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Automatic mapping of multiplexed social receptive
fields by deep learning and GPU-accelerated 3D
videography
Christian L. Ebbesen 1,2,3,4,5✉ & Robert C. Froemke 1,2,3,4,5✉

Social interactions powerfully impact the brain and the body, but high-resolution descriptions

of these important physical interactions and their neural correlates are lacking. Currently,

most studies rely on labor-intensive methods such as manual annotation. Scalable and

objective tracking methods are required to understand the neural circuits underlying social

behavior. Here we describe a hardware/software system and analysis pipeline that combines

3D videography, deep learning, physical modeling, and GPU-accelerated robust optimization,

with automatic analysis of neuronal receptive fields recorded in interacting mice. Our system

(“3DDD Social Mouse Tracker”) is capable of fully automatic multi-animal tracking with

minimal errors (including in complete darkness) during complex, spontaneous social

encounters, together with simultaneous electrophysiological recordings. We capture posture

dynamics of multiple unmarked mice with high spatiotemporal precision (~2 mm, 60 frames/

s). A statistical model that relates 3D behavior and neural activity reveals multiplexed ‘social

receptive fields’ of neurons in barrel cortex. Our approach could be broadly useful for neu-

robehavioral studies of multiple animals interacting in complex low-light environments.
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Objective quantification of natural social interactions is
difficult. The majority of our knowledge about rodent
social behavior comes from hand-annotation of videos,

yielding ethograms of discrete social behaviors such as ‘social
following’, ‘mounting’, or ‘anogenital sniffing’1. It is widely
appreciated that these methods are susceptible to experimenter
bias and have limited throughput. There is an additional problem
with these approaches, in that manual annotation of behavior
yields limited information about movement kinematics and
physical body postures. This shortcoming is especially critical for
studies relating neural activity patterns or other physiological
signals to social behavior. For example, neural activity in many
areas of the cerebral cortex is strongly modulated by movement
and posture2,3, and activity profiles in somatosensory regions can
be difficult to analyze without understanding the physics and
high-resolution dynamics of touch. Important aspects of social
behavior, from gestures to light touch and momentary glances
can be transient and challenging to observe in most settings, but
critical to capturing the details and changes to social relationships
and networks4,5.

The use of deep convolutional networks to recognize objects in
images has revolutionized computer vision, and consequently,
also led to major advances in behavioral analysis. Drawing upon
these methodological advances, several recent publications have
developed algorithms for single animal6–13 and multi-animal
tracking14–21. These methods function by detection of key-points
in 2D videos, and estimation of 3D postures is not straightfor-
ward in interacting animals, where some form of spatiotemporal
regularization is needed to ensure that tracking is stable and
error-free, even when multiple animals are closely interacting.
During mounting or allo-grooming, for example, interacting
animals block each other from the camera view, and tracking
algorithms can fail. Having a large number of cameras film the
animals from all sides can solve these problems22,23, but this has
required extensive financial resources for equipment, laboratory
space, and processing power, which renders widespread use
infeasible.

Some recent single24- and multi-animal17–19 tracking methods
have bypassed the problem of estimating the 3D posture of closely
interacting animals by training a classifier to replicate human
labeling discrete behavioral categories, such as attack and
mounting. This approach is very powerful for automatically
generating ethograms; however, for relating neural data to
behavior, the lack of detailed information about movement and
posture kinematics of interacting animals can be a critical
drawback. In essentially every brain region, neural activity is
modulated by motor signals25–28 and vestibular signals2,3,29.
Thus, any observed differences in neural activity between beha-
vioral categories may simply be related instead to differences in
movements and postures made by the animals in those different
categories. To reveal how neural circuits process body language,
touch, and other social cues21 during a social interaction,
descriptions of neural coding must be able to account for these
important but complex motor- and posture-related activity pat-
terns or confounds.

In parallel with deep-learning-based tracking methods, some
studies have used depth-cameras for animal tracking, by fitting a
physical 3D body-model of the animal to 3D data30–32. These
methods are powerful because they can explicitly model the 3D
movement and poses of multiple animals, throughout the social
interaction. However, due to technical limitations of depth ima-
ging hardware (e.g., frame rate, resolution, motion blur), to date it
has been possible only to extract partial posture information
about small and fast-moving animals, such as lab mice. Conse-
quently, when applied to mice, these methods are prone to
tracking mistakes when interacting animals get close to each

other and the tracking algorithms require continuous manual
supervision to detect and correct errors. This severely restricts
throughput, making tracking across long time scales infeasible.

Here we describe a system for multi-animal tracking and
neuro-behavioral data analysis that combines ideal features from
both approaches: The 3D Deep-learning, Depth-video Social
Mouse Tracker (“3DDD Social Mouse Tracker”, https://
github.com/chrelli/3DDD_social_mouse_tracker/). Our method
fuses physical modeling of depth data and deep learning-based
analysis of synchronized color video to estimate 3D body pos-
tures, enabling us to reliably track multiple mice during natur-
alistic social interactions. Our method is fully automatic (i.e.,
quantitative, scalable, and free of experimenter bias), is based on
inexpensive consumer cameras, and is implemented in Python, a
simple and widely used computing language. Our method is
capable of tracking the animals using only infrared video chan-
nels (i.e., in visual darkness for mice, a nocturnal species), is self-
aligning, and requires only a few hundred labeled frames for
training. We combine our tracking method with silicon probe
recordings of single-unit activity in barrel cortex to demonstrate
the usefulness of a continuous 3D posture estimation and an
interpretable body model: We implement a full-automatic neural
data analysis pipeline (included along with the tracking code),
that yields a population-level map of neural tuning to the features
of a social interaction (social touch, movements, postures, spatial
location, etc.) directly from raw behavior video and spike trains.

Results
Raw data acquisition. We built an experimental setup that
allowed us to capture synchronized color images and depth
images from multiple angles, while simultaneously recording
synchronized neural data (Fig. 1a). We used inexpensive, state-of-
the-art ‘depth cameras’ for computer vision and robotics. These
cameras contain several imaging modules: one color sensor, two
infrared sensors, and an infrared laser projector (Fig. 1b). Ima-
ging data pipelines, as well as intrinsic and extrinsic sensor cali-
bration parameters can be accessed over USB through a C/C++
SDK with Python bindings. We placed four depth cameras, as
well as four synchronization LEDs around a transparent acrylic
cylinder which served as our behavioral arena (Fig. 1c).

Each depth camera projects a static dot pattern across the
imaged scene, adding texture in the infrared spectrum to
reflective surfaces (Fig. 1d). By imaging this highly-textured
surface simultaneously with two infrared sensors per depth
camera, it is possible to estimate the distance of each pixel in the
infrared image to the depth camera by stereopsis (by locally
estimating the binocular disparity between the textured images).
Since the dot pattern is static and only serves to add texture,
multiple cameras do not interfere with each other and it is
possible to image the same scene simultaneously from multiple
angles. Simultaneous capture from all angles is one key aspect of
our method, not possible with depth imaging systems that rely on
actively modulated light (such as the Microsoft Kinect system and
earlier versions of the Intel Realsense cameras, where multi-view
capture requires offset capture times).

Since mouse movement is fast (on a millisecond time scale33),
it is vital to minimize motion blur in the infrared images and thus
the final 3D data (‘point-cloud’). To this end, our method relies
on two key features. First, we use depth cameras where the
infrared sensors have a global shutter (e.g., Intel D435) rather
than a rolling shutter (e.g., Intel D415). Using a global shutter
reduces motion blur in individual image frames, but also enables
synchronized image capture across cameras. Without synchroni-
zation between cameras, depth images are taken at different
times, which adds blur to the composite point-cloud. We set

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28153-7

2 NATURE COMMUNICATIONS |          (2022) 13:593 | https://doi.org/10.1038/s41467-022-28153-7 | www.nature.com/naturecommunications

https://github.com/chrelli/3DDD_social_mouse_tracker/
https://github.com/chrelli/3DDD_social_mouse_tracker/
www.nature.com/naturecommunications


Fig. 1 Raw data acquisition, temporal alignment, and recording stability. a Schematic of recording setup, showing the flow of synchronization pulses and
raw data. We use a custom Python program to record RGB images, depth images, and state (on/off) of synchronization LEDs from all four cameras. Neural
data and TTL state of LEDs are recorded with a standard electrophysiology recording system. We use a custom Python program to record video frames
over USB (60 frames/s) and automatically deliver LED synchronization pulses with randomized delays via Arduino microcontroller. b Close-up images of
the depth cameras, showing the two infrared sensors, color sensor, and cables for data transfer and synchronization. c Photograph of recording setup,
showing the four depth cameras, synchronization LEDs, and circular behavioral arena (transparent acrylic, 12” diameter). d Example raw data images (top
left: single infrared image with visible infrared laser dots; top right: corresponding automatically-generated mask image for recording LED synchronization
state (arrow, LED location); bottom left: corresponding depth image, estimated from binocular disparity between two infrared images; bottom right:
corresponding color image). e Inter-frame-interval from four cameras (21 min of recording). Vertical ticks indicate 16.66 ms (corresponding to 60 frames/
s), individual cameras are colored and vertically offset. Frame rate is very stable (jitter across all cameras: ±26 µs). Arrow, example dropped frame.
f Number of dropped frames across the example 21 min recording. g Top row, LED state (on/off) as captured by one camera (the 8-bit value of central
pixel of LED ROI mask), at start of recording and after 20 min of recording. Bottom row, aligned LED trace, as recorded by electrophysiology recording
system. h Temporal residuals between recorded camera LED trace (g, top) and recorded TTL LED trace (g, bottom) are stable, but drift slightly (49 μs/min,
left panel). We can automatically detect and correct for this small drift (right panel). Source data are provided as a Source Data file.
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custom firmware configurations in our recording program, such
that all infrared sensors on all four cameras are hardware-
synchronized to each other by TTL-pulses via custom-built,
buffered synchronization cables (Fig. 1b).

We wrote a custom multithreaded Python program with online
compression, that allowed us to capture the following types of raw
data from all four cameras simultaneously: 8-bit RGB images (320
× 210 pixels, 60 frames/s), 16-bit depth images (320 × 240 pixels,
60 frames/s) and the 8-bit intensity trace of a blinking LED
(60 samples/s, automatically extracted in real-time from the
infrared images). Our program also captures camera meta-data,
such as hardware time-stamps and frame numbers of each image,
which allows us to identify and correct for possible dropped
frames. On a standard desktop PC, the recording system had very
few dropped frames and the video recording frame rate and the
imaging and USB image transfer pipeline were stable (Fig. 1e, f).

Temporal stability and temporal alignment. In order to relate
tracked behavioral data to neural recordings, we need precise
temporal synchronization. Digital hardware clocks are generally
stable but their internal speed can vary, introducing drift between
clocks. Thus, even though all depth cameras provide hardware
timestamps for each acquired image, for long-term recordings,
across behavioral time scales (hours to days), a secondary syn-
chronization method is required.

For synchronization to neural data, our recording program uses a
USB-controlled Arduino microprocessor to output a train of
randomly-spaced voltage pulses during recording. These voltage
pulses serve as TTL triggers for our neural acquisition system
(sampled at 30 kHz) and drive LEDs, which are filmed by the depth
cameras (Fig. 1a). The cameras sample an automatically detected
ROI to sample the LED state at 60 frames/s, integrating across a full
infrared frame exposure (Fig. 1g). We use a combination of cross-
correlation and robust regression to automatically estimate and
correct for shift and drift between the depth camera hardware clocks
and the neural data. Since we use random pulse trains for
synchronization, alignment is unambiguous and we can achieve
super-frame-rate-precision. In a typical experiment, we estimated
that the depth camera time stamps drifted with ~49 µs/min. For
each recording, we automatically estimate and correct for this drift
to yield stable residuals between TTL flips and depth frame
exposures (Fig. 1h). Note that the neural acquisition system is not
required for synchronization, so for a purely behavioral study, we
can run the same LED-based protocol to correct for potential shift
and drift between cameras by choosing one camera as a reference.

