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Stacking fault energy in concentrated alloys
Mulaine Shih 1, Jiashi Miao1,2, Michael Mills1,2 & Maryam Ghazisaeidi 1✉

We revisit the meaning of stacking fault energy (SFE) and the assumptions of equilibrium

dissociation of lattice dislocations in concentrated alloys. SFE is a unique value in pure metals.

However, in alloys beyond the dilute limit, SFE has a distribution of values depending on the

local atomic environment. Conventionally, the equilibrium distance between partial disloca-

tions is determined by a balance between the repulsive elastic interaction between the partial

dislocations and a unique value for SFE. This assumption is used to determine SFE from

experimental measurements of dislocation splitting distances in metals and alloys, often

contradicting computational predictions. We use atomistic simulations in a model NiCo alloy

to study the dislocation dissociation process in a range of compositions with positive, zero,

and negative average SFE and surprisingly observe a stable, finite splitting distance in all

cases at low temperatures. We then compute the decorrelation stress and examine the

balance of forces on the partial dislocations, considering the local effects on SFE, and observe

that even the upper bound of SFE distribution alone cannot satisfy the force balance in some

cases. Furthermore, we show that in concentrated solid solutions, the resisting force caused

by interaction of dislocations with the local solute environment becomes a major force acting

on partial dislocations. Here, we show that the presence of a high solute/dislocation inter-

action, which is not easy to measure and neglected in experimental measurements of SFE,

renders the experimental values of SFE unreliable.
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Stacking faults are irregularities in the sequence of crystalline
planes. Therefore, a stacking fault in the ground state
structure of a crystal is associated with an excess energy,

called the stacking fault energy (SFE). SFE also measures the
energy cost for shearing one atomic plane with respect to another,
and as such is directly connected to the response of crystals to
deformation. Stacking faults are created during the dissociation of
lattice dislocations into partial dislocations to reduce the elastic
energy according to the Frank’s rule1. The size of the stacking
fault region (distance between the partial dislocations) is thus
determined by a balance between the repulsive elastic interaction
between the partial dislocations and the energy to create the
stacking fault between them, i.e., the SFE. In face-centered-cubic
(fcc) crystals, SFE, and consequently the dissociation width of
dislocations, is known to affect dislocation mobility, the ability to
cross-slip and formation of twins, all of which govern the
mechanical behavior2–4.

Introducing chemistry change, through alloying, further affects
the SFE and consequently the mechanical response. In a fcc
crystal, the stacking fault region, bounded by partial dislocations,
consists of two atomic planes with hexagonal-close-packed (hcp)
structure. Suzuki et al. showed that the equilibrium concentration
of solutes in this region can be different from the average bulk
concentration5,6. The segregation or depletion of solutes to or
from the stacking fault region, changes the SFE and further
influences dislocation behavior. This phenomenon has been
extensively observed in numerous alloy systems.

As the composition of alloys becomes more complex, for
example in stainless steels or superalloys, alloying effects on SFE
play a more prominent role in determining the competing
deformation mechanisms7–11. For example, activation of sec-
ondary deformation modes in steels, such as martensitic trans-
formation and mechanical twinning are directly related to the
SFE. With decreasing SFE, the deformation mechanisms switch
from dislocation glide to dislocation glide and twinning (Twin-
ning-Induced-Plasticity or TWIP effect) to dislocation glide and
γfcc to ϵhcp martensitic transformation (Transformation-Induced-
Plasticity or TRIP effect)12–16.

High entropy alloys (HEAs) take the compositional complexity
to a new extreme. HEAs are multicomponent alloys, in equal or
near equal concentrations, where the notion of solutes and sol-
vents breaks down17–20. In this case, the SFE is likely to be
affected by local atomic configuration, as some atomic bonds are
harder to break than others. Smith et al.21 observed the local
variations of stacking fault width along the dislocation lines in
CoCrNiFeMn, proving the importance of local effects in HEAs.

The fundamental questions that follows are (1) can the SFE still
be thought of as a unique intrinsic property of the crystal? and (2)
are dissociation distances and dislocation mobility still governed
by SFE?

These questions become more interesting in metastable alloys,
where the fcc structure does not correspond to the lowest energy
structure. For example, first principles calculations have shown
that the equiatomic CrCoNi prefers a hcp structure at lower
temperatures, even though it crystallizes in the fcc structure22–25.
This immediately suggests that the creation of stacking faults in
the fcc CrCoNi is energetically favorable. Calculations of SFE for
a variety of atomic configurations show a negative average SFE
and a wide spread due to local solute environments.

