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Rigidly flat-foldable class of lockable origami-
inspired metamaterials with topological stiff states
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Origami crease patterns have inspired the design of reconfigurable materials that can

transform their shape and properties through folding. Unfortunately, most designs cannot

provide load-bearing capacity, and those that can, do so in certain directions but collapse

along the direction of deployment, limiting their use as structural materials. Here, we merge

notions of kirigami and origami to introduce a rigidly foldable class of cellular metamaterials

that can flat-fold and lock into several states that are stiff across multiple directions, including

the deployment direction. Our metamaterials rigidly fold with one degree of freedom and can

reconfigure into several flat-foldable and spatially-lockable folding paths due to face contact.

Locking under compression yields topology and symmetry changes that impart multi-

directional stiffness. Additionally, folding paths and mixed-mode configurations can be

activated in situ to modulate their properties. Their load-bearing capacity, flat-foldability, and

reprogrammability can be harnessed for deployable structures, reconfigurable robots, and

low-volume packaging.
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Origami and kirigami, the arts of folding and cutting paper,
have inspired the development of a plethora of scale-
invariant reconfigurable materials and structures that can

deploy either spatially or in-plane1,2. These concepts have been
implemented across disciplines, from mechanical memories3,
robotic actuators4–8, thermally tunable structures9,10, multistable
devices11–15, complex 3D geometries16,17, and programmable
surfaces18–21 to flexible electronics22,23. Origami crease and kir-
igami cut patterns also proffer mechanical metamaterial designs
with distinct geometric and mechanical properties, such as
reconfigurability24,25, flat-foldability25–30, and bistable auxeticity13,31

among others.
Of recent interest are in situ reprogrammable folding

metamaterials32–38 which harness an inherent coupling between
the folding pattern and the geometry of motion. Here, rigid-
foldability, flat-foldability, and load-bearing are distinct char-
acteristics that can describe the modality of folding and the rea-
lization of certain functional performances. Rigid-foldability
indicates that folding is solely controlled by the crease lines acting
as rotational hinges, and not the deformation of the rigid
panels39. Alternatively, in non-rigid-foldable patterns, both panel
compliance and crease lines govern folding. Flat-foldability is a
property that imparts a high level of reconfigurability by allowing
spatial transformations leading into one or more flat states. Load-
bearing in a foldable metamaterial simply denotes the capacity to
offer structural resistance to a load applied in any given config-
uration across multiple directions.

Existing origami-inspired metamaterials offer a certain level of
programmability, yet they are unable to attain concurrently rigid-
foldability, flat-foldability, and load-bearing capacity along the
deployment direction. One reason stems from the kinematics of
their unit cell, which controls the way the crease pattern folds.
Foldable metamaterials using the Miura-ori27–29, interleaved30,
and tubular13,26,40 patterns as well as cylindrical structures based
on waterbomb patterns35, and other unit cells, utilize crease
geometry that exhibits some but not all of the properties defined
above. For example, rigid-foldable material systems with multiple
degrees of freedom (DoFs)24,25, are either floppy or require
precise control of the folding sequence, a characteristic that
severely limits their capacity to withstand multidirectional loads.
Alternatively, non-flat-foldable concepts32,35 have limited recon-
figurability, making their size and volume large, and most existing
concepts utilizing structural instability1,6,11,34,35 or the Kreseling
pattern33,41 to achieve reconfigurability are non-rigid-foldable. To
fold, they must overcome a large energy barrier that bends and
stretches their panels, thus sacrificing load-bearing capacity. On
the other hand, foldable patterns that offer some load resistance
can do so in certain directions only and mainly loses stiffness in
the deployment direction13,24–26,38,40,42. This aspect can be pro-
blematic in applications where during service the load direction is
uncertain, hence potentially reverting a stiff into a floppy
configuration.

From the current state of the art, an interesting question arises:
Can a crease pattern be conceived to reconcile the conflicting
nature of rigid-foldability, flat-foldability, and load-bearing
capacity in multiple directions, including that of deployment?
This paper presents a framework for designing a topological class
of rigidly flat-foldable metamaterials that are reprogrammable
in situ to reconfigure along multiple directions, some flat-foldable
and others lockable, where the latter is multi-directionally stiff
even along the deployment direction. Our basis combines origami
and kirigami concepts to introduce a crease pattern that is built
cellular in its flat configuration, and subsequently stacked with
the minimum number of layers to steer folding along one tra-
jectory. To imbue reconfigurability, excisions are introduced in a
crease pattern so as to relax the deformation constraints enacted

by the rigidity of the faces of the parent origami, and to enable
face contact within their intracellular spaces. Besides load-bearing
capacity, our concept offers additional hallmarks including
topology and symmetry switching that altogether enlarge the
degree of in situ programmability. Finally, a simple yet effective
fabrication process that can be easily automated is presented to
impart three-dimensionality in the flat configuration.

Results
Geometry of reconfigurable unit chain. To generate a rigidly-
foldable unit chain that is flat-foldable and can lock into a stiff
state upon face contact, we start from a primitive network of bars
connected in a planar loop. The network is a planar N-bar linkage
that forms a regular N even-sided polygon. Figure 1a shows the
generative process exemplified with a network of four bars, each
of length a and enclosing a square void. Extruding each bar
outward to the length b (red arrow) in the x-y plane and at a
given angle ϕ 2 π

N ; π � π
N

� �
yields four parallelograms, which we

connect using isosceles triangles with a vertex angle λ ¼ 2π
N . By

prescribing the folding profiles (dash lines) at each boundary
between interfacing panels, we obtain a planar assembly of rigid
surfaces that spatially fold along their connecting valley (V) and
mountain (M) folding lines. The conceptual process can be
thought as complementary to the fabrication steps (Supplemen-
tary Movie 1), where the void is first excised from a planar sheet
of paper (kirigami-cuts), and then folded along prescribed dash
lines (origami folds), thereby generating a hybrid architecture.

The fold lines of both V and M panels enable the system to act
as a kinematic chain, in short, “unit chain”. We define its
configurational changes (Fig. 1a) using m independent dihedral
angles θ1, θ2, …, θm. Each dihedral angle specifies the convex
angle between the triangular panel and its adjacent quad panel
(Fig. 1a), and m denotes the mobility or nontrivial (term hereafter
dropped) DoFs excluding rigid-body motions. We also assume
the mountain and valley fold lines are constrained to remain on
two parallel planes during folding. Explained later, this strategy is
enforced through unit chain stacking, and it enables folding with
a single DoF. In this case, the out-of-plane rise, h, is expressed as
a function of three geometric parameters by:

h ¼ a sinϕ sin θ1: ð1Þ
During folding, θ1 decreases and the unit chain can reach a

lock state, denoted with the superscript “L”, where contact
between panels forbids any further motion (right sketch in
Fig. 1a). In a lock state, the acute dihedral angles are given by:

θL ¼ cos�1 cot ϕ tan
λ

2

� �
: ð2Þ

The generative process illustrated in Fig. 1a for a unit chain
with a square primitive void can be abstracted to other primitives,
i.e., regular N even-sided polygons, by merely varying N. This
gives rise to a class of planar unit chains that spatially reconfigure
within the voids and lock upon panel contact. Figure 1b illustrates
five of them, where the first three rows show their initial fully
developed state, the partially folded states, and one possible lock
configuration. The last two rows depict their most compact in-
plane tessellation and their out-of-plane stacking in paperboard
specimens, where each layer is mirrored with respect to the x-y
plane and bonded at the triangular panels of the adjacent layers
(above and below).