Detection of body key-points by deep learning. We pre-
processed the raw image data to extract two types of information
for the tracking algorithm: the location in 3D in space of body
key-points and the 3D point-cloud corresponding to the body
surface of the animals. We used a deep convolutional neural
network to detect key-points in the RGB images, and extracted
the 3D point-cloud from the depth images (Fig. 2a). For key-
point detection (nose, ears, base of tail, and neural implant for
implanted animals), we used a ‘stacked hourglass network’34. This
type of encoder-decoder network architecture combines residuals
across successive upsampling and downsampling steps to gen-
erate its output, and has been successfully applied to human pose
estimation34 and limb tracking in immobilized flies35 (Fig. 2b,
details of network architecture in Supplementary Fig. 1).

We used back-propagation to train the network to output four
‘target maps’, each indicating the pseudo-posterior probability of
each type of key-point, given the input image. The target maps
were generated by manually labeling the key-points in training
frames, followed by down-sampling and convolution with

Gaussian kernels (Fig. 2c, ‘targets’). We selected the training
frames using image clustering to avoid redundant training on
very similar frames8. The manual key-point labeling can be done
with any labeling software. We customized a version of the
lightweight, open source labeling GUI from the ‘DeepPoseKit’
package8 for the four types of key-points, which we provide as
supplementary software (Supplementary Fig. 2).

In order to improve key-point detection, we used two
additional strategies. First, we also trained the network to predict
‘affinity fields’36, which have been shown to improve human36

and animal8,15 body key-point tracking. We used ‘1D’ affinity
fields (as in ref. 8) generated by convolving the path between
labeled body key-points that are anatomically connected in the
animal. With our four key-points, we added seven affinity fields
(e.g., ‘nose-to-ears’, ‘nose-to-tail’), that together form a skeletal
representation of each body (Fig. 2c, ‘affinity fields’). Thus, from
three input channels (RGB pixels), the network predicts eleven
output channels (Fig. 2d). As the stacked hourglass architecture
involves intermediate prediction, which feeds back into subse-
quent hourglass blocks (repeated encoding and decoding, Fig. 2b),
prediction of affinity fields feeds into downstream predictions of
body key-points. This leads to the improvement of downstream
key-point predictions, because the affinity fields give the network
access to holistic information about the body. The intuitive
probabilistic interpretation is that instead of simply asking
questions about the keypoints (e.g., ‘do these pixels look like an
ear?’), we can increase predictive accuracy by considering the
body context (e.g., ‘these pixels sort of look like an ear, and those
pixels sort of look like a nose—but does this path between the
pixels also look like the path from an ear to a nose?’).

The second optimization approach was image data augmenta-
tion during training37. Instead of only training the network on
manually-labeled images, we also trained the network on
morphed and distorted versions of the labeled images (Supple-
mentary Fig. 3). Training the network on morphed images (e.g.,
rotated or enlarged), gives a similar effect to training on a much
larger dataset of labeled images, because the network then learns
to predict many artificially generated, slightly different views of
the animals. Training the network on distorted images is thought
to reduce overfitting on single pixels and reduce the effect of
motion blur37.

Using a training set of 526 images, and by automatically
adjusting learning rate during training, the network was well-
trained (plateaued) within one hour of training on a standard
desktop computer (Fig. 2e), yielding good predictions of both
body key-points and affinity fields (Fig. 2f).

All-infrared tracking. As mice are nocturnal, we also developed a
version of the tracking software that only relies on the infrared
video stream (i.e., in visual darkness for the mice). This facilitates
the study of naturalistic social interactions in darkness. For ‘all-
infrared’ experiments, the arena was lit with infrared LED lamps,
and the software was changed to save only the infrared images
(16-bit, 640 × 448, 60 frames/s). Detection of body key-points by
deep learning from in these images are made difficult by the
prominent infrared laser dot pattern (Fig. 2g). We trained the
deep neural network to ignore the dot pattern by using a data
augmentation strategy. We recorded and labeled body parts in a
training data set (720 images), where the infrared laser was turned
off, and trained the network on labeled images augmented with a
probabilistically generated noise pattern of white dots with a
similar size and density to the ‘real’ laser pattern (Fig. 2h). A
network trained on these data allowed us to successfully detect
body key-points in real images with the infrared laser turned on
(Fig. 2i).
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To optimize the network architecture and estimate pseudo-
posterior probability cutoffs in the network output maps with a
good tradeoff between missed body key-points, false positives,
and network training/inference time, we profiled the network
across the number of hourglass stacks (Supplementary Figs. 4, 5),
with and without various types of training data augmentation
(Supplementary Fig. 6), and with and without part affinity fields
(Supplementary Fig. 7). Based on the hand-labeled validation
data, we found that 3 hourglass stacks and a pseudo-posterior
probability cutoff of 0.5 led to good performance (Supplementary
Figs. 4–7).

Pre-processing of 3D video. By aligning the color images to the
depth images, and aligning the depth images in 3D space, we
could assign three-dimensional coordinates to the detected key-
points. We pre-processed the depth data to accomplish two goals.
First, we wanted to align the cameras to each other in space, so we
could fuse their individual depth images to one single 3D point-

cloud. Second, we wanted to extract only points corresponding to
the animals’ body surfaces from this composite point-cloud.

To align the cameras in space, we filmed the trajectory of a
sphere that we moved around the behavioral arena. We then used
a combination of motion filtering, color filtering, smoothing, and
thresholding to detect the location of the sphere in the color
frame, extracted the partial 3D surface from the aligned depth
data, and used a robust regression method to estimate the center
coordinate (Fig. 3a). This procedure yielded a 3D trajectory in the
reference frame of each camera (Fig. 3b) that we could use to
robustly estimate the transformation matrices needed to bring all
trajectories into the same frame of reference (Fig. 3c). This robust
alignment is a key aspect of our method, as errors can easily be
introduced by moving the sphere too close to a depth camera or
out of the field of view during recording (Fig. 3b, c, arrow). After
alignment, the median camera-to-camera difference in the
estimate of the center coordinate of the 40 mm-diameter sphere
was only 2.6 mm across the entire behavioral arena (Fig. 3d, e).

Fig. 2 Detection of body key-points with a deep convolutional neural network. a Workflow for pre-processing of raw image data. b The ‘stacked
hourglass’ convolutional network architecture. Each ‘hourglass’ block of the network uses pooling and upsampling to incorporate both fine (high-resolution)
and large-scale (low-resolution) information in the target prediction. The hourglass and scoring blocks are repeated seven times (seven ‘stacks’), such that
intermediate key-point and affinity field predictions feed into subsequent hourglass blocks. Both the intermediate and final target maps contribute to the
training loss, but only the final output map is used for prediction. c Example training data for the deep convolutional neural network. The network is trained
to output four types of body key-points (Implant, Ears, Noses, and Tails) and seven 1-D affinity fields, connecting key-points within each body. d Example of
full training target tensor. e Convergence plot of example training set. Top, loss function for each mini-batch of the training set (526 images) and validation
set (50 images). Bottom, learning rate. Network loss is trained (plateaued) after ~ 60 min. f Network performance as function of training epoch for two
example images in the validation set. Left, input images; right, final output maps for key-points and affinity fields. g In an infrared frame (under infrared
illumination), the clear view of the mice is ‘obstructed’ by the infrared laser dot pattern. h Example labeled training frame (with the laser turned off),
showing the augmentation strategy of applying a probabilistically generated ‘fake’ laser dot pattern during training. i Example network output of the trained
network on a ‘real’ infrared frame with the infrared laser turned on.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28153-7 ARTICLE

NATURE COMMUNICATIONS |          (2022) 13:593 | https://doi.org/10.1038/s41467-022-28153-7 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


We used a similar robust regression method to automatically
detect the base of the behavioral arena. We detected planes in
composite point-cloud (Fig. 3f) and used the location and normal
vector, estimated across 60 random frames (Fig. 3g), to transform
the point-cloud such that the base of the behavioral arena laid in
the xy-plane (Fig. 3h). To remove imaging artifacts stemming
from light reflection and refraction due to the curved acrylic
walls, we automatically detected the location and radius of the
acrylic cylinder (Fig. 3i). With the location of both the arena base
and the acrylic walls, we used simple logic filtering to remove all
points associated with the base and walls, leaving only points

inside the behavioral arena (Fig. 3j). Note that if there is no
constraint on laboratory space, an elevated platform can be used
as a behavioral arena, eliminating imaging artifacts associated
with the acrylic cylinder.

Loss function design. The pre-processing pipeline described
above takes color and depth images as inputs, and outputs two
types of data: a point-cloud, corresponding to the surface of the
two animals, and the 3D coordinates of detected body key-points
(Fig. 4a and Supplementary Video 1). To track the body postures
of interacting animals across space and time, we developed an

Fig. 3 Depth data alignment and pre-processing. a Calibration ball detection pipeline. We use a combination of motion filtering, color filtering, and
smoothing filters to detect and extract 3D ball surface. We estimate 3D location of the ball by fitting a sphere to the extracted surface. b Estimated 3D
trajectories of calibration ball as seen by the four cameras. One trajectory has an error (arrow) where ball trajectory was out of view. c Overlay of
trajectories after alignment in time and space. Our alignment pipeline uses a robust regression method and is insensitive to errors (arrow) in the calibration
ball trajectory. d Distribution of residuals, using cam 0 as reference. e Estimated trajectory in 3D space, before and after alignment of camera data.
f Example frame used in automatic detection of the behavioral arena location. Show are pixels from the four cameras, after alignment (green), estimated
normal vectors to the behavioral platform floor (red), the estimated rotation vector (blue), and the reference vector (unit vector along z-axis, black).
g Estimated location (left) and normal vector (right) to the behavioral platform floor, across 60 random frames. h Example frame, after rotating the
platform into the xy-plane, and removing pixels below and outside the arena. Inferred camera locations are indicated with stick and ball. i Automatic
detection of behavioral arena location. j Example 3D frame, showing merged data from four cameras, after automatic removal of the arena floor and
imaging artifacts induced by the acrylic cylinder. Colors, which camera captured the pixels.
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Fig. 4 Mouse body model and GPU-accelerated tracking algorithm. a Full assembly pipeline for a single pre-processed data frame, going from raw RGB
and depth images (left columns) to assembled 3D point-cloud (black dots, right) and body key-point positions in 3D space (colored dots, right).
b Schematic depiction of mouse body model (gray, deformable ellipsoids) and implant model (gray sphere), fit to point-cloud (black dots) and body key-
points (colored dots). The loss function assigns loss to distance from the point-cloud to the body model surface (black arrows) and from key-point
locations to landmark locations on the body model (e.g., from nose key-points to the tip of the nose ellipsoids; colored arrows). c Schematic of loss function
calculation and tracking algorithm. All operations implemented as GPU-accelerated tensor algebra. d Example steps showing convergence of the particle
filter on a single frame. e Schematic depiction of the two levels of the tracking algorithm: Within a single frame, the joint poses are estimated with the
particle filter. Between frames, the RLS filter bank incorporates information from multiple previous frames to estimate and propose the minimum in ‘pose
space’. f Iteration time of a particle filter step, as a function of particles, on a GPU and CPU. For 200 particles (i.e., 40.000 joint poses), the GPU-
accelerated particle filter is ~16.5 times faster than the CPU.
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algorithm that incorporates information from both data types.
The basic idea of the tracking algorithm is that for every frame,
we fit the mouse bodies by minimizing a loss function of both the
point-cloud and key-points, subject to a set of spatiotemporal
regularizations.