Dissociated dislocations in equiatomic CrCoNi medium
entropy alloy are characterized using weak beam dark field
scanning transmission electron microscopy (WB DF STEM)26.
Details of the mechanical testing of equiatomic CrCoNi medium
entropy alloy can be found in a previous publication27. Figure 1a
shows an WB DF STEM image of a dissociated dislocation with a
near edge character in CrCoNi. The image was acquired using a

diffraction vector of 3gð�202Þ. Under this imaging condition, both
Shockley partial dislocations are visible, while the stacking fault
on (111) plane is invisible. Figure 1b shows the measured dis-
sociation distances between Shockley partial dislocations in
equiatomic CrCoNi medium entropy alloy as a function of the
characteristic angle of dislocations at both room temperature and
cryogenic temperature conditions. There is no significant differ-
ence in dissociation distances between room temperature and
cryogenic conditions. The dissociation distance d is related to the
dislocation characteristic angle (θ) and SFE γ via

d ¼ K
2π

biðθÞbjðθÞ
γ

ð1Þ

where K is the elastic energy factor, from the sextic formalism of
anisotropic elasticity and bi(θ) and bj(θ) are the Burgers vectors of
a/6〈112〉 Shockley partial dislocations orientated at angle θ with
respect to the dislocation line28. Details of the anisotropic elas-
ticity calculations and comparison with the isotropic elasticity
formalism is presented in the Supplementary Note 1. The elastic
constants used here are C11= 249.4 GPa, C12= 159.0 GPa, and
C44= 138.4 GPa from Laplanche et al.29. The SFE is determined
by fitting the above equation to the experimental measurements
of d. Based on the experimental results measured using WB DF
STEM imaging, the SFE of equiatomic CrCoNi medium entropy
alloy is estimated to be between 10 and 20 mJ/m2. Importantly,
while SFE measurements show a range of values, the average SFE
is positive, which seems at odds with computational predictions.
A similar measurement of SFE, using the isotropic elasticity
formalism, has been presented by Laplanche et al.30. Addressing
this apparent disagreement between computations and experi-
ments is the main goal of this paper. Possible explanations offered
so far are the effect of short-range ordering and temperature
dependence of the SFE value in CrCoNi and
CoCrNiFeMn24,25,31–33. These are plausible explanations. How-
ever, here we propose a more fundamental explanation that is not
unique to the CrCoNi system and should be considered in all
concentrated alloys. Namely, in transitioning from pure metals to
concentrated alloys, we need to revisit the assumptions on equi-
librium state of dislocations, since the dislocation/solute inter-
action typically not considered in measuring the dissociation
distance simply cannot be ignored for concentrations beyond the
dilute limit.

We demonstrate this computationally using a model NiCo
system, which is fully miscible and allows for examining a range
of compositions and temperatures. In addition, the hcp vs. fcc
favorability, and consequently the sign of SFE, can be tuned by
changing the composition. Moreover, this system is not prone to
SRO formation, and as such allows for separating this effect from
those caused merely by compositional fluctuations in a
random alloy.

In the following chapters, we present our results on the rela-
tionship between SFE and equilibrium dissociation distance and
show that the dislocation/solute interaction energy term cannot
be neglected. Since this value is hard to measure and is often
neglected during measurement of SFE, the experimental mea-
surements are expected to overestimate the SFE. The lattice
resistance to dislocation motion is almost negligible in pure fcc
metals and increases as the concentration of solutes increase
beyond the dilute limit. Therefore, in going from pure metals to
alloys, the contribution of dislocation/solute interaction to the
total energy becomes increasingly important.

Results and discussion
Choice of model alloys. To investigate the deformation
mechanisms in metastable fcc alloys, we use NiCo as our model
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computational system. Our rationale for this choice is as follows.
First, the NiCo system is relatively simple and forms a solid
solution across the entire concentration range. Therefore, we can
span through the composition space without forming inter-
metallics. With pure Co (hcp) and pure Ni (fcc) on either end,
NiCo is a good system for tuning the SFE. Second, short-range
order (SRO) effect is negligible between Co and Ni. As such, we
can ignore SRO effects and focus on the completely random fcc
alloys. Third, we can find a reliable interatomic potential for MD
simulations34. This potential yields hcp stable Co and fcc stable
Ni. The relative stability of hcp and fcc phases, and consequently
the SFE, can be tuned by alloying at various concentrations. Note
that the trend of lowering SFE with the addition of Co is in line
with previous experimental studies, but the corresponding con-
centrations are different35,36. We compared the energy/atom of
fcc and hcp phases and chose three concentrations that represent
positive (Co70Ni30), zero (Co85Ni15), and negative (Co90Ni10) SFE
scenarios for the fcc alloy system.