To investigate the kinematics of our unit chains, we first
introduce the dimensionless extrusion factor �b ¼ b=a and adopt
the notation NNð�b; ϕÞ to discriminate between unit chains. NN
refers to the generic class of unit chains, where �b and ϕ can
assume any values. For the demonstrative purpose, we mainly
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focus on a subset (Fig. 1b), namely the subclass defined by �b ¼ 1
and ϕ ¼ π=3, i.e., NN ð1; π=3Þ denoted hereafter as bNN for
simplicity, with N = 4, 6, 8, 10 and 12, and we refer to the more
general case NN whenever our analysis become independent of
the two geometric parameters �b and ϕ.

Kinematic model. We study the unit chain kinematics (Fig. 1a)
through a set of assumptions. First, the panels are considered as
infinitely rigid plates and the fold lines as rotational hinges.
Second, to ease the formulation of the kinematic constraints, we
replace the unit chain with a triangulated network of inextensible
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Fig. 1 Conceptual scheme to generate self-locking kinematic chains and tessellations along with their paperboard prototypes. a The building block of
our reconfigurable class of rigidly flat-foldable materials. Primitive regular polygon describing a four-bar linkage, followed by in-plane angled (ϕ) extrusion
(red arrow of length b) of constitutive links; connection of extruded panels with isosceles triangular panels; addition of fold lines and assignment of a
mountain (M) and valley (V). Upon folding, the unit chain reconfigures to reach its lock state (specified with “L”) where contact is established between
panels. b Concept abstraction to generate unit chains with an N even-sided regular polygon for representative N, i.e., 4, 6, 8, 10, and 12. The first three rows
show respectively the developed, partially folded, and one of the (multiple) lock states. The last two rows show the in-plane tessellation and their
paperboard proof-of-concepts. The latter are multilayered spatial realizations obtained with the minimum number of layers, i.e., an even number of layers
preserving their symmetry with respect to x-y plane, that provides one degree of freedom. Rubber bands are here used to hold the unloaded configuration
of the prototypes in their lock state, as the transition to the lock state requires the application of compressive forces in the x-y plane, as explained later in
the manuscript. Scale bars= 30mm.
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elements connected through pin joints (Supplementary Fig. 1).
Third, the edges of the triangular panels are modeled as bars, and
quad panels are replaced with two triangles satisfying the pla-
narity condition of their interplanar angles over the entire folding
process (Supplementary Fig. 1d). By modeling our unit chain as a
pin-jointed network of inextensible bars, we now examine its
DoFs, and types of kinematic motion.

Number of degrees of freedom. The unit chain mobility is for-
mulated through the rigidity matrix R pertinent to its structural
assembly. The number of DoFs, m, for a pin-jointed triangulated
network is given by m ¼ 3j� nK � r, where j is the total number
of joints, nK the number of external kinematic constraints, and r
the rank of R (see Supplementary Discussion “Kinematic analy-
sis”). For our unit chain, m also represents the number of inde-
pendent dihedral angles. For the unit chain bN4 (Fig. 1a), m= 5,
i.e., five mechanisms are possible. m can be reduced to 1 if the
mountain and valley fold lines are constrained to remain on two
parallel planes during folding. The specific values and relation-
ships the dihedral angles assume define distinct types of motion,
as described below.

Kinematic paths. There are specific trajectories our unit chain
can follow during motion. Defined as kinematic paths, each of
them can be uniquely defined by a relation between the inde-
pendent dihedral angles. For example, the equality of dihedral
angles, i.e., θ1= θ2, represents the type of motion shown in
Fig. 1a, whereas θ1= π - θ2 describes another one.

Unit stacking as a pathway to reduce mobility. If the triangular
panels shown in Fig. 1a do not remain parallel during folding, our
unit chain is endowed with manifold DoFs, which for bN4 is five.
Having too many DoFs can be problematic. The unit chain can
act as a multi-DoF mechanism with a tendency to be floppy such
that folding cannot be easily controlled. One way to prune DoFs
is to act along the third direction (z), and stack layers of unit
chains one on top of the other. Figure 2a shows this strategy
applied to bN6. The mountain facets of the triangular panels of the
top unit are bonded to the valley facets of the adjacent unit
(below). By stacking and bonding three unit chains, the mountain
and valley triangular panels lie in parallel planes. If constructed
from a material with sufficiently high elastic modulus, the non-
negligible thickness of the triangular panels restrict the relative
rotation range of two connected quad panels. This allows only
equal and opposite rotations, which satisfy kinematic compat-
ibility, and avoid encountering the energy barrier of the bending
or stretching of the panels (Supplementary Discussion “Addi-
tional constraints” and Supplementary Fig. 2).

The strategy above is simple yet effective. Not only does it turn
off DoFs, but also provides robust reconfiguration along a single
folding path. Having now layers of unit chains, we can denote a
generic multilayered N even-sided unit chain with n stacking
layers by NNnn. Through a rigidity analysis of NNnn, we assess
the role of layer stacking, n, on the DoFs (Supplementary
Discussion “Kinematic analysis”). The outcome of this analysis is
shown in Fig. 2b, where θi ≠ π/2 (i= 1, 2, 3… m) is assumed, and
θi= π/2 refers to the kinematic bifurcation. From the plot, we
gather that the DoFs of single layer unit chains increase linearly
with N through the relation m= 2N – 3 which reduces to m= 1 if
multiple layers are stacked, thus enabling reconfigurability along
one single path. The minimum number of layers, �n, necessary to
trim m to 1 depends on the unit chain primitive. Figure 2b shows
that for unit chains N4 and N6, �n= 3, whereas for NN>6, �n= 5.
With a focus on multilayered units with a single DoF, denoted by

NNn�n, we now investigate their behavior at the instant of
kinematic bifurcation and post-bifurcation.

Kinematic bifurcation: emergence of lock and flat-fold modes.
In the early stage of folding, our NNn�n chain can travel along one
route governed by �n. However, as soon as it reaches a config-
uration where all its dihedral angles are π/2, i.e., kinematic
bifurcation, the DoFs instantaneously grow, and multiple kine-
matic paths become active (Fig. 2a, c). We classify the post-
bifurcation modes into either two-dimensional (2D) flat-foldable,
or three-dimensional (3D) lockable (Fig. 2c). Flat-foldable modes
are fully flat patterns that are distinct from the initial state.
Lockable modes describe 3D states with contact between adjacent
panels that impart compressive stiffness (Supplementary Movies 2
and 3).

We can show (Methods) that our single-DoF multilayered unit
chains possess only two types of dihedral angle pairs (Fig. 2a, d),
acuteA and obtuse O, obeying the relationAþO ¼ π during the
entire range of motion. A given sequence with angle pairs, e.g.,
two As and one O depicted in Fig. 2d, can be simply denoted by
the series of angle pairs, e.g.,AAO, and in compact form with
the power indicating the repeated pairs, e.g., A2O. This notation
allows discriminating between kinematic modes that emerge at
bifurcation. Given the modes defined by a repeating sequence of
AO, such as AOAOAO¼ (or simply AO), cannot be
tessellated in-plane, we denote them as irregular modes as
opposed to the regular ones which are tileable in-plane
(Methods).