For the loss function, we made a simple parametric model of
the skeleton and body surface of a mouse. The body model
consists of two prolate spheroids (the ‘hip ellipsoid’ and ‘head
ellipsoid’), with dimensions based on an average adult mouse
(Fig. 4b). The head ellipsoid is rigid, but the hip ellipsoid has a
free parameter (s) modifying the major and minor axes to allow
the hip ellipsoids to be longer and narrower (e.g., during
stretching, running, or rearing) or shorter and wider (e.g., when
still or self-grooming). The two ellipsoids are connected by a joint
that allows the head ellipsoid to turn left/right and up/down
within a cone corresponding to the physical movement limits of
the neck.

Keeping the number of degrees of freedom low is vital to make
loss function minimization computationally feasible38. Due to the
rotational symmetry of the ellipsoids, we could choose a
parametrization with 8 degrees of freedom per mouse body: the
central coordinate of the hip ellipsoid (x, y, z), the rotation of
the major axis of the hip ellipsoid around the y- and z-axis (β, γ),
the left/right and up/down rotation of the head ellipsoid (θ, φ),
and the stretch of the hip ellipsoids (s). For the implanted animal,
we added an additional sphere to the body model, approximating
the surface of the head-mounted neural implant (Fig. 4b).
The sphere is rigidly attached to the head ellipsoid and has one
degree of freedom; a rotational angle (ψ) that allows the sphere to
rotate around the head ellipsoid, capturing head tilt of the
implanted animal. Thus, in total, the joint pose (the body poses of
both mice) was parametrized by only 17 variables.

To fit the body model, we adjusted these parameters to
minimize a weighted sum of two loss terms: (i) The shortest
distance from every point in the point-cloud to body model
surface. (ii) The distance from detected key-points to their
corresponding location on the body model surface (e.g., nose key-
points near the tip of one of the head ellipsoids, tail key-points
near the posterior end of a hip ellipsoid).

We then used several different approaches for optimizing the
tracking. First, for each of the thousands of point in the point-
cloud, we needed to calculate the shortest distance to the body
model ellipsoids. Calculating these distances exactly is not
computationally feasible, as this requires solving a six-degree
polynomial for every point39. As an approximation, we instead
used the shortest distance to the surface, along a path that passes
through the centroid (Supplementary Fig. 8a, b). Calculating this
distance could be implemented as pure tensor algebra40, which
could be executed efficiently on a GPU in parallel for all points
simultaneously. Second, to reduce the effect of imaging artifacts
in the color and depth imaging (which can affect both the point-
cloud or the 3D coordinates of the key-points), we clipped
distance losses at 3 cm, such that distant ‘outliers’ do contribute
and not skew the fit (Supplementary Fig. 8c). Third, because pixel
density in the depth images depends on the distance from the
depth camera, we weighed the contribution of each point in the
point-cloud by the squared distance to the depth camera
(Supplementary Fig. 8d). Fourth, to ensure that the minimization
does not converge to unphysical joint postures (e.g., where the
mouse bodies are overlapping), we added a penalty term to the
loss function if the body models overlap. Calculating overlap
between two ellipsoids is computationally expensive41, so we
computed overlaps between implant sphere and spheres centered
on the body ellipsoids with a radius equal to the minor axis
(Supplementary Fig. 8f). Fifth, to ensure spatiotemporal con-
tinuity of body model estimates, we also added a penalty term to

the loss function, penalizing overlap between the mouse body in
the current frame, and other mouse bodies in the previous frame.
This ensures that the bodies do not switch place, something that
could otherwise happen if the mice are in joint poses with certain
mirror symmetries (Supplementary Fig. 8g, h).

GPU-accelerated robust optimization. Minimizing the loss
function requires solving three major challenges. The first chal-
lenge is computational speed. The number of key-points and
body parts is relatively low (~tens), but the number of points in
the point-cloud is large (~thousands), which makes the loss
function computationally expensive. For minimization, we need
to evaluate the loss function multiple times per frame (at 60
frames/s). If loss function evaluation is not fast, tracking becomes
unusably slow. The second challenge is that the minimizer has to
properly explore the loss landscape within each frame and avoid
local minima. In early stages of developing this algorithm, we
were only tracking interacting mice with no head implant. In that
case, for the small frame-to-frame changes in body posture, the
loss function landscape was nonlinear, but approximately convex,
so we could use a fast, derivative-based minimizer to track
changes in body posture (geodesic Levenberg-Marquardt steps38).
For use in neuroscience experiments, however, one or more mice
might carry a neural implant for recording or stimulation. The
implant is generally at a right angle and offset from the ‘hinge’
between the two hip and head ellipsoids, which makes the loss
function highly non-convex42. The final challenge is robustness
against local minima in state space. Even though a body posture
minimizes the loss in a single frame, it might not be an optimal
fit, given the context of other frames (e.g., spatiotemporal con-
tinuity, no unphysical movement of the bodies).

To solve these three challenges—speed, state space exploration,
and spatiotemporal robustness—we designed a custom GPU-
accelerated minimization algorithm, which incorporates ideas from
annealed particle filters43 and online Bayesian filtering (Fig. 4c). To
maximize computational speed, the algorithm was implemented as
pure tensor algebra in Pytorch, a high-performance GPU computing
library44. Annealed particle filters are suited to explore highly non-
convex loss surfaces43, which allowed us to avoid local minima
within each frame. Between frames, we used online filtering, to avoid
being trapped in low-probability solutions given the context of the
preceding tracking. For every frame, we first proposed the state of
the 17-parameters using a recursive least-squares (‘RLS’) filter bank
trained on preceding frames. After particle filter-based loss function
minimization within a single frame, we updated the RLS filter bank,
and proposed a particle filter starting point for the next frame
(Fig. 4d, e).

The ‘two-layer’ tracking strategy (particle filter within frames
and RLS filter between frames) has three major advantages. First,
by proposing a solution from the RLS bank, we often already start
the loss function minimization close to the new minimum.
Second, if the RLS filter deems that the fit for a single frame is
unlikely (an outlier), based on the preceding frames, this fit will
only weakly update the filter bank, and thus only weakly perturb
the upcoming tracking. This gives us a convenient way to balance
the information provided by the fit of a single frame, and the
‘context’ provided by previous frames. Third, the RLS filter-based
approach is only dependent on previously tracked frames, not
future frames. This is in contrast to other approaches to
incorporating context that rely on versions of backwards belief
propagation5,16,35. Note that since our algorithm only relies on
past data for tracking, it is possible—in future work—to optimize
our algorithm for real-time use in closed-loop experiments.

For each recording, we first automatically initiated the tracking
algorithm: We automatically scanned forward in the video to find
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a frame, where the mice were well separated (assessed by k-means
clustering of the 3D positions of the body key-points into two
clusters, and by requiring that the ‘cross-mouse’ cluster distance
is at least 5 cm (Supplementary Fig. 9). From this starting point,
we explored the loss surface with 200 particles (Fig. 4d). We
generated the particles by perturbing the proposed minimum by
quasi-random, low-discrepancy sampling45 (Supplementary
Fig. 10). We exploited the fact that the loss function structure
allowed us to execute several key steps in parallel, across multiple
independent dimensions, and implemented these calculations as
vectorizes tensor operations. This allowed us to leverage the
power of CUDA kernels for fast tensor algebra on the GPU44.
Specifically, to efficiently calculate the point-cloud loss (shortest
distance from a point in the point-cloud to the surface of a body
model), we calculated the distance to all five body model
spheroids for all points in the point-cloud and for all 200
particles, in parallel (Fig. 4c). We then applied fast minimization
kernels across the two body models, to generate a smallest
distance to either mouse, for all points in the point cloud. Because
the mouse body models are independent, we only had to apply a
minimization kernel to calculate the smallest distance, for every
point, to 40,000 (200 × 200) joint poses if the two mice. These
parallel computation steps are a key aspect of our method, which
allows our tracking algorithm to avoid the ‘curse of dimension-
ality’, by not exploring a 17-dimensional space, but rather explore
the intersection of two independent 8-dim and 9-dim subspaces
in parallel. We found that our GPU-accelerated implementation
of the filter increased the processing time of a single frame by
more than an order of magnitude compared to a fast CPU (e.g.,
~16-fold speed increase for 200 particles, Fig. 4f).

Tracking algorithm performance. To ensure that the tracking
algorithm did not get stuck in suboptimal solutions, we forced the
particle filter to explore a large search space within every frame
(Supplementary Fig. 11a–c). In successive iterations, we gradually
made perturbations to the particles smaller and smaller by
annealing the filter43), to approach the minimum. At the end of
each iteration, we ‘resampled’ the particles by picking the 200
joint poses with the lowest losses in the 200-by-200 matrix of
losses. This ‘top-k’ resampling strategy has two advantages. First,
it can be done without fully sorting the matrix46, the most
computationally expensive step in resampling47. Second, it pro-
vides a type of ‘importance sampling’. During resampling, some
poses in the next iteration might be duplicates (picked from the
same row or column in the 200-by-200 loss matrix.), allowing
particles in each subspace to collapse at different rates (if the
particle filter is very certain about one body pose, but not the
other, for example).

By investigating the performance of the particle filter across
iterations, we found that the filter generally converged sufficiently
within five iterations (Supplementary Fig. 11d, Supplementary
Video 2) to provide good tracking across frames (Supplementary
Fig. 11e). In every frame, the particle filter fit yields a noisy
estimate of the 3D location of the mouse bodies. The
transformation from the joint pose parameters (e.g., rotation
angles, spine scaling) to 3D space is highly nonlinear, so simple
smoothing of the trajectory in pose parameter space would distort
the trajectory in real space. Thus, we filtered the tracked
trajectories by a combination of Kalman-filtering and maximum
likelihood-based smoothing48,49 and 3D rotation smoothing in
quaternion space50 (Supplementary Fig. 12 and Supplementary
Video 3).

Representing the joint postures of the two animals with this
parametrization was highly data efficient, reducing the memory
footprint from ~3.7 GB/min for raw color/depth image data, to

~0.11 GB/min for pre-processed point-cloud/key-point data to ~1
MB/min for tracked body model parameters. On a regular
desktop computer with a single GPU, we could do key-point
detection in color image data from all four cameras in ~2× real
time (i.e., it took 30 min to process a 1 h experimental session).
Depth data processing (point-cloud merging and key-point
deprojection) ran at ~0.7× real time, and the tracking algorithm
ran at ~0.2× real time (if the filter uses 200 particles and 5 filter
iterations per frame). Thus, for a typical experimental session
(~ hours), we would run the tracking algorithm overnight, which
is possible because the code is fully automatic.

Error detection. Error detection and correction is a critical
component of behavioral tracking. Even if error rates are nom-
inally low, errors are non-random, and errors often happen
exactly during the behaviors in which we are most interested:
interactions. In multi-animal tracking, two types of tracking error
are particularly fatal as they compound over time: identity errors
and body orientation errors (Supplementary Fig. 13a). In con-
ventional tracking approaches using only 2D videos, it is often
difficult to correctly track identities when interacting mice are
closely interacting, allo-grooming, or passing over and under each
other. Although swapped identities can be corrected later once
the mice are well-separated again, this still leaves individual
behavior during the actual social interaction unresolved5,16. We
found that our tracking algorithm was robust against both
identity swaps (Supplementary Fig. 13b–e) and body direction
swaps (Supplementary Fig. 14). This observation agrees with the
fact that tracking in 3D space (subject to our implemented spa-
tiotemporal regularizations) should in principle allow better
identity tracking. In full 3D space it is easier to determine who is
rearing over whom during an interaction, for example.

