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Numerosity tuning in human association cortices
and local image contrast representations in early
visual cortex
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Human early visual cortex response amplitudes monotonically increase with numerosity

(object number), regardless of object size and spacing. However, numerosity is typically

considered a high-level visual or cognitive feature, while early visual responses follow image

contrast in the spatial frequency domain. We find that, at fixed contrast, aggregate Fourier

power (at all orientations and spatial frequencies) follows numerosity closely but nonlinearly

with little effect of object size, spacing or shape. This would allow straightforward numerosity

estimation from spatial frequency domain image representations. Using 7T fMRI, we show

monotonic responses originate in primary visual cortex (V1) at the stimulus’s retinotopic

location. Responses here and in neural network models follow aggregate Fourier power more

closely than numerosity. Truly numerosity tuned responses emerge after lateral occipital

cortex and are independent of retinotopic location. We propose numerosity’s straightforward

perception and neural responses may result from the pervasive spatial frequency analyses of

early visual processing.
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Humans and many other animals use visual numerosity, the
number of items in a set, to guide behavior. Many species
have neurons tuned to numerosity, decreasing in response

amplitude with distance from a specific preferred numerosity1–3.
Functional magnetic resonance imaging (fMRI) has identified
numerosity-tuned neuronal populations in specific areas of
human association cortex using both population receptive field
modeling approaches4,5 and fMRI adaptation (or repetition
suppression)6. Other fMRI studies using multivoxel pattern
analyses7,8 and representational similarity analyses9 also support
the existence of numerosity-tuned neural populations in the
human brain. Response properties of these neurons mirror
properties of numerosity perception3,6,10. Numerosity perception
is correlated with numerosity-tuned responses between trials3,10,
and repetition suppression6 and multivoxel pattern discrimin-
ability between individuals11,12.

There remains considerable debate over how such numerosity-
tuned responses are derived from visual inputs. One view pro-
poses that numerosity tuning and perception reflect non-
numerical image features that are often correlated with numer-
osity, like density13, or contrast energy at high spatial
frequencies14. However, growing convergent evidence from psy-
chophysical, neuroimaging, and computational research indicates
numerosity itself is represented and perceived15–19. These views
could be reconciled by a non-numerical image feature from which
numerosity could be estimated regardless of other image para-
meters like item size and spacing.

Computational modeling shows numerosity-tuned responses
in various neural networks that are not trained for numerosity
discrimination. The first of these models20 pre-dates the discovery
of numerosity-tuned neurons. It implements specific stages that:
(1) detect where contrast lies in the image; (2) normalize the local
contrast so that each item contributes equally; (3) sum normal-
ized contrast to give a monotonically increasing and decreasing
response to numerosity; (4) weight these monotonic responses
differently to give numerosity-tuned responses with different
numerosity preferences. A simple unsupervised network can
develop monotonically increasing and tuned responses with no
need for monotonically decreasing responses to numerosity (as
inhibitory synapses are sufficient)21. Neither model shows how
the monotonic stage disregards size and spacing. It has since been
shown that monotonic22 and tuned23 responses to numerosity
emerge in a probabilistic hierarchical generative network trained
only to efficiently encode the image and maximize the
likelihood of reconstructing the image, and even in a randomly
weighted network. In this model, the first stage decomposes the
image using spatial receptive fields with surround suppression, as
in the early visual system. The resulting monotonic responses to
numerosity are spatially selective22, but responses are almost
invariant to item size and spacing without the need for explicit
object individuation or size normalization19. Another class of
neural network model, deep convolutional neural networks, also
show monotonic and numerosity-tuned units, even in randomly
weighted networks24. Here monotonic units emerge early in the
network and feed into numerosity-tuned units, where different
weights on these inputs give numerosity-tuned responses with
different numerosity preferences.

EEG and fMRI results show that early visual cortex responses
to numerosity stimuli appear to monotonically increase with
numerosity, regardless of item size or spacing25,26. This mono-
tonic response emerges very quickly after stimulus presentation,
suggesting it reflects feedforward processing, and is not computed
from other parameters like stimulus area and density. This early
visual cortex response to numerosity is surprising, as numerosity
is generally considered a relatively high-level visual feature.
Early visual neurons respond to image contrast in the frequency

domain: at specific positions, orientations, and spatial
frequencies27. So, it is unclear how early visual neural responses
could closely follow numerosity regardless of size and spacing,
although such responses spontaneously emerge somehow in the
image representations of computational models.

Association cortex recording sites with numerosity-tuned
responses largely overlap with higher visual field maps5, but their
spatial population receptive fields (pRF) do not necessarily overlap
with the numerosity stimulus area5,28, and numerosity preferences
are unrelated to pRF position or size28. Numerosity tuning in
functionally homologous macaque brain area locations29 also does
not require the responding single neurons to have spatial receptive
fields including the stimulus region or even have discernible
receptive fields at all30. Indeed, spatial receptive field properties of
numerosity-tuned neurons do not influence numerosity pre-
ferences, tuning width, or firing rate. For early visual monotonic
responses, some properties of EEG event-related potentials suggest
these emerge in V2 or V331, but their precise visual field map and
retinotopic location remains unclear.

Here, we show that aggregate Fourier power (at all orientations
and spatial frequencies) follows numerosity closely but non-
linearly with little effect of object size, spacing, or shape. We use
computational modeling of human 7T fMRI data to show that
monotonic responses originate in primary visual cortex (V1) at
the stimulus’s retinotopic location, and that responses here and in
neural network models follow aggregate Fourier power more
closely than numerosity. Conversely, tuned responses emerging
after lateral occipital cortex follow numerosity more closely than
aggregate Fourier power and are independent of retinotopic
location.

Results
Numerosity response profiles differ between early visual cortex
and association cortices. We presented fixed contrast displays of
gradually changing numerosity to our participants while collect-
ing 7T fMRI data (see Methods). We included different stimulus
configurations that held total item area, individual item size, or
total item perimeter constant across numerosities, or placed items
in a dense group (Fig. 1). These configurations varied item size
and spacing considerably but produced similar responses.

Different cortical locations showed different relationships
between numerosity and response amplitude. These were well
captured by response models with monotonically increasing,
monotonically decreasing, or tuned responses to log(numerosity)
at different locations (Supplementary Fig. 2c, d). We compared
the response variance explained by these models in cross-
validated data (Fig. 2a and Supplementary Fig. 4). Separate visual
field mapping data demonstrate that monotonically increasing
responses were consistently found only in early visual cortex’s
central visual field representation. Numerosity-tuned responses
were found outside early visual cortex, in previously described
areas of temporal–occipital, parietal-occipital, superior parietal,
and frontal cortices containing topographic numerosity maps5.
These largely overlapped with higher extrastriate visual field
maps. Monotonically decreasing responses were found next to
areas showing tuned responses.

Early visual monotonic responses. Early visual (V1–V3, LO1)
responses were consistently predicted more closely by mono-
tonically increasing rather than tuned responses to numerosity
(Fig. 2b, c). Critically, model fits depended on the recording sites’
visual field position preferences: those near fixation (the stimulus
location) showed better fits, gradually decreasing to zero into the
periphery. These progressions were well captured by cumulative
Gaussian sigmoid functions (Supplementary Fig. 5c). Inflection
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points of these sigmoid curves fell at eccentricities between one
and two degrees of visual angle (Fig. 2b and Supplementary
Fig. 2a).

A location-specific monotonic response to numerosity that has
emerged by V1 is perhaps surprising: numerosity is generally
considered a complex visual or cognitive feature, and responses of
V1 neurons depend on contrast at specific orientations and
spatial frequencies within their receptive field. Images are often
transformed into this spatial frequency domain using a
2-dimensional Fourier decomposition, which similarly separates
changes across an image into the contrast at each orientation and
spatial frequency32. We, therefore, reasoned that aggregate
Fourier power (across all orientations and spatial frequencies)
in the spatial frequency domain might closely predict the
measured aggregate response of V1 populations. We summed
the absolute Fourier decomposition of the displays within the first
spatial frequency harmonics, across all orientations (Fig. 3a, b).
This revealed that aggregate Fourier power followed numerosity
closely, but nonlinearly, and similarly in all stimulus configura-
tions (Fig. 3c). The aggregate power of the second harmonic
showed a similar pattern at half the amplitude. Indeed, aggregate
Fourier power changed very little over a wide range of item sizes,
spacings, and shapes that were not tested in our experiments.
Fourier power followed numerosity closely except in extreme
cases, and except for a slight increase in Fourier power with item
spacing (Fig. 4a, d and Supplementary Figs. 7–10).

