI; a mouse model knock-out for LOXL1 (Loxl1tmITili/
LoxlItmITili) exhibited uterus prolapse and dilated uterine
cervix!®, while EFEMP1 knock-outs exhibited decreased skeletal
muscle weight, loose skin, and abnormal urogenital development.

Based on functional impact, we were able to identify three
additional candidate genes for POP. The lead variant in 17p13.1
(rs72839768, p = 4.66 x 10~°) is a missense variant of the DVL2
gene. Additionally, two non-synonymous variants in LD with the
lead signals were identified in two genes, LOHI2CRI in 12p13
(rs3751262, p=2.89x10~7, r2=0.70) and LACTB2-ASI in
8q13.2 (rs35863913, p = 3.05 x 107, r2 = 0.73).

Gene set and tissue/cell-type enrichment. Gene set and tissue/cell-
type enrichment analysis implemented in MAGMA!” and DEPICT!8
highlighted “Connective Tissue Development” (p=2.01 x 1079),
“Chondrocyte differentiation” (p=6.63x10"%) and “In utero
embryonic development” (p =491 x 10~8), Supplementary Fig. 3
and Supplementary Data 4 and 5). 12 tissues were significantly
enriched after correcting for multiple testing, including “Cervix/
ectocervix” (p = 1.30 x 107°), “Uterus” (p = 1.50 x 10~>), “Embryoid
bodies” (p=28.60 x 107%) and “Smooth muscle” (p=7.30x 10~%
Supplementary Fig. 3 and Supplementary Data 6 and 7).

Genetic correlation. Genetic correlation with POP was esti-
mated through pairwise comparison with published GWASs (43
phenotypes) and GWASs of UK Biobank data (518 phenotypes),
totaling 561 phenotypes, using LD score regression implemented
in LD-Hub!%20, 90 phenotypes demonstrated significant genetic
overlap with POP (p<8.91 x 10~°) (Fig. 3 and Supplementary
Data 8). We observed the largest positive correlation with hys-
terectomy (ry =0.59, p=3.43 x 10~17). POP was positively cor-
related with the number of children (r,=0.22, p =2.82x1078),
whilst age at first live birth was negatively correlated (r; = —0.19,
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Fig. 1 Manhattan plot showing genome-wide significant loci associated with pelvic organ prolapse and QQplot. a Manhattan plot for GWAS meta-
analysis for pelvic organ prolapse The novel candidates are highlighted as a black diamond. The y axis represents —log;o(P-values) for association of
variants with POP, from mixed logistic regression analysis of cohorts (adjusted by year of birth and 10 principal components). The horizontal dashed line
represents the threshold for genome-wide significance (P <5 x 10~8). b QQ plot. The panel displays a QQ plot, which show the —log;o(P-values) based on
a two-sided Z-tests for all SNPs. The dotted line represents the expected —log;o(P-values) under the null hypothesis.

p=142x1077). Positive associations were observed with gas-
troesophageal reflux (ry=0.31, p=5.37x10"7), diverticular
disease (ry=0.28, p= 433>< 10~16), osteoarthritis (rg=10.23,
p=4.48 x 107), hiatus hernia (ry =0.32, p =6.68 x 10 5) and
abdominal and pelvic pain (rq —031 p=3.58x10"7). We
additionally saw positive correlatlons with traits such as excessive
frequent and irregular menstruation (ry = 0.36, p = 3.47 x 107°)
and several cardiovascular phenotypes coronary artery disease
(rg=10.16, p=4.41x107°), angina (r,=0.19, p=8.79x 107>)
and myocardial infarction (ry=0.22, p=3.05x 107°). Positive
correlations were also observed for traits reflecting type of
occupation: job involving mainly walking or standing (1= 0.19,
p=3.7%10"7) and job involving heavy manual or phy51ca1 work
(rg=0.21, p = 4.4 x 10~?). Genetic correlations related to obesity
include significant relationships with body mass index (BMI)
(rg=0.12, p=473x10" 7),  waist-to-hip  ratio (rg=0.20,
p=427x1079), triglycerides (r,=0.17, p=16x10" 6) and
diabetes diagnosed by doctor (r,=0.15, p = 3.64 x 107°).

Phenome-wide associations. We performed a phenome-wide
association look-up of associated variants using GWAS Catalog?!
and Phenoscanner V2 databases?’, which underlined several
traits spanning abnormality of connective tissue, body measure-
ments, cancer, cardiovascular disease, digestive system disorders,
pulmonary function, reproductive health, liver disease, psychia-
tric disorders and other traits (Supplementary Figs. 4, 5 and
Supplementary Data 9, 10).

Developing PRS for POP. We compared the following two
software for calculating PRS: LDPred1.0.1123 and PRSice?*. The
resulting PRSs associations were scaled as follows: we calculated
odds ratio (OR) per one standard deviation of the PRS and 95%
confidence intervals (95% CI). We found that the best performing
PRS consisted of 3,242,959 SNPs and was built by LDPred. This
version showed an OR=1.42 (95% CI 1.37 to 1.47) and
p=2.59 x 10789 towards the case-control discrimination in the

discovery set (including 5379 prevalent cases and 21,516 controls)
(Supplementary Fig. 6 and Supplementary Data 11).

