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A self-supervised domain-general learning
framework for human ventral stream
representation
Talia Konkle 1✉ & George A. Alvarez1✉

Anterior regions of the ventral visual stream encode substantial information about object

categories. Are top-down category-level forces critical for arriving at this representation, or

can this representation be formed purely through domain-general learning of natural image

structure? Here we present a fully self-supervised model which learns to represent individual

images, rather than categories, such that views of the same image are embedded nearby in a

low-dimensional feature space, distinctly from other recently encountered views. We find

that category information implicitly emerges in the local similarity structure of this feature

space. Further, these models learn hierarchical features which capture the structure of brain

responses across the human ventral visual stream, on par with category-supervised models.

These results provide computational support for a domain-general framework guiding the

formation of visual representation, where the proximate goal is not explicitly about category

information, but is instead to learn unique, compressed descriptions of the visual world.
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Patterned light hitting the retina is transformed through a
hierarchy of processing stages in the ventral visual stream,
driving to a representational format that enables us to

discriminate, identify, categorize, and remember thousands of
different objects1–6. What pressures govern the formation of this
visual representation? This is a deeply debated question, with
proposals balancing the relative guiding influence of innate biases
versus the structure of the visual input statistics, and the degree to
which learning operates over more domain-specialized versus
domain-general architectures3,7–13.

For example, some prominent theoretical accounts of high-
level visual system organization assert that the representations are
explicitly about object categories, and that category-level
(“domain-level”) forces are critical for guiding this visual repre-
sentational format7,11,14–16. For example, these theories argue
that visual representation formation is guided by distinct long-
range network connectivity to help learn features in support of
broad conceptual distinctions (e.g. for animate or inanimate
entities14,15), or to guide the learning of a specific set of categories
with particular functional relevance (e.g., faces, bodies, and
scenes3,11).

And, in what has sometimes been taken as converging support
for the role of category-level pressures in forming visual repre-
sentations, deep convolutional neural network models—trained
directly to support object categorization—develop hierarchical
feature spaces that show an emergent match with brain
responses17–24 (see refs. 25,26 for review). However, on deeper
examination, it is not clear that the category-level supervisory
signals involved in training deep neural networks are a good
proxy for the representational pressures implied in the domain-
level cognitive neuroscience theories. In particular, these deep
neural networks models are trained with much finer-grained
distinctions at the subordinate category level (e.g., with features
that are explicitly guided to differentiate among three different
kinds of crabs, not to mention the 90 breeds of dogs, present
among the 1000 categories of the ImageNet database27). Thus, it
is clear these category-supervised deepnet models are oper-
ationalizing category-level pressures in a different way than is
generally posited by most cognitive neuroscience theories.

Alternate theories of visual representation formation put rela-
tively more weight on the structure of the natural image statistics,
and relatively less weight on downstream output needs driving
visual representation formation9,10,12,28,29. These theoretical
proposals argue that the visual cortex is a generic covariance
extractor and that there are systematic differences in the way
things look (e.g., among faces and scenes; among animals, big
objects, and small objects)–it is these perceptual feature differ-
ences that actually underlie the ‘categorical’ distinctions of high-
level visual responses28,30,31. On this account, visual learning is
less a process of enrichment (i.e., building new features for each
new category) and more a process of differentiation (i.e., learning
to seek out distinguishing features that are already present in the
visual input32,33). A strong version of this domain-general theo-
retical framework posits that learning good visual representation
does not at all rely on presupposing categories, leveraging labels,
or otherwise drawing on any specialized architectural constraints
for some kinds of stimuli over others. However, a key challenge
remains to make this domain-general proposal more computa-
tionally explicit: what is an alternative representation goal, if not
category-supervision, that might serve as an internal learning
signal to draw out useful structure from natural image statistics?

Key insight into this challenge comes from work that changed the
objective from learning features that can discriminate all categories
from each other to instead learning features that can discriminate
every view from every other view34. The logic here is that that views
of objects from the same category will naturally project nearby in

such a feature space, due solely to the statistical structure of the
input and the generic architectural prior, without explicit category-
level pressure. Inspired by this insight, here we developed a learning
framework that is fully self-supervised, called instance-prototype
contrastive learning (IPCL). The model operates by taking multiple
samples over an image and projecting these through a deep con-
volutional neural network backbone into a low-dimensional
embedding space. To learn instance-level structure, the model tries
to map these multiple samples of the views nearby by in the latent
space (towards the “instance-prototype”), while also making this
embedding distinct from the representations of recently encountered
views (“contrastive learning”). As such, the final representational
format can be conceived of as a high-fidelity perceptual repre-
sentation, capable of fine-grained discrimination between views.
Within the broader cognitive neuroscience context, this model thus
operationalizes a domain-general view of visual representation
learning, where no specialized pressures beyond the visual system
are required to guide the format of visual representation.

In the present work, we show that our instance-prototype
contrastive learning models indeed have naturally emergent
category structure in the latent space. Further, these models learn
hierarchical visual feature spaces that can capture brain response
structure, on par with category-supervised models, at or near the
noise ceiling of the data in most regions, in two condition-rich
fMRI datasets. Concurrent with the present work, and at an
extremely rapid pace, new self-supervised instance-level con-
trastive learning models have been introduced which have even
higher emergent categorization accuracy35–40; however, we find
the representational spaces learned in these more performant
feature spaces are not increasingly more brain-like (c.f. ref. 23). As
a whole, this work invites a shift away from the category-based
specialized framework that has been dominant in high-level visual
cognitive neuroscience, providing an alternative conceptual fra-
mework in which the representational goal of the visual system is
to capture fine-grained visual differences in a useful compressed
format, learnable with domain-general mechanisms. Critically,
for this argument, the models are not intended to be direct
models of the biological brain per se, but rather to serve as
computational existence proofs of what kind of representational
formats are learnable from the input given certain constraints. As
such, the degree to which these models learn representational
formats that show correspondence with the visual system pro-
vides computational-empirical plausibility for a domain-general
view of the formation of visual system representation.

Results
Instance-prototype contrastive learning. We designed an
instance-prototype contrastive learning algorithm (IPCL) to learn
a representation of visual object information in a fully self-
supervised manner, depicted in Fig. 1a. The overarching goal is to
learn a low-dimensional embedding of natural images, in which
sampled views of the same image are nearby to each other in this
space and also separable from the embeddings of all other images.