Global changes in item contrast do not affect perceived
numerosity until items become less visible33. However, Fourier
power increased linearly with the contrast between items and the
background (Fig. 4e). This effect could therefore be compensated
for simply by divisive normalization: dividing the Fourier power
by the mean contrast of the items. Using a mixture of black and
white items gave very slightly (~1.6%) higher Fourier power than
using black items only, which is unsurprising because the
difference in luminance between any item and the rest of the
display increased slightly here.

Numerosity perception is less accurate in displays where
different items have variable contrasts than in fixed-contrast
displays34. As we increased the range of item contrasts in a
display, the range of Fourier powers in different displays also
increased considerably (Fig. 4f): the 95% confidence intervals
were ~300% greater when the range of contrasts was 0.85 than
when it was 0.1, regardless of whether Fourier power is
normalized by the mean contrast of the items. The mean Fourier
power also increased, but only by ~10%.

Connecting dot pairs with bars reduced the numerosity of
items perceived in the display. This perceived numerosity was
originally compared to numerosity perceived when bars were
placed among the dots but fully unconnected14,35 (Fig. 4g, black
inset). The Fourier power of a connected pair (red) was lower
than fully unconnected dots and bars (black), superficially
predicting the connectedness illusion. However, rotating the dots
and bars to break the connection (magenta) had the same lower
Fourier power while it is perceived as more numerous.
Furthermore, the Fourier power of the connected pair was
greater than the dots alone (gray), while connected pairs are
perceived as less numerous than dots alone. Connecting illusory
contour inducers (blue) also reduce perceived numerosity and
had lower Fourier power than dots alone, but these inducers again
had the same effect when rotated to break the connection (cyan).
Therefore, while bars and illusory contour affected Fourier power,
these effects were not consistent with perceptual effects: the
connectedness illusion likely results from higher-order segmenta-
tion processes36.

Several other non-numerical stimulus features have been
proposed to account for numerosity perception because they are
correlated with numerosity in some cases, though none shows this
generalization across displays. We quantified several such features
for each numerosity and stimulus configurations17,18 and tested
predictions of response models that monotonically follow these
features against the recorded early visual (V1–V3) responses. We
tested predictions of position selective pRFs responding either to
dot bodies (i.e. luminance) or edges (i.e. contrast)5. All of these
models predicted response amplitudes significantly less well than
log(numerosity) (all Z ≥ 3.21, ps < 0.001 in paired Wilcoxon
signed-rank tests, false discovery rate (FDR) corrected37 for all
comparisons against the log(numerosity) response model, n= 20
hemisphere measurements) (Fig. 5a).

However, early visual responses were significantly better
predicted by monotonically increasing responses to log(Fourier
power) than log(numerosity) (and all other models), both
across all stimulus configurations (Median difference= 0.0054,
Z= 3.92, p < 0.001, FDR corrected with the other comparisons
against the log(numerosity) model) and within each configura-
tion, though this difference is not significant in the high-density
configuration (Z= 1.83, p= 0.0674, FDR corrected for the
comparisons in different stimulus configurations) (Fig. 5c).
Conversely, numerosity-tuned models predict the tuned
response of six previously identified numerosity maps5

significantly better than models tuned to aggregate Fourier

Fig. 1 Example displays from each stimulus configuration and numerosity. Constant area (first panel), constant size (second panel), constant perimeter
(third panel), and high density (last panel). Numerosities one through seven and baseline numerosity twenty.
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power across all stimulus configurations (Median difference=
0.0104, Z=−3.32, p < 0.001) (Fig. 5b), as previously shown for
other non-numerical features17,18. Numerosity-tuned models
also fit better within each stimulus configuration, though this
difference is not significant in the high-density configuration
(Z=−1.46, p= 0.1454, FDR corrected for the comparisons in
different stimulus configurations) (Fig. 5d).

Comparison to neural network models. Although it is beyond
the scope of this study to implement neural network models
and test how they respond to our stimuli, the studies of Stoianov
and Zorzi22 (their Supplementary Fig. 4A) and Kim and
colleagues24 (their Fig. 5b) show that the monotonic responses in
their networks increase nonlinearly with numerosity. We, there-
fore, ask whether this nonlinearity follows the nonlinear
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relationship between numerosity and Fourier power. We took the
data from eight lines shown in each of these studies and nor-
malized these to fall within the same range (Fig. 6). This revealed
that both studies show very similar relationships between
numerosity and response amplitude, which was not apparent in
the original figures because they use log (Fig. 6a) and linear
(Fig. 6b) numerosity axes respectively. We then rescaled the
log(numerosity) function and the relationship between numer-
osity and aggregate Fourier power to best fit all these data points.
Finally, we fit the quadratic function that best follows these data
points (response∝−0.0147 × numerosity2+ numerosity). This set
of lines was better correlated with aggregate Fourier power than
log(numerosity) (p < 0.001, t= 7.62, n= 16 lines, in a paired t-
test of correlation coefficients). There was no significant differ-
ence in the correlation of these lines with aggregate Fourier power
and the best fitting quadratic function (p= 0.53, t= 0.63, n= 16).
Therefore, like the responses of the early visual cortex, the
monotonic responses in a hierarchical generative network trained
to efficiently encode images22 and in an untrained deep con-
volutional neural network24 both follow aggregate Fourier power
more closely than numerosity. We did not extend this compar-
ison to numerosity-tuned responses, which exhibit a range of
preferred numerosities rather than having a single shape. Fur-
thermore, the population tuning functions of our fMRI voxels are
broader and not straightforwardly comparable to the single-unit
tuning functions of neural network models.

Differences in model fits within and between visual field maps.
We separated each visual field map into two eccentricity ranges:
near to the stimulus/fixation (below 1° eccentricity) and far from
the stimulus/fixation (2–5.5° eccentricity). A linear mixed-effects
model (fixed effects: visual field map, eccentricity range; random
effects: participant) revealed that monotonically increasing
Fourier power response models fit better near fixation (p < 0.001,
F(1, 148)= 27.94), and differed between visual field maps
(p < 0.001, F(16, 148)= 10.44). Post-hoc multiple comparisons
revealed better model fits in the early visual field maps (V1, V2,
V3, LO1) than elsewhere (Fig. 2c).

Numerosity-tuned response model fits also differed between
visual field maps (p < 0.001, F(16, 133)= 10.79) in a similar linear
mixed-effects model, but here post-hoc multiple comparisons
showed poorer model fits in the early visual field maps than
elsewhere. Also, unlike monotonically increasing Fourier power
responses of early visual field maps, numerosity-tuned response
model fits did not differ significantly between near and far
eccentricities (p= 0.195, F(1, 133)= 1.70). Therefore, progres-
sions of tuned model fits with eccentricity were captured better by
quadratic than sigmoid functions (Supplementary Fig. 5c).

Monotonically decreasing responses outside early visual cortex.
Some monotonically decreasing responses were seen outside early

visual cortex. Average model fits across whole visual field maps
did not differ significantly between monotonically decreasing and
tuned numerosity models (one-way ANOVA, p= 0.281, F(1,
283)= 1.17). However, tuned models fit better (p < 0.001, F(1,
49)= 14.86) within the previously described numerosity maps.
Monotonically decreasing models generally fit better just outside
the numerosity maps (Fig. 2a). Such responses are predicted by
computational models of numerosity-tuned response
derivation21,24, but typically at early stages preceding numerosity-
tuned responses, not alongside them (though see23). Alter-
natively, numerosity-tuned neural populations with preferred
numerosities below one38 would also decrease their responses as
numerosity increases. These populations would be expected in the
continuous topographic representation of numerosity, near
populations with low numerosity preferences. We calculated the
cortical distance between each recording site best fit by a
numerosity-tuned response and the nearest recording site best fit
by a monotonically decreasing response. This distance was sig-
nificantly positively correlated with the recording site’s preferred
numerosity (Spearman rank-order correlation, ρ= 0.585,
p < 0.001; Supplementary Fig. 11), suggesting monotonically
decreasing sites are tuned, but with preferred numerosities
below one.