PRS performance across categories. We proceeded to test the
predictive ability of the PRS in the validation set (totaling 2517
incident cases and 96,109 controls). Analyzing the best PRS in the
validation set, a continuous PRS distribution showed the highest
Harrell’s C-statistic (C-stat) of 0.616 (sd = 0.006). In the valida-
tion set, we observed a risk gradient within percentiles (Fig. 4).
Women in the top 5% of the PRS distribution had 1.61 (95% CI:
1.35-1.92) times the hazard of developing POP compared to the
rest of the women and 1.53 (95% CI: 1.26-1.86) times the hazard
compared to women from the average (40-60%) (Supplementary
Data 13). However, it is important to note that this is a
Kaplan-Meier estimate, which does not take into account com-
peting risks such as death before developing the condition, and
thus incidence rates might be overestimated. When assessing
genetic risk in different age categories, none of the age groups
showed a higher HR compared to the full validation set analysis
(Supplementary Data 13). Women in 50-60 years old strata
showed highest HR amongst categories when comparing top 5%
genetic risk vs rest of women (HR = 2.04, 95% CI = 1.42-2.70), as
well as highest number of incident cases in top 5% genetic risk
(n=834) compared to younger and older strata (Supplementary
Data 12).

Predictive ability of the PRS and clinical variables. From the
validation set of EstBB we further selected a validation subset of
2104 cases and 24,753 controls who had little or almost no
missing clinical covariate data (Supplementary Fig. 1, Supple-
mentary Data 14), which allowed us to test the predictive ability
of the PRS alone or in combination with 5 clinical variables
(number of children, BMI, ever smoked, constipation and
asthma). In the validation subset, the continuous PRS distribution
showed a C-stat of 0.583 (sd=0.007). Amongst the clinical
risk factors evaluated, number of children was the best predictor
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Fig. 2 Evidence for pelvic organ prolapse GWAS meta-analysis candidate gene mapping. Previous reported loci are highlighted in gray frames and
previously unidentified loci in yellow frames. We prioritized candidate genes considering at least the presence of one of the next four main evidence levels:
(1) nearest gene to the association peak (indicated by green dots); (2) genes containing shared causal variants between genetic variants and gene
expression signatures unraveled by colocalization analyses (shown as orange dots); (3) genes containing coding variants or in high LD (r2 > 0.6) with these
(shown as purple dots); and (4) genes which showed embryo, growth/size/body, muscle, renal/urinary system, reproductive system, digestive/alimentary
system phenotypes in mutant mice.
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Fig. 3 Genetic correlation analyses. The genome-wide genetic correlation of POP GWAS meta-analysis summary statistics with 561 phenotypes was
estimated using LDSC regression. Data is presented as means +— SEM. We accounted for multiple testing using a Bonferroni correction for 561 tests
(0.05/561=8.91x10~5) and derived genetic correlation estimates (showed as circles). Phenotypes summary statistics come from published GWASs
(n = 43 phenotypes) and GWASs of UK Biobank data (n =518 phenotypes), available in LD-Hub v1.9.3. Significant genetic correlations showcased in the
plot reveal overlap of genetic risk factors for POP across several groups of traits (grouped by colors): anthropometric (red dots; including body fat
percentage (n = 354,628), body mass index (n = 354,831), waist circumference (n = 360,564), waist-to-hip ratio (n = 224,459), cardiometabolic (yellow
dots; including blood clot in the leg (DVT) (n = 7,386 cases and 353,141 controls), angina (n = 11,372 cases and 349,048 controls), diabetes diagnosed by
doctor (n=17,275 cases and 342,917 controls), triglycerides (mmol/L) (n = 343,992), coronary artery disease (n = 60,801 cases and 123,504 controls)),
ICD10 diagnoses (green dots; including R10 Abdominal and pelvic pain (n= 20,240 cases and 340,954 controls), N92 Excessive frequent and irregular
menstruation (n = 8,475 cases and 185,699 controls), K57 Diverticular disease of intestine (n =12,662 cases and 348,532 controls), job type (light blue
dots; including Job involves heavy manual or physical work (n = 205,000), Job involves mainly walking or standing, n = 204,956), reproductive traits (dark
blue dots; including Ever had hysterectomy (n=13,973 cases and 157,440 controls), Age at first live birth (n=131,987), Number of liver births
(n=193,953)) and self-reported conditions (pink dots; including Hiatus hernia (n=32,590), Osteoarthritis (n =30,046 cases and 331,095 controls),
Gastro-esophageal reflux (n=15,210 cases and 345,931 controls), Heart attack/myocardial infarction (n = 8,239 cases and 352,902 controls)). Study
source can be found in Supplementary Data 8. Center values show the estimated genetic correlation (rg), which is presented as a dot and error bars
indicate 95% confidence limits. Dotted black line indicates no genetic correlation. ICD International Classifications of Diseases 10th Revision, DVT Deep
Venous Thrombosis.
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Fig. 4 Cumulative incidence by PRS categories. Cumulative incidence of POP in % scaled by age in the validation set of Estonian Biobank (2517 incident
cases and 96,109 controls) for different POP PRS percentiles (<5%, 5-15%, 15-25%, 25-50%, 50-75%, 75-85%, 85-95%, >95%). Survival modeling and
Cox proportional hazard models were implemented, using age as a time scale for properly accounting for left-truncation and right-censoring in the data.
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Fig. 5 Predictive ability of PRS and clinical variables in incident status. Green dots represent polygenic risk score (PRS), orange dots represent five