We have calculated the free energy difference between the fcc
and hcp phases (Fhcp− Ffcc) for the NiCo alloy (see below). The
free energy difference for Ni has a negative slope, while for Co it
has a positive slope. The trend is similar to previous DFT results,
where Ni has a decrease in Fhcp− Ffcc, Co and NiCoCr alloys have
an increase in Fhcp− Ffcc as the temperature increases22,23. In
addition to pure Ni and pure Co, free energy difference for each
concentration is averaged over six random alloy configurations.
The standard deviation between different configurations at
temperature below 1300 K is <0.2 meV/atom. Thus the error
bar is not visible in the figure. The Co70Ni30,Co85Ni15 and
Co90Ni10 alloys were found to have little to no temperature
dependence when the temperature is below 850 K. The free
energy difference is about 3, 0, and −1 meV/atom for Co70Ni30,
Co85Ni15, and Co90Ni10 alloys, respectively. The Fhcp− Ffcc
suggest that the mean SFE for the Co70Ni30, Co85Ni15, and
Co90Ni10 alloys remain constant up to 850 K. A second-order SFE
approximation using the free energy of fcc, hcp, and double hcp
(dhcp) structures showed similar results for the alloys. More
details can be found in Supplementary Note 2. We analyze the
force balance using local SFE distribution at 78 K.

Dissociation of an edge dislocation under equilibrium. A dis-
location with a full 1=2½1�10� Burgers vector dissociates into two
Shockley partial dislocations according to Frank’s rule. This

spontaneous process occurs in order to reduce the total elastic
energy. The two partial dislocations repel one another while a
positive SFE counteracts the repulsion. The equilibrium separa-
tion distance between the two partials corresponds to a minimum
in energy (or zero force) as shown schematically in Fig. 2.

The situation is entirely different if the SFE is zero or negative
as is the case in metastable alloys. When SFE is zero, only
the elastic interactions remain with the repulsive force between
the partials having an inverse relationship with their splitting
distance. In case of the negative SFE, the partial dislocations are
expected to dissociate infinitely since the forces from elastic
interactions and SFE act in the same direction that push the
dislocations apart. The energy vs. splitting distance curve
monotonically decreases for zero and negative SFE alloys, and
thus has no minimum for finite separation distances. This
concept is illustrated as the black and red curves in Fig. 2. In other
words, an equilibrium separation distance between the partial
dislocations is not expected if the SFE is equal to or smaller than

Fig. 1 Characterization of dissociated dislocations in equiatomic CrCoNi medium entropy alloy. a An example image showing both Shockley partial
dislocations of a dissociated dislocation obtained by Weak beam dark field scanning transmission electron microscopy (WB DF STEM); and (b)
experimentally measured dissociation distances in equiatomic CrCoNi medium entropy alloy at room temperature (RT) condition and cryogenic
temperature (CT) condition.

Fig. 2 The schematic change in energy during the dissociation of a lattice
dislocation. Total energy (E) is shown as a function of the partial
dislocation separation distance (Δx) during the dissociation of a lattice
dislocation into Shockley partial dislocations. The total energy is the sum of
the interaction energy from the elastic strain around the dislocations, and
the interaction energy from creating stacking fault. Here the blue, red and
black solid lines correspond to the influence of positive, zero, and negative
SFE. The sign of the SFE (γ) dominates the energy curve as the separation
distance increases.
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zero. Note that a similar concept figure has been shown
previously by Olson and Cohen37.

Figure 3 shows the dissociation of the 1=2½1�10� edge dislocation
into Shockley partials in the three selected alloys with positive,
near-zero, and negative SFE. In addition to energy minimization
using conjugate gradient algorithm, we modeled the process at
T= 78 K and T= 850 K using molecular dynamics (MD) to make
sure that the dislocations are not trapped in shallow local minima
of the energy landscape.

We use the dislocation analysis (DXA) implemented in
OVITO38 and only show the two Shockley partial dislocations.