To do so, each image is sampled with 5 augmentations,
allowing for crops, rescaling, and color jitter (following the same
parameters as in ref. 41). These samples are passed through a deep
convolutional neural network backbone and projected into a 128-
dimensional embedding space, which is L2-normed so that all
image embeddings lie on the unit hypersphere. The contrastive
learning objective has two component terms. First, the model
tries to make the embeddings of these augmented views similar to
each other by moving them towards the average representation
among these views—the “instance prototype.” Simultaneously,
the model tries to make these representations dissimilar from
those of recently encountered items, which are stored in a
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lightweight memory queue of the most recent 4096 images—the
“contrastive” component. See the Supplementary Information for
the more precise mathematical formulation of this loss function.

For the convolutional neural network backbone, we used an
AlexNet architecture42, modified to have group-normalization
layers (N= 32 groups) rather than standard batch normalization;
see Supplementary Fig. 1), which was important to stabilize the
learning process. While traditional batchnorm normalizes each
individual channel across the full image batch, groupnorm
normalizes across groups of channels for each individual image43,
group normalization operates by normalizing across groups of
feature channels for each image34, with intriguing parallels to
divisive normalization operations in the visual system44,45. Five
IPCL models were trained under this learning scheme, with
slightly different training variations; all training details can be
found in the Supplementary Information.

Emergent object category information. To examine whether
these self-supervised models show any emergent object category
similarity structure in the embedding space, we used two standard
methods to assess 1000-way classification accuracy on ImageNet.
The k-nearest neighbor (kNN) method assigns each image a label
by finding the k (=200) nearest neighbors in the feature space,
assigning each of the 1000 possible labels a weight based on their
prevalence amongst the neighbors (scaled by similarity to the
target), and scoring classification as correct when the top-
weighted class matched the correct class (top-1 knn accuracy41).
The linear evaluation protocol trains a new 1000-way classifica-

tion layer over the features of the penultimate layer to estimate
how often the top predicted label matches the actual label of each
image38,39 (see Supplementary Information for method details).

Object category read-out from the primary IPCL models
achieved an average top-1 kNN accuracy of 37.3% (35.4−38.4%)
from the embedding space and 37.1% (32.2−39.7%) from the
penultimate layer (fc7). In contrast, untrained models with a
matched architecture show minimal object categorization capa-
city, with top-1 kNN accuracy of 3.5% (3.3−3.8%) and top-1
linear evaluation accuracy of 7.2% (fc7). Figure 1b visualizes the
category structure of an IPCL model, showing a t-SNE plot with a
random selection of 500 images from ten categories, arranged so
that images with similar IPCL activations in the final output layer
are nearby in the plot. It is clear that images from the same
category cluster together. Thus, these fully self-supervised IPCL
models have learned a feature space, which implicitly captures
some object category structure, with no explicit representational
pressure to do so.

For comparison, we trained a category-supervised model with
matched architecture and visual diet and tested the categorization
accuracy with the same metrics as the self-supervised model. The
kNN top-1 accuracy was 58.8%, with a linear readout of 55.7%
from the penultimate layer (fc7). An additional category-
supervised matched-architecture model, trained with only one
augmentation per image (rather than 5, which is a more standard
training protocol), also showed similar classification accuracy
(readout from fc7: kNN top-1: 55.5%; linear evaluation top-1:
54.5%). Thus, these matched-architecture category-supervised

Fig. 1 Model overview and methodological approach. a Overview of the self-supervised instance-prototype contrastive learning (IPCL) model which
learns instance-level representations without category or instance labels. b t-SNE visualization of 500 images from ten ImageNet categories, showing
emergent category clusters in deepnet feature space. c All stimuli for the two fMRI datasets. Note that in this figure, the face image has been covered,
to remove identifying information. d View from the bottom of the brain, showing voxel-wise reliability across the ventral visual stream for the Object
Orientation dataset (top) and Inanimate Objects dataset (bottom). The color bar indicates the Pearson correlation between odd and even halves of
the data. e Overview of the voxel-wise encoding RSA procedure. Source data are provided as a Source Data file.
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models have notably better categorization accuracy on the
ImageNet database than our IPCL-trained models. Supplemen-
tary Table 1 reports the categorization accuracies for all of the
individual models.

Relationship to the structure of human brain responses. To the
extent that categorization capacity is indicative of brain-like
representation in this accuracy regime23, we would expect these
fully self-supervised models to have feature spaces with at least
some emergent brain-like correspondence, but not as strong as
category-supervised models. However, it is also possible that
feature spaces learned in these self-supervised models have
comparable or even more brain-like feature spaces than category-
supervised models (e.g., if the instance-level representational goal
more closely aligns with that driving visual system tuning). Thus,
we next examined the degree to which the IPCL feature spaces
have an emergent brain-like correspondence, relative to the
category-supervised models.

Brain responses were measured using functional magnetic
resonance imaging (fMRI) in two different condition-rich experi-
ments (Fig. 1c, see Methods and Supporting Information), using a
powerful 4 s mini-block design that provides reliable estimates of
responses to individual items46. The Object Orientation dataset
included images of eight items presented at five different in-plane
orientations; this stimulus set probes for item-level orientation-
tolerance along the ventral visual hierarchy, while spanning the
animate/inanimate domain. The Inanimate Objects dataset included
images of 72 everyday objects; this stimulus set probes finer-grained
distinctions within the inanimate domain. Thus, these two stimulus
sets provide complementary views into object similarity structure.
The resulting data revealed reliable voxel-level responses along the
ventral visual stream (Fig. 1d; see Methods). To delineate brain
regions along the hierarchical axis of the ventral stream, we defined
three brain sectors reflecting the early visual areas (V1–V3), the
posterior occipito-temporal cortex (pOTC), and the anterior
occipito-temporal cortex (aOTC; see Methods). Within these
sectors, individual subject representational geometries were reliable
and consistent across subjects, yielding highly reliable group-
averaged representational geometries (EarlyV split-half reliability:
r= 0.86–0.90; pOTC: r= 0.75–0.90; aOTC: r= 0.60–0.89), provid-
ing a robust target to predict with different deep neural networks.