established risk factors and purple dots represent genetic and/or clinical combined models C-statistic (C-stat) indexes. Data are presented as means +/—
SEM in both panels. Cox proportional hazard models were used and age was used as a time scale for properly accounting for left-truncation and right-
censoring in the data in both models. a C-stat for clinical variables and PRS alone or in combination in the validation subset of Estonian Biobank (2104 cases
and 24,753 controls). b C-stat adjusted by batch effects and 10 first principal components in the validation subset of Estonian Biobank (2104 cases and

24,753 controls).

(C-stat 0.563, sd = 0.006), followed by ever smoked (0.534, sd =
0.005), constipation (0.533, sd = 0.005), BMI (0.528, sd = 0.006)
and asthma (0.512, sd = 0.005). Adding PRS in the clinical joint
model notably improved the predictive ability (0.630, sd = 0.007)
compared to only the clinical joint model containing the five
clinical risk factors (0.588, sd =0.007) (see Fig. 5 and Supple-
mentary Data 15).

Discussion

This study constitutes the largest GWAS meta-analysis for POP,
uncovering 26 genetic loci (19 novel), which represents almost a
four-fold increase in the number of loci associated with
POP compared with the previous study!2. In contrast to previous
efforts characterizing genome-wide signals underlying POP'2, we
use a combination of different data layers to map potential can-
didate genes, which provide novel insights into the biology of
prolapse development, open up new avenues for further

functional studies, and identify links with other health outcomes,
which might have important implications for patient manage-
ment and counseling. Additionally, we construct for the first time
a PRS for POP, which shows similar or better predictive ability
than five risk factors (number of children, constipation, BMI,
asthma, and smoking status), and we demonstrate that PRS in
combination with these clinical risk factors generates the best
predictive model for POP.

Among the genome-wide significant loci, this study supports
the role of a previous reported candidate gene for POP, LOXLI.
Liu et al. described that mice lacking the protein lysyl oxidase-like
1 (LOXL1) do not deposit normal elastic fibers in the uterine tract
postpartum and develop POP1®, Subsequently, diverse mouse and
human studies have reiterated its involvement with prolapse2>~27,
Additionally, we further support previous findings highlighting
associations near WNT4, EFEMPI1, FAT4, IMPDHI, TBX5, and
SALLI. Beyond EFEMPI, we further propose several previously
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unidentified candidate genes (CHRDL2, ACADVL, PLA2G6) which
reinforce the role of connective tissue molecular changes as a key
process in the pathogenesis of POP28:29, These links are mirrored
by positive genetic correlation between POP and several connective
tissue abnormalities such as inguinal hernia. Additionally, our study
highlights a plausible role of A Disintegrin And Metalloprotease
with Thrombospondin Motifs (ADAMTS) in POP, which have
important roles in extracellular matrix maintenance??: on the locus
described in chromosome 21, the most plausible candidate gene was
ADAMTS5. A recent study described genetic associations between
ADAMTS/ADAMTSL members and inguinal hernia®®, which also
showed significant associations (5p13.2/ADAMTSI6 and 9p22.3/
ADAMTSLI) in our study.

Our study also reinforces urogenital development as a key
process in the pathogenesis of POP highlighting previously uni-
dentified genes such as DVL2, WT1, HOXD13. DVL2 is a com-
ponent of the Wnt signaling pathway (a shared pathway with the
previously reported gene WNT4), important for epithelial tissue
development and renewal, embryonic development of the sex
organs, and regulation of follicle maturation controlling ster-
oidogenesis in the postnatal ovary’1-34 Several in vitro and
animal studies have shown that estrogen has positive effects on
the ECM3>36 and a study described a link between hypoestro-
genism and deterioration of the ECM and concomitant POP37,
indicating the Wnt pathway may have a dual role in POP
development, both by regulating organogenesis and hormonal
support of tissue function. Future studies assessing sex-specific
oestradiol exposure with larger sample sizes and more scaled time
points, might inform the direction of association between estro-
gen lifetime exposure and the development of POP.

Additionally, WT1, another proposed novel candidate gene, is
a transcription factor involved in urogenital system development.
Recently, a single-cell transcriptome profiling study of severe
anterior vaginal prolapse described activity of WT1 in fibroblasts,
and genes regulated by WT1 were enriched in terms related to
actin filament behavior38. Moreover, WTTI has also been involved
in cardiac development and disease3®-41, a link that was further
supported by our phenome-wide association look-up results,
since this region was associated with hypertension and cardio-
vascular disease (Supplementary Figs. 4, 5 and Supplementary
Data 9 and 10). In this line, many GWAS associations we report
point towards a link between metabolic and cardiovascular health
and POP (KLF13, DUSP16, MAFF, VCL, and LDAH), which is a
particularly interesting genetic association unraveled by our
study. These associations were mirrored by positive genetic cor-
relations with a range of cardiometabolic phenotypes#2->1,

Genetic correlation analyses also highlighted a positive corre-
lation with occupations involving walking and/or standing and
heavy physical work, which might have potential value in coun-
seling of women with higher risk to develop POP. While unfor-
tunately, it is not possible to discern the timing of hysterectomy
in relation to POP in the present study, future linkages and/or
cohorts with larger availability of POP-related procedures might
better inform the effect of hysterectomy as both cause and con-
sequence to POP.