Discussion
We found monotonic increases in neural population response
amplitude with increasing numerosity in the retinotopic locations
of our stimuli, beginning in V1. While these monotonic responses
follow numerosity closely, they are better predicted by aggregate
Fourier power, which follows numerosity closely over a wide
range of stimulus parameters for a fixed contrast. Monotonic
responses shown in neural network studies of numerosity were
also better predicted by aggregate Fourier power than by
numerosity. Conversely, tuned responses overlapping with visual
field maps in association cortices were not limited to the stimu-
lus’s retinotopic location and were better predicted by tuning for
numerosity than aggregate Fourier power. We also found
monotonically decreasing responses to numerosity near recording
sites tuned to low numerosities, likely reflecting tuning for
numerosities below one.

Numerosity is generally seen as a high-level visual feature or
cognitive property, while Fourier power is a low-level repre-
sentation of image contrast. Contrast energy at specific orienta-
tions and spatial frequencies drive V1 neurons’ responses27.
Therefore, the cortical response to any visual image begins with
an approximate Fourier decomposition27,32. This transforms the
visual image from the spatial domain (the image’s projection onto
the retina) to the spatial frequency domain (a neural repre-
sentation of the spatial frequency, orientation, and phase of
contrast). In the spatial domain, it does not seem possible to
estimate numerosity regardless of item size and spacing: the area
that must be integrated and the luminance, contrast, or edge

Fig. 2 Relationships between responses to numerosity and visual field position. a Visual position preferences (eccentricity and polar angle, left and
middle) and best-fitting numerosity model (right, colors) at each cortical location, for two illustrative participants. Dashed black lines and labels show visual
field map borders and names respectively. b Progression of each model’s fit with preferred visual field eccentricity (colors) in representative visual field
maps (grouped across participants). Cyan shows fits of monotonically increasing responses to aggregate Fourier power, which are often hidden by the very
similar blue line (monotonically increasing responses to numerosity) that is drawn on top. Filled circles show mean variance explained per eccentricity bin,
error bars show the standard error of the mean, n≥ 94 voxels in each eccentricity bin. Solid lines show the best fit to changes with eccentricity, dashed
lines are bootstrap 95% confidence intervals determined by bootstrapping. c Model fit variance explained by numerosity (tuned, reds) and aggregate
Fourier power (monotonically increasing, blues) response models for each visual field map hemisphere at eccentricities below 1° (left) and between 2° and
5.5° (right). Points represent the population marginal mean, n= 20 hemisphere measurements (ten hemispheres, examined over two independent
measurements), error bars are 95% confidence intervals; non-overlapping error bars show significant differences at p < 0.05 in a two-sided Tukey’s
honestly significant difference test90 to adjust for multiple comparisons. Source data are provided as a Source Data file.
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Fig. 3 Calculation of aggregate Fourier power for each stimulus configuration and its straightforward relationship to numerosity. a 2-dimensional
Fourier transforms for each image in Fig. 1. b Fourier power spectral density at each spatial frequency, collapsed over orientation. The limit of the first
harmonic (f1) was used to determine the aggregate Fourier power of each image. c Aggregate Fourier power follows numerosity closely and similarly across
stimulus configurations. We divided aggregate Fourier power by the product of number display pixels and the square root of two here, making the power of
one circle approximately one for any display resolution. Points show the mean power of all stimuli of the same numerosity in the same stimulus
configuration, error bars show the standard deviation, n= 96 example stimulus images per numerosity. Left panel shows all configurations overlaid; other
panels show individual configurations. Source data are provided as a Source Data file.
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extent within that area change with item size and spacing.
However, numerosity is not directly estimated from the visual
image, it is estimated from the early visual image representation,
which is in the spatial frequency domain. Many functions in the
spatial domain correspond to other functions in the frequency
domain, and numerosity (spatial domain) corresponds to a
nonlinear function of aggregate Fourier power (frequency
domain) at a fixed contrast. This makes it potentially straight-
forward to estimate numerosity from the early visual, frequency
domain image representation. Functional neuroimaging measures
aggregate responses of large neural populations with a broad
range of orientation and spatial frequency preferences39. Aggre-
gate Fourier power similarly sums contrast energy across orien-
tations and spatial frequencies, and we propose this is why early
visual neuroimaging responses follow numerosity with little effect
of size or spacing: these early visual responses reflect aggregate
Fourier power.

It is possible to generate phase-scrambled images that contain
the same Fourier power distributions but with the locations of
image contrast (an orthogonal phase component in the frequency
domain) randomized. Such images yield strong responses in
primary visual cortex, but even V2 responds poorly to such
images as they lack the phase (position) structure found in nat-
ural images40. Hard edges contain contrast at many frequencies

with linked phases. Analysis of this phase structure may be
important for object individuation. Therefore, we expect phase
(position) structure to be required for numerosity-tuned
responses to be derived from early visual, frequency domain
image representations. As such, derivation of numerosity from
frequency domain image representations simplifies object nor-
malization processes that are required to disregard size and
spacing, but is still compatible with object individuation processes
and may also simplify these.

We sum Fourier power only within the first harmonic. This is a
clear local minimum in the Fourier spectrum, but its spatial
frequency varies with item size. The visual system seems unlikely
to flexibly identify this limit and aggregate responses within it as
we do in our analyses. We use this limit because the aggregate
Fourier power in every harmonic (and so the total Fourier power
to infinite spatial frequency) is proportional to the power in the
first harmonic. For example, we show that the second harmonic’s
power also follows numerosity closely, at half the amplitude.
However, using a discrete Fourier decomposition on a pixelated
image we cannot evaluate the power in further harmonic because
they exceed the Nyquist frequency (a mathematical limit on
which frequencies can be evaluated at a given sampling density).
We, therefore, use a metric we can quantify that is equivalent to
total Fourier power. The human visual system transforms images

Fig. 4 Aggregate Fourier power followed numerosity closely with little effect of item size, spacing, shape, contrast, or connectedness. a Aggregate
Fourier power as a function of numerosity for a fixed item size (black line). Red lines show y= x0.466 and y= x0.470, which approximate the observed
relationship. b Aggregate Fourier power of one circle of different diameters was approximately constant for diameters above 3 pixels: smaller circles were
inaccurately rendered. c Aggregate Fourier power for a group of seven circles (each 16 pixels diameter) increased slightly with spacing for stimulus area
diameters above 70 pixels. Smaller areas had little space between items: at 50 pixels all items touch (Supplementary Fig. 9). Black line shows the mean
power across n= 18 example stimulus images per item spacing. Gray lines show the standard deviation across example stimulus images. d Aggregate
Fourier power was approximately constant for regular polygons above three corners. Triangles and 3-pointed stars had greater Fourier power than circles,
while other stars had less Fourier power. e Aggregate Fourier power for a group of seven circles (each 16 pixels diameter) increased linearly as the absolute
Weber contrast of items increased (red). Therefore, normalizing Fourier power by dividing by item contrast gave an approximately constant value for all
contrasts (black). Fourier power was slightly higher for a random mixture of black and white items (magenta and gray) than only black items (red and
black). Heavy lines show the mean power across n= 80 example stimulus images per contrast. Fine lines show the 95% confidence intervals across
example stimulus images. f When item contrasts were randomly chosen from a range centered on 0.5 contrast, the mean Fourier power across displays
increased only slightly as this range increased. The 95% confidence intervals increased considerably. g Effects of connections by a bar and an illusory
contour on Fourier power, together with control dot pairs with the same change to the dot but no connection and no reduction in perceived numerosity.
Compared to dots alone, bars increased Fourier power while illusory contour inducers reduced Fourier power, regardless of connectedness. Source data are
provided as a Source Data file.
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into the spatial frequency domain, but it does not use a discrete
Fourier decomposition and its input is not pixelated: these are
limitations imposed by computer models. Nevertheless, the visual
system is still likely to have some spatial frequency limit. The
finding that the aggregate response of early visual cortex is not
affected by item size25,26 suggests it does not follow the Fourier
power over a fixed spatial frequency range, but is proportional to
aggregate Fourier power in the first harmonic and so to total
Fourier power. It is unclear why this is so. It may be that the
visual system samples the image very densely (certainly far more
densely than 768 × 768 pixels as we do here) and little power falls
beyond the frequencies it can evaluate. Alternatively, neurons
responding to a specific spatial frequency and its harmonics will
typically be activated together and are likely to interact. Although

the nature of these interactions is unclear, responses to higher
harmonics may be suppressed, for example. Finally, there are
certainly differences between the visual system’s spatial frequency
representation and a discrete Fourier decomposition, which is
only a mathematical model. But it is clear that numerosity could
be straightforwardly estimated from V1’s population response, as
it is from a Fourier transform. The properties of lab numerosity
displays in a Fourier transform and the Fourier decomposition’s
close relationship to early visual spatial frequency analysis give an
insight into how this computation could be achieved.