To relate the representations learned by these deep neural
networks with brain sector responses along the ventral visual
hierarchy, we used an approach that leveraged both voxel-wise
encoding methods47,48 and representational similarity49, which
we subsequently refer to as voxel-wise-encoding RSA (veRSA;
Fig. 1e; see Methods; see also refs. 50,51). This method fits an
encoding model at each voxel independently, using weighted
combinations of deepnet units (W), to predict the univariate
response profile. Then, the set of voxel encoding models are used
to predict multi-voxel pattern responses to new items (R̂) and to
derive the predicted representational geometry in this encoded
space (Ĝ). This predicted RDM is then compared to the RDM of
the brain sector (G), as the key measure of how well the layer’s
features fit that brain region. This analysis choice places
theoretical value on the response magnitude of a voxel as an
informative brain signature, while also reflecting the theoretical
position in which neurons across the cortex participate as a
unified population code.

The brain predictivity of the models are depicted in Fig. 2. The
results show that the IPCL model achieves parity with the
category-supervised models in accounting for the structure of
brain responses, evident across both datasets and at all three levels
of hierarchy. Each plot shows the layer-wise correlations between
the predicted and measured brain representational geometry,

with all IPCL models in blue (with multiple lines reflecting
replicates of the same model with slight training variations, see
Methods), and category-supervised models in orange. The
adjacent plots show the maximum model correlation, reflecting
the layer with the strongest correlation with the brain RDM,
computed with a cross-validated procedure to prevent double-
dipping (cv max-r; see Methods), plotted for IPCL models,
category-supervised models, and an untrained model. Supple-
mentary Table 2 reports the statistical tests comparing the brain
predictivity between IPCL and category-supervised models, e.g.,
in 56/60 comparisons, the cross-validated max correlation for the
IPCL models is greater than or not significantly different from
category-supervised models (and with Bonferroni correction for
multiple comparisons category-supervised models never showed
a significantly higher correlation than an IPCL model).

Further, all models account for a large proportion of the
explainable variance in these highly- reliable brain representa-
tional geometries—though with a noticeable difference between
the two datasets. Considering the object orientation dataset, the
proportion of explainable variance accounted for approached the
noise ceiling in all sectors for both IPCL and the category-
supervised models (mean IPCL: 88, 84, 94; category-supervised:
82, 91, 87; noise ceiling: r= 0.90, 0.90, 0.89; for EarlyV, pOTC,
and aOTC, respectively). However, considering the Inanimate
Objects dataset, neither the IPCL nor category-supervised
counterpart models learned feature spaces that reached as close
to the noise ceiling, leaving increasing unaccounted for variance
along the hierarchy (mean IPCL: 74, 47, 32%; category-
supervised: 65, 41, 28%; noise ceiling: r= 0.86, 0.74, 0.60; for
EarlyV, pOTC, aOTC, respectively). These results reveal that the
particular stimulus distinctions emphasized in the dataset matter,
as these dramatically impact the claim of whether the
representations learned by these models are fully brain-like, or
whether the models fall short of the noise ceiling.

Finally, these results also generally show a hierarchical
convergence between brains and deep neural networks, with
earlier layers capturing the structure best in the early visual
cortex, and later layers capturing the structure in the occipito-
temporal cortex. Unexpectedly, we also found that the untrained
models were competitive with the trained models in accounting
for responses in EarlyV and partially in pOTC, whereas both
IPCL and category-supervised models clearly outperform
untrained models in aOTC. A deeper inspection revealed that
the predicted representational distances in untrained models
hover around zero, which is consistent with the fact that they
cannot classify object categories very well. However, these feature
spaces nevertheless contain small differences that are consistent
with the brain data, amplified by the voxel-wise encoding
procedure. Further, the use of Group-Normalization layers also
boost untrained models—e.g., local Response Norm or Batch
Normalization generally fit brain responses less well, particularly
in the early visual cortex (see Supplementary Fig. 2). These
findings highlight that there are useful architectural inductive
biases present in untrained networks.

Overall, these results show that our instance-prototype
contrastive learning models, trained without category-level labels,
can capture the structure of human brain responses to objects
along the visual hierarchy, on par with the category-supervised
models. This pattern holds even in later stages of the ventral
visual stream, where inductive biases alone are not sufficient to
predict brain responses.

Varying the visual diet. As some of the reliable brain responses
in the later hierarchical stages of the Inanimate Objects dataset
was unexplained, we next explored whether variations in the
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visual diet of the IPCL models might increase their brain pre-
dictivity. For example, the pressure to learn instance-level
representations over a more diverse diet of visual input might
result in richer feature representations that better capture the
structure neural representations, particularly in the later brain
stages reflecting finer-grained inanimate object distinctions.
However, it is also possible that the relatively close-scale and
centered views of objects present in the ImageNet database are
critical for learning object-relevant feature spaces, and that
introducing additional content (e.g., from faces and scenes) will
detrimentally affect the capacity of the learned feature space to
account for these object-focused brain datasets.

To probe the influence of visual diet, we trained six new IPCL
models over different training image sets (Fig. 3a; see Methods,
Supplementary Information, and Supplementary Table 1), and
compared their brain predictivity to the ImageNet trained
baseline. First, because we made some changes to the image
augmentations to accommodate all image sets, we trained a new
baseline IPCL model on ImageNet. Second, we used object-
focused images from a different dataset as a test of near-transfer
(OpenImages52,53). The third dataset was scene images (Places2,
ref. 54, which we consider an intermediate-transfer test, as models
trained to do scene categorization also learn object-selective
features55. The fourth dataset was faces (VGGFace2; ref. 56, a far-
transfer test that allows to explore whether a visual diet composed
purely of close-up faces learns features that are sufficient to
capture the structure of brain responses to isolated objects. The
fifth dataset included a mixture of objects, faces, and places,

which provides a richer diet that spans traditional visual domains,
with the total number of images per epoch matched to the
ImageNet dataset. The sixth dataset had the same mixture but
used three times as many images per epoch to test whether
increased exposure was necessary to learn useful representations
with this more diverse dataset.