To test our algorithm for subtler errors, we manually inspected
500 frames, randomly selected across an example 21 min
recording session. In these 500 frames, we detected only a single
tracking mistake, corresponding to 99.8% correct tracking
(Supplementary Fig. 15a). The identified tracking mistake was
visible as a large, transient increase in the point-cloud loss
function (Supplementary Fig. 15b). After the tracking mistake,
the robust particle filter quickly recovered to correct tracking
again (Supplementary Fig. 15c). By detecting such loss function
anomalies, or by detecting ‘unphysical’ postures or movements in
the body models, potential tracking mistakes can be automatically
‘flagged’ for inspection (Supplementary Fig. 15c, d). After
inspection, errors can be manually corrected or automatically
corrected in many cases, for example by tracking the particle filter
backwards in time after it has recovered. As the algorithm
recovers after a tracking mistake, it is generally unnecessary to
actively supervise the algorithm during tracking, and manual
inspection for potential errors can be performed after running the
algorithm overnight. We provide a GUI for viewing and quality
control of tracked behavior (raw data, body skeleton, ellipsoid
surfaces, and time trajectory) running in an interactive Jupyter
notebook (Supplementary Fig. 2b and Supplementary Video 5).

Automated analysis of movement kinematics and social events.
As a validation of our tracking method, we demonstrate that our
methods can automatically extract both movement kinematics
and behavioral states (movement patterns, social events) during
spontaneous social interactions. Some unsupervised methods for
discovering structure and states in behavioral data do not rely on
an explicit body model of the animal, and instead, use statistical
methods to detect behavioral states directly from tracked
features6,33,51–53. In an alternative approach, some supervised
methods label behavioral events of interest by hand on training
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data, and then train a classifier to find similar events in unlabeled
data17–19. Both of these types of analysis are compatible with our
method (e.g., by running directly on the time series data of the 17
dimensions that parametrize the body models of the two animals,
Supplementary Fig. 11). Our tracking system yields an easily
interpretable 3D body model of the animals, which makes two
additional types of analyses straightforward as well: First, we can
easily define 3D body postures or multi-animal postures of
interest as templates16,30. Second, we can use unsupervised
methods to discover behavioral states in the 3D reference frame
of the animal’s own body, making these models and states
straightforward to interpret and ‘sanity check’ (manually inspect
for errors).

To demonstrate posture-template-based analysis, we defined
social behaviors of interest as templates and matched these
templates to tracked data. We know that anogenital sniffing54 and
nose-to-nose touch55 are prominent events in rodent social
behavior, so we designed a template to detect these events. In this
template, we exploited the fact that we could easily calculate both
body postures and movement kinematics, in the reference frame
of each animal’s own body. For every frame, we first extracted the
3D coordinates of the body model skeleton (Supplementary
Fig. 12a). From these skeleton coordinates, we calculated the
position (Fig. 5a) and a three-dimensional speed vector for each
mouse (‘forward speed’, along the hip ellipsoid, ‘left speed’
perpendicular to the body axis, and ‘up speed’ along the z-axis;
Fig. 5b). We also calculated three instantaneous ‘social distances’,
defined as the 3D distance between the tip of each animal’s noses
(‘nose-to-nose’; Fig. 5b), and from the tip of each animal’s nose to
the posterior end of the conspecific’s hip ellipsoid (‘nose-to-tail’;
Fig. 5b). From these social distances, we could automatically
detect when the mouse bodies were in a nose-to-nose or a nose-
to-tail configuration (Fig. 5c). It is straightforward to further
subdivide these social events by body postures and kinematics, in
order to separate stationary nose-to-tail configurations (anogen-
ital sniffing/grooming) and nose-to-tail configurations during
locomotion (social following).

To demonstrate unsupervised behavioral state discovery, we
used GPU-accelerated probabilistic programming56 and state
space modeling to automatically detect and label movement
states. To discover types locomotor behavior, we fitted a ‘sticky’
multivariate hidden Markov model57 to the two components of
the speed vector that lie in the xy-plane (Supplementary
Fig. 16a–h). With five hidden states, this model yielded
interpretable movement patterns that correspond to known
mouse locomotor ‘syllables’: resting (no movement), turning left
and right, and moving forward at slow and fast speeds (Fig. 5d).
Fitting a similar model with three hidden states to the z-
component of the speed vector (Supplementary Fig. 16i–n)
yielded interpretable and known ‘rearing syllables’: rest, rearing
up, and ducking down (Fig. 5e). Using the maximum a posteriori
probability from these fitted models, we could automatically
generate locomotor ethograms and rearing ethograms for the two
mice (Fig. 5b).

In line with previous observations, we found that movement
bouts were short (medians, rest/left/right/fwd/fast-forward: 0.83/
0.50/0.52/0.45/0.68 s, a ‘sub-second’ timescale33). In the locomo-
tion ethograms, bouts of rest were longer than bouts of
movement (all p < 0.05, Mann–Whitney U-test; Fig. 5f) and
bouts of fast forward locomotion was longer than other types of
locomotion (all p < 0.001, Mann–Whitney U-test; Fig. 5f). In the
rearing ethograms, the distribution of rests was very wide,
consisting of both long (~seconds) and very short (~tenths of a
second) periods of rest (Fig. 5g). As expected, by plotting the
rearing height against the duration of rearing syllables, we found
that short rests in rearing were associated with standing high on

the hind legs (the mouse rears up, waits for a brief moment before
ducking back down), while longer rests happened when the
mouse was on the ground (‘rearing’ and ‘crouching’, Fig. 5h). Like
the movement types and durations, the transition probabilities
from the fitted hidden Markov models were also in agreement
with known behavioral patterns. In the locomotion model, for
example, the most likely transition from “rest” was to “slow
forward”. From “slow forward”, the mouse was likely to transition
to “turning left”, “fast forward” or “turning right”, it was unlikely
to transition directly from “fast forward” to “rest” or from
“turning left” to “turning right, and so on (Supplementary
Fig. 16o, p).

Automatic measurement of firing rate modulations during
social touch. By combining our tracking system with silicon-
probe recording of single unit activity, we could automatically
measure how neural activity is modulated during social interac-
tions. As proof-of-concept for our system, we implanted a male
mouse with a 32-channel silicon probe electrode in barrel cortex
(the primary whisker representation in somatosensory cortex). In
an example experiment, we simultaneously recorded 31 single
units in barrel cortex while tracking the behavior of the implanted
mouse interacting with a male and a female conspecific for
20 min each. We then used the posture-template-based analysis
to detect three types of social touch events: nose-to-nose touch
(“Nose ↔ Nose”), the implanted animal touching the partner’s
anogenital region with its whiskers (“Nose0 → Tail1”) and the
partner animal touching the implanted animal’s anogenital region
with its whiskers (“Nose1 → Tail0”, Fig. 6a). The automatic
posture-template-based analysis confirmed58 that the duration of
social touch events and inter-touch-intervals spanned multiple
orders of magnitude (from short millisecond touch events to
longer touch events lasting multiple seconds, Fig. 6b–d).

Using a ‘classic’ peri-stimulus time histogram-based analysis,
we found several single units that had a significant firing
modulation at the time of the detected social touch events
(example neurons shown in Fig. 6e, top row, labeled “naïve
PSTH”). The firing rate modulations detected in the “naïve”
approach were surprisingly small (only a small ‘bump’ in the
PSTH at the time of touch), and much smaller than observed in
‘classic’ barrel cortex studies, where a controlled whisker stimulus
is presented59. We wondered if the magnitude of firing rate
modulation appeared small in the PSTHs, because during un-
trained and self-initiated behavior, the detected touch events
occurred in close temporal proximity and/or were overlapping
with other touch events and postural changes58. To test the
possibility that larger effects sizes were masked by other touch
events occurring in close temporal proximity, we also computed
PSTHs where we only included social touch events where no
other social touch event was detected in the ‘baseline’ period (4 s
before the social touch). In these PSTHs with a “cleaned” baseline
(Fig. 6e, bottom row, labeled “cleaned PSTH”), we both observed
a larger proportion of neurons with a significant change in firing
rate (Fig. 6f) and a larger effect size compared to the naïve PSTHs
(Fig. 6g, the distributions of effect sizes in the cleaned PSTH are
“wider”). For example, the third neuron shown in Fig. 6e showed
no firing rate modulation in the naïve PSTH, but instead showed
a large, highly statistically significant firing rate decrease around
whisker touch in the “cleaned” PSTH.

Fully automatic mapping of ‘social receptive fields’. Cleaning
the PSTHs (by controlling for only three types of social touch)
increased our estimates of the magnitude of firing rate modula-
tions associated with social touch events. However, a PSTH-based
analysis strategy has inherent drawbacks when analyzing
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naturalistic behavior. During free behavior, touch, movement,
and postural changes happen simultaneously, as continuous and
overlapping variables. Furthermore, in line with “vicarious”
somatosensory responses reported in human somatosensory
cortex60 and barrel cortex responses observed just before touch61,
barrel cortex neurons may be related to the behavior of the
partner animal, in a kind of “mirror neuron”-like response.

To deal with these challenges, we drew inspiration from the
discovery of multiplexed spatial coding in hippocampal circuits62

and developed a fully-automatic python pipeline that can
automatically discover ‘social’ receptive fields. Our tracking
method is able to recover the 3D posture and head direction of
both animals: The head direction of the implanted animal was
given by the skeleton of the body model (the implant is fixed to

Fig. 5 Automatic classification of movement patterns and behavioral states during social interactions. a Tracked position of both mice, across an
example 21 min recording. b Extracted behavioral features: three speed components (forward, left, and up in the mice’s egocentric reference frames), and
three ‘social distances’ (nose-to-nose distance and two nose-to-tail distances). Colors indicate ethograms of automatically detected behavioral states.
c Examples of identified social events: nose-to-nose-touch, and anogenital nose-contacts. d Mean and covariance (3 standard deviations indicated by
ellipsoids) for each latent state for the forward/leftward running (dots indicate a subsample of tracked speeds, colored by their most likely latent state)
e Mean and variance of latent states in the z-plane (shaded color) as well as distribution of tracked data assigned to those latent states (histograms)
f Distribution of the duration of the five behavioral states in the xy-plane. Periods of rest (blue) are the longest (p < 0.05, two-sided Mann–Whitney U-
tests) and bouts of fast forward movement (green) are longer other movement bouts (p < 0.001, two-sided Mann–Whitney U-tests). g Distribution of
duration of the three behavioral states in the z-plane. Periods of rest (light blue) are either very short or very long. h Plot of body elevation against behavior
duration. Short periods of rest happen when the z-coordinate is high (the mouse rears up, waits for a brief moment before ducking back down), whereas
long periods of rest happen when the z-coordinate is low (when the mouse is resting or moving around the arena, ρ = −0.47, p < 0.001, two-sided
Spearman’s rank correlation coefficient test). Source data and analysis scripts that generate the figures are available in the associated code/data files
(see “Methods”).
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the head). For computational efficiency, we exploited the
rotational symmetry of the body model of the non-implanted
partner to decrease the dimensionality of the search space during
tracking (Fig. 4c) and used the 3D coordinates of the detected
‘ear’ key-points to infer the 3D head direction of the partner
(Supplementary Figs. 17, 18).