Genetic correlation studies mirror well the findings of epide-
miological studies, showing associations with number of births,
previous hysterectomy, younger age at first birth, increasing BMI,
constipation, occupations including heavy lifting and connective
tissue disorders®>23,

The association between POP and gastroesophageal reflux,
diverticular disease, osteoarthritis, and hiatus hernia most likely
reflects the changes to connective tissue characteristic to all of
these conditions; however, respective epidemiological links have
been inconsistent. Similarly, future epidemiological studies
assessing the association with abdominal and pelvic pain,

excessive frequent and irregular menstruation, and cardiometa-
bolic phenotypes are warranted.

Here we present a comprehensive GWAS follow-up which
culminated in defining possible convergence in meaningful bio-
logical pathways through defined test sets of genes such as
“Connective Tissue Development” (p=2.01x 107%), “Chon-
drocyte differentiation” (p=6.63x10"%), and “In utero
embryonic development” (p=4.91x1078) and link these to
specific tissues and cell types such as “Cervix/ectocervix”
(p=13x%x1072), “Uterus” (p=1.5x 107>), “Embryoid bodies”
(p=8.6x107° and “Smooth muscle” (p=7.3 x 10~4). These
findings might aid in choosing the relevant tissue or cell type for
in vitro experiments to further elucidate molecular mechanisms
underlying the genome-wide significant loci identified.

The added value of our study in comparison to previous
efforts!? is best highlighted by presenting the first polygenic risk
score for POP, which substantially advances the concept of using
genomic information to stratify women in gynecological condi-
tions. However, it is prudent to consider that common SNPs
explain a small part of the whole heritability and it is plausible
that most of SNP-heritability is yet to be discovered, which
hinders assessing the full potential of PRS. Potential sources of
missing heritability might include much larger numbers of
smaller effect variants yet to be found; rarer variants (possibly
with larger effects) that are poorly detected by available geno-
typing arrays; structural variants poorly captured by existing
arrays, low power to detect gene-gene interactions, etc.”4. Further
studies with larger sample sizes are needed, which will enable
comprehensive PRS performance comparisons and will improve
the evaluation of genetic risk assessment.

In our study, predictive ability analyses in the validation set
properly took into account the effect of age by including it as the
time scale in the survival model, thus accounting for left-
truncation and right-censoring in the data and comparing only
women from same ages and avoiding inflation in prediction solely
due to age difference between cases and controls.

The addition of the PRS in the clinical model clearly demon-
strates a superior predictive ability in incident POP (C-stat=0.630)
than when analyzing the five clinical risk factors without PRS
(C-stat=0.588). It is also important to note that this type of huge
improvement provided by a polygenic risk score on top of classical
risk factors (44.2 percentage points) is not a common finding—
for example, a groundbreaking work by Inouye and colleagues®> in
coronary artery disease (CAD) revealed that six conventional risk
factors achieved a C-stat of 0.67, and together with PRS it
increased by 2.6 percentage points to 0.696, whereas PRS alone
was a better predictor (C-stat=0.623) than any of six conventional
factors (smoking, diabetes, hypertension, BMI, self-reported
high cholesterol, and family history) alone—which is also the
case for POP.

Contrary to a recently developed screening tool for pelvic floor
disorders after delivery (http://riskcalc.org/UR_CHOICE/)>,
genetic risk is stable, and thus evaluable throughout the lifespan.
Similar to other works for complex diseases, PRS might offer
potential clinical uses in settings related to disease risk stratifi-
cation and the encouragement to direct earlier preventative
strategies (such as weight reduction, preventing constipation,
Kegel exercises for pelvic floor muscle strengthening, and
avoiding heavy lifting) to those women with higher genetic risk to
develop POP, although the clinical translation of PRS profiling for
early diagnosis and targeted screening needs to be further
examined in future cohorts with longer follow-up time and an
increased number of incident POP cases. Similarly, future studies
assessing risk prediction towards those cases who present more
severe forms—e.g., requiring surgical intervention- might open
up new avenues for targeting clinical resources, increasing check-
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up frequency and direct targeted preventive exercises and coun-
seling for those women.

Phenotype definition variability can be critical to the successful
identification of genetic associations. We observed that hetero-
geneity estimates of lead signals (taking into account Q-Cochran p-
values and %) mostly do not substantially differ between studies,
which on one hand adds reliability to the identified genetic asso-
ciations and on the other hand supports leveraging electronic
health records to ascertain this phenotype. According to I2, two
variants showed heterogeneity (rs3820282 I>=76,45% and
1572624976, I = 83.46%). 1572624976 heterogeneity is likely due to
differences in allele frequency between cohorts (see Supplementary
Data 2 and Supplementary Fig. 1, with lower frequency for Finn-
Gen and EstBB (EAF =0.01) than Icelandic and UKBB (EAF =
0.04)). This observation emphasizes the importance of the exis-
tence of population-specific biobanks when studying genetics of
complex diseases. rs3820202 heterogeneity might be explained by
the presence of more severe cases in FinnGen and IceUK cohorts
(perhaps due to age distribution differences between cohorts or
source of diagnoses: hospital inpatient registry data for UKBB/
FinnGen which might capture more severe cases compared to
EstBB, where diagnoses made by general practitioners or gyne-
cologists can also include milder diagnoses). However, hetero-
geneity estimates tend to be imprecise when assessing heterogeneity
in meta-analysis containing a small number of studies®’~>°.