For each of these six models trained with different kinds of
visual experience, we used the same veRSA approach and then
calculated the cross-validated maximum correlation across layers
(see Methods). The results are plotted in Fig. 3b, where the five
IPCL models with different visual experiences (colored violin
plots) are plotted in the context of the new baseline IPCL model
trained on ImageNet (black dashed lines).

The overarching pattern of results shows that the visual diet
actually had very little effect on how well the learned feature
spaces could capture the object similarity structure measured in
the brain responses. Quantitatively, the mean absolute difference
in brain predictivity from the baseline ImageNet- trained model
was Δr < 0.044 (range of signed differences −0.202 to 0.040). The
visible outlier is the model trained only with views of faces. The
features learned by this model were significantly less able to
capture the structure of the object orientation dataset in both the
posterior and anterior occipito-temporal cortex, with a difference
from the baseline model >2.5 standard deviations from the mean
difference across all comparisons (pOTC: z= 3.67; aOTC:
z= 3.21). However, the feature spaces of this model were still
able to capture the differences among objects in the Inanimate
Object dataset, variants in EarlyV and pOTC (though with a
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Fig. 2 Model-to-brain fits. a Visualization of the ventral stream regions of interest spanning the visual hierarchy from posterior to anterior (EarlyV, pOTC,
aOTC). b and c show the veRSA results for the Object Orientation and Inanimate Object datasets, respectively. Each panel plots the mean correlation
between model RDMs with neural RDMs (y-axis), averaged over split-halves of the brain data, shown separately for each model layer (x-axis) and brain
region (rows). All IPCL models are in blue, and category-supervised models are in orange. The thickness of each line reflects 95% confidence intervals
based on 1000 bootstrapped samples across split-halves. Bar plots show cross-validated estimates of the maximum correlation across model layers for
each model class (IPCL in blue, category-supervised in orange, and an untrained model in gray). Error bars reflect a mirrored density plot (violin plot)
showing the distribution of correlations across all split-halves, aggregated across instances of a given model type. Distributions are cutoff at ±1.5 IQR
(interquartile range, Q3-Q1). Source data are provided as a Source Data file.
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small reliable difference in pOTC) and was not different from the
ImageNet trained baseline in aOTC (corrected t < 1). The full set
of results are reported in Supplementary Table 3.

Overall, this second set of IPCL models suggests that the
statistics of most natural input contains the relevant relationships
to comparably capture these brain signatures. Further, these
models also highlight the general nature of the learning objective,
demonstrating that it can be applied over richer and more
variable image content, which is traditionally learned separately
in supervised learning.

Accuracy vs brain predictivity. The analyses so far demonstrate
that, while category-supervised models show better object cate-
gorization capacity, IPCL models still achieve parity in their
correspondence with the visual hierarchy. However, neither the
category-supervised nor the IPCL models are able to fully capture
the structure of the measured brain responses, particularly in the
later hierarchical stage of the Inanimate Objects dataset that
captures many finer-grained object relationships. This pre-
dictivity gap raises a new question— if instance-level contrastive
learning systems advance to the point of achieving comparable
emergent classification accuracy to category-supervised models,
will even more brain-like representation emerge?

Concurrently, a number of new instance-level contrastive
learning models have been developed, which allow us to test this
possibility (e.g., SimCLR39, MoCo37, MoCoV238, and SwAV40). For
example, SimCLR leverages related principles as our IPCL network,
with a few notable differences: it uses two augmentations per image
(rather than an instance prototype), a more compute-intensive
system for storing negative samples (in contrast to our lightweight
memory queue), and a more powerful architectural backbone
(Resnet50; ref. 57). Critically, this model, and others like MoCoV2
and SwAV, now achieve object classification performance that rivals
their category-supervised comparands. Do these models show more

brain-like representation, specifically in their responses to inanimate
objects, where the later hierarchical brain structure was reliable and
unaccounted for?

The results indicate that these newer models do not close this
gap. Figure 4 depicts the relationship between top-1 accuracy and
the strength of the brain correspondence, for the Inanimate
Object dataset. All instance-level contrastive learning models are
plotted with colored markers, while category-supervised models
are plotted with open markers. Different base architectures are
indicated by the marker shape). These scatter plots highlight that,
across these models, top-1 accuracy ranges from 26–73%;
however, improved categorization capacity is not accompanied
by a more brain-like feature space. Further, these plots suggest
that these particular variations in architecture, including higher
powered ResNet57 and ResNeXt58 models, also do not seem to
close this gap.

Finally, we also asked whether a recent self-supervised model
trained on an, even more, ecological visual diet—images sampled
from baby head-mounted cameras—might show better brain
predictivity (TC-Moco59, SAYCam dataset60). The visual experi-
ence of toddlers involves extensive experience with very few
things, rather than an equal distribution over many categories–a
visual curriculum which may be important for visual representa-
tion learning61. However, this particular model also did not close
the brain predictivity gap evident in the similarity structure of
inanimate objects at the later stages of the visual hierarchy (Fig. 4;
purple diamond). Note though that this model does not yet take
advantage of temporal information in videos beyond a few
frames; building effective systems that use contrastive learning
over video is an active frontier62–64.

Overall, the Inanimate Objects dataset has revealed some
reliable representational structure in the object-selective cortex
that is not easily captured by current deepnet models, even across
these broadly sampled variations in learning algorithm, archi-
tecture, and visual diet. Further, these aggregated results

Fig. 3 Consequences of variation in the visual diet. a Example images in the style of each of dataset are shown. For OpenImagesV6 and Places2,
similar images were found from commons.wikimedia.org. For VGGFace2, images were generated from thispersondoesnotexist.com. b The cross-validated
maximum correlation (cv max-r) between model RDMs and neural RDMs for each dataset (rows), and each brain region (columns). Mean scores are
shown with a black dot at the center of a mirrored density plot (violin plot) showing the distribution of correlations across all split-halves (distributions
are cutoff at ±1.5 IQR, interquartile range, Q3-Q1). The dashed black lines indicate the ±1.5 IQR range for the matched baseline IPCL model trained on
ImageNet. Source data are provided as a Source Data file.
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complement the emerging trend that overall object categorization
accuracy is not indicative of overall brain predictivity23, here
considering a variety of other instance-level contrastive learning
methods, over a much wider range of top-1 accuracy levels.