With the above, we systematically characterize the regular
modes of a generic NNn�n and determine the total number of
possible reconfiguration modes. We use the Pólya enumeration
theorem of combinatorics (Supplementary Discussion “Pólya
enumeration theorem”) to (i) count the regular modes and then
(ii) define their kind. The problem of finding all independent
regular modes of a generic NNn�n unit can be treated as the
classical necklace problem. The goal is to reconstruct the colored
pattern of a necklace of several beads, each colored either in white
or black (A or O), from the knowledge of a limited set of
information (Methods). By using a predictor-corrector type
incremental method (Supplementary Discussion “Kinematic
analysis”), we can now visualize the post-bifurcation kinematic
paths of bN4n4, bN6n4, bN8n5 and bN10n5 as shown respectively in
Supplementary Movies 4–7.

To understand the relation between the total number of post-
bifurcation modes and the sides of the unit chain primitive N, Fig. 2e
plots the total number of lockable modes cL and flat-foldable modes
cF versus N. The best curve fits are included to provide
phenomenological closed-form relations that characterize folding
paths and differentiate lockable modes (cL ¼ 0:21expð0:3NÞ) from
flat-foldable modes (cF ¼ 0:54expð0:16NÞ) as a function of N for a
generic NNn�n. The results show that the number of regular modes
grows exponentially, hence providing a rich platform to program
lockable paths (Supplementary Table 1).

Symmetry and topology. From a single multilayered unit chain,
we now turn to its periodic and multilayered tessellation forming
a material system. Multilayered unit chains are connected to
follow a tessellation pattern (Supplementary Discussion “Tessel-
lations”) that replicates a crystallographic arrangement of atoms.
Figure 3 shows the top view of representative patterns for N= 4,
6, 8, and 10. While several others exist, here we focus on tessel-
lations with the most compact pattern. The goal is to show that
upon folding along a given path our material systems undergo
switches in symmetry and apparent topology, both hallmarks of
in situ programmability.
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Notions of crystallography become handy to study changes in
symmetry. Each pattern is formed by tessellating in-plane a
representative unit (red boundaries in Fig. 3) defined by the
periodic vectors. Upon reconfiguration, the material system at
bifurcation can access a new kinematic path that causes the smooth
transition of certain dihedral angle pairs from A to O; the result is
a break in symmetry. This phenomenon is visualized by the
patterns that followed those in the first column of Fig. 3, each
denoted by their crystallographic point group and Schoenflies
symbol. A variation in the lattice point groups translates into a
change of the elastic constants defining the elastic tensor; the

symmetry shift endows the material system with another set of
elastic properties. For example, the lattice made of bN4n�n (first row
of Fig. 3) is shown in one of its lock modes, AO, in the second
column. In this mode, AO has C2h symmetry, i.e., a twofold
rotational symmetry, and its elastic compliance matrix contains 13
elastic constants defining a monoclinic behavior. Upon switching
to lock mode A2 (third column), its symmetry changes to C4h, a
fourfold rotational symmetry, resulting in an elastic compliance
matrix with seven independent constants.

Besides symmetry, another aspect enabling in situ program-
mability is the apparent change of topology undergone after

Fig. 2 Multiple kinematic paths leading to lockable and flat-foldable modes. a Unit chain stacking for a three-layered unit N̂6n3. On its right, a
representative pre-bifurcation reconfiguration with θ < π (above) and the bifurcation state with θ= π/2 (below). b Pre-bifurcation DoFs, m, plotted as a
function of the number of stacked layers, n, for given N even-sided primitives (N= 4, 6, 8, 10, 12). c Isometric and top views of five post-bifurcation modes
belonging to three kinematic paths: four regular modes, of which two are locked (A3 andA2O) and two flat-folded (O3 andAO2), and one irregular mode
( �AO). d Zoom on the top layer of N̂6n3 in lock mode A2O showing the arrangement of pairs of valley dihedral angles (in color): Three pairs of dihedral
angles are illustrated here, two As (violet and blue) and one O (yellow) for a total of six dihedral angles. e Mode counts calculated from discrete data
points for N > 4 along with the best curve fits characterizing the number of flat-foldable cF and lockable cL modes vs. N for a generic multilayered unit NNn�n
(semi-log plot). (Denomination of the dihedral angles and modes: We specify acute angles with A and obtuse angles with O: The geometry of the units
enforces the conditionAþO¼π during their entire range of motion. Since in NNn�n, which has one DoF, each pair contains equal angles, all As are equal as
are all Os. A given sequence with angle pairs, e.g., two As and one O depicted in d, can be simply denoted by the series of angle pairs, e.g.,AAO, and in
compact form with the power indicating the repeated pairs, e.g., A2O).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29484-1 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:1816 | https://doi.org/10.1038/s41467-022-29484-1 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


bifurcation. Here topology is defined by connectivity through Zf,
the number of faces that meet at an edge, which is equivalent to a
fold-line as opposed to a cut-edge, and Ze, the number of edges
meeting at a vertex. The values of Ze and Zf are calculated for the
corresponding spatial lattice upon the assumption that in the lock
state coincident edges and vertices form a single edge and a single
vertex (values on top of each configuration in Fig. 3). A change in
Ze and Zf denotes topology differentiation, whereas topology is
invariant to other geometric parameters, such as the length of the
primitive void. Results show an increase in connectivity values
from the partially folded state to the lock state (see also Supple-
mentary Discussion “Rigidity”). A break in topology impacts the
deformation mode of the panels, which transition from bending
to stretching43, as shown later. The versatility to impart topological

changes by traveling across a kinematic bifurcation can be used not
only to tune the mechanical and physical properties in situ (see
also Supplementary Discussion “Geometric mechanics of representa-
tive unit cell (RUC)”, “Relative density” and “Poisson’s ratio”), but
also to switch the mechanism of deformation.

Energy landscape. Prior to bifurcation, our multilayered system
NNn�n folds with one DoF through the application of in-plane
forces. At the point of kinematic bifurcation, however, multiple
kinematic paths become accessible (Supplementary Movie 3). The
entry into a specific path depends on the interplay between
the components of the compressive forces, applied in its plane at
the bifurcation instant. To study their role, we examine a generic

Fig. 3 Topology and symmetry changes upon folding. Regular flat-foldable and lockable modes of in-plane tessellated systems made of multilayered unit
chains N̂4n�n, N̂6n�n, N̂8n�n, and N̂10n�n (qualitative sketches out-of-scale). Group points using Schoenflies notation are shown for all modes. Cn refers to an n-
fold rotation axis, Cnh refers to Cn with the addition of a mirror plane perpendicular to the axis of rotation, and Cs denotes a group with only a mirror plane
(C1h). Edge and face connectivity are only shown for lockable modes. Ze is the number of edges that meet at a point (joint). Zf represents the number of
faces that meet at an edge. The values of Ze and Zf for each configuration are shown after a vertical line separating them from their Schoenflies notation;
parentheses are used whenever more than one connectivity value exists. For each configuration, multiple values of Ze and Zf may exist for a given joint and
edge within the lattice. In these cases, all the values are reported in parentheses.
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NNnn (with n≥ �n) bi-axially and uniformly compressed and
investigate the energy landscape of each kinematic path. The goal
is to find the path and pertinent mode with the lowest
energy level.