In this regard, one of the strengths of the study is the com-
prehensive data availability in EstBB, containing genetic data of
around 20% of Estonian adult population including phenotype
questionnaire and measurement panel, together with follow-up
data from linkage with national health-related registries, which
facilitated the validation of PRS and the inclusion of clinical risk
factors into a joint model. In a similar way, the coverage and
accuracy of the Finnish Care Register for Health Care has been
validated previously®®¢! and it has been found to be excellent.
Previous effort meta-analyzing UKB and Icelandic studies asses-
sed the robustness of ICD codes by comparing effect sizes with
surgically treated POP cases and concluded that effects were in
the same direction and not substantially different from those
using surgically treated POP cases!2.

Possible phenotypic misclassification (undiagnosed cases
amongst controls) could result in heterogeneity in the analysis
and interpretation of GWAS findings, reducing both the statis-
tical power as well as the maximum number of significant asso-
ciations observed their effects magnitude and direction.

We hope that future efforts replicate our findings, either
independent or stemming from increased numbers of cases in
new data linkages in the included datasets, and more extensive
questionnaire data collection. Similarly, future questionnaires in
the biobank setting could address different disease stages and
severity. The present study is limited by the unavailability of other
classical risk factors that would improve the predictive ability of
the combined model, such as newborn anthropometric mea-
surements, mode of delivery, or more extensive reproductive
history. Since both GWAS meta-analysis and PRS construction
were based on European ancestry populations, this challenges the
generalizability of GWAS findings to other populations and
warrants caution when extrapolating the results.

Future larger sample size in gene expression panels of relevant
tissues in gynecological conditions is crucial, since it might add
greater power to detect more significant associations and improve
disentangling tissue-specific signals in eQTL datasets®2. While
recent evidence suggests distance to the association peak as a
good predictor for a causal gene®3%4, it is important to note that
complex LD patterns between association signals might eclipse
more distant genes which are the true causal ones. Overall, fur-
ther functional follow-up is needed to better characterize the

regulatory functions of the loci uncovered and experimental work
is warranted to unravel the role of the nominated genes.

In summary, this study is the first to explore PRS as a tool to
inform risk stratification strategies for POP and highlights the
potential to improve predictive ability when adding genetic risk
on top of clinical risk factors. Additionally, we presented the most
comprehensive analysis of genetic risk factors of POP to date,
providing many candidate genes and defining possible con-
vergence in meaningful biological pathways, which establishes a
landmark step forward in the field of female reproductive
genetics, moving from genetic signatures to a source of biological
insight for POP.

Methods

This study was carried out under ethical approval 1.1-12/624 from the Estonian
Committee on Bioethics and Human Research (Estonian Ministry of Social Affairs)
and data release NO5 from the EstBB. All necessary patient/participant consent has
been obtained and the appropriate institutional forms have been archived.

Study cohorts. Our analyses included a total of 28,086 women with POP and
546,291 controls of European ancestry from three different studies: summary level
statistics from an Icelandic and UKBB GWAS meta—analysi512 (IceUK, 15,010
cases, and 340,734 female controls), and FinnGen R3 (5518 cases and 43,366
controls), and individual level data from the Estonian Biobank (EstBB, 7896 cases,
and 118,865 controls) (Supplementary Fig. 1). Cases were defined as women having
POP diagnosed by ICD-10: N81, ICD-9: 618 and ICD-8: 623 upon availability.
Controls were defined as individuals who did not have the respective ICD codes.

Cohort and genotyping details. Summary statistics from Icelandic and UKB
cohorts meta-analysis were downloaded upon request, which included prefiltered
variants selected based on a threshold of 0.8 imputation info and MAF > 0.01%,
available in the Icelandic data set and/or the UKB dataset. Cohort and genotyping
details from Icelandic and UKBB cohorts have been reported elsewhere!2.

FinnGen is a public-private partnership project combining data from Finnish
biobanks and electronic health records from different registries. In this study, we
used the results from the FinnGen release R3 (https://www.finngen.fi/en/access_
results), which includes data from 135,638 individuals and more than 1800 disease
endpoints and it is publicly available for download. FinnGen individuals have been
genotyped with Illumina and Affymetrix arrays and imputed to the population-
specific SISu v3 importation reference panel. Genetic association testing has been
carried out with SAIGE. We downloaded the summary statistics querying the disease
endpoint “Female genital prolapse”, which included prefiltered variants (minimum
allele count >5 and INFO score >0.6). 5518 individuals with the ICD10 N81
diagnosis were defined as cases and 43,366 controls were included in the analysis.