Auxiliary results. For reference, we also conducted the same
analyses using a classic representational similarity analysis (rather
than veRSA), in which there was no voxel-wise encoding models,
nor any deepnet unit feature re-weighting (Supplementary
Figs. 2–4). Overall, the magnitude of the correlation between
model layers and the brain RDMs was systematically lower than
when using veRSA. Despite this general main effect, the primary
claims were also evident in this simpler analysis method: IPCL
models showed parity with (or even superior performance to)
category-supervised models, across brain sectors and datasets,
with one notable exception. That is, in the aOTC and when
considering the object orientation dataset, the category-
supervised model showed better correspondence with the brain
than the IPCL models (Supplementary Fig. 3). This discrepancy
between classic RSA and veRSA does highlight that veRSA is able
effectively to adjust the representational space to better capture
the brain data, while classic RSA weights all features equally. We
discuss these results in the context of the open challenge of
linking hypotheses between deepnet features and brain responses.

Discussion
Here we introduced instance-prototype contrastive learning
models, trained with no labels of any kind, which learn a hier-
archy of visual feature spaces that (i) have emergent categoriza-
tion capacity based on the local similarity structure of the latent
space and (ii) predict the representational geometry of hier-
archical ventral visual stream processing in the human brain, on
par with category-supervised counterparts. This correspondence
with the structure of human visual system responses held in two
datasets, considering both object orientation variation and finer-
grained inanimate object distinctions, and also held over self-
supervised models trained with different visual input diets.
Finally, we highlight that there is a representational structure in
the brain that was not well accounted for by any model tested,
particularly in the anterior region of the ventral visual stream,
related to finer-grained differences among inanimate objects.
Broadly, these results provide computational plausibility for
instance-level separability-—that is, to tell apart every view from

every other view–as a plausible goal of ventral visual stream
representation, which reflects a shift away from the category-
based framework that has been dominant in high-level visual
cognitive neuroscience research.

Implications for the biological visual system. The primary
advance of this work for insights into the visual system is to make
a computationally supported learnability argument: it is possible
to achieve some category-level similarity structure without pre-
supposing explicit category-level pressures. Items with similar
visual features are likely to be from similar categories, and we
show that the goal of instance-level representation allows that
natural covariance of the data to emerge in the latent space of the
model— a result that is further supported by the expanding set of
self-supervised models with emergent object categorization
accuracy comparable to category-supervised systems36–40. Our
work adds further support for the viability of this hypothesis of
visual system representation, by demonstrating an emergent
correspondence with the similarity structure measured from
brain responses—e.g., it is not the case that our self-supervised
models learn a representation format that is decidedly un-brain-
like. Indeed, recent work suggests that not all self-supervised
learning objectives achieve brain-like representation with parity
to category-supervised models65.

Our model invites an interpretation of the visual system as a
very domain-general learning function10, which maps undiffer-
entiated, unlabeled input into a useful representational format.
On this view, the embedding space can be thought of as a high-
fidelity perceptual interface, with useful visual primitives over
which separate conceptual representational systems can operate.
For example, explicit object category-level information may be
the purview of more discrete compositional representational
systems, that can provide “conceptual hooks” into different parts
of the embedding space66–68. Intriguingly, new theoretical work
suggests that instance-level contrastive learning may actually
implicitly be learning to invert the generative process (i.e.,
mapping from pixels to the latent dimensions of the environment
which give rise to the projected images69, suggesting that
contrastive learning may be particularly well-suited for extracting
meaningful representations from images.

What does the failure of these models to predict reliable
variance in aOTC for the Inanimate Objects dataset tell us about
the nature of representations in this region? Using this same brain
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Fig. 4 Relationship between object classification accuracy and brain predictivity. The x- axis plots top-1 classification accuracy, and the y-axis plots the
cross-validated max correlation with the Inanimate Object dataset, in each of the three brain sectors. Self-supervised contrastive learning models are
shown with colored markers and category-supervised with open markers. Model architecture is indicated by marker shape. Red dashed lines and double-
headed arrows draw attention to the gap between these model fits and the reliability ceiling of these brain data. Source data are provided as a Source
Data file.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28091-4 ARTICLE

NATURE COMMUNICATIONS |          (2022) 13:491 | https://doi.org/10.1038/s41467-022-28091-4 |www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


dataset, we have found that behavioral judgments related to the
shape similarity, rather than semantic similarity, show better
correspondence with aOTC70–72. This result raises the possibility
that the deepnets tested here are missing aspects of shape
reflected in aOTC responses (e.g. structural representations73,
global form74, or configural representations75), which resonates
with the fact that deep convolutional neural networks (CNNs)
operate more as local texture analyzers76,77, and may be
architecturally unable explicitly represent global shape78. Taken
together, these results indicate that the success of CNNs in
predicting ventral stream responses is driven by their ability to
capture texture-based representations that are also extensively
present throughout the ventral stream28, but they fall short where
more explicit shape representations are emphasized. Capturing
brain-like finer-grained distinctions among inanimate objects is
thus an important frontier that is currently beyond the scope of
both contrastive and category-supervised CNN models.

Components of the learning objective. Why is instance-
prototype contrastive learning so effective in forming useful visual
representations, and what insights might this provide with respect
to biological mechanisms of information processing? Recent theo-
retical work79 has revealed that the two components of the con-
trastive objective function have two distinct and important
representational consequences, which they refer to as alignment
(similarity across views) and uniformity (using all parts of the
feature space equally). To satisfy the alignment requirement, the
model must learn what it means for images to be similar. For IPCL,
the model takes five samples from the world and tries to move them
to a common part of the embedding space, forcing the model to
learn that the perceptual features shared across these augmentations
are important to preserve identity, while the unshared perceptual
features can be discarded. Interpreted with a biological lens, these
augmentations are like proto-eye movements, and this analogy
highlights how this model can integrate more active sensing and
predictive coding80. For example, augmentations could sample over
translation and rotation shifts of the kind that occur with eye and
head movements. Further, “efference copy” signals81,82, which sig-
nal the magnitude and direction of movements between samples,
might also lead to predictable shifts in the embedding space. This
intrinsic information about the sampling process could enable the
system to learn representations that are “equivariant”, as opposed to
“invariant”, over identity-preserving transformations83,84.