Aggregate Fourier power within the first harmonic follows
numerosity closely because it is approximately constant with item
size and spacing. Why is this constant? Increasing item size
moves Fourier power to a narrower range of lower spatial

Z=3.92
p<.001

Z=3.32
p<.001

Z=3.59
p<.001

Z=3.92
p<.001

Fig. 5 Responses to aggregate Fourier power predict early visual monotonic responses better than numerosity, but numerosity predicts tuned
responses better. a Variance explained by monotonic response models for numerosity and non-numerical visual features, and visual position selective pRF
models in V1–V3. A monotonic response model for aggregate Fourier power predicts observed responses better than all other response models (p < .001).
b Variance explained by tuned response models for numerosity is greater than that for a tuned response model for aggregate Fourier power in the
association cortex numerosity maps (p < 0.001). c Variance explained by monotonic response models for numerosity (saturated bars) and Fourier power
(unsaturated bars) in V1–V3 in each stimulus configuration. d Variance explained by tuned response models for numerosity and Fourier power in the
association cortex numerosity maps in each stimulus configuration. Bar height is the mean variance explained across all maps. Error bars show 95%
confidence intervals, reflecting the range of fits between individual maps, n= 20 hemisphere measurements (ten hemispheres, examined over two
independent measurements). Markers show the median variance explained for each measure: different shapes are different participants; filled and unfilled
symbols are odd and even runs; black is left hemisphere and gray is right hemisphere. P-values show significance of differences in paired, two-sided
Wilcoxon signed-rank tests, FDR corrected for multiple comparisons. Source data are provided as a Source Data file, with response time courses and all
model fits for each voxel in the ROIs provided online (see “Data availability” statement).
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frequencies (Supplementary Fig. 8). Its extent in the Fourier
spectrum (bandwidth) follows 1/period, because spatial frequency
is the inverse of spatial period. Conversely, Fourier power spectral
density is high at these low frequencies because power spectral
density of hard edges follows 1/frequency. Aggregate Fourier
power, reflecting the product of bandwidth (1/period, i.e. fre-
quency) and amplitude (1/frequency), is therefore constant.

Previous computational studies using neural networks have
shown monotonically increasing responses to numerosity in a
network that first decomposes the image using spatial receptive
fields with surround suppression22, as in the early visual system.
This is conceptually similar to the transformation into the spatial
frequency domain image representation that we describe. These
networks’ monotonic responses are also spatially selective22 and
almost independent of item size19, like we see here when trained
as generative models of numerosity displays. Even when network
connections are randomly weighted, monotonic and numerosity-
tuned units are found, suggesting that numerosity is reflected in
image statistics19,24. Aggregate Fourier power may provide an
effective statistic given that it is so straightforward to determine in
spatial frequency domain image representations, and that the
monotonic responses in these networks follow aggregate Fourier
power more closely than they follow numerosity. Training to
efficiently encode (but not discriminate) numerosity displays
increases the discriminability of different numerosities from the
network responses and reduces the influence of non-numerical
properties of test displays19. When transformed into the spatial
frequency domain, numerosity displays (like the natural images
biological visual systems learn from41) have the same 1/frequency
power distribution that we propose underlies the size invariance
of monotonic responses. Therefore, this training may make net-
work responses more sensitive to numerosity by incorporating
this distribution into the spatial structure of network connections.

The aggregate Fourier power of a group of items is affected
only slightly by its spacing. In Fourier decompositions, position
becomes a phase component that we do not analyze. Like item
size, spacing does not affect Fourier power because increasing the
distance between items moves power to lower frequencies, with
lower bandwidths and higher amplitudes. Nevertheless, the ratio
of item size and spacing affects which frequencies fall within the
first harmonic (Supplementary Fig. 9). If the distance between
items is smaller than the item size, the between-item component
of the Fourier spectrum falls outside the first harmonic, reducing
power within this harmonic. Studies of numerosity perception

avoid such crowding. If item spacing is very low (almost touch-
ing), the local minimum used to identify the first harmonic
reflects group size rather than item size. Aggregate power then
reflects one item (the group) rather than the group’s numerosity.
Neither limitation would affect Fourier power if aggregated by the
visual system over all frequencies.

On the other hand, item shape affects aggregate Fourier power
considerably. Triangles have a greater aggregate Fourier power
than other polygons (which have similar power to circles).
Notably, their Fourier spectrum lacks a clear local minimum
because a triangle’s sides are so far from parallel (Supplementary
Fig. 10). Our procedure may therefore overestimate the first
harmonic’s extent. Conversely, most stars have less aggregate
Fourier power than polygons and circles. Stars contain higher
frequency features that fall beyond the first harmonic. Again,
neither limitation would affect Fourier power if aggregated by the
visual system over all frequencies.

Numerosity estimation from aggregate Fourier power may
explain several known effects of stimulus properties on numer-
osity perception. First, increasing item spacing slightly increases
Fourier power and increases perceived numerosity16. Similarly,
tightly crowding items together reduces Fourier power and
reduces perceived numerosity34,42,43. Second, blurring items
decreases their range of spatial frequencies, and reduces perceived
numerosity34. Third, complex shapes disrupt the relationship
between numerosity and Fourier power. Such shapes affect both
perceived numerosity35 and early visual response amplitudes36.
So perceived numerosity, like V1 activation, depends on image
properties.

Unlike Fourier decompositions, biological visual systems pro-
cess different image locations with distinct neural populations.
Our stimulus fell entirely in the central visual field. Humans can
only integrate a limited spatial extent to estimate numerosity
without making eye movements44,45. Very high numerosity sti-
muli must either be too large to see at a glance, be so dense that
items are crowded, or use items too small to resolve. Aggregate
Fourier power is unaffected by such limitations, so follows
numerosity closely until at least 175. Human vision perceives
such high numerosities differently to lower numerosities46. So,
the human visual system may approximate a Fourier decom-
position to transform the image into the frequency domain, but
has its own limitations.

Previous studies of non-numerical features in numerosity sti-
muli have focused on total item perimeter, area, density, or

Fig. 6 Comparison between the monotonic responses in neural network models of numerosity processing and the relationship of numerosity to
aggregate Fourier power. a Shown on a log numerosity scale, following Stoianov and Zorzi22. b Shown on a linear scale following Kim and colleagues24.
Responses shown in neural network studies (black and gray lines) are fit very closely by the relationship between numerosity and aggregate Fourier power
(red), more closely than by log(numerosity) (blue), and similarly to the best quadratic fit to these responses (cyan). Source data are provided as a Source
Data file.
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pattern extent. These follow numerosity in some stimuli17,18, but
any single feature can be kept constant across numerosities.
Numerosity estimation in the spatial frequency domain moves
beyond this approach because item size and spacing have little
effect here. Nevertheless, complex shapes, crowding, blurring,
phase scrambling, and contrast variations disrupt the relationship
between numerosity and aggregate Fourier power. These factors,
therefore, allow strong tests that a human or animal is responding
to numerosity rather than aggregate Fourier power alone, which
would otherwise give the appearance of numerosity-guided
behavior and may itself be beneficial.