The Estonian Biobank (EstBB) is a population-based biobank with over 200,000
participants, currently including around 135,000 women (20% of Estonian female
population). The 200 K data freeze was used for the analyses described in this
paper. All biobank participants have signed a broad informed consent form.
Individuals with POP were identified using the ICD-10 code N81 (mean
age=58.76, sd=12.01), and all female biobank participants who did not have this
diagnosis were considered as controls (mean age=43.86, sd=16.06), which
included 7968 cases and 118,895 controls. Information on ICD codes is obtained
via regular linking with the National Health Insurance Fund and other relevant
databases®. We excluded from all analyses controls who did not have health
registry information linked, since those might have not had the opportunity to
register diagnose status.

All EstBB participants were genotyped using Illumina GSAv1.0, GSAv2.0, and
GSAV2.0_EST arrays at the Core Genotyping Lab of the Institute of Genomics,
University of Tartu. Samples were genotyped and PLINK format files were created
using [llumina GenomeStudio v2.0.4. Individuals were excluded from the analysis if
their call-rate was <95% or if their sex defined by heterozygosity of X chromosomes
did not match their sex in the phenotype data. Before imputation, variants were
filtered by call-rate <95%, HWE p-value < le—4 (autosomal variants only), and
minor allele frequency <1%. Same analyses were conducted for association analysis
and imputation of chromosome X, except for the HWE filter, which was not
applied. Variant positions were updated to b37 and all variants were changed to be
from the TOP strand using GSAMD-24v1-0_20011747_A1-b37.strand.RefAlt.zip
files from the https://www.well.ox.ac.uk/~wrayner/strand/ webpage. Pre-phasing
was conducted using Eagle v2.3 software® (number of conditioning haplotypes
Eagle2 uses when phasing each sample was set to:—Kpbwt=20000) and imputation
was done using Beagle v.28Sep18.793%7 with effective population size ne=20,000.
The population specific imputation reference of 2297 whole genome sequencing
(WGS) samples was used®®. Association analysis was carried out using SAIGE
(v0.38) software to implement a mixed logistic regression model with year of birth
and 10 PCs as covariates in step I. In EstBB, SNVs with poor imputation quality
(INFO score < 0.4) and minor allele count <5 were excluded from downstream
association analysis.
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GWAS meta-analysis. We conducted an inverse of variance weighted fixed-effects
meta-analysis with single genomic control correction using GWAMA software
(v2.2.2)%9. A total of 40,542,692 variants were included in the meta-analysis of
28,086 women with POP and 546,291 female controls. We performed two tests of
heterogeneity of effects across studies (Q-Cochran test and heterogeneity index
(1)) calculation as implemented in GWAMA (v2.2.2)%. After meta-analysis we
kept variants present in minimum 2 out of the 3 studies (totaling 15,065,244
variants) for down-stream analysis. Lead SNPs were identified as SNVs indepen-
dent from each other with P-value less than or equal 5 x 10~8. 500 kb was set to the
maximum distance between LD blocks of independent significant SNPs to merge
into a single genomic locus. Assuming a prevalence of 5% for symptomatic POP
and an overall POP prevalence of 40% in the population, total-h? was estimated by
single-trait LD score regression using the meta-analysis summary statistics and
HapMap 3 LD-scores!®’? and converted to the liability scale using LDSC v1.0.1
(https://github.com/bulik/ldsc). After excluding genome-wide significant loci
(variants within +/—500 kb from lead signals), we calculated the SNP heritability
of the remaining variants and the one corresponding to the significant loci.

Gene prioritization criteria. In order to move from genetic variants to plausible
candidate genes, we used the following criteria. We prioritized candidate genes
considering four main evidence levels: (1) nearest gene to the association peak; (2)
genes containing shared causal variants and gene expression signatures unraveled
by colocalization analyses; (3) genes containing coding variants or in high LD
(r2 > 0.6) with these; (4) finally, we utilized the Mouse Genome Database’! (http://
www.informatics.jax.org) to evaluate the effect of candidate genes in mutant mice
spanning embryo, growth/size/body, muscle, renal/urinary phenotypes.

Colocalization analyses. Colocalization analyses were conducted using COLOC
(v.3.2.1) R package® and GWAS meta-analysis effect sizes and their variances. In
the analysis, we compared our significant GWAS loci to all GTEXv8 and eQTL
Catalog (https://www.ebi.ac.uk/eqtl/)7? associations (excluding Lepik et al. 201773
and Kasela et al. 201774 due to sample overlap) within 1Mbp radius of a GWAS top
signal. Prior probabilities were set to pl = le—4, p2 = le—4 and p12 = 5e—6. Two
signals were considered to colocalize if the posterior probability for a shared causal
variant was 0.8 or higher.

Gene-set analysis and tissue/cell-type expression analyses. Gene-set analysis
and tissue expression analysis were performed using MAGMA v1.08!2 imple-
mented in FUMA v1.3.6a'* and DEPICT!8, implemented in Complex-Traits
Genetics Virtual Lab (CTG-VL 0.4-beta)75.

In MAGMA v1.08, gene sets were obtained from Msigdb v7.0 for “Curated gene
sets” and “GO terms”. A total of 15,485 gene terms were queried. Tissue expression
analysis was performed for 53 specific tissue types using MAGMA. DEPICT is an
integrative tool that based on predicted gene functions highlights enriched
pathways and identifies tissues/cell types where genes from associated loci are
highly expressed.