The second component of the objective function enforces
representational uniformity–that is, where the set of all images
have uniform coverage over the hypersphere embedding space. In
IPCL this is accomplished by storing a modest set of “recent
views” in a memory queue to serve as negative samples; other
successful contrastive learning models use a much larger set of
negatives (either in a batch or queue) which presumably helps
enforce this goal38,39. The memory queue also has biological
undertones: the human and non-human primate ventral streams
are effectively a highway to the hippocampus85. Through this
lens, the recent memory queue of IPCL is a stand-in for the traces
that would be accessible in a hippocampal memory system,
inviting further modifications that vary the weight of the contrast
with fading negative samples, or negative sample replay.
However, we are not committed to memory queue data structure,
per se. Given that its functional role is to give rise to good
representational coverage over the latent space, there may be
other architectural mechanisms by which the item separability
can be achieved, e.g., enforcing independence across feature
channels86, or including a predictor head87. Indeed, there is an
ongoing debate about whether the instance-level separability
requires these negative samples at all88–90.

While these instance-level contrastive learning systems
advance a domain-general learning algorithm guiding visual
representation formation, they are by no means a perfect model
of how the brain learns, nor are they a direct model of the
biological system per se–we instead see them as a testbed for
broader learnability arguments and as useful for providing
cognitive insights into visual representation and formats (e.g.,
clusters in an L2-normed hypersphere can easily be read-out with
local linear hyperplanes, and this is not true of euclidean
spaces79), and as such serve as a useful computational abstraction.

Concurrent work in non-human primate vision. In highly
related recent work, Zhuang et al., (2021) explored a variety of
self-supervised vision models and whether they have brain-like
representation, using single-unit responses of the non-human
primate ventral visual stream. Broadly, they found that the
models using similar instance-level contrastive approaches as
ours achieved parity with category-supervised models in pre-
dicting single-unit neural response profiles in areas V1, V4, and
IT; exceeding the capacities of other kinds of self-supervised
models with different goals, including an autoencoder (a recon-
structive goal), next frame prediction (PredNet91), and other non-
relational objectives like depth labeling and colorization92,93.
Further, they also capitalized on the value of this general objec-
tive, developing variations of their instance-level contrastive
learning model to learn over video from the SAYcam baby head-
cam dataset60, finding weaker but generally maintained neural
predictivity. While almost every methodological detail is different
from the work here, including the theoretical assumptions
implied by their methods to relate model feature spaces and
single-unit responses, these two studies generally drive to very
similar broad claims. That is, both provide empirical support for
moving away from category-supervision towards instance-level
contrastive learning. Further, the differences between our
approaches reveal an expansive new empirical space to explore,
considering different methods (fMRI, electrophysiology), models
(IPCL, Local Aggregation), and model organisms (humans,
monkeys); and, critically, the linking hypotheses (veRSA,
encoding models) that operationalize our understanding of the
neural code of object representation.

Analytical linking hypotheses between model and brain acti-
vations. The question of how feature spaces learned in deep
neural networks should be linked to brain responses measured
with fMRI is an ongoing analytical frontier–different methods are
abundant21,22,24,28,94,95, each making different implicit assump-
tions about the nature of the link between model feature spaces
and brain responses. In the present work, we assume a voxel is
best understood as a weighted combination of deepnet features—
this is intuitive given the coarse sampling of a voxel over the
neural population code. However, note that even single neuron
responses (measured with electrophysiology in the primate brain)
are typically modeled as weighted combinations of deepnet units,
or even as weights on the principle components throughout the
deepnet feature space96. In general, exactly how deepnet units are
conceived of (e.g., how the tuning of any one deepnet unit is
related to single neuron firing) is still coming into theoretical
focus, where different hypotheses are implicit in the kind of
regression model (e.g., whether encoding weights should be a
sparse and positive relationship, or low in magnitude and dis-
tributed across many deepnet units).

To arrive at a single aggregate measure of neural predictivity,
encoding model approaches simply average across the set of
individual neuron fits23,65. In contrast, we considered these voxel-
wise encoding models together as an integrated population code,
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in which items vary in the similarity of their activation profiles,
which focuses on the representational geometry of the
embedding49. One motivation for this shift to the representa-
tional similarity as the critical neural target to predict is that fMRI
allows for relatively extensive spatial coverage, providing access to
a population-level code at a different scale than is possible with
dozens to hundreds of single-unit recordings; indeed trying to
predict the RDM of a brain region is now the defacto standard in
visual cognitive neuroscience. However, note that our approach
differs from other kinds of weighted RSA analyses that are often
employed on fMRI data24,94, which fit the representational
geometry directly by re-weighting feature-based RDMs, discard-
ing univariate activation profiles entirely. Finally, for RSA
approaches, exactly how distances in high-dimensional feature
space are conceived of and computed is a further open frontier97,
where different hypotheses about the way information is evident
in the neural code are implicitly embedded in the choice of
distance metrics (e.g., as the euclidean distance or the angle
between vectors6,98).

At stake with these different analytical approaches is that the
choices influence the pattern of results and subsequent inferences.
For example, in the present data, model features are much more
strongly related to brain RDMs when using veRSA than when
using classic RSA, which make sense considering this method can
recover true relationships that have been blurred by voxel-level
sampling; however, untrained models also improve dramatically
under this method, raising the question of whether the flexibility
of re-weighting to the feature space is too great (or the Pearson-r
scoring method is too lenient). As another example, in the present
data, the IPCL features were able to comparably capture
responses in aOTC to objects at different orientations, but only
with veRSA, and not with classic RSA. This discrepancy between
the analysis approaches suggests that the brain-like orientation
information is embedded in the feature space, but requires voxel-
wise encoding models to draw out those relationships—these
pairwise relationships are less strongly evident in the unweighted
feature space. Why? One possibility is that these IPCL models do
not currently experience any orientation jitter across the samples
(only crops, resizes, and coloration variation) and thus
orientation-tolerance cannot enter into to the instance-
prototype representations. In current work, we are adding
orientation augmentation to IPCL samples to explore this
possibility. More broadly, we highlight these analytic complexities
for two reasons. First, to be transparent about the untidy patterns
in our data and the current state of our thinking for motivating
these analysis decisions in the present work. And second, to open
the conversation for the field to understand more deeply the ways
in which deepnet models have brain-like representation of visual
information under different analysis assumptions, especially as
these new interdisciplinary analytical standard approaches are
being developed.