The region in between the partial dislocations is the stacking fault.
Each MD simulation ran for 155 to 305 ps depending on the
convergence criterion explained in the Methods section. The
averaged equilibrium separation distance (dave) is labeled on top
of each dislocation and is obtained by averaging the separation
distance along the dislocation line and over the last 50 ps of
the simulation. The equilibrium separation distance between the
partial dislocations remained finite in all three alloys (positive
SFE: 57.3Å, zero SFE: 84.9Å and negative SFE: 109.5Å) during
energy minimization. The temperature dependence of dave is as
follows. The positive SFE alloy exhibits an equilibrium separation

Fig. 3 Dissociation of a 1=2½1--10� edge dislocation in NiCo random alloys. The equilibrium positions of the dissociated dislocation after energy
minimization are shown in (a) Co70Ni30 (positive average SFE), (b) Co85Ni15 (zero average SFE), and (c) Co90Ni10 (negative average SFE); (d–f) show the
dissociated edge dislocation at T= 78 K; (g, h) show the corresponding dislocations at T= 850 K. The dislocation analysis from OVITO is used, where the
black lines represent the two partial dislocations (b1, b2 are a

6<112>-type dislocations). Regardless of the sign of the average stacking fault energy values,
the dissociation width of the edge dislocation remains finite at low temperature. i–k tracks the evolution of the average separation distance as a function of
time, showing a continuous dissociation in Co90Ni10 alloy at T= 850 K.

Fig. 4 Forces acting on Shockley partial dislocations during the dissociation process. The averaged SFE (dashed lines), local SFE (color blocks), and
elastic interaction force per unit line (solid lines) are shown as a function of separation distance (dsep). The local SFE blocks, which is plus/minus one
standard deviation, can possibly intersect with the elastic interaction force curve as shown. Positive/zero/negative SFE are colored by blue/red/black,
respectively. The circle dots are the averaged dislocation equilibrium separation distance from atomistic simulations after minimization.
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distance of 80.2Å at 78 K and 106.2Å at 850 K. The separation
distance in the zero SFE alloy increases from 124.2Å at T= 78 K
to 229.7 Å at T= 850 K. The negative SFE alloy also has a finite
equilibrium dissociation distance of 164.7Å at T= 78 K, but
continuously dissociated at T= 850 K. These results are surpris-
ing since the dislocation dissociation distances remained finite for
the zero and negative SFE cases at low temperature, and in case of
zero SFE alloy, even at elevated temperature.

Next, we compare the above splitting distances to the
dimensions of our simulation box. Due to the periodic boundary
condition in x direction, we have an array of dislocations. We
estimate the separation distance based on the elastic interaction
between a partial dislocation with the other partial dislocation as
well as all the periodic images. More details are presented in
Supplementary Note 1. The elastic force on the partial
dislocations is thus given by

Felastic ¼ K
b1b2
2π

1
Δx

þ �Lx þ πΔx cotðπΔx=LxÞ
LxΔx

� �
: ð2Þ

where b1, b2 are partial dislocations’ Burgers vectors, Δx is the
separation distance between the partial dislocations and Lx=
1100Å is the simulation box length in the x direction. This
equation is plotted in Fig. 4. In case of zero SFE, force balance is
achieved only when Felastic= 0. Therefore, the separation distance
limit should be Lx/2. For zero and negative SFE we should expect
the equilibrium separation distance to be equal and larger than
Lx/2= 550Å, respectively. Except in the high temperature
negative SFE case, the averaged equilibrium separation distances
from our simulations are no larger than half of this limit. This
unexpected finite dissociation is akin to the finite dissociation
observed experimentally in Fig. 1 in CrCoNi, which also has a
negative SFE based on DFT results22,24.

Previous studies in concentrated solid solutions have shown
that the separation distance between the partial dislocations vary
along the dislocation line21. The variation is caused by local
atomic configurations as certain bonds are easier/harder to break
than others. Therefore, there is often a range of values associated
with the SFE and even though the average value may be negative,
the spread can span through both negative and positive values22.
During the dissociation process in an alloy with negative average
SFE, it is conceivable that one or both of the partial dislocations
may encounter local regions of atomic distributions where bond
breaking during slip results in a high energy cost. In other words,
even with an average negative value, the local value might be large

enough to balance out the elastic repulsive force on the
dislocation. The dislocation line tension, tends to keep the