To formulate the total energy of NNnn we assume infinitely
rigid panels and frictionless rotational springs (hinges) of uniform
stiffness per unit length, k. We consider our unloaded system in
mode ON=2, with all dihedral angle pairs being obtuse; this is the
zero-energy state of the system denoted by θ0 specifying a
configuration that is either flat or partially folded due to the
presence of residual stresses induced by manufacturing. θL, on the
other hand, is the acute dihedral angle of the lock unit. We
assume θ0 > π

2, a condition implying that upon the application of
an out-of-plane load (z-direction in Fig. 1a), our system can only
fold from its zero-energy state to its fully developed configuration.

Mode-phase diagram: the role of in-plane confinement. We
consider a pair of compressive in-plane forces, fx and fy, applied
uniformly, quasi-statically, and oriented along the principal
directions x and y (Fig. 1a). We define the biaxiality ratio rB ¼
f y=f x with f y 2 0;1½ Þ, f x 2 0;1ð Þ and rB 2 0; 1½ � to discriminate
between the relative magnitude of the applied forces, and derive an
expression of the total energy as a function of the applied forces
and the dihedral angle, i.e., Π ¼ Πðθ; f x; f yÞ or Π ¼ Πðθ; f x; rBÞ
(Supplementary Discussion “Energy analysis”).

Two representative systems bN4nn and bN6nn (with n≥ �n and
geometric parameter �b ¼ b

a ¼ 1) are examined. Their energy
landscapes can be mapped into mode-phase diagrams (Methods)
and their application showcased in demonstrative scenarios
defined by families of applied in-plane forces. Each family is
specified by ðfx; rBÞ where rB is maintained constant over the
entire loading history. We consider two load families. The first is
ðfx; rB ¼ 1=3Þ, where f x and f y can be proportionally scaled to
respect the one third ratio; the (dimensionless) total energy
landscape of one specific case (f x ¼ 1; rB ¼ 1=3) of that family is
shown in Fig. 4a by the blue curve for a system with n= 3 and
θ0= π. In Fig. 4b, ðfx; rB ¼ 1=3Þ is shown by the blue load-path
ABCD crossing three domains. In the light-yellow region, an
increase of the force magnitudes from A to B is not sufficient to
reconfigure our system, which remains flat (θ= π) in its fully
developed state. Once the load magnitude reaches the first
domain boundary (black dash line), point B, the system starts to
fold along the only kinematic path (yellow region) up to
bifurcation (black solid line), point C. Immediately after
bifurcation, the system can in principle access two modes (AO
and A2 branches in Fig. 4a), yet it enters AO due to the lower
energy it requires for activation. After entering in mode AO, the
system momentarily continues to reconfigure until it locks at
point D (Fig. 4a, b). At this stage regardless of the magnitude of fx
and fy satisfying rB ¼ 1=3, no further folding is possible as the
panels have come into contact, thus imparting stiffness
(Supplementary Movies 8, 9).

The second family of in-plane forces is ðf x; rB ¼ 1Þ, shown in
Fig. 4b by the green load-path AEFG. The total energy landscape
of one specific load case ðf x ¼ 1; rB ¼ 1Þ for that family is
illustrated in Fig. 4a (green). Similar to ABCD, the system
remains in its flat configuration for a load increase from A to E. A
further increase of the in-plane confinement makes the system
exit the initial region (black dash line) and gradually deform up to
the bifurcation point F (second boundary threshold). Thereafter,
it enters the lowest energy branch (A2 in Fig. 4a and light blue
region in Fig. 4b) with an energetically stable state that occurs
slightly prior to its lock state, point G. An additional load increase

makes the system fold until it reaches its lock state (dark blue
region in Fig. 4b) (Supplementary Movie 10).

The map in Fig. 4b shows that the only way for bN4nn to access
modeA2 is with rB ¼ 1; in contrast, any other values of rB would
bring the system to lock in mode AO. This is an outcome that is
distinctive to bN4nn, and does not necessarily translate to other
systems. For instance, for bN6nn, more kinematic paths are
available, i.e., multiple ranges of rB exist to switch between modes.
Figure 4c shows the mode-phase diagram of bN6nn. Here, rB ¼
0:74 (diagonal in the light green region) defines a condition for
which the system, initially in O3 mode, enters A3 mode
immediately after bifurcation. For rB > 0:74, the unit enters its
lockable mode A2O (dark green), whereas for rB < 0:74, it
accesses its flat-foldable mode O2A (brown region). Once entered
in the post-bifurcation mode with minimum energy, the system
remains in that region until it locks. At this stage, the system is
rigid under compression and can no longer reconfigure; no other
regions beyond the red boundaries (Fig. 4b, c) are accessible. The
mode-phase diagrams depend on the geometric parameters �b and
ϕ only, the former being a nonlinear scale factor, and the latter
governing the slope of the lines separating mode-regions and the
loading path (biaxiality ratio rB) of a given mode (Supplementary
Discussion “Energy analysis”). They enable the choice of in-plane
confining forces to attain desired post-bifurcation modes. The
role of out-of-plane confinement is examined in the following.

Lock state domains governed by out-of-plane force. Our goal is
to determine the magnitude of an out-of-plane (z axis in Fig. 1a)
compressive force fo necessary to bring and keep the system in its
lock state without the need of in-plane confining forces.

For the demonstrative purpose, we examine bN4nn folding in
mode A2. Figure 4d schematically shows its energy curves (Eq.
(3) in Methods) for three representing values of the out-of-plane
load normalized by the lock load, i.e., �f ¼ f o=f

L where the lock
load f L is the minimum out-of-plane force at the lock state
(Methods). The interplay between f o and f L gives rise to three
domains:

Region I (light brown): �f <1. Since f o<f
L, the system cannot

access the lock state from a given configuration.
Region IIa (yellow): �f >1, ∂Π∂θ <0 and

∂2Π
∂θ2

<0 – recall Π is expressed
as a function of (π � θ). Partially folded at a given dihedral angle,
the system is prone to fold back to its fully developed (flat) state.

Region IIb (blue): �f >1, ∂Π
∂θ >0, and

∂2Π
∂θ2

<0. This is the lockable
domain (Methods).

If in-plane forces lead the system to reach one unstable
dihedral angle (blue point in Fig. 4d), a small perturbation
prompts the system to naturally abandon it. Once the in-plane
forces succeed in generating dihedral angles smaller than those
described by Eq. (5) in Methods, our system can access the
descending path in the lockable domain. Here spontaneous
folding towards the lock state occurs, and in-plane forces are no
longer needed. The magnitude of the out-of-plane action (f o>f

L)
enables lifting the in-plane confinement. Once in the lockable
domain, e.g., orange point, the system is drawn to fold towards a
stable configuration of equilibrium until it arrests due to panel
contact (black point).