A domain-general account of visual representation learning.
The pressures guiding the tuning along the ventral visual stream,
and the formation of object category information, have been
deeply debated, with some theories proposing that category-level
(or “domain-level”) forces may be critical drive the organization
of this cortex. That instance-level contrastive learning can result
in emergent categorical representation supports an alternative
theoretical viewpoint, in which category-specialized learning
mechanisms are not necessary to learn representations with
categorical structure. On this generalist account, visual mechan-
isms operate similarly over all kinds of input, and the goal is to
learn hierarchical visual features that simply try to discriminate
each view from every other view of the world, regardless of the

visual content or domain. We further show that these instance-
level contrastive learning systems can have representations that
are as brain-like as category-supervised systems, increasing the
viability of this general learning account. This generalist view
does not deny the importance of abstract categories in higher-
level cognition but instead introduces the instance-level learning
objective as a proximate goal that learns compact perceptual
representations that can support a wide variety of downstream
tasks, including but not limited to object recognition and
categorization.

Methods
Models. IPCL and category-supervised comparison models were implemented in
PyTorch99, based on the codebase of Wu et al. (https://github.com/zhirongw/
lemniscate.pytorch). Code and models are available here: (https://github.com/
harvard-visionlab/open_ipcl).

For our primary models, we trained five models with an Alexnet-gn architecture
(Supplementary Fig. 1), using instance-prototype contrastive learning
(see Supplementary Methods for details), on the ImageNet-1k dataset100. We used
the data augmentation scheme used by41, with both spatial augmentation (random
crop and resize; horizontal flip), and pixelwise augmentation (random grayscale;
random brightness, contrast, saturation, and hue variation). These augmentations
require the network to learn a representation that treats images as similar across
these transformations. The replications reflect explorations through different
training hyper-parameters. See the Supplementary Methods for extended details
about the architecture, augmentations, loss function, and training parameters.

For the category-supervised model, we used the same AlexNet-gn architecture
as in the primary IPCL models (minus the final L2-norm layer), but with a 1000-
dimensional final fully-connected layer corresponding to the 1000 ImageNet
classes. The standard cross-entropy loss function was used to train the model on
the ImageNet classification task. Otherwise, training was identical to the IPCL
models, with the same visual diet (i.e., same batch size and the number of
augmented samples per image using the same augmentation scheme), and the same
optimization and learning rate settings.

We trained 6 additional IPCL models to examine the impact of visual diet on
learned representations, using datasets that focus on objects, places, faces, or a
mixture of these image types: (i) ImageNet: ∼1.28 million images spanning 1000
object categories100. (ii) Objects: OpenImagesV6, ∼1.74 million training images
spanning 600 boxable object classes (52; 53). (iii) Faces: vggFace2, ∼3.14 million
training images spanning 8631 face identities56. (iv) Places: places2, ∼1.80 million
images of scenes/places spanning 365 categories54; (v) Faces-Places-Objects-1x: a
mixture of ImageNet, vggFace, and places2, randomly sampling images across all
sets, limited to ∼1.28 million images per epoch to match the size of the ImageNet
training set, (vi) Faces-Places-Objects-3x: limited to 3.6 million images per epoch.
We used less extreme cropping parameters for all of these models than for the
primary models so that the faces in the vggFace2 dataset would not be too zoomed
in (as in this dataset, they tend to be already tightly cropped views of heads and
faces). We used identical normalization statistics for each model (rather than
tailoring the normalization statistics to each training set). Finally, we had to reduce
the learning rate of the Faces model to .001 in order to stabilize learning.
Otherwise, all other training details were identical to those for the primary models.

We also analyzed the representations of several concurrently-developed
instance-level contrastive learning models: SimCLR39: MoCoV238 and SwAV40,
which are trained on ImageNet; and TC-MoCo59: trained on baby head-cam video
data60. These models were downloaded from official public releases.

To extract activations from a model, images were resized to 224 × 224 pixels
and then normalized using the same normalization statistics used to train the
model. The images were passed through the model, and activations from each
model layer were retained for analysis. The activation maps from convolutional
layers were flattened over both space and channel dimensions yielding a feature
vector with a length equal to NumChannels × Height ×Width, while the output of
the fully-connected layers provided a flattened feature vector with a length equal to
NumChannels.

fMRI experiments. The object orientation fMRI dataset reflects brain responses
measured in seven participants while viewing images of eight items presented at
five different in-plane orientations (0, 45, 90, 135, and 180 degrees), yielding a total
of 40 image conditions. These images were presented in a mini-blocked design,
wherein each 6 min-12 s run, each image was flashed four times (600 ms on, 400 ms
off) in a 4 s block, and was followed by 4 s fixation. All 40 conditions were pre-
sented in each run; the order was determined using the optseq2 software and was
additionally constrained so that no item appeared in consecutive blocks (e.g., an
upright dog, followed by an inverted dog). Two additional 20 s rest periods were
distributed throughout the run. Participants completed 12 runs. Their task was to
pay attention to each image and complete a vigilance task (press a button when a
red circle appeared around an object), which happened 12 times in the run. Par-
ticipants (ages 20–35, four female, unknown racial distribution) were recruited
through the Department of Psychology at Harvard University and gave informed
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consent according to procedures approved by the Harvard University Internal
Review Board.

The Inanimate Objects fMRI dataset reflects brain responses measured in ten
participants while viewing images depicted 72 inanimate items. In each 8-min run,
each image was flashed four times (600 ms on, 400 ms off) in a 4 s block, with all 72
images presented in a block in each run (randomly ordered), with 4 × 15 s rest
periods interleaved throughout. Participants completed six runs. Their task was to
pay attention to each image and complete a vigilance task (press a button when a
red-frame appeared around an object, which happened 12 times in the run).
Participants (ages 19–32; eight females. unknown racial distribution) gave
informed consent approved by the Internal Review Board at the University of
Trento, Italy.