Using the full 3D body model of both animals, we designed our
analysis pipeline to automatically extract 45 continuous features
that might be associated with firing rate changes in a social
interaction: social “between-animal” features (nose-to-nose dis-
tance, nose-to-partner’s-genitals distance, relative orientation of
the partner with respect to the implanted animal, and a temporal
derivative of the distance between the center of the two hip
ellipsoids that measures if the animals are moving towards each
other or away from each other, Fig. 7a), postural features (head
yaw/pitch/roll, etc.), spatial features (to detect ‘spatial’ activity,
such as place fields, border or head-direction activity), movement
features (temporal derivatives of the running trajectory, temporal
derivatives of posture angles, etc.), and posture, space and
movement features of the partner animal (Fig. 7b, Supplementary
Fig. 19a, detailed feature table in “Methods”).

We assumed the following generative model of the observed
neuronal spike trains62: A neuron’s spike train is generated by a
Poisson process, and the rate of this Poisson process is

determined by a linear combination of the behavioral predictors:
Each predictor is associated with its own tuning curve, all tuning
contributions are summed and passed through an exponential
nonlinearity to map the rate of the Poisson process to a positive
value (Fig. 7c). To determine what behavioral features signifi-
cantly contribute to the firing rate modulation of a neuron, and
the associated tuning curves, we used a model comparison
approach: Starting from a null model where the observed spikes
are simply generated by a Poisson process with a constant rate, we
iteratively added predictors that passed a cross-validated
significance criterion (a significant increase in likelihood
compared to a simpler model). The tuning curves were
regularized to be smooth and allowed to be re-fit with each
additional predictor added to the multiplexed code (details in
“Methods”).

Using this analysis approach, we found several neurons with a
multiplexed encoding of features of the social interactions
(Fig. 7d, e). Because of the 3D body models, the discovered
neural coding schemes were straightforward to interpret and
compare to expected touch-related response patterns in barrel
cortex59. For example, the example neuron shown in Fig. 7d is
strongly modulated by social facial touch (strongly tuned to a low
nose-to-nose distance) and strongly lateralized (the neuron is
strongly tuned to orientation angle, with a peak at ~ −π/2, i.e.,

Fig. 6 Automatic measurement of firing rate modulations during social touch. a Automatically-detected social touch events in mouse implanted with
silicon probe (Si-probe) with 31 single-units from barrel cortex during a single 20min behavioral session. Yellow, nose-to-nose; purple, implanted-nose-to-
partner-tail; blue, partner-nose-to-implanted-tail. b Distribution of touch durations with male (dashed) and female (solid) partner (p = 0.000084, N = 64/
46 male/female, two-sided Mann–Whitney U-test). c Percentage of behavioral session classified as social touch events, by partner sex, for two behavioral
sessions. d Distribution of inter-touch-intervals for the two example behavioral sessions. e Social touch PSTHs for four neurons. For each neuron, the top
row shows ‘naïve’ PSTHs (aligned to social touch event) and the bottom row shows ‘cleaned’ PSTHs (we only include events where no other social touch
event occurred in the −4 to 0 s period before the detected social touch). The PSTHs in the bottom row have fewer trials, but show much larger effect sizes.
(p-values indicate paired, two-tailed Wilcoxon signed rank tests, see “Methods”) f, Percentage of neurons that pass a p < 0.05 significance criterion, based
on the ‘naïve’ and ‘cleaned’ PSTHs shown above. g Distributions of effect size (measured as a firing rate modulation index), based on the ‘naïve’ and
‘cleaned’ PSTHs shown above. Source data and analysis scripts that generate the figures are available in the associated code/data files (see “Methods”).
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Fig. 7 Automatic mapping of neural receptive fields in a natural ‘social situation’. a Schematic depiction of automatically extracted social features (top:
nose-to-nose and nose-to-tail distances, center-to-center velocity, and head-center-to-head-center angle) and movement/posture features (bottom:
rotation and movement of the body model ellipsoids). b Names and example traces of extracted behavioral features: social features (red color) and
movement (yellow), posture (blue), and spatial (green) features, for both the subject and partner animal. c Schematic depiction of the generative model:
We assume that every behavioral feature (‘predictor’) is associated with a tuning curve and that spikes are generated by a Poisson process. d Model
selection history and associated p-values of each included predictor for an example neuron (average spike shape and ISI-histogram shown to the left,
p-values indicate a one-sided, paired cross-validation test, N = 10, see “Methods”). The ‘raw’ marginal firing rate distribution (bars), and the fitted
multiplexed tuning curves (10 lines, one line for each data fold) of the identified predictors are shown below. The barrel cortex neuron multiplexes five
features, including nose-to-nose distance (the neuron fires more when this is close to zero, i.e., when noses touch) and orientation angle (the neuron fires
most at roughly −π/2, i.e., when the partner is on the right side, the contralateral side relative to the recording electrode). e Another example neuron
(same plotting and statistical tests as in panel d). This barrel cortex neuron multiplexes four features: during nose-to-nose touch, when turning or rolling
the head to the right, when partner’s nose is tilted up, or when partner’s nose is slightly downwards. f Distribution of the number of neurons that encode
the tested behavioral features (ordering as in b). The neurons mainly encoded social touch features (nose-to-nose, implanted-nose-to-partner-tail, and
orientation angle) and movement/posture features of the implanted animal itself (blue and yellow bars, above ‘own behavior’). Source data and analysis
scripts that generate the figures are available in the associated code/data files (see “Methods”).
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when the partner is on the contralateral side of the animal’s face,
relative to the implanted recording electrode). The example
neuron shown in Fig. 7e was also strongly tuned to social facial
touch (tuned to a low nose-to-nose distance), was strongly tuned
to a positive head roll (i.e., when the head is turned such that the
whisker field contralateral to the recording electrode is in contact
with the floor) and was strongly tuned to a positive temporal
derivative of the hip ellipsoid yaw (when the animal is running
counterclockwise, e.g., along the edge of the arena, such that the
contralateral whisker field is brushing against the arena wall or
other obstacles). Across the population, we found that the
neurons overwhelmingly encoded whisker touch and orientation
angle (lateralization), and the posture and movements of the
implanted animal, but not the partner animal (Fig. 7f).

Mapping the network topology of social responses. To map
how neurons across the population might also be tuned to fea-
tures of social interactions, we extracted the estimated neural
tuning curves of all features that were encoded by at least 4
neurons (Fig. 8a). For some features, there was a clear pattern
across the population, in line with known response patterns in
barrel cortex59: All neurons that were modulated by social touch
increased their firing rate during touch (tuned to a low nose-to-

nose and nose-to-tail distance), were tuned to touch contralateral
to the implanted electrode (tuning peak at orientation angle ≈
−π/2), and decreased firing rate during higher locomotion speeds
(negatively correlated with forward speed). For the remaining
movement and posture features, the tuning was more hetero-
geneous across the population (Fig. 8a).

Finally, our automatic tracking and tuning curve estimation
pipeline makes it straightforward to determine how features
might be multiplexed together in the same neurons. In our
example session, we found that 52% of the neurons encoded at
least one behavioral feature, with a median number of five
encoded features (Fig. 8b). Using all neurons that encoded at least
one feature, we computed a population “co-encoding matrix”,
where the entries of the matrix are the probability that two
features are encoded by the same neuron (Fig. 8c and
Supplementary Fig. 19b). This co-encoding matrix was struc-
tured, such that there was a large overlap between neurons that
encode nose-to-nose touch, neurons that encode nose-to-partner-
genital touch, and neurons that had lateralized responses
(modulated by the relative orientation angle of the animals,
preferring touch to the contralateral whisker field, relative to the
implanted recording electrode59, Fig. 8d). The co-encoding
matrix specified a network graph of encoded features (Fig. 8e),

Fig. 8 Population tuning and co-encoding network structure in a social situation. a Top, single neuron tuning curves and ‘population tuning curve’
(average tuning, shaded area indicates standard deviation) for all behavioral features encoded by more than three single neurons. Bottom, schematic
depiction of the physical interpretation of the population tuning, in relation to the 3D body models. b Distribution of the number of behavioral features that
each single neuron multiplexes. The arrow indicated the median number of features encoded by a neuron that encode at least one feature. c Co-encoding
matrix of the neural population: The grayscale color in i’th and j’th bin in the heatmap indicates the number neurons that encode both feature i and j
(ordering and color on the axes as in Fig. 7). d Euler diagram of a subset of the co-encoding matrix: This shows the number of neurons that encode nose-to-
nose touch, implanted-nose-to-partner-tail touch, and orientation angle (i.e., are lateralized). e Network graph depiction of the full co-encoding matrix. The
size of the nodes indicates the number of neurons that encode a feature, the width of the edges indicates the number of neurons that co-encode a
behavioral feature. The network is shown in the Kamada–Kawai projection86 (the distance between nodes approximate their graph-theoretical distance),
with additional text labels on the network on the right. Source data and analysis scripts that generate the figures are available in the associated code/data
files (see “Methods”).
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which would then be amenable to various methods of network
topology analysis (e.g., locality, clustering, subgraph motifs, etc.).
Thus, our fully-automatic pipeline enables direct connections
from raw behavioral videography and spike train recordings to
higher-order statistics about how features of a social interaction
are mapped onto a neural population during naturalistic
behavior.

Discussion
We combined 3D videography, deep learning, and GPU-
accelerated robust optimization to estimate the posture dynam-
ics of multiple freely-moving mice, engaging in naturalistic social
interactions. Our method is cost-effective (requiring only inex-
pensive consumer depth cameras and a GPU), has high spatio-
temporal precision, is compatible with neural implants for
continuous electrophysiological recordings, and tracks unmarked
animals of the same coat color (e.g., enabling behavioral studies in
transgenic mice). Our method is fully automatic, which makes the
method scalable across multiple PCs or GPUs. Automatic
tracking allows us to investigate social behavior across long
behavioral time scales beyond what is feasible with manual
annotation, for example to elucidate developmental trajectories,
dynamics of social learning, or individual differences among
animals63,64, among other types of questions. Finally, our method
uses no message-passing from future frames, but only relies on
past data, which makes the method a promising starting point for
real-time tracking. A major next step for future work is to apply
such algorithms to animal behavior in different conditions. For
example, the algorithm can easily be adapted to track other ani-
mal body shapes such as juvenile mice, other species, or movable,
deformable objects that are part of more complex
experimental environments.

In social interactions, rodents respond to the behavior of
conspecifics, but we are only beginning to discover how the
rodent brain encodes complex features such as gaze direction or
body postures of others3,21,65,66. Compared to our knowledge
about, for example, sensorimotor mirror neurons in monkeys67

and vicarious sensory responses in human subjects60 (both
foundational to theories about human social cognition68 and
empathy69), we still know very little about a putative rodent
mirror neuron system69. For demonstration and validation, we
applied our analysis pipeline to barrel cortex neurons, and were
able to recover expected neural tuning to (lateralized) whisker
touch and movement59. Our end-to-end tracking method and
analysis pipeline maps tuning to movements and postures of the
partner’s body, and is thus ideally suited to detect potential social
interaction systems such as rodent ‘mirror neuron’ signals in
other brain areas70,71. The 45 predictor features that we have
included in our analysis pipeline could be expanded to add
additional features of interest. Similar to multiplexed spatial
tuning in parahippocampal cortices (e.g., “conjunctive” grid- and
head-direction cells72), we model multiplexed tuning as
multiplicative62. It is straightforward to modify our model com-
parison code to also consider other coding schemes, such as
nonlinear or conditional interactions between predictors. This is
of particular interest to the social neuroscience of joint action,
where movements and postures can have particular social
meaning when performed in coordination with a social partner21.