The analysis above has revealed the interplay between in-plane
and out-of-plane confinement. The former can be imparted
through the biaxiality ratio to program and steer the reconfigura-
tion mode (either lockable or flat-foldable) during the folding
process. The latter, in particular its magnitude (f o>f

L) and the
threshold value of the dihedral angle, i.e., the lockable domain
boundary, set the conditions for spontaneous folding into the lock
state without the need for in-plane compression. Once contact is
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Fig. 4 Energy landscapes and mode-phase diagrams. a Dimensionless total energy landscape of N̂4n�n unit subjected to two representative in-plane biaxial
forces: ðfx; rB ¼ fy=fxÞ= (1,1/3), shown in blue, and (1,1) shown in green. b Mode-phase diagram of N̂4nn unit subjected to dimensionless forces describing
in-plane biaxial confinement fx=ðnkÞ and fy=ðnkÞ, where k is the rotational stiffness of the hinges per unit length: Family-load paths ABCD and AEFG
describing uniform scaling of the applied forces. c Mode-phase diagram of N̂6nn unit under in-plane biaxial loads. Complementary information to plots b
and c about the orientation of the lattice relative to the load direction is given in Supplementary Figs. 6 and 7. d Schematic total energy landscape of N̂4n�n
subjected to representative uniformly applied out-of-plane loads: �f<1, �f ¼ 1, �f>1, where �f ¼ fo=f

L. Three regions emerge for modeA2: Region I (light brown)
shows the configuration space in which the unit under compressive load �f<1 folds in mode O2 towards a state in proximity to its zero-energy configuration;
Region IIa (light yellow) shows the configuration space where the unit despite being subject to �f>1 still fold in mode O2 towards a state in proximity to its
fully developed state; Region IIb (blue) illustrates the lockable domain, describing folding states where the unit has been brought by in-plane forces to a
dihedral angle above the threshold of maximum energy (dot boundary); from this state the sole application of �f>1 makes the unit spontaneously folds in
mode A2 until its panels contact.
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attained, our system becomes a stiff structure (see Methods
“Rigidity under compression” and Supplementary Discussion
“Rigidity”), and it is ready to sustain compressive loads exerted in
all three directions, as described below.

Mechanical performance and programmability. We examine a
set of representative proof-of-concept specimens made of cellu-
lose paperboard in their lock states under compression. The
purpose is to demonstrate their capacity to achieve in situ distinct
mechanical properties by uniform and nonuniform application of
confining forces. Experimentally investigated are Young’s mod-
ulus E* (the tangent of the compressive stress-strain curve in the
first loading cycle assessing panel engagement as opposed to
initial slippage) and the yield strength σ* (the first peak stress
before densification); relative density and Poisson’s ratio are given
in the closed form in Supplementary Discussion “Relative den-
sity” and “Poisson’s ratio”. We avoid finite-size effects by tessel-
lating in-plane le1 ¼ le2 ¼ 7 unit-cells along the base vectors {e1,
e2} and stacking n= 6 layers (see Fig. 5a and Supplementary
Discussion “Experiments”). A generic tessellated system is thus

denoted by bNNnnðle1 ; le2 Þ, and below two representative systems,bN4n6ð7; 7Þ and bN6n6ð7; 7Þ, are examined.

Load-bearing capacity. Figure 5a shows the top view of bN4n6(7,7)
along with an inset of a representative primitive unit cell (yellow)
in the lock mode A2. Figure 5b reports its engineering stress-
strain curves obtained in two lock configurations A2 and AO,
and Fig. 5c the corresponding response of bN6n6ð7; 7Þ in its two
lock configurations A3 and A2O. The shaded domain describes
the dispersion of the results obtained from testing three samples
for each material system in a given mode. Three regions emerge:
(i) An initial nonlinear regime, describing panels not yet engaged
under compression, hence unable to establish a proper contact.
(ii) A linear material response for both locked states of each
system. (iii) The stress-peak and the following regime, both
indicative of progressive panel buckling and creasing. ForbN4n6ð7; 7Þ switching from A2 to AO, the Young’s modulus and
yield strength reduce approximately by an order of magnitude.
For bN6n6ð7; 7Þ switching from A3 to A2O, the corresponding

Fig. 5 Out-of-plane compression response of cellular origami-inspired metamaterials. Fabricated samples and measured properties of N̂4n6ð7; 7Þ and
N̂6n6ð7; 7Þ unit in dissimilar lock modes; a Top view illustration of N̂4n6ð7; 7Þ sample showing its primitive unit cell, and tessellation base vectors and
tessellation levels. Engineering stress-strain curves measured for b N̂4n6ð7; 7Þ in two lock configurations A2 and AO, and for c N̂6n6ð7; 7Þ in two lock
configurations A3 and A2O. In b and c the shaded domain describes the dispersion of the results obtained from testing three samples. d Normalized
compressive Young’s modulus (triangle symbols) and normalized yield strength (circle symbols) of N̂4n6ð7; 7Þ vs. relative density. Error bars represent the
standard deviation of our measurements. The subset in d schematically illustrates how the compressive Young’s modulus E* and yield strength σ* were
measured. Cyclic (compressive loading-unloading) response of e N̂4n6ð7; 7Þ (after ten cycles) and f N̂6n6ð7; 7Þ (after four cycles) in their most compact
lock modes A2 and A3, respectively, showing the cyclic response stabilizes nearly after four cycles. In these experiments, the unloading is performed at
75% of the compressive strength of the initial cycle of each sample.
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reductions are approximately three and two times. Minor
deviations emerge in regions (i) and (ii), as opposed to large
values attained in region (iii) far from the peak. Our measure-
ments are comparable with values reported for kirigami-based
concepts made of similar material44.

Scaling laws. Figure 5d shows the normalized Young’s modulus,
E�
Es
, and normalized yield strength, σ�

σ f
, (where Es and σ f are the

Young’s modulus and failure stress of the base material in the
machine direction, MD) for bN4n6ð7; 7Þ measured at three values
of relative density. The results are obtained for samples with
geometric parameters a= b= 10 mm, 15 mm, and 20 mm; for
each of them, five identical samples were fabricated and tested.
The normalized Young’s modulus scales almost linearly with the
relative density (E

�
Es
/ �ρ1:1), where �ρ / t

a

� �
(Supplementary Dis-

cussion “Relative density”), hence obeying the classical scaling law
of stretching dominated structures. The normalized yield
strength, on the other hand, scales almost quadratically with
relative density (σ

�
σ f
/ �ρ1:9), a scaling law deviating from the

buckling or yield failure predictions of stretching dominated 3D
plate-lattices. This can be attributed to the presence of additional
failure mechanisms, which are governed by hinge stiffness, panel
contact and the presence of geometrical imperfections, a topic of
ongoing research.

Cyclic response. Figure 5e, f show the cyclic loading-unloading
curves of bN4n6ð7; 7Þ and bN6n6ð7; 7Þ under compression. Given
their similarity, only the response of bN4n6ð7; 7Þ is examined. The
hysteretic behavior might be attributed to the friction of faces and
edges coming to contact, the viscoelastic-viscoplastic nature of the
base material (cellulose paperboard) as well as the local accu-
mulation of plastic damage, which is also responsible for pro-
gressive softening. This is caused by the repeated strain of the
weak crease ligaments which amplify their detrimental effect at
each cycle until the response stabilizes. This occurs after
approximately four cycles. Thereafter, no appreciable softening
can be observed at higher strains nor significant variations of the
modulus. At the end of the test, a strain of 0.04 is registered,
indicating a permanent set not fully recovered even after several
hours from the test end. These characteristics are qualitatively
comparable with those observed in soft polymeric lattices exhi-
biting viscoelasticity and localized plasticity under cyclic
loading45. Further work is required to quantitatively assess the
response we observed and the role of the governing factors.