Some researchers have seen texture or spatial frequency metrics
as non-numerical image features that can be used to perform
numerosity discrimination tasks without true numerosity
perception13,14,47. Numerosity’s potentially straightforward esti-
mation from the early visual spatial frequency domain image
representation does not imply that humans perceive aggregate
Fourier power rather than numerosity, but instead shows how
numerosity itself could be straightforwardly estimated in
the brain.

However, further processes are certainly involved in numer-
osity perception. There are situations where numerosity percep-
tion differs from true image numerosity. First, connecting items
with lines or illusory contours35,48,49 reduces perceived numer-
osity. This is generally thought to reflect higher-level grouping
processes rather than image features47. We show that lines or
illusory contour inducers on items affect Fourier power, but this
effect does not depend on whether a connection between items is
formed. Conversely, in the connectedness illusion the reduction
in perceived numerosity requires a connection. This is consistent
with early visual EEG event related potentials, which initially
reflect numerosity with no effect of connectedness, and are only
affected by connectedness later36. So, the connectedness illusion
does not affect numerosity perception at the stage of numerosity
estimation and is likely to reflect later processes. Similarly,
numerosity adaptation affects numerosity perception50 without
affecting image content. This affects numerosity-tuned neural
responses51 but it is unclear whether early visual responses are
also affected. Adaptation to the rate of finger tapping also affects
visual numerosity perception52, and this effect seems very unli-
kely to arise in early visual cortex. Higher-level effects and con-
textual effects on numerosity perception are expected considering
the extensive network of numerosity-tuned responses in human
association cortices, which successively transform the repre-
sentation of numerosity and include areas involved in attention,
multisensory integration, and action planning5,53.

Our model for estimating numerosity from aggregate Fourier
power is conceptually similar to a spatial frequency analysis that
Dakin and colleagues proposed to explain why numerosity per-
ception is affected by density in very dense displays14. That
analysis uses the responses of high spatial frequency Laplacian
Gaussian filters as a metric for numerosity. Such filters are not
orientation-selective and do not transform the image into the
spatial frequency domain, so do not closely model the response
selectivity of neurons' early visual cortex. Dakin and colleagues’
analysis was limited to items of a single size. Any such high
spatial frequency filter’s response is strongly affected by item size
(Supplementary Fig. 12a–c) while early visual cortex
responses25,26, numerosity-tuned responses2,4,17, and numerosity
perception15,16 are not. Therefore, this filter response predicts
early visual responses poorly (Fig. 5a), as we have previously
shown for numerosity-tuned responses17,18. Dakin and colleagues
proposed that subjects perceive the response ratio of high and low
spatial frequency filters, which is affected by density, rather than
perceiving numerosity. Aggregate Fourier power is similarly
affected by density. Their response ratio metric does not closely

follow numerosity (Supplementary Fig. 12d) and also predicts
early visual responses poorly (Fig. 5a), while aggregate Fourier
power potentially allows straightforward estimation of numer-
osity itself. These differences are vital because humans rapidly
and spontaneously perceive numerosity15,16. Therefore, while we
were inspired by their insight that numerosity must be estimated
from early visual responses, both of Dakin and colleagues’ pro-
posed metrics for numerical vision predict neural responses and
perception of numerosity poorly, particularly with respect to item
size changes.

Models for subsequently computing numerosity-tuned
responses rely on comparing monotonically increasing and
decreasing responses20,21,24, with their relative weights deter-
mining numerosity preferences. Human early visual population
receptive fields have inhibitory surrounds54, so populations with
receptive fields further from stimulus area should monotonically
decrease their responses with increasing numerosity. However, we
observe no early visual monotonically decreasing responses,
perhaps because negative fMRI responses have low amplitudes or
fewer neurons with monotonically decreasing responses are
needed21. Using differently weighted excitatory and inhibitory
synapses, tuned responses could be computed with monotonically
increasing inputs only20,24. So, early visual neural populations
alone may provide sufficient inputs to derive numerosity-tuned
responses.

Numerosity-tuned responses emerge in neural network com-
putational models trained to efficiently encode numerosity dis-
plays, or even if all weights are random19,24. If monotonic
responses here arise from relationships between numerosity and
image statistics (as we propose above), random weights from two
resulting monotonic units could produce numerosity-tuned units
with various numerosity preferences. These neural network
models produce monotonic responses very early, by their
second22 or third24 layers. Numerosity-tuned units can occur in
the same layer23, though in a feedforward deep convolutional
network24 numerosity-tuned units occur later, in the fourth layer,
and are derived from responses of monotonic units in the third
layer. Another deep convolutional neural network trained for
object recognition55 shows monotonic and numerosity-tuned
units far later, in layers 11 and 13 respectively. Responses of
earlier layers were not examined there, perhaps because only later
units have inputs converging from the entire image. We kept our
numerosity patterns small so those eye movements were not
required to see the whole pattern clearly, and these patterns
should easily fall within V1 population receptive fields. Late-stage
responses in a ventral stream model do not seem to be a close
model for either the monotonic responses of the human brain’s
early visual cortex25,26 or the emergence of numerosity-tuned
neurons in the lateral occipital cortex and their spread through
the dorsal visual stream areas of the superior parietal lobule5,56.
Nevertheless, both response types seem so straightforward to
compute that they may also emerge in ventral stream areas to
support object recognition processes. They may also emerge far
later than early visual cortex if the items are spread over a large
area (too big for early visual receptive fields), though even here
the response of an early visual neural population should follow
numerosity if averaged over many displays.

The transformation from monotonic to tuned responses that
our results suggest also seems to transform Fourier power to
numerosity. Which further processes would be needed to trans-
form the early visual aggregate Fourier power response into a
representation of numerosity that follows perceptual properties?
We did not manipulate image contrast (i.e. dot darkness) in our
fMRI stimuli, but Fourier power linearly decreases as contrast is
reduced. It is well established that early visual neural response
amplitudes depend on image contrast57, so we expect that
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reducing image contrast would reduce V1 response amplitudes.
Therefore, early visual responses are unlikely to follow numer-
osity (as others have proposed) as numerosity does not depend on
contrast, and more likely to follow aggregate Fourier power (as we
propose) as this does depend on contrast. Transforming early
visual Fourier power responses into numerosity-tuned responses
would also require normalization for image contrast. Unlike early
visual field maps, the responses of the first areas where we find
numerosity-tuned responses (visual field maps TO1 and TO2, i.e.
area MT) are minimally affected by contrast57. Therefore, con-
trast normalization at this stage would be sufficient to yield
contrast-independent numerosity-tuned responses. Global image
contrast changes do not affect perceived numerosity until items
become less visible33. But contrast variations within a display may
disrupt global normalization processes, potentially underlying the
lower numerosity discrimination performance in contrast-varying
displays compared to fixed contrast displays34. Indeed, our results
show that the range of aggregate Fourier power levels in different
displays increased considerably as the range of contrasts
increased, regardless of whether Fourier power is normalized by
mean item contrast. The mean aggregate Fourier power across
displays increased only slightly here, so any bias in perceived
numerosity would likely be hard to detect given the large
variation.

After contrast normalization, converting from aggregate
Fourier power to numerosity may be as simple as including an
exponential nonlinearity to compensate for sub-additive accu-
mulation of Fourier power with numerosity. Nonlinear interac-
tions between excitatory and inhibitory inputs to numerosity-
tuned populations seem sufficient to implement this. This non-
linearity is the main difference between predictions of mono-
tonically increasing responses to Fourier power and numerosity
in our stimulus set. As a compressive nonlinearity, this might
reflect fMRI response amplitude saturation with increasing neural
activity. We believe this interpretation is unlikely because our
numerosity stimuli produce response amplitudes far below the
early visual cortex’s maximum fMRI response, and the same
compressive nonlinearity is seen in monotonic responses of
neural network models. We would not expect numerosity-tuned
responses to show such saturation because they don’t increase
response amplitude with numerosity.