Social dysfunctions can be devastating symptoms in a multitude
of mental conditions, including autism spectrum disorders, social
anxiety, depression, and personality disorders73. Social interactions
also powerfully impact somatic physiology, and social interactions
are emerging as a promising protective and therapeutic element in
somatic conditions, such as inflammation74 and chronic pain75.
Disorders characterized by deficits in social interaction and

communication generally lack effective treatment options, largely
because even the neurobiological basis of ‘healthy’ social behavior
is poorly understood. In addition to relating behavior to neural
activity, automated 3D body tracking can yield a high-fidelity
readout of behavioral changes associated with manipulations of
neural activity, both at short (e.g., optogenetic), medium (e.g.,
pharmacological), and long (e.g., gene knockout) time scales.

Long-term multi-animal behavior tracking has a particular
advantage in comparative social neuroscience. For example,
human genomics have linked several genes to autism2–4, but we
still know little about how these genetic changes increase the risk
of autism. A ‘computational ethology’76 approach to social
behavior analysis based on automatic posture tracking (such as
pioneered in laboratory studies of insects, worms, and fish20,77–82

and in field ethology83–86) does not require us to a priori imagine
how, e.g., autism-related gene perturbations manifest in mice, but
can identify subtle changes in higher-order behavioral statistics
without human observer bias. By recording long periods of social
interactions, it may be possible to use methods from computa-
tional topology to ask how the high-dimensional space defined by
touch, posture, and movement dynamics is impacted by different
genotypes or pathological conditions. The statistical power and
granularity of the long-term continuous 3D behavior data may
allow us to identify what specific core components of social
behaviors are altered in different social relations, by various
neuroactive drugs, and in disease states53.

Our algorithm is automatic, does not use any message-passing
from future frames, and robustly recovers from tracking mistakes.
Thus, it is possible in principle to run the algorithm in real-time.
Currently, the processing time per frame is higher than the
camera frame rate, but the algorithm is also not yet fully opti-
mized for speed. For example, in the current version of the
algorithm, we first record the images to disk, and then read and
pre-process the images later. This is convenient for algorithm
development and exploration, but writing and reading the images
to disk, and moving them onto and off a GPU are time-intensive
steps. Going forward, it is important to explore ways to increase
tracking robustness further, such as for example using the optical
flow between video frames to link key-points together in multi-
animal tracking15, using a 3D convolutional neural network to
detect body key-points by considering ‘un-projected’ views from
all cameras around the behavioral arena simultaneously10, real-
time painting-in of depth artifacts87, and better online trajectory
forecasting with a network trained to propose trajectories based
on previously tracked mouse movements. Experimentation and
optimization are clearly needed, but our algorithm—requiring
data transfer from only a few cameras, with deep convolutional
networks, physical modeling, and particle filter tracking imple-
mented as tensor algebra on the same GPU—is a promising
starting point for the development of real-time, multi-animal 3D
tracking, compatible with head-mounted electrophysiology.

Methods
Animal welfare and ethics. All experimental procedures were performed
according to animal welfare laws under the supervision of local ethics committees.
All procedures were approved under NYU School of Medicine IACUC protocols.
Animals were kept on a 12h/12h light cycle with ad libitum access to food and
water. Mice presented as partner animals were housed socially in same-sex cages,
and post-surgery implanted animals were housed in single animal cages. Neural
recordings electrodes were implanted on the dorsal skull under isoflurane anes-
thesia, with a 3D-printed electrode drive and a hand-built mesh housing.

Hardware. Necessary hardware and approximate prices are shown in Table 1.
Setting up the system also requires general lab electronics (tape, wire, soldering
equipment, etc.), including: • Four infrared or red LEDs. • Two 0.1” pin headers or
jumper wires. • Four 20 kOhm resistors. • Four 22 nF capacitors. • One 200 Ohm
resistor (or same order of magnitude). • One stick (for moving ping-pong ball
during calibration).
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Software. Our system uses the following software: Linux (tested on Ubuntu 16.04
LTE, but should work on others, https://ubuntu.com/), Intel Realsense SDK
(https://github.com/IntelRealSense/librealsense), Python (tested on Python 3.6).
Required Python packages will be installed with PIP or conda (script in supple-
mentary software). All required software is free and open source.

Computer hardware. All experiments and benchmarks were done on a desktop
PC running Ubuntu 16.04 LTE on a 3.7 GHz 6-core CPU (Intel i7-8700K), with 32
GB 2400 MHz RAM, and an Nvidia GeForce RTX 2080Ti GPU.

Recording data structure. The Python program is set to pull raw images at 640 ×
480 (color) and 640 × 480 (depth), but only saves 320 × 210 (color) and 320 × 240
(depth). We do this to reduce noise (multi-pixel averaging), save disk space and
reduce processing time. Our software also works for saving images up to 848 × 480
(color) and 848 × 480 (depth) at 60 frames/s, in case the system is to be used for a
bigger arena, or to detect smaller body parts (e.g., eyes, paws). Images were
transferred from the cameras with the python bindings for the Intel Realsense SDK
v. 2.0 (https://github.com/IntelRealSense/librealsense) and saved as 8-bit, 3-channel
PNG files with opencv (for color images) or as 16-bit binary files (for depth
images).

3D data structure. For efficient access and storage of the large datasets, we save all
pre-processed data to hdf5 files. Because the number of data points (point-cloud
and key-points) per frame varies, we save every frame as a jagged array. To this
end, we pack all pre-processed data to a single array. If we detect N points in the
point-cloud and M key-points in the color images, we save a stack of the 3D
coordinates of the points in the point-cloud (Nx3, raveled to 3N), the weights (N),
the 3D coordinates of the key-points (Mx3, raveled to 3M), their pseudo-posterior
(M), an index indicating key-point type (M), and the number of key-points (1).
Functions to pack and unpack the pre-processed data from a single line (‘pack_-
to_jagged’ and ‘unpack_from_jagged’) are provided.

Temporal synchronization. LED blinks were generated with voltage pulses from
an Arduino (on digital pin 12), controlled over USB with a python interface for the
Firmata protocol (https://github.com/tino/pyFirmata). To receive the Firmata
messages, the Arduino was flashed with the ‘StandardFirmata’ example, which
comes with the standard Arduino IDE. TTL pulses were 150 ms long and spaced by
~U(150,350) ms. We recorded the emitted voltage pulses in both the infrared
images (used to calculate the depth image) and on a TTL input on an Open Ephys
Acquisition System (https://open-ephys.org/). We detected LED blinks and TTL
flips by threshold crossing and roughly aligned the two signals by the first detected
blink/flip. We first refined the alignment by cross correlation in 10 ms steps, and
then identified pairs of blinks/flips by detecting the closest blink, subject to a cutoff
(zscore < 2, compared to all blink-to-flip time differences) to remove blinks missed
by the camera (because an experimenter moved an arm in front of a camera to
place a mouse in the arena, for example). The final shift and drift were estimated by
a robust regression (Theil-Sen estimator) on the pairs of blinks/links.

Deep neural network. We used a stacked hourglass network34 implemented in
Pytorch44 (https://github.com/pytorch/pytorch). The network architecture code is
from the implementation in ‘PyTorch-Pose’ (https://github.com/bearpaw/pytorch-
pose). The full network architecture is shown in Supplementary Fig. 1. The Image
augmentation during training was done with the ‘imgaug’ library (https://
github.com/aleju/imgaug). Our augmentation pipeline is shown in Supplementary
Figure 3. The ‘fake laser dot pattern’ was generated using the ‘snowflakes’ generator
in the imgaug routines for generating weather effects, tuned to look—by eye—to a
similar dot size and density to the real laser dot pattern. The network was trained
by RMSProp (α = 0.99, ε = 10−8) with an initial learning rate of 0.00025. During
training, the learning rate was automatically reduced by a factor of 10 if the training

loss decreased by less than 0.1% for five successive steps (using the built-in learning
rate scheduler in Pytorch). After training, we used the final output map of the
network for key-point detection, and used a maximum filter to detect key-point
locations as local maxima in network output images with a posterior pseudo-
probability of at least 0.5.

Image labeling and target maps. For training the network to recognize body
parts, we need to generate labeled frames by manual annotation. For each frame,
1–5 body parts are labeled on the implanted animal and 1–4 body parts on the
partner animal. This can be done with any annotation software; we used a modified
version of the free ‘DeepPoseKit-Annotator’8 (https://github.com/jgraving/
DeepPoseKit-Annotator/) included in the Supplementary Code. This software
allows easy labeling of the necessary points, and pre-packages training data for use
in our training pipeline. Body parts are indexed by i/p for implanted/partner
animal (‘nose_p’ is the nose of the partner animal, for example). Target maps were
generated by adding a Gaussian function (σ = 3 px for implant, σ = 1 px for other
body parts, scaled to peak value = 1) to an array of zeros (at 1/4th the resolution of
the input color image) at the location of every labeled body key-point. 1D part
affinity maps were created by connecting labeled key-points in an array of zeros
with a 1 px wide line (clipped to max value = 1), and blurring the resulting image
with a Gaussian filter (σ = 3 px).

Aligning depth and color data. The camera intrinsics (focal lengths, f, optical
centers, p, depth scale, dscale) and extrinsics (rotation matrices, R, translation
vectors, �t) for both the color and depth sensors can be accessed over the SDK.
Depth and color images were aligned to each other using a pinhole camera model.
For example, the z coordinate of a single depth pixel with indices (ic; id) and 16-bit
depth value, dij, is given by:

zd ¼ dij � dscale ð1Þ
And the x and y coordinates are given by:

xd
yd

� �
¼

jd � px;d

� �
� zd=f x;d

id � py;d

� �
� zd=f y;d

ð2Þ

Using the extrinsics between the depth and color sensors, we can move the
coordinate to the reference frame of the color sensor:
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Using the focal length and optical center, we can project the pixel onto the color
image:

ic
jc

� �
¼

f y;c � yc=zc þ py;c
f x;c � xc=zc þ px;c

ð4Þ

For assigning color pixel values to depth pixels, we simply rounded the color
pixel indices (ic; id) to the nearest integer and cloned the value. More
computationally intensive methods based on ray-tracking exist
(‘rs2_project_color_pixel_to_depth_pixel’ in the Librealsense SDK, for example),
but the simple pinhole camera approximation yielded good results (small jitter
average out across multiple key-points) which allowed us to skip the substantial
computational overhead of ray tracing for our data pre-processing.

Depth camera calibration, exposure, and 3D alignment. To align the cameras in
space, we first mounted a blue ping-pong ball on a stick and moved it around the
behavioral arena while recording both color and depth video. For each camera, we
used a combination of motion filtering, color filtering, smoothing, and thresholding
to detect the location of the ping-pong ball in the color frame (details in code). We

Table 1 Necessary hardware.