Multidirectional stiffness. bN4n6ð7; 7Þ in the lock configuration A2

is tested under in-plane and out-of-plane compression (Fig. 6a)
along two in-plane directions (A and B) at 45° and 90° with
respect to the x-axis, and along the z-direction. Representative
curves of their engineering stress-strain responses in Fig. 6b attest
a comparable yet distinct elastic response and load-bearing

Fig. 6 Multidirectional load-bearing capacity and in situ programmability. a Directions (two in-plane and one out-of-plane) of the applied compressive
loads relative to the orientation of the N̂4n6ð7; 7Þ specimen, and b their corresponding representative engineering stress-strain responses: Scale bar in
a= 100mm. c Top view of seven mixed-mode configurations of N̂4n6ð7; 7Þ with a= b= 10 mm: Scale bar in c= 30mm. Regions of a given mixed-mode
highlighted in semitransparent color for A2, O2 and AO. Out-of-plane normalized compressive Young’s modulus d and normalized open-channel (void)
area in the out-of-plane direction e for the seven configurations shown in c.
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capacity. The largest strength (A) and stiffness (B) observed
during in-plane testing are attributed to the presence of double-
layered panels, i.e., quad panels bonded to stack layers, an aspect
that confers additional anisotropy and larger strength to bear the
compressive load beyond the elastic regime. The difference
between the initial in-plane responses (more compliant for the
unit loaded at 45°) is due to the occurrence of a shear deforma-
tion that is dominant at the start of the compression test. Overall,
our paperboard bN4n6ð7; 7Þ specimens with a= b= 15 mm and
locked in modeA2 weighs ~ 40 g, and can withstand up to 850 N
under compression along the z-direction (Supplementary
Movie 11), while up to 1450 N when compressed in the in-plane
directions. In the lock mode A3, bN6n6ð7; 7Þ with identical geo-
metric parameters and weight can resist 1000 N under out-of-
plane compression (Supplementary Movie 12).

Mixed-mode configurations. Uniformly applied forces at the
instant of kinematic bifurcation cause the material system to fold
into one of its lock modes, each with its own set of properties
(e.g., Fig. 5b, c). Here we examine the outcome of a nonuniform
set of forces locally applied in given zones, hence bringing the
system into a mixed-mode configuration, i.e., a state that is
partially folded and encompasses a combination of lockable and
flat-foldable modes. Figure 6c depicts seven mixed-mode con-
figurations among several others for our bN4n6ð7; 7Þ specimen
with square primitive side a= b= 10 mm. The top row shows the
emergence of voids from configurations 4 to 7. In the second row,
the distribution of the attainable modes, i.e., A2, O2 and AO,
which can concurrently form in a given mixed-mode, is high-
lighted with a given color. Figure 6d reports Young’s modulus
normalized with respect to that of the configuration (1), i.e., E*(1),
measured in each mixed-mode configuration. Measurements of
Young’s modulus E* for bN4n6ð7; 7Þ shows only a 1.2-fold decrease
when the tessellation level (3,3) increases to (7,7) (see Supple-
mentary Fig. 14b). The difference is small compared to the
decrease observed for a switch from mode A2 to AO (Fig. 5b) or
O2 (Fig. 6d). This result suggests that the stiffness values of
mixed-mode configurations are relatively insensitive to finite-size
effects. In general, the addition of mode-regions O2 and AO
reduces stiffness, e.g., a drop to half is observed when config-
uration (1) switches to (3). Configuration (4) including all three
mode-regions shows slightly higher stiffness than configuration
(2), a counterintuitive result that might be attributed to the dis-
tribution of mode-regions with a twofold symmetry, as opposed
to configurations (2) and (3), which exhibits reflection symmetry
only. In this mode, only a single channel (an out-of-plane void) is
formed as opposed to configurations (1), (2), and (3), which have
no open channels or voids. Figure 6e shows the normalized open-
channel area Ach

Að4Þ
ch

changes upon reconfiguration, where Ach is the

open-channels area in the out-of-plane direction and Að4Þ
ch that of

configuration (4) with a single channel. The change in the open-
channel area can be considered as a descriptor of the system
permeability, which scales linearly with the conduit area as in a
porous medium. The trends show that the compressive Young’s
modulus and permeability are antagonists. While not quantified
here, this qualitative result attests the versatility of our systems to
tune on-the-fly flow permeability. Further work is required to
quantify this aspect in detail.

Discussion
This work has introduced a class of reprogrammable rigidly flat-
foldable metamaterials that are topological and load-bearing in
multiple directions including the deployment direction. By

merging notions of origami-folding with kirigami-cuts, we have
created foldable patterns made of chains that are shaped with an
N even-sided regular polygonal primitives defining the inner void.
Cellular excisions relax certain deformation constrains imposed
by panel planarity and connectivity of the parent origami. The
strategy enables folding within the embedded voids with multiple
DoFs, which can be reduced upon stacking. This trait simplifies
the fabrication process and eases its automation (Supplementary
Discussion “Manufacturability” and Supplementary Movie 1). At
the bifurcation instant, however, the DoFs grow, and multiple
kinematic paths become temporarily accessible. Some lead to 3D
stiff (locked) configurations, and others to 2D flat-folded states;
this hallmark extends the level of programmability offered by
existing origami concepts. When tessellated, our metamaterials
undergo symmetry and topology transformations that are
amenable to in situ modulation in uniform and mixed-mode
configurations, each with its own set of properties.

Our foldable metamaterials offer functionalities that can be
used as lightweight deployable and self-locking materials, low-
volume transportable packaging, actuators, and lockable robotic
systems that tune stiffness upon actuation. Their rigid-foldability
also enables the adoption of stiff materials other than paper39. In
addition, the load-bearing capacity in their densest lock config-
uration is not limited to any specific directions, rather it is offered
along their three main directions, paving the way to their use as
omnidirectionally structural, yet rigidly flat-foldable mechanical
metamaterials. This aspect is distinct from current origami
metamaterials featuring a trade-off between reconfigurability and
load-bearing capacity, the latter being limited to certain
directions13,24–30,32,34,38,40,42. These concepts when used to
withstand volumetric pressure in their deployed state or another
set of multidirectional forces, would collapse as they remain
floppy at least in one direction. Volumetric pressure can be either
externally or internally applied. Examples of the former include
remotely operated vehicles, such as shape-changing vessels and
submarines, made of structural components that need to deploy
underwater and provide multidirectional stiffness and strength to
resist water pressure during operation. Examples of the latter
include inflatable systems, such as air tents, inflatable shelters,
and buildings, saving boats and vests, which can not only be
packed into a flat or other compact flat-folded configurations but
also safely maintain their deployed state if punctured. Our
metamaterials can thus work as the skeleton of puncture-resistant
inflatable systems that lock in place after deployment, without
collapse or losing their functionality due to unforeseen deflation.
Furthermore, the capacity to switch permeability while remaining
stiff can find application in the design of adaptive porous media
and breathable walls for civil engineering, or as smart-valves for
medical implants where fluid flow could be modulated in situ by
structure rather than by external occlusions.