Genetic correlation. The LDSC method and GWAS-MA summary statistics were
used for testing genetic correlations!® between POP, and data available for 561
traits in LD-Hub v1.9.3 (http://ldsc.broadinstitute.org) including traits from the
following categories: lipids, smoking behavior, anthropometric, reproduction,
cardiometabolic, and a range of traits from UKBB2(. Cross-trait LD-score regres-
sion is not biased by sample overlap’® and we accounted for multiple testing using
a Bonferroni correction for 561 tests (0.05/561 = 8.91 x 10~5).

Phenome-wide associations. Pleiotropy was assessed comparing phenotype
associations for the GWAS lead variants in two databases: PhenoScanner v222
using the phenoscanner (v1.0) R package (https://github.com/phenoscanner/
phenoscanner), and GWAS Catalog (€96_r2019-09-24) implemented in FUMA!4.
GWAS catalog look-up also included variants in high LD with lead variants

(r2 > 0.6). For visualization of results, a heatmap was created using the pheatmap
library in R 3.6.1. and a modified script from (https://github.com/LappalainenLab/
spiromics-covid19- eqtl/blob/master/eqtl/summary_phenoscanner_lookup.Rmd).
The results obtained were filtered to keep one association per variant per trait,
keeping studies from newer or larger studies. Descriptions of Experimental Factor
Ontology (EFO) terms and classification of EFO broad categories were obtained
from the GWAS Catalog. Missing categories were added by manually searching the
EMBL-EBI EFO webpage (www.ebi.ac.uk/efo/).

Derivation of PRS for POP. In brief, PRS analysis requires two types of data: (1)
base: summary statistics of genotype-phenotype associations at genetic variants
genome-wide, and (2) target: genotypes and phenotype in individuals of an
independent sample’”. We constructed a POP PRS based on the summary statistics
of the meta-analyses including IceUK and FinnGen, with 20,118 cases and 427,426
controls of European ancestry, leaving out EstBB as an independent target dataset.
Each PRS was computed for each woman in the EstBB (N = 126,791) by
summing the product of the allele weighting and the allele dosage across the
selected SNPs. We empirically evaluated a total of 19 different versions of PRS,

implementing two different methodologies: PRSice2 (v2.3.3)2* and LDPred1.0.1123,
which use a clumping and thresholding and linkage-disequilibrium SNP-
reweighting approach, respectively. Whilst PRSice2 automatically calculates and
applies the PRS, in the case of LDPred1.0.11, STEROID (v0.1.1) tool was used for
calculating PRS for all EstBB participants (https://genomics.ut.ee/en/tools).

POP polygenic risk score calculation. Genetic variants with MAF < 0.01, indels,
and variants with imputation score 0.8 and lower in EstBB were removed from all
polygenic risk score calculations. PRSice-2 uses a “clumping and thresholding”
approach to clump genetic variants in close linkage disequilibrium?4, such that the
remaining variants are independent of each other, and includes only those variants
with a GWAS association P-value below a given threshold, with the threshold
chosen to maximize the association of the risk score with POP. We tested the
following thresholds: 1, 0.3, 0.1, 0.03, 0.01, 0.003, 0.001, 0.0003, and 0.0001, with a
maximum LD between them set to r2 = 0.2. The number of SNPs included in each
model are presented in Supplementary Data 11.

LDpred is a Bayesian approach that applies a continuous shrinkage model to
modify effect sizes of SNPs to incorporate information on the strength of each
variant’s association in the GWAS and the underlying linkage disequilibrium
structure?3. To decrease the dimension of multicollinearity, SNPs were clumped
with maximum LD between them set to r2 = 0.99. Then, 10 versions of PRSs were
calculated by varying the fraction of causal SNPs on these values: Inf, 1, 0.3, 0.1,
0.03, 0.01, 0.003, 0.001, 0.0003, and 0.0001. Possible convergence issues were
reported by the program for some fractions (different depending on the base study)
while Gibbs sampler tried to estimate the posterior effect estimates.

Criteria for discovery and validation set definition. We divided the target dataset
from EstBB into a discovery and validation dataset, according to their prevalent or
incident status. The discovery dataset included 5379 prevalent cases and 21,516
controls. The selection of controls in the discovery set was randomized, including 4
controls per case. Since controls were defined as women who did not develop POP
during follow-up (which initiates in first linkage to Estonian Health Insurance Fund
in 26-11-2002 and ends in latest linkage to diagnoses dating from October 30-12-
2019). Cases were not otherwise matched to controls. Therefore, controls tended to
be younger than prevalent cases. In the discovery set, we tested all 19 PRS versions
and selected the best PRS version for further analyses (Supplementary Fig. 1).

The validation set included 2517 incident cases and 96,109 controls, and in this
set, we tested the predictive ability of PRS (Supplementary Fig. 1). The validation
set was further filtered to a validation subset, where only incident cases and
controls, which presented little or no missing data of clinical risk factors data in
EstBB were kept. This included a total of 2104 incident cases and 24,753 controls,
where scores were tested alone or in combination with clinical variables
(Supplementary Fig. 1). While it is true that the number of cases slightly differs
between validation set and subset, approximately four-fold more controls increase
the power of our analysis and results in more precise effect estimates when
evaluating the predictive ability of the PRS alone in the validation set.