All fMRI protocols were presented using scripts written in Matlab using
PsychToolbox. Functional data were analyzed using Brain Voyager QX software
and MATLAB, with standard preprocessing procedures and general linear
modeling analyses to estimate voxel-wise responses to each condition at the single-
subject level. Details related to the acquisition and preprocessing steps can be found
in the Supplementary Information. All analyses were conducted in Matlab and
Python using custom analysis code.

Brain sectors. First, the EarlyV sector was defined for each individual to include
areas V1–V3, which were delineated based on activations from a separate retino-
topy protocol. Next, an occipito-temporal cortex mask was drawn by hand on each
hemisphere (excluding the EarlyV sector), within which the 1000-most active
voxels were included, based on the contrast [all objects > rest] at the group level. To
divide this cortex into posterior and anterior OTC sectors, we used an anatomical
cutoff (TAL Y: -53), based on a systematic dip in local-regional reliability at this
anatomical location, based off on concurrent work also analyzing this Inanimate
Object dataset70. The same posterior-anterior division was applied to define the
sectors and extract data from the Object Orientation dataset.

Data reliability. The noise ceiling was defined in each sector, based on splitting
participants into two groups and averaging over all possible split-halves. Specifi-
cally, we computed all of the subject-specific RDMs for each sector. Then, on a
given iteration, we split the participants in half and computed the average sector-
level brain RDMs for each of these two groups. We computed the similarity of
these two RDMs by correlating the elements along the lower triangular matrix
(excluding the diagonal). The correlation distance (1-Pearson) was used for
creating and comparing RDMs. This procedure was repeated for all possible split-
halves over subjects. The noise ceiling was estimated as the mean correlation across
splits (average of fisher-z transformed correlation values), and an adjusted 95%
confidence interval that takes into account the non-independence of the
samples101. This particular method was used to dovetail with the model-brain
correlations, described next.

Model-brain analyses. The first key dependent measure (veRSA correlation)
reflects the suitability of the features learned in a layer to predict the multivariate
response structure in that brain sector. To compute this, we used the following
procedure.

Voxel-wise encoding. For each deepnet layer, subject, and sector, each voxel’s
response profile (over 40 or 72 image conditions, depending on the dataset) was fit
with an encoding model. Specifically, in a leave-one-out procedure, a single image
was held out, and ridge regression was used to find the optimal weights for pre-
dicting each voxel response to the remaining images. We used sklearn’s102 cross-
validated ridge regression to find the optimal lambda parameter. The response for
the held-out item was then predicted using the learned regression weights. Each
item was held out once, providing a cross-validated estimate of responses to each
image in every voxel, which together forms a model-based prediction of neural
responses in each brain region. Based on these predicted responses, a model-
predicted-RDMs was computed for each participant.

Layerwise RSA analysis. Next, for each sector and layer, the model-predicted-
RDMs for each subject were divided into two groups and averaged, yielding two
average model-predicted-RDMs from two independent halves of the data. Each
RDM was correlated with actual brain RDM, where the brain RDM was computed
from the same set of participants. This analysis was repeated for all possible splits-
halves of the participants. The average fisher-z transformed correlation (and an
adjusted 95% confidence interval101 was taken as the key measure of layer-sector
correspondence.

Note that this average correlation reflects the similarity between the model-
predicted-RDMs and the brain-RDMs, where only half of the subject’s brain data
are used. This method of splitting the data into two halves was designed to increase
the reliability in the data—we found that the RDMs were more stable with the
benefit of averaging across subjects, while any one individual’s brain data were
generally less reliable. Additionally, this procedure allows there to be some
generality across subjects. Finally, we did not adjust the fit values to correct for the
fact that the model-to-brain fit reflects only half the brain data, instead, we kept it

as is, which also allows the average layer-sector correlation to be directly compared
to the similarly-estimated noise ceiling of the brain data. sector.

Cross-validated max-layer estimation. The second key dependent measure relating
model-brain correspondence reflects the strength of the best-fitting layer to a given
sector. To compute this measure, we again used the same technique of splitting the
data in half by two groups of subjects (this time to prevent double-dipping).
Specifically, for each model and sector, the veRSA correlation was computed for all
layers, and then layer with the highest veRSA correlation was selected. Then, in the
independent half of the data (from new participants), the veRSA correlation was
computed for this selected layer, and taken as a measure of the highest corre-
spondence between the model and the sector. As above, this procedure was
repeated for all possible split-halves of the subjects, and the cross-validated max-r
measure was taken as the average across splits (averaging fisher-z transformed
correlation values, and using the adjusted 95% confidence interval that takes into
account the non-independence of the samples). This procedure insures an inde-
pendent estimate of the maximum correspondence across layers.

Classic RSA. For comparison, we also computed and compared RDMs in both
layerwise feature spaces and brain sectors using classic RSA. In this case, RDMs
were computed directly from the deepnet activations (across units) and the brain
activation patterns (across voxels), with no encoding model or feature weighting.

Statistical comparisons. To compare the cross-validated max correlation values
between models, we used paired t-tests over all split-halves of the data, with a
correction for non-independence of the samples, following 101 (tests based on
repeated k-fold cross-validation) for corrected variance estimate and adjusted t-
values. Comparisons between IPCL and Category-Supervised models are found in
Supplementary Table 2; Comparisons between IPCL and an untrained model are
found in Supplementary Table 2; Comparison between models trained with dif-
ferent visual diets to the baseline IPCL model trained on ImageNet are reported in
Supplementary Table 3). Statistical significance for these paired t-tests was deter-
mined using a Bonferonni corrected α level of 0.05/30= 0.00167, where 30 cor-
responds to the number of family-wise tests for all reported tests.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Brain data, analysis code, and figure-plotting code are available on the Open Science
Framework (https://osf.io/trne8/). Public image datasets used to train the models include:
ImageNet (https://image-net.org/), OpenImagesV6 (https://storage.googleapis.com/
openimages/web/index.html), VggFace2 (https://github.com/ox-vgg/vgg_face2), and
Places2 (http://places2.csail.mit.edu/). Source data are provided with this paper.

Code availability
Model training scripts and pretrained models are available on Github (https://
github.com/harvard-visionlab/open_ipcl; https://doi.org/10.5281/zenodo.5719364;
ref. 103).
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