Item Recommendation Price (USD) N Total (USD)

Depth cameras Intel RealSense D435 179.00 4 716.00
Camera stands Etubby 26” gooseneck webcam stand 24.96 4 99.84
PCIe card with 4 independent USB 3.0 controllers Startech 4-port superspeed 83.54 1 83.54
Active, repeating USB 3.0 cables UGREEN, USB 3.0 Active Repeater Cable 18.89 4 75.56
Arduino with USB cable Arduino Uno R3 13.98 1 13.98
Pytorch-compatible GPU Any NVIDIA card with CUDA support 500.00 1 500.00
Behavioral arena (acrylic cylinder or elevated platform) 12”-diameter, 5/32” thick acrylic cylinder 71.20 1 71.20
Depth camera GPIO pin connector (jumper) JST ASSHSSH28K305 0.54 8 4.32
Depth camera GPIO pin connector (jumper housing) JST SHR-09V-S 0.19 4 0.76
Colored ping-pong balls (for calibration) Stiga 40 mm ITTF Regulation size 6.64 1 6.64
Total 1571.84
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then aligned the color frames to depth frames and extracted the corresponding
depth pixels, yielding a partial 3D surface of the ping-pong ball. By fitting a sphere
to this partial surface, we could estimate the 3D coordinate of the center of the
ping-pong ball (Fig. 3a). This procedure yielded a 3D trajectory of the ping-pong
ball in the reference frame of each camera (Fig. 3b). We used a robust regression
method (RANSAC routines to fit a sphere with a fixed radius of 40 mm, modified
from routines in https://github.com/daavoo/pyntcloud), insensitive to errors in the
calibration ball trajectory to estimate the transformation matrices needed to bring
all trajectories into the same frame of reference (Fig. 3c). The software includes a
step-by-step recipe for performing the alignment procedure. The depth cameras
have a minimum working distance of 20 cm, so they must be placed at least this
distance from the behavioral arena. The depth map is calculated from the infrared
camera stream, so—as with the RGB video—it is important that the image is not
under- or over-exposed. The code includes a tool for streaming live video from all
cameras to verify that: (i) the whole arena is in view of all the cameras and (ii) that
the exposure is reasonable. The exposure settings can be changes in the config files,
that are loaded and applied when recording (the Intel RealSense SDK demo C
application library also includes a nice tool for testing different exposure settings).
The 3D pixel density drops off with distance from the camera (following the
inverse-square law). In our tested use (standard neuroscience behavioral arena,
max. ~ 1 × 1 m), the exact relative placement of the four depth cameras does not
matter (as they are aligned by the calibration). However, for very large arenas, it
may be necessary to add more depth cameras (additional cameras mounted above
the arena, for example). Adding more cameras will only affect the pre-processing
time (can be run in parallel—which can minimize the impact of more cameras),
not the actual body model fitting time (the slowest part of the algorithm). The body
model fitting time is determined by the number of mice tracked (the particle filter
sorting step scales exponentially with the number of mice, because the algorithm
evaluates multi-animal poses).

Body model. We model each mouse at two prolate ellipsoids. The model is spe-
cified by the 3D coordinate of the center of the hip ellipsoid, �chip ¼ x; y; z

� �
, and

the major and minor axis of the ellipsoids are scaled by a coordinate, s 2 0; 1½ � that
can morph the ellipsoid from long and narrow to short and fat:

ahip ¼ ahip;0 þ ahip;Δ � s ð5Þ

bhip ¼ bhip;0 þ bhip;Δ � ð1� sÞ ð6Þ
The ‘neck’ (the joint of rotation between the hip and nose ellipsoid) is sitting a

distance, dhip ¼ 0:75 � ahip, along the central axis of the hip ellipsoid. In the frame
of reference of the mouse body (taking �chip as the origin, with the major axis of the
hip ellipsoid along the x-axis), a unit vector pointing to of the nose ellipsoid, from
the ‘neck’ to the center of the nose ellipsoid along the major axis is:

�enose ¼
cosθ

sin θ cos ϕ

sin θ sinϕ

2
64

3
75 ð7Þ

In the frame of reference of the laboratory (‘world coordinates’), we allow the
hip ellipsoid to rotate around the z-axis (‘left’/’right’) and around the y-axis (‘up’/
’down’, in the frame of reference of the mouse). We define Rðαx ; αy ; αzÞ as a 3D
rotation matrix specifying the rotation by an angle α around the three axes, and
R �v1;�v2
� 	

as a 3D rotation matrix that rotates the vector �v1 onto �v2. The we can
define:

Rhip ¼ Rð0; β; γÞ ð8Þ

Rhead ¼ Rð�ex ;�enoseÞ ð9Þ
where �ex is a unit vector along the x-axis. In the frame of reference of the mouse
body, the center of the nose ellipsoid is:

�cnose;mouse ¼ Rhead
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So, in world coordinates, the center is:

�cnose;world ¼ Rhipcnose;mouse þ �chip ð11Þ
The center of the neural implant if offset from the center of the nose ellipsoid by

a distance ximpl along the major axis of the nose ellipsoid, and a distance zimpl

orthogonal to the major axis. We allow the implant to rotate around the nose
ellipsoid by an angle, ψ. Thus, in the frame of reference of the mouse body, the
center of the ellipsoid is:

�cimpl;mouse ¼ Rhead
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And in world coordinates, same as the center of the nose ellipsoid:

�cimpl;world ¼ Rhipcimpl;mouse þ �chip ð13Þ
We calculated other skeleton points (tip of the nose ellipsoid, etc.) in a similar

method. We can use the rotation matrices for the hip and the nose ellipsoids to
calculate the characteristic ellipsoid matrices:

Qhip ¼ Rhip

1=a2hip 0 0

0 1=b2hip 0

0 0 1=b2hip

2
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� �T
ð14Þ

Qnose ¼ RhipRhead
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0 1=b2nose 0

0 0 1=b2nose

2
64

3
75 RhipRhead

� �T
ð15Þ

Calculating the shortest distance from a point to the surface of an 3D ellipsoid
in 3 dimensions requires solving a computationally-expensive polynomial39. Doing
this for each of the thousands of points in the point-cloud, multiplied by four body
ellipsoids, multiplied by 200 particles pr. fitting step is not computationally

tractable. Instead, we use the shortest distance to the surface, ed, along a path that
passes through the centroid (Supplementary Fig. 8a, b). This is a good
approximation to d (especially when averaged over many points), and the
calculation of ed can be implemented as pure vectorized linear algebra, which can be
calculated very efficiently on GPU40. Specifically, to calculate the distance from any
point �p in the point-cloud, we just center the points on the center of an ellipsoid,
and—for example—calculate:

�p0 ¼ �p� �Chip ð16Þ

~d ¼ j1� k�p0k�1
hipj � k�p0k ð17Þ

where; k�p0kQhip
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
h�p0; �p0i

p
Qhip

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�p0ÞTQhip�p0

q
ð18Þ

In fitting the model, we used the following constants: anose ¼ 2:00 cm; bnose ¼
1:20 cm; ahipðminÞ ¼ 0:50 cm; ahipðmaxÞ ¼ 2:50 cm; bhipðminÞ ¼ 1:20 cm; bhipðmaxÞ ¼
1:50 cm; dnose ¼ 1:00 cm; dhip ¼ 0:75 � ahip; rimpl ¼ 0:9 � bnose; ximpl ¼ dnoseþ
0:5 � anose; zimpl ¼ 1:5 � rimpl. The code includes a parameter (‘body_scale’) that can
be changed to scale the mouse body model (e.g., for other strains, or juvenile mice).

Loss function evaluation and tracking. Joint position of the two mice is repre-
sented as a particle in 17-dimensional space. For each data frame, we start with a
proposal particle (leftmost green block, based on previous frames), from which we
generate 200 particles by pseudo-random perturbation within a search space (next
green block). For each proposal particle, we calculate three types of weighted loss
contributions: loss associated with the distance from the point-cloud to the surface
of the mouse body models (top path, green color), loss associated with body key-
points (middle path, key-point colors as in and loss associated with overlap of the
two mouse body models (bottom path, purple color). We broadcast the results in a
way, which allows us to consider all 200 × 200 = 40.000 possible joint postures of
the two mice. After calculation, we pick the top 200 joint postures with the lowest
overall loss, and anneal the search space, or—if converged—continue to the next
frame. When we continue to a new frame, we add the fitted frame to an online
recursive filter bank, which proposes the next position of the particle for the next
frame, based on previous frame. All loss function calculations, and recursive filter
predictions are implemented as pure tensor algebra, fully vectorized, and executed
on a GPU.

Online recursive filtering. To propose a new location for the particle filter
between frames, we use a recursive least squares filter89, with a time embedding of
5 steps, a forgetting factor of μ ¼ 0:99 and a regularization factor of ε ¼ 0:1. Our
implementation (‘rls_bank’) is based on the implementation in the Padasip
(Python Adaptive Signal Processing) library (https://github.com/matousc89/
padasip). For the first 150 frames, the filter is only trained, but after frame 150, the
filter is used for prediction. The code allows this filter to run across all dimensions
of the particle filter, but—in practical use—we found it sufficient to run it across
the x-, y- and z- coordinates of the center of the two mouse body models (i.e., we
just assume that the angular and stretch coordinates do not change from the last
frame—this saves a few computations, and can be selected by commenting in/out
the relevant lines in the code).

Regularizations. To regularize the particle filter algorithm, we imposed two hard
rules (‘barriers’) on the movement of the body models (shown in Supplementary
Fig. 8). The first barrier was implemented by adding a large term to the particle
filter’s loss function, if the center of any ellipsoids from two different bodies were
closer than 0.8 times the sum of their short axes (this barrier allows a 20% overlap
of spheres with a radius equal to the ellipsoid’s small axis, drawn in purple in
Supplementary Fig. 8f). This barrier term prevents ‘unphysical’ overlaps between
the body models of the two mice. The second barrier was implemented by adding a
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large term to the particle filter’s loss function, if the same condition was met
between the current position of a mouse body model and the interaction partners
body model in the preceding frame (Supplementary Fig. 8h). This barrier term
prevents ‘flips’ between the two mice (where the body models change identity), as
drawn in Supplementary Fig. 8g.

State space filtering of raw tracking data. After tracking, the coordinates of the
skeleton points (chip, cnose, etc.) were smoothed with a 3D kinematic Kalman filter
tracking both the 3D position (p), velocity (v), and (constant) acceleration (a). For
example, for the center of the hip coordinate:

�x ¼ px ; vx ; ax ; py ; vy ; ay ; pz ; vz ; az
h i

ð19Þ

�z ¼ chip;x ; chip;y ; chip;z
h i

ð20Þ

F ¼
F0 0 0

0 F0 0

0 0 F0

2
64

3
75;where F0¼ 1 dt 1

2 dt
2

0 1 dt

0 0 1

2
64

3
75 ð21Þ

H ¼
1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0

2
64

3
75 ð22Þ

P ¼ 19´ 9 � σ2cov ð23Þ

R ¼ I3 ´ 3 � σ2measurement ð24Þ

Q ¼
Q0 0 0

0 Q0 0

0 0 Q0

2
64

3
75 � σ2process ð25Þ

where Q’ is the Q matrix for a discrete constant white noise model Q0 ¼

1
4 dt

4 1
2 dt

3 1
2 dt

2

1
2 dt

3 dt2 dt
1
2 dt

2 dt 1

2
4

3
5 and σmeasurement ¼ 0:015 m; σprocess ¼ 0:01 m; σ2cov ¼

0:0011 m2. The σ’s were the same for all points, except the slightly more noisy
estimate of the center of the implant, where we used. σmeasurement ¼
0:02 m; σprocess ¼ 0:01 m; σ2cov ¼ 0:0011 m2 From the frame rate (60 fps), dt ¼
1
60 s: The maximum-likelihood trajectory was estimated with the
Rauch–Tung–Striebel method48 with a fixed lag of 16 frames. The filter and
smoother was implemented using the ‘filterpy’ package (https://github.com/rlabbe/
filterpy). The spine scaling, s, was smoothed with a similar filter in 1D, except that
we did not model acceleration, only s and a (constant) s ‘velocity’, with
σmeasurement ¼ 0:3; σprocess ¼ 0:05 m; σ2cov ¼ 0:0011.