Our experimental design cannot conclusively demonstrate that
numerosity-tuned responses are derived from early visual fre-
quency domain image representations, because we do not disrupt
the early visual image representation and show effects on
numerosity-tuned responses. Nevertheless, several findings sug-
gest numerosity-tuned responses are computed from these early
visual monotonic responses. First, almost all visual inputs to the
cortex come through the primary visual cortex, which represents
image features in the frequency domain and shows monotonic
responses. There is no other known pathway through which
numerosity-tuned neurons could be activated by visual inputs.
Second, proceeding through the visual hierarchy, monotonic
response model fits decrease in the same lateral occipital visual
field maps where numerosity-tuned response model fits begin
increasing, suggesting a transformation from monotonic to tuned
responses. Third, computational models for numerosity-tuned
responses20–24 generally derive these responses from monotonic
responses to numerosity. Our results differ from this process only
by showing that early visual monotonic responses more closely
follow frequency domain image properties, which also predict
monotonic neural network responses more closely than
numerosity does.

Unlike early visual monotonically increasing responses,
numerosity-tuned responses are not limited to neural populations
with spatial receptive fields including the stimulus area. At the

macroscopic scale, topographic maps of visual space and
numerosity largely overlap, perhaps unsurprising as both are
visually driven. This goes against the simplistic view of single
brain areas having single functions. Indeed numerosity selectivity
is found in many brain areas with diverse functions5, many with
spatial aspects: motion perception, spatial attention, and eye
movements58–61. Numerical representations here may facilitate
motion tracking, dividing attention, and planning eye movements
across multiple items respectively5,44,45,62,63. But at a finer scale,
these response preferences are independent5,28, perhaps allowing
neural responses to numerosity regardless of stimulus position30.
Linking specific numerosities and visual field positions would
restrict all of these processes, and there is no link between par-
ticular numerosities and visual field positions in our stimuli or
natural scenes. Conversely, to begin estimating numerosity from
image contrast requires analysis of spatial responses in the
stimulus area.

This distinction between the spatial selectivity of early visual
monotonically responding populations and tuned populations in
association cortices may reflect fundamental differences between
the processes that estimate and use numerosity. Simpler animals
like bees, zebrafish, and newborn chickens display numerosity-
guided behaviors, but lack the complex numerical cognition of
humans. Our findings suggest that apparently numerosity-guided
behaviors in these animals may require only selective responses to
orientation and spatial frequency in their simpler visual
systems64–66, with or without extracting numerosity from these
spatial representations67. The human brain appears to have built
complex cognitive functions with inputs from these simple
numerical responses62.

Methods
Participants. We acquired fMRI data from a convenience sample of 11 researchers
(aged 25–39 years, one female, one left-handed). Six of these were members of our
lab and associated labs, five were graduate students from elsewhere in Utrecht
University and University Medical Center Utrecht recruited through advertising.
All had normal or corrected-to-normal visual acuity, good mathematical abilities
and were well educated. Participants were familiarized with the numerosity stimuli
using tasks that required numerosity judgments before scanning. Written informed
consent was obtained from all participants and they were financially compensated
for their time and travel expenses. All experimental procedures were approved by
the ethics committee of University Medical Center Utrecht.

Data from participants P1-P5 were included in a previous study5, although we
use updated preprocessing protocols here. These participants were scanned while
viewing all four stimulus configurations (Fig. 1), to test for responses to non-
numerical features over a broad range of stimulus parameters. P6-P11 were only
scanned while viewing the constant area and constant size configurations: previous
studies show very similar responses across stimulus configurations, and non-
numerical features that differ between configurations predict numerosity selective17

and monotonic25 responses poorly.

Visual stimuli. Following experimental protocols described previously4,5,28, we
acquired 7 T fMRI data while participants viewed numerosity and visual field
mapping stimuli. All stimuli were presented by back-projection on a 15 × 9 cm
screen inside the MRI bore, which participants viewed through prism glasses and a
mirror attached to the head coil. Distance from the participant’s eyes to the display
was 41 cm, with a visible resolution of 1,024 × 538 pixels.

Visual stimuli were generated using MATLAB and Psychtoolbox-368. Stimuli
were sets of black circles (items) on a middle gray background. A diagonal cross of
thin red lines intersected the center of the screen and covered the entire display
throughout the experiment to aid with accurate fixation.

Numerosity stimuli consisted of groups of black dots (items) within 0.75°
(visual angle, radius) of a fixation cross at the center of the display. We used four
stimulus configurations with different progressions of item size and spacing with
numerosity (Fig. 1). The first three kept total item area (and display luminance),
individual item size, or total item perimeter constant. These placed items randomly
but approximately homogeneously within the stimulus area. The fourth (“high
density”) grouped the item’s constant total item area entirely inside a 0.375° radius
circular area, randomly placed inside the stimulus area. 10% of displays showed
white items instead of black, and participants responded to these displays with a
button press (80–100% accurately in each run). No numerosity judgments were
required.
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The numerosities one through seven were first presented in ascending order,
with numerosity changing every 4200 ms (two TRs, see Supplementary Fig. 1c, d
inset). Within this period, a numerosity pattern was shown for 300 ms, alternating
with 400 ms of gray background, repeated six times. Each numerosity pattern had
items drawn in new, random positions. These short presentations prevented
participants from counting. Following this, twenty items were presented in the
same way for eight TRs (16.8 s, 24 presentations of a pattern). These periods of
twenty items served to distinguish between very small and very large tuning
widths4,69. Then numerosities one through seven were presented as before, but in
descending order, followed by another long period of twenty items. This cycle was
repeated four times in each scanning run.

Repeated presentation of stimuli with the same numerosity likely caused some
adaptation50 or repetition suppression. To minimize effects of adaptation on
estimated response models, we used a single model to summarize responses to both
increasing and decreasing numerosity. This ensured each numerosity presentation
was preceded by stimuli that caused both higher and lower responses, reducing
dependence on preceding stimuli.

In a separate scanning session, visual field mapping was used to delineate visual
field maps and determine the position selectivity of our recording sites, following
protocols described previously69,70. Briefly, a bar filled with a moving checkerboard
pattern stepped across a 6.35° (radius) circle in the display center in eight (cardinal
and diagonal) directions. Participants fixated the same central fixation cross,
pressing a button when this changed color to ensure fixation and attention.

fMRI acquisition and data pre-processing. We acquired MRI data on a 7T
Philips Achieva scanner, following protocols described fully in our previous
studies5,28,71. Briefly, we acquired T1-weighted anatomical scans, automatically
segmented these with Freesurfer, then manually edited labels to minimize seg-
mentation errors using ITK-SNAP. This provided a highly accurate cortical surface
model at the gray–white matter border to characterize cortical organization. We
acquired T2*-weighted functional images using a 32-channel head coil at a reso-
lution of 1.77 × 1.77 × 1.75 mm, with 41 interleaved slices of 128 × 128 voxels. The
resulting field of view was 227 × 227 × 72 mm. TR was 2100 ms, TE was 25 ms, and
flip angle was 70°. We used a single-shot gradient echo sequence with SENSE
acceleration factor 3.0 and anterior-posterior encoding. This covered most of the
brain but omitted anterior frontal and temporal lobes, where 7T fMRI has low
response amplitudes and large spatial distortions. Each functional run acquired 182
images (382.2 s) of which the first six (12.6 s) were discarded to ensure a steady
signal state. In each scan session, we acquired six to eight repeated runs in one
stimulus configuration, plus a top-up scan with the opposite phase-encoding
direction to correct for image distortion in the gradient encoding direction72, and a
T1-weighted anatomical image with the same resolution, position and orientation
as the functional data. Different stimulus configurations were tested in different
sessions.

Co-registration of functional data to the high-resolution anatomical space was
performed with fMRI_preproc73 using AFNI74, which differs from our previous
studies. A single transformation matrix was constructed, incorporating all the steps
from the raw data to the cortical surface model to reduce the number of
interpolation steps to one. No other spatial or temporal smoothing procedures were
applied. A T1 image with the same resolution, position and orientation as the
functional data was first used to determine the transformation to a higher
resolution (1 mm isotropic) whole-brain T1 image (3dUnifize, 3dAllineate). For the
fMRI data, we first applied motion correction to two series of images that were
acquired using opposing phase-encoding directions (3dvolreg). Subsequently, we
determined the distortion transformation between the average images of these two
series (3dQwarp). We then determined the transformation in brain position
between and within functional scans (3dNwarpApply). Then we determined the
transformation that co-registers this functional data to the T1 acquired in the same
space (3dvolreg). We applied the product of all these transformations to every
functional volume to transform our functional data to the whole-brain T1
anatomy. We repeated this for each fMRI session to transform all their data to the
same anatomical space.