Methods
Identification of lockable and flat-foldable modes. We systematically study the
relations that define the post-bifurcation modes belonging to a given kinematic
path for a single-DoF stacked unit chain NNn�n . As illustrated in Fig. 2a, in the pre-
and post-bifurcation stages, the triangular panels (six in dark green in the middle
layer) in each set of mountains and valleys remain parallel as �n= 3. Three of them
are mountain panels that lay in a mountain plane, and the others rest in a valley
plane. The distance between them is h (Fig. 2a) which can be calculated through
relation (1). In a given plane, there are six fold lines (two per triangle) which form a
total of six dihedral angles. The fold lines that are parallel form a pair of dihedral
angles (Fig. 2a). This pair can contain either equal or supplementary angles, a
condition that defines the type of post-bifurcation mode. Equality of dihedral
angles in each pair defines regular modes, which in Fig. 2c belong to paths 1 and 2;
this implies that the reconfiguration of the unit chain leads to a folded pattern that
is compatible with its original tessellation. In contrast, supplementarity of dihedral
angles in all pairs, i.e., the dihedral angles sum up to 180° in each pair, gives rises to
irregular modes, and path 3 in Fig. 2c shows an example. Irregular modes can be
attained only in a single unit chain but not in a tessellated pattern, as they forego
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folding congruence between the initial and the final pattern, revealing that the flat-
foldable tessellation cannot be unpacked to its initial pattern. Only one irregular
mode exists for NNn�n with N > 4 and N/2 equal to an odd number, e.g., modes ofbN6n3 shown in Fig. 2b.

Given the folding incompatibility of irregular modes, we now focus on the
regular counterparts and study the conditions that can be used for a given
kinematic path to count the number of existing modes and define the
characteristics of each of them. Our goal is to demonstrate the existence of relations
between distinct pairs of dihedral angles, which in turn govern the kinematic paths
NNn�n can access post-bifurcation. We first introduce some basic notions for our
analysis. In the denomination of dihedral angles, we specify acute angles with A
and obtuse angles with O: The geometry of the units enforces the
conditionAþO¼π during their entire range of motion. As an example, three pairs
of valley dihedral angles are illustrated in Fig. 2d, two As (violet and blue) and one
O (yellow) for a total of six valley dihedral angles. Since in NNn�n , which has 1 DoF,
each pair contains equal angles, all As are equal as are all Os. A given sequence
with angle pairs, e.g., two As and one O depicted in Fig. 2d, can be simply denoted
by the series of angle pairs, e.g.,AAO, and in compact form with the power
indicating the repeated pairs, e.g., A2O. This notation allows discriminating
between kinematic modes that emerge at bifurcation. For example, bN6n3 (Fig. 2c)
can travel along four regular modes: O3 (three obtuse angles are engaged only), A3

(three acute angles are engaged only), A2O (two acute angles and one obtuse
angle), AO2 (one acute and two obtuse), and one irregular, shown with AO.
Modes containing identical pairs of dihedral angles belong to the same kinematic
path, and we designate them by swapping As and Os, i.e., A2O and AO2 belong
to path 2, and A3 and O3 to path 1.

With the notions above, we can now systematically characterize the regular
modes of a generic NNn�n and determine the total number of possible
reconfiguration modes. The problem of finding all independent regular modes of a
generic NNn�n unit can now be treated as the classical necklace problem. In our
case, the equivalent necklace is our unit chain NNn�n with N/2 colored beads
(Fig. 2d), and each color represents a type of dihedral angles, either A or O. By
applying the Pólya enumeration theory, we determine all reconfiguration modes
our NNn�n chain can attain from knowledge of N/2 numbers of A and O. We also
assume that the beads can be rotated around the necklace and that the necklace can
be flipped over. By applying this theory to bN6n3, for instance, all the possible
modes can be collected in a generating function of the form
A3 þA2OþAO2 þ O3, which describes the four regular modes illustrated in
Fig. 2, and where the sum of the powers of A and O in each mode is N/2. Similar
results can be obtained for other unit chains, NNn�n (see Supplementary Discussion
“Pólya enumeration theorem” and Supplementary Fig. 3 for more details).

Energy of the in-plane confinement and mode-phase diagram. We start withbN4nn described by the representative set of parameters: k= 1/3 N, n= 3, θ0= π
and a= b= 15 mm. Figure 4a illustrates two typical curves of the dimensionless
total energy, each for a given value of ðf x ; rBÞ. Upon bifurcation, when θ= π/2, the
total energy curve splits into two branches, each representing a reconfiguration
modeAO and A2. Between these two, the system chooses the mode which has the
lowest energy level. This outcome can be determined by examining (i) the mag-
nitude of the energy of all branches immediately before and after the bifurcation,
and (ii) the gradient of the energy of all branches at bifurcation, for example,
∂ΠA2

∂θ

���
θ¼π=2

and ∂ΠAO

∂θ

���
θ¼π=2

(see Supplementary Discussion “Energy analysis” for

more details). The magnitude and the ratio of the in-plane biaxial loads, i.e.,
ðf x ; rBÞ, govern the relative energy level of each energy branch, dictating the con-
figuration mode our system would travel after bifurcation. For example, Fig. 4a
shows the role of rB in entering a given post-bifurcation mode. For a load case
ðf x ; rBÞ ¼ ð1; 1=3Þ, the system at bifurcation chooses the AO energy branch until
reaching the lock state in this mode; in contrast once subjected to ðf x ; rBÞ ¼ ð1; 1Þ,
the system follows the A2 energy branch to reach the lock state.

The example above suggests the prospect to generate a mode-phase diagram
that maps the activation of a given mode with respect to the relative magnitude of
the in-plane confinement forces fx and fy. Figure 4b visualizes such a map for bN4nn
with a= b= 15 mm and θ0= π. Each color is assigned to a region that describes a
given configuration mode. The boundaries separating modes AO and A2 are
obtained by equating the gradient of the total energy of each branch at bifurcation,
∂ΠA2

∂θ ¼ ∂ΠAO

∂θ

	 
���
θ¼π=2

.

Formulation of the energy of the out-of-plane confinement. We start by

expressing the potential energy of the hinges as V ¼ VðθÞ ¼ 2nNkb θ � θ0
� �2

and
the work of a uniformly applied external force fo asWo ¼ nf oa sinϕ sin θ0 � sin θ

� �
,

where we recall n is the number of stacked layers and the other parameters are
defined in Fig. 1a. The potential energy due to gravity is neglected since the panels
of our system are made of cellulose paperboard, lightweight material with the
gravitational potential energy of few orders of magnitude lower than that of the
hinges and the work of the external forces. If we introduce V 0 ¼ Vðπ � θÞ, and
denote a generic mode with AξOξ0 , where ξ is the total number of valley pairs for

the acute dihedral angles (A) and ξ0 counts the total number of valley pairs for the
obtuse dihedral angles (O) with ξ þ ξ0 ¼ N

2 , we can express the total energy Π ¼
Π θ; f o
� �

of the AξOξ 0 mode as

Π ¼ 2ξ
N V � V 0ð Þ þ V 0 �Wo 8 ξ < 2 π

2 ≤ θ ≤ π

Π ¼ 2ξ0

N V 0 � Vð Þ þ V �Wo 8 ξ ≥ 2 θL ≤ θ ≤ π
2

(
: ð3Þ

The first expression in Eq. (3) describes the total energy of the system in mode
AξOξ 0 prior to bifurcation, while the second gives the total energy after bifurcation.