After filtering the trajectories of the skeleton points, we recalculated the 3D
rotation matrices of the hip and head ellipsoid by the vectors pointing from chip to
cmid (from the middle of the hip ellipsoid to the neck joint), and from chip to cnose
(from the neck joint to the middle of the nose ellipsoid). We then converted the 3D
rotation matrixes to unit quaternions, and smoothed the 3D rotations by
smoothing the quaternions with an 10-frame boxcar filter, essentially averaging the
quaternions by finding the largest eigenvalue of a matrix composed of the
quaternions within the boxcar50. After smoothing the ellipsoid rotations, we re-
calculated the coordinates of the tip of the nose ellipsoid (ctip) and the posterior end
of the hip ellipsoid (ctail) from the smoothed central coordinates, rotations, and—
for ctail—the smoothed spine scaling. A walkthrough of the state space filtering
pipeline is shown in Supplementary Fig. 12.

Template matching. To detect social events, we calculated three social distances,
from three instantaneous ‘social distances’, defined as the 3D distance between the
tip of each animal’s noses (‘nose-to-nose’), and from the tip of each animal’s nose
to the posterior end of the conspecific’s hip ellipsoid (‘nose-to-tail’; Fig. 5c). From
these social distances, we could automatically detect when the mouse bodies were
in a nose-to-nose (if the nose-to-nose distance was < 2 cm and the nose-to-tail
distance was > 6 cm) and in a nose-to-tail configuration (if the nose-to-nose
distance was > 6 cm and the nose-to-tail distance was > 2 cm). The events were
detected by the logic conditions, and then single threshold crossings due to noise
were removed by binary opening with a 3-frame kernel, followed by binary closing
with a 30-frame kernel.

State space modeling of mouse behavior. State space modeling of the locomo-
tion behavior was performed in Pyro56 a GPU-accelerated probabilistic program-
ming language built on top of Pytorch44. We modeled the (centered and whitened)
locomotion behavior as a hidden Markov model with discrete latent states, z, and

associated transition matrix, T.

z t þ 1ð Þ ¼ CategoricalðeTz tð Þ � TÞ ð26Þ

T ¼
pij � � �
..
. . .

.

2
4

3
5 ð27Þ

To make the model ‘sticky’ (discourage fast switching between latent states) we
draw the transition probabilities, pij from a Dirichlet prior with a high mass near
the ‘edges’ and initialize Tinit ¼ ð1� ηÞIþη=nstates where η ¼ 0:05.

p � Dirichletð0:5Þ ð28Þ
Each state emits a forward speed and a left speed, drawn from a two-

dimensional Gaussian distribution with a full covariance matrix.

vfwd
vleft

� �
� MVNormalðμ; SÞ ð29Þ

We draw the mean of the states from a normal distribution and use a LKJ
Cholesky prior for the covariance:

μ � Normalð0; 1Þ ð30Þ

S ¼ σ fwd 0

0 σ left

� �
L

σ fwd 0

0 σ left

� �
ð31Þ

σ � LogNormalð�1; 1Þ ð32Þ

L � LKJcorrð2Þ ð33Þ
The up speed was modeled in a similar way, except that the latent states were

just a one-dimensional normal distribution. The means and variances for the latent
states were initialized by kmeans clustering of the locomotion speeds. The model
was fit in parallel to 600-frame snippets of a subset of the data by stochastic
variational inference90. We used an automatic delta guide function (‘AutoDelta’)
and an evidence lower bound (ELBO) loss function. The model was fitted by
stochastic gradient descent with a learning rate of 0.0005. After model fitting, we
generated the ethograms by assigning latent states by maximum a posteriori
probability with a Viterbi algorithm.

3D head direction estimation. We use the 3D position of the ear key-points to
determine the 3d head direction of the partner animal. We assign the ear key-
points to a mouse body model by calculating the distance from each key-point to
the center of the nose ellipsoid of both animals (cutoff: closest to one mouse and <
3 cm from the center of the head ellipsoid, Supplementary Fig 17a). To estimate the
3D head direction, we calculate the unit rejection (vrej) between a unit vector along
the nose ellipsoid (vnose) and a unit vector from the neck joint (cmid) to the average
3D position of the ear key-points that are associated with that mouse (v_ear_-
direction, Supplementary Fig. 17b). If no ear key-points were detected in a frame,
we linearly interpolate the average 3D position. To average out jitter, the estimates
of the average ear coordinates and the center of the nose coordinate were smoothed
with a Gaussian (σ ¼ 3 frames). The final head direction vector was also smoothed
with a Gaussian (σ ¼ 10 frames).

Extracellular recording and spike clustering. Extracellular recordings were made
with sharpened 2-shank, 32-site NeuroNexus P2 profile silicon probes (Neuro-
Nexus Technologies, Inc., MI, USA). The silicon probes were implanted in barrel
cortex using a stereotax (1 mm posterior, 3.2 mm lateral to bregma91) under
isoflurane anesthesia using a custom 3D printed plastic microdrive and base plates
for mice, shielded by a copper mesh and bound to the animal’s skull using dental
cement92. The neural data was recorded using an Intan RHD 32-channel headstage
with accelerometer (Intan Technologies, CA, USA) connected to an Open Ephys
Acquisition Board93 (https://open-ephys.org/) at 30 kHz/16 bit resolution. The
neural data was pre-clustered using SpyKING CIRCUS94 (a custom probe geo-
metry file for the P2 probe and the full clustering script with all parameters is
available in the supplementary code) and checked manually for cluster quality in
KLUSTA95. Only well-separated single units were included in the analysis.

PSTH-based analysis of neural responses. For the PSTH-based analysis, we
triggered on the three social events detected as described under ‘Template
matching’. For the ‘naïve’ PSTH, we included all events, and for the ‘cleaned’
PSTH, we only included events, where there were no other of the detected events
occurring in the preceding 4 s. Significant firing rate changes were detected by
comparing the average firing rate, rpre, between −4 and −2 s (relative to the start of
the detected event) with the average firing rate, rpost, between −0.5 and 0.5 s, using
a Wilcoxon signed rank test, at p < 0.05. The firing rate modulation index was
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calculated using the same firing rates and defined as:

Mod:idx: ¼ rpost � rpre
rpost þ rpre

ð34Þ

Statistical modeling of neural tuning curves. Our spike train modeling approach
is based on ref. 62 and our python code for model fitting and model selection is
based on the supplementary Matlab code from that study (available at https://
github.com/GiocomoLab/ln-model-of-mec-neurons). We calculated multiple fea-
tures of the ‘social scene’, describing the social, postural, spatial, and movement
dynamics (definitions, bin ranges, tuning curve boundary conditions, etc. are
detailed in Supplementary Table 1). In the table, we only list the variables asso-
ciated with the posture, spatial location, and movement of the implanted animal
(subscript 0). We include identical features for the partner animal (subscript 1).
The bin rages were selected to span the physically possible values (e.g., within the
circular arena), or to span the observed values in the behavior (for movement
speeds, for example).

We model the observed spike train as generated by the following process
(Fig. 7c): The spikes are generated by a Poisson process. The rate of the Poisson
process is determined by the features, in the following way: Each feature is
multiplied with a tuning curve (taking any real value), to generate a weight. The
weights of all features are summed, pass through an exponential nonlinearity (to
clamp the rate of the Poisson process to be positive). This means that in the spike
rate space, the tuning to the features is multiplicative.

We convert each feature into binary dummy variables by binning (bins listed in
the table above) to generate a time-by-bins matrix, A, where the i’th and j’th index
is a binary variable indicating if the feature was in the j’th feature bin in the i’th
frame. If we let �c be a column vector with the values of the tuning curve for a single
predictor, then our linear model says that the rate of the Poisson process generating
the spikes, λ, depending on p predictors can be expressed as

�λ ¼ exp ∑
p
Ap�cp

� �
=dt ð35Þ

We fit the linear model by tuning the parameters of the tuning curves to maximize
of the Poisson log-likelihood of the observed number of spikes, n, in each bin of the
spike train. We include a regularization term, β, that ensures that the tuning curves are
smooth (it is a loss term associated with the difference between ci and ciþ1, with
circular wrap-around for the circular features). Thus, the fitted tuning curves are:

ĉ ¼ argmaxc ∑
i
logP nijexp ∑

p
Ap�cp

� �� �
�∑

p
β ∑

i

1
2

cp;i � cp;iþ1

� �2
� �

ð36Þ

We fit the models using the Newton conjugate gradient trust-region algorithm
(‘trust-ncg’ method in ‘minimize’ in the SciPy optimize module, using the Taylor
expansion approximation to the Jacobian and Hessian and a tolerance of 1e−3).

To determine which features significantly contribute to the firing rate
modulation of a neuron, we use a cross-validated model comparison approach, and
a greedy forward selection of features. First, we compare a fitted ‘baseline’ model
where the spikes are simply generated by a Poisson process with a constant rate to
45 fitted models, that include only one feature. The comparison is cross-validated,
such that we fit the model on 90% of the data and evaluate on 10% held-out data
(with 3 skips, i.e., we split the data in 30 chunks, fit to 27, and evaluate on 3). To
compare each of the one-feature models to the baseline model, we calculate the
increase in log-likelihood of the test data, given the fitted one-feature models
(relative to the baseline model), across all 10 permutations of the 10-fold cross
validation. We select the best candidate feature (defined as the one with the highest
average increase in log-likelihood, across the 10 folds), and check if the increase in
log-likelihood is significant by performing a one-sided Wilcoxon signed-rank test,
with a criterion of p < 0.05. If the best candidate feature is significant, we add that
feature to a library of features that we consider significant for that neuron. If we
have the number of spikes in the spike train, �n, and the maximum-likelihood fitted
rate is �λ ĉð Þ, then the log-likelihood increase, ΔL (in bits/spike) is:

Lmodel ¼ ∑
i
λi � nilog λi

� 	þ log ni!
� 	� �

= ð37Þ

Lconstant ¼ ∑
i
nh i � nilog nh ið Þ þ log ni!

� 	� �
=∑

i
ni ð38Þ

ΔL¼�log 2ð Þ � Lmodel �Lconstant

� 	 ð39Þ
For all (N > 1)-feature models (two features, three features, etc.), we use the

same approach: We fit all possible models that add one more feature to the library
of N− 1 significant features (all tuning curves of all features in the library are re-fit
every time), we select the best candidate feature, and use a one-sided Wilcoxon
signed-rank test between a model with N features and a model with N− 1 features
to determine if that candidate feature is significant and should be added to the
library. If the one-sided Wilcoxon signed-rank test is not significant at p < 0.05, we
stop the search for new features to add to the library.

Population structure analysis. The Euler diagram in Fig. 8d was drawn in R using
the eulerr package96. The network co-encoding graph shown in Fig. 8e was drawn

in the Kamada–Kawai projection88 (the distance between nodes approximate their
graph-theoretical distance), using the NetworkX python package97.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data (and an example dataset and raw electrophysiology data) is available as a
Source Data File (*.xlsx files) and/or on Zenodo: https://doi.org/10.5281/
zenodo.5790820. The raw high-speed video files are available upon request to the
corresponding author, requests will be answered within 2 weeks. Source data are
provided with this paper.

Code availability
Code and instructions for data recording (python functions) and data analysis (python
functions and Jupyter notebooks) are available on Github: https://github.com/chrelli/
3DDD_social_mouse_tracker/.
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