We then imported these data into mrVista75. We averaged visual field mapping
scan runs. We averaged scans in the same numerosity stimulus configuration
together. For each stimulus configuration, we also averaged data from odd runs and
averaged data from even runs for cross-validation. Within these averaged runs, we
averaged repeated stimulus cycles.

Analyses of visual features co-varying with numerosity. Following previously
described methods17,18, we quantified several non-numerical features of each dis-
play in each numerosity stimulus configuration using methods analogous to those
described fully in17. For monotonic models, we tested predictions of responses
monotonically increasing or decreasing linearly or logarithmically (whichever fit
best) with: (1) numerosity; individual item (2) area and (3) perimeter; total item (4)
area76 and (5) perimeter77; (6) area and (7) perimeter of the convex hull78; density
of (8) luminance, (9) edges, and (10) number within the convex hull; root mean
square contrast (11) across the display and (12) in the convex hull; and (13)
aggregate Fourier power. We also tested a model proposed to capture numerosity
perception using the responses of a high spatial frequency Laplacian of Gaussian
center-surround filter14. We used a filter with a 2-pixel standard deviation here, but

other filter sizes made very similar predictions (Supplementary Fig. 12). We con-
volved this filter with each image and summed the response over all image loca-
tions. We also tested the ratio of responses of high and low spatial frequency filters
(the response ratio model14). We used filters with standard deviations of 1 and
34 pixels here as the prediction of this filter pair was most strongly correlated with
numerosity in our displays. We also tested spatial pRF models following the visual
positions of [14] edges and [15] luminance, summing these across all displays of
the same numerosity.

Additionally, for each display we determined the aggregate Fourier power
within the first harmonic using MATLAB functions. We first normalized each
image to a value of zero on the background and one in the items. We took a two-
dimensional Fourier transform of the resulting image (fft2) and shifted the zero-
frequency component to the center (fftshift) (Fig. 3a). We then took annular
frequency bins (at all orientations) at intervals of 1 cycle/image (excluding zero
frequency), in which we summed the absolute power spectral density (PSD) of the
Fourier transform. Plotting PSD across frequencies (Fig. 3b) identifies a clear local
minimum at the end of the first harmonic. We identified this by finding the lowest
frequency above the frequency of the global maximum PSD where: either the first
or second derivative of PSD reaches its maximum and the PSD is below 25% of the
global maximum PSD. This effectively identifies the sharpest change in PSD, i.e. the
end of the first harmonic, avoiding artifacts resulting from the image pixelation or
Fourier transform discretization. We summed PSDs of all frequency bins until this
frequency to give the aggregate Fourier power in the first harmonic for each
display. We also determined how well the relationship between aggregate Fourier
power and numerosity generalizes across a much greater range of item sizes,
spacings, and shapes that were not included in our fMRI experiments. Display
resolution affects Fourier power. We arbitrarily evaluated our stimuli’s power in
768 × 768 pixel images but divided it by 768 × 768 × 20.5 to generalize to any
resolution. This makes aggregate Fourier power in the first harmonic very nearly
one for one-item displays. We used custom MATLAB code (see the Supplementary
Code within the Supplementary Information file) to determine the aggregate
Fourier power in the first harmonic, from images placed in the image buffer using
Psychtoolbox-368.

We also determined how well the relationship between aggregate Fourier power
and numerosity generalizes across a much greater range of item sizes, spacings, and
shapes that were not included in our fMRI experiments. We tested single circles
from 1–240 pixels diameter placed at the image center. We then tested images of
seven circles, each of diameter 16 pixels, spaced randomly but evenly within a
50–528 pixel diameter circular area. The minimum center-to-center distance
increased with the group area. We then tested images of 16-pixel diameter circles
from numerosity 1–175 within a 700-pixel diameter circular area, placed at least
24 pixels apart (edge-to-edge).

We then tested regular convex polygons from three corners (equilateral
triangle) to ten corners (regular decagon), plus a circle (i.e. infinite corners), with
all corners 30 pixels (radius) from the image center. We also tested regular stars
with 3–10 points (at 30 pixels radius), interleaved with concave corners at 10 pixels
radius. Spatial frequency differs with orientation in these shapes, so we determined
the frequency of the first harmonic separately at each orientation and summed the
PSD within the resulting area.

We finally tested pairs of dots with and without connecting elements to
determine whether the effects of these connecting elements on Fourier power
predict their effects on perception. All dots we 30 pixels in diameter. All bars were
4 pixels wide and the same length as the (edge-to-edge) distance between dots.
Illusory contour inducers were 4 pixels wide, the same color as the background, and
extending 10 pixels into the dot. To separate effects of connected configurations
from changes to image properties, we included conditions where the bar or illusory
contour inducer was split in the middle and rotated around the dot center.

To model predictions of the mean fMRI response to aggregate Fourier power
(or any other non-numerical feature), we took the mean value over all displays of
the same numerosity and stimulus configuration.

Neural response models. For each stimulus configuration’s data and cross-
validation splits, we fit several candidate response models testing how well a
putative neural population with monotonic or tuned responses to each stimulus
feature predicts the observed responses79,80. For monotonic response models, we
convolved the sequence of presented feature amplitudes with a canonical hemo-
dynamic response function (HRF) to give a predicted fMRI time course. We found
the optimal scaling for this prediction using a general linear model (Supplementary
Fig. 1) to determine the baseline and β (scaling factor) for each recording site. This
revealed whether responses increased or decreased with feature amplitude (the sign
of β) and the response variance explained by the scaled prediction (R2). Log(nu-
merosity) predicts early visual EEG25,31,81 and fMRI26 response amplitudes well.
To give each non-numerical feature the best possible chance of explaining these
responses, we tested both logarithmic and linear scaling and chose that which gave
the highest variance explained across all recording sites and participants. For each
non-numerical feature, the best performing model (logarithmic or linear) was
consistent with that chosen to best predict numerosity-tuned responses17,18.

We quantified these model fits under cross-validation between odd and even
scanning runs per condition: we fit the model’s free parameters on one-half of the
data and evaluated the resulting model’s fit on the complimentary half. This
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primarily compensates for the free parameters in the visual position selective pRF
models and the tuned models: the monotonic models have no free parameters.
Using cross-validated model fits allows an unbiased comparison between the
monotonic model fits, visual position selective pRF model fits, and tuned model
fits. We refit the scaling factor to evaluate the prediction, as scaling factors change
between scans and sessions, but did not allow the scaling factor of monotonic
models to change sign. For each voxel, this approach provides a single value of the
cross-validated variance explained of each response model in each half of the data,
which we use for subsequent analyses.

We then compared the cross-validated variance explained in visual field maps
V1–V3 between the monotonic numerosity model and alternative monotonic and
visual position selective pRF models. We first excluded from this comparison any
recording site where no model explained more than 20% of the response variance
(i.e. R2 < 0.2) before cross-validation That is, we selected voxels based on model fits
in the data on which the model was fit, rather than that on which the model was
evaluated, to avoid circularity between voxel selection and model comparison. We
also avoid by selecting voxels where any compared model performs well, rather
than voxels where one specific model performs well. We then took the median
cross-validated fit from each hemisphere (across V1–V3), and from both cross-
validation halves. To compare any two models, we then took the paired difference
between these models’ fits in each hemisphere, resulting in a distribution of
differences in model fits. We determined whether this distribution showed a
significant difference between model fits using Wilcoxon signed-rank tests, as this
population of fit differences was not normally distributed. We then corrected the
resulting p-values for multiple comparisons using false discovery rate correction37.

We calculated the proportion of variance in the responses to all stimulus
configurations (Area, Size, Perimeter, Density) that these models explained, rather
than simply averaging the variance explained values from each stimulus
configuration. This ensured that configurations with larger fMRI signal variance
were weighted more heavily in the average across stimulus configurations.
Arbitrary differences in fMRI response amplitude between scan sessions82

prevented us from quantifying differences in neural response amplitude between
stimulus configurations.