Under an out-of-plane force, a generic system NNnn is in equilibrium at the
lock state when the total energy has a stationary value. Given NNnn has one DoF,
and the total energy and its derivative are continuous functions, we can determine

the minimum out-of-plane force f L at the lock state by solving ∂Πðθ;f oÞ
∂θ

���
θ¼θL

¼ 0 for

ξ ≥ 2, which yields:

f L ¼ �4kb
2ξ π � 2θ0
� �� N π � θL�θ0

� �
a sin ϕ cos θL

: ð4Þ

Equations (3) and (4) can be used to map the total energy landscape of a system
under a uniform out-of-plane compression as a function of the supplementary of
the dihedral angle θ, i.e., π � θ (Fig. 1a). For demonstrative purpose, we examinebN4nn folding in mode A2 with θ0 = 2π/3. Figure 4d shows its energy curves (Eq.
(3)) for three representing values of the out-of-plane load normalized by the lock
load, i.e., �f ¼ f o=f

L . Setting �f ¼ 1 yields the boundary (thick curve) between two
energy domains, one (below) satisfying �f <1 and the other (above) �f >1. The red
point, which all curves (three shown) pass through, represents the zero-energy
state, described above as the state of the system immediately after manufacturing,
either flat (ideal case) or marginally folded due to residual stress from fabrication.

Subject to uniform out-of-plane compression, our material system can fold into
its lock state under two conditions. First, the magnitude of the uniformly applied
force f o should be above the minimum out-of-plane force, f L , required to lock up
the unit. Second, the dihedral angle of our unit should be larger than a threshold
value defined by the maximum energy barrier of the system. The interplay between
f o and f L described by these conditions gives rise to three domains:

Region I (light brown): �f <1. Here fall configurations are defined by
supplementary angles for which our system can reach an equilibrium that is either
stable if ∂

2Π
∂θ2

>0, or unstable if ∂
2Π
∂θ2

<0. Since f o<f
L , the system cannot access the lock

state from a given configuration, e.g., lower orange point, and it tends to fold back
to its equilibrium point along the “flat-fold” direction towards the zero-energy
point (red).

Region II: �f >1. In this domain, our system can potentially reach the lock state,
but a difference in the outcome exists as determined by the stability of equilibrium.
Region II splits into two subdomains (IIa and IIb), each defined by the slope of the
energy curve, i.e., the sign of ∂Π

∂θ , where—we recall—Π is expressed as a function of
(π � θ).

Region IIa (yellow): ∂Π∂θ <0 and ∂2Π
∂θ2

<0. The condition of equilibrium here is
unstable despite the out-of-plane force being larger than the minimum locking
force. In this region, a system partially folded at a given dihedral angle by the
applied in-plane forces is prone to fold back to its fully developed (flat) state.

Region IIb (blue): ∂Π∂θ >0 and
∂2Π
∂θ2

<0. This is the lockable domain, bounded by the

locus of points (dot line), which satisfies the condition ∂Π
∂θ ¼ 0 for all �f >1. Upon

imposing the condition ∂Πðθ;f oÞ
∂θ ¼ 0 in Eq. (3), we can express the dihedral angle θ as

a function of the load fo when the energy is maximum, ∂Π∂θ ¼ 0, from which we
obtain

f oðθÞ ¼ �16kb
θ�θ0
� �

a sin ϕ cos θ
: ð5Þ

Substituting Eq. (5) into Eq. (3) yields the lockable domain boundary of
maximum energy (dot bound in Fig. 4d) given as a function of the dihedral angle
(θL ≤ θ ≤ π

2 and ξ ¼ 2):

Π ¼ VðθÞ þ 16nkb
θ�θ0
� �
cos θ

sin θ0 � sin θ
� �

: ð6Þ

Equation (6) traces points of the dot boundary that are unstable configurations
of equilibrium, where the total energy attains maximum values, one of which is
shown by the blue point of the representative energy curve �f >1.

Rigidity under compression. Once folded into the lock state, our multilayered
unit chain NNn�n inherits compressive load-bearing capacity as panels reach contact
and prevent further motion. We study the load-bearing capacity of our class of
foldable material systems in relation to their layer stacking. The condition that
guarantees their structural rigidity in one of their lock states can be determined by
studying their pin-jointed counterpart made of a triangulated network (Supple-
mentary Fig. 1c). We can formulate the general problem that predicts the rigidity of
a structure by theoretical analysis (Supplementary Discussion “Kinematic analysis”
and the “Kinematic model” section). While the units are subjected to compressive
loads, we assume coincident bars as a single bar and multiple coincident joints as a
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single joint. The results can be expressed for a single unit chain as a function of the
number of bars and joints at its lock and partially folded configurations along with
the conditions of rigidity (see Supplementary Table 3 in Supplementary Discussion
“Rigidity”).

Carried out for the general lock state AN=2, where all dihedral angles are acute,
our rigidity analysis reveals that N4 becomes rigid with a single layer, whereas at
least two layers must be stacked for N6 and three layers for NN>6. Knowing the
minimum number of stacked layers provides an essential guideline to make our
unit chain stiff in a lock state under compression.

Experimental methods. Test samples were built out of cellulose paperboard
material (200 g m−2 Fabriano Craft paper) with a dry thickness t= 0.21 mm. Each
flat sheet was perforated via laser cutting (CM1290 laser cutter, SignCut Inc.) along
prescribed patterns, followed by manual-folding and layer bonding (using a
commercial Polyvinyl acetate, commonly known as white glue). Fold lines were
obtained with cuts of 2 mm length spaced uniformly at 1.4 mm intervals. Experi-
ments were performed with a BOSE ElectroForce-3510 tester (Bose Corporation,
Framingham, Massachusetts) and a BOSE load-cell with a load capacity of 12.5 kN.
Displacement-control was used with a quasi-static ramp loading and strain rate of
10−3 s−1. Manufacturing and testing were performed at room temperature (22 °C)
with a relative humidity of about 30%. To measure the properties, e.g., Young’s
modulus, we used both the displacement data obtained from the crosshead dis-
placement readings as well as Digital Image Correlation (CCD camera—Point-
Grey) for comparative purposes. The largest difference in measurements provided
by the two techniques was below 3%. Young’s modulus and yield strength were
measured as the initial (linear region) slope (maximum strain at 0.05) and the first
peak in the stress-strain curve, respectively, for the first loading cycle (see subset in
Fig. 5d). Cyclic loading-unloading experiments were carried out using a
displacement-control module at the same strain rate. The direction of the load was
reversed when the load reached ~75% of the first cycle peak load.

All samples were realized with the following geometric parameters
a= b= 15 mm and ϕ= 60° and loaded in the out-of-plane in compression unless
stated otherwise. The relative density is defined by �ρ ¼ ρ�=ρs (density of our
reconfigurable cellular material, ρ*, divided by the density of the solid material, ρs).
To vary relative density, three values were used a= b= 10, 15, and 20 mm.
Specimens were compressed between two smooth flat platens of Aluminum.
Initially, samples were brought to their lock position manually and kept in this
configuration by wrapping them up with a rubber band. To assess the role of the
rubber band during the experiments, we repeated a few compression tests without a
rubber band. In these instances, we started the experiment while the sample was
wrapped with a rubber band, and then cut it after applying 2% of the peak load, i.e.,
~28 N for bN4n6(7,7). The results attest that the stress-strain curves were almost
identical to those obtained on samples confined with a rubber band for the entire
duration of the tests. See also Supplementary Discussion “Experiments” for further
details about the properties of the paperboard.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The codes that support the findings of this study are available from the corresponding
author upon reasonable request.
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