Selection of best PRS model. The discovery set was used in the initial analyses in
order to select the best predicting PRS version through a logistic regression model
adjusted for age, age squared, first 10 principal components, and batch effects. The
model that offered the smallest p-value towards case-control discrimination was
selected for further analyses.

Predictive ability of the PRS. We standardized the best PRS version and also
categorized it into different percentiles (<5%, 5-15%, 15-25%, 25-50%, 50-75%,
75-85%, 85-95%, >95%). Survival modeling and Cox proportional hazard models
were used to estimate the Hazard Ratios (HR) corresponding to one standard
deviation (SD) of the continuous PRS for the validation set. Harrell’s C-statistic was
used to characterize the discriminative ability of each PRS. Cumulative incidence
estimates were computed using Kaplan-Meier method. We used survival modeling,
where age was used as a timescale to properly account for left-truncation in the
data and right-censoring. Cox proportional hazard models were also used as
specified before to assess the differences between genetic risk in different age strata
(women <40 years old (y), 40-50y, 50-60, 60-70y, >70y).

Predictive ability of PRS and classical risk factors. Next, we use the validation
subset to assess the predictive ability of PRS and five clinical risk factors (number of
children, BMI, ever smoked, asthma, and constipation) alone or in combination,
and clinical risk factors together with PRS. Clinical risk factors were chosen
according to literature mining and data availability in Estonian Biobank. Infor-
mation on the number of children, BMI, and smoking were extracted from
questionnaire data, whereas ICD10 codes J45 and K59.0 were used for asthma and
constipation, respectively. Number of births was chosen as a clinical covariate
because it captures more than one delivery event as well as providing the possibility
to capture the weakening of the pelvic floor already happening during pregnancy
and excluding possible first trimester miscarriages (which are not affected by extra
weight and weakness of pelvic floor structure and thus are unlikely to contribute to
prolapse development).
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Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The full meta-analysis summary statistics generated in this study have been deposited in
the GWASCatalog (https://www.ebi.ac.uk/gwas/) under accession code GCST90102470.
The PRS summary statistics generated in this study have been deposited in the PGS
Catalog (https://www.pgscatalog.org/) database under accession code PGS002288. The
individual level data from Estonian Biobank are available under restricted access for
containing sensitive information from healthcare registers, access can be obtained
through the Estonian biobank upon submission of a research plan and signing a data
transfer agreement. All data access to the Estonian Biobank must follow the informed
consent regulations of the Estonian Committee on Bioethics and Human Research,
which are clearly described in the Data Access section at https://genomics.ut.ee/en/
content/estonian-biobank. A preliminary request for raw genetic and phenotype data
must first be submitted via the email address releases@ut.ee. Icelandic and UKBB
summary statistics can be accessed from http://www.decode.com/summarydata and
FinnGen summary statistics can be downloaded after filling this form (https://elomake.
helsinki.fi/lomakkeet/102575/lomake.html). We queried mouse mutant phenotypes
utilizing Mouse Genome Database (MGI6.18, latest update from 05/04/2022) (http://
www.informatics.jax.org/).

Code availability

The following software packages were used for data analysis: In EstBB, GenomeStudio
(v2.0.4), Eagle (v2.3), and Beagle (v28Sep18.793) were used as part of the standard
genotyping and imputation pipeline. EstBB GWAS was carried out with SAIGE (v0.38).
GWAS meta-analysis was conducted using the GWAMA software (v2.2.2). For
colocalization, COLOC (v.3.2.1) was used. FUMA v1.3.6a was used for GWAS catalog
(€91_r2018-02-06) look-up. For gene set and tissue/cell type specific enrichment analysis
MAGMA v1.08 implemented in FUMA v1.3.6a and DEPICT vl implemented in CTG-
VL O.4-beta were used. Msigdb v7.0: Gene sets were obtained from Msigdb v7.0 for
“Curated gene sets” and “GO terms” as implemented in FUMAvV1.3.6. ggplot2 package
was used for visualization of results. ANNOVARv20190ct24 was used as implemented in
FUMA v1.3.6a. LDHub v1.9.3 was used for genetic correlation analysis and LDSCv1.0.1
was used for SNP-heritability calculations (https://github.com/bulik/ldsc). PhenoScanner
v2 was used for look-up of phenotype associations for the GWAS lead variants in
previous GWAS studies, using the phenoscanner (v1.0) R package, and the results were
visualized using pheatmap library in R 3.6.1. and a modified script from (https://github.
com/LappalainenLab/spiromics-covid19-eqtl/blob/master/eqtl/summary_phenoscanner_
lookup.Rmd). To calculate the polygenic risk scores, LDpred1.0.11, STEROID v0.1.1
(https://genomics.ut.ee/en/tools) and PRSice 2 v2.3.3 were used. Survival analysis were
conducted using survival package in R 3.6.1. All other analyses were conducted in R 3.6.1.
We queried mouse mutant phenotypes utilizing Mouse Genome Database (MGI6.18,
latest update from 05/04/2022) (http://www.informatics.jax.org/).
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