We estimated tuned response models as previously described4,5,17, following a
pRF modeling approach69. For tuned response models, we only compared
predictions of tuning for numerosity and aggregate Fourier power: we have
previously demonstrated that numerosity tuning predicts responses better than
tuning for other features5,17. Briefly, for each recording site, we start with a large set
of candidate neural response models describing numerosity or Fourier power
tuning using logarithmic Gaussian functions3–5 characterized by two parameters:
(1) a preferred numerosity or Fourier power (mean of the Gaussian distribution)
and (2) a tuning width (standard deviation of the Gaussian). Candidate neural
response time courses reflected the amplitude of the Gaussian at the numerosity or
Fourier power presented at each time point. We convolved these with an HRF to
generate candidate fMRI time courses. We found the candidate fMRI time course
best correlated with the response at each recording site, giving the neural response
model parameters that best predict that recording site’s response and the response
variance explained by that prediction (R2).

We restricted candidate preferred numerosities to be between 1.05–6.95, within
the range of numerosities presented. Beyond the tested range, tuning function
parameters cannot be determined accurately4,5,69 and neural response amplitude
predictions monotonically increase or decrease within the presented numerosity
range, complicating comparisons to monotonic models.

We used the same procedure to compare the cross-validated variance explained
in the numerosity maps between the numerosity-tuned model and aggregate
Fourier power tuned model, as we have previously demonstrated that the
numerosity-tuned model fits better than models tuned to other non-numerical
visual features.

Model parameters and response data time-series underlying all model fitting
and statistical analyses for numerosity stimuli are publicly available83,84.

Visual field mapping analysis. Visual field mapping data were analyzed following
a standard pRF analysis69,70. We identified visual field map borders based on
reversals in the cortical progression of the polar angle of recording sites’ visual field
position preferences, drawing these by hand on the cortical surface of an inflated
rendering of each participant’s brain (Fig. 2a and Supplementary Figs. 3 and 4). As
well as the early visual field maps (V1, V2, V3), we identified higher visual field
maps in the lateral/temporal–occipital (LO1-LO2, TO1-TO2), parietal association
(V3A/B, IPS0-IPS5), and frontal (sPCS1-sPCS2, iPCS) cortices with reference to
landmarks identified in previous studies58,59,85,86.

Model parameters and response data time-series underlying all model fitting
and statistical analyses for visual field mapping stimuli are publicly available87,88.

We binned recording sites in each visual field map by pRF eccentricity, at 0.2˚
intervals from 0˚ to 5.5˚. We took the mean and standard error of the variance
explained by each response model among the recording sites within each bin in
plotted this against bin eccentricity. We fit relationships between bin mean
variance explained in each numerosity response model and eccentricity using
cumulative Gaussian sigmoid functions with four parameters: the point of
inflection (cumulative Gaussian mean), slope (standard deviation), maximum
asymptote (variance explained at fixation), and minimum asymptote (variance

explained at 5.5˚ eccentricity). We also fit quadratic curves to these, with three
parameters: intercept, slope, and quadratic term. This includes the possibility of a
constant relationship, linear relationship, and more complex relationships that
allow for an increase in variance explained in the middle of the eccentricity range,
which was often observed. For both fit functions, we bootstrapped these fits using
1000 samples drawn from the unbinned variance explained data across all
participants. We took the median of these bootstrapped fit parameters as the best
fitting curve. We determined 95% confidence intervals from the 2.5 and 97.5
percentile from the distribution of bootstrapped fits at each eccentricity. For each
visual field map and response model, we chose the function that gave the best
correlation between the fit and the bin means.

Analysis of relationship between spatial and numerical responses. We also
analyzed how variance explained by the best fitting response models was related to
recording sites’ spatial pRFs. We use pRF eccentricity (distance from the visual field
center, where numerosity stimuli were presented) to quantify the pRF’s coverage of
the stimulus area: pRF size linearly follows eccentricity69,70, so pRFs with shared
eccentricities cover the numerosity stimulus area similarly. For each visual field
map, we binned all participants’ recording sites by eccentricity. We fit relationships
between bin mean variance explained and eccentricity using a sigmoid cumulative
Gaussian function (i.e. variance explained decreasing with eccentricity) and a
quadratic function (allowing many relationships between variance explained and
eccentricity). For each visual field map and response model, we chose the function
that best fit the bin means.

Analysis of differences in model fits within and between visual field maps. We
used linear mixed-effects models to determine how the goodness of fit of our
monotonic and tuned response models differed between visual field maps and
eccentricity ranges. These models included visual field map and eccentricity range
as fixed factors and participant as a random factor, because the quality of fMRI
data varies between sessions and participants. Marginal tests for the fixed effects
were adjusted using Satterthwaite degrees of freedom approximation89. To deter-
mine which visual field maps showed different goodness of fit, we used post-hoc
multiple comparisons as part of the linear mixed-effects statistical model. These are
corrected for multiple comparisons by using Tukey’s honestly significant difference
test90, which gives the marginal means and confidence intervals shown in Fig. 2c.

Comparison to neural network models. To compare the predictions of mono-
tonic responses to aggregate Fourier power against the responses of neural network
models, we first extracted the data from Stoianov and Zorzi22 (their Supplementary
Fig. 4A) and Kim and colleagues24 (their Fig. 5B) using graphreader.com. Each of
these figures shows several lines, so we repeated this for eight lines from each
figure, evaluating these lines at each integer shown. Stoianov and Zorzi show
responses on a log numerosity axis without normalization, while Kim and col-
leagues show responses on a linear numerosity axis normalized from zero (for the
smallest response seen, to numerosity 1) to one (for the largest response seen, to
numerosity 30). We normalized the responses shown by Stoianov and Zorzi
globally following Kim’s approach (the mean response to numerosity 1 was nor-
malized to 0, the mean response to numerosity 30 was normalized to 1), though we
kept the differences between different lines’ start and end points. We then plotted
the data from both studies on the same axes with both log and linear scales. Finding
that the monotonic responses shown by these studies are very similar, we subse-
quently treated them as one set of 16 lines. While we could not determine the
aggregate Fourier power of the displays used in these studies, our own results show
that item size and spacing have minimal effects on aggregate Fourier power.
Therefore, we took the nonlinear function of numerosity predicted by aggregate
Fourier power in our own displays and linearly scaled this to fit all the data points.
We similarly scaled the log(numerosity) function. Finally, we fit a quadratic
function (second-degree polynomial) to all these data. Then, for each of the 16 lines
shown in the neural network studies, we calculated the correlation coefficient to
each of these three functions. We performed paired t-tests on the sets of 16 cor-
relation coefficients from each function.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Ethical constraints prevent us from sharing the medical imaging data sets (MRI scans)
generated in the current study to public repositories. The structure of the brain is unique to
the individual participant, in theory allowing the participant to be identified from these
images, which may also contain medically sensitive findings. This is an interpretation of
the EU’s General Data Protection Regulation (GDPR) for medical images including MRI
data. These raw data sets are available from the corresponding author upon reasonable
request, depending on agreements not to share these data publicly. Model parameters
underlying all statistical analyses and response data time-series for all model fitting are
publicly available at the following DOIs: visual field mapping response model parameters
(https://doi.org/10.6084/m9.figshare.17294219)87; visual field mapping response time-
series (https://doi.org/10.6084/m9.figshare.17294060)88; monotonic/tuned numerosity,
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aggregate Fourier power, and non-numerical cues response model parameters (https://
doi.org/10.6084/m9.figshare.17294390)83; numerosity response time-series (https://doi.org/
10.6084/m9.figshare.17294342)84. Data from participants P1–P5 were included in a
previous study5, although we use updated preprocessing protocols here. Source Data
plotted in the figures are provided with this paper. Source data are provided with
this paper.

Code availability
The code that supports the findings of this study is available from the following
repositories: vistasoft (github.com/vistalab/vistasoft, https://doi.org/10.5281/
zenodo.5811120)75; vistasoftAddOns (github.com/benharvey/vistasoftAddOns, https://
doi.org/10.5281/zenodo.5811114)79; fMRI_preproc (github.com/MvaOosterhuis/
fMRI_preproc, https://doi.org/10.5281/zenodo.5811116)73; MonoTunedNumerosity
(github.com/jacobmpaul/MonoTunedNumerosity, https://doi.org/10.5281/
zenodo.5811112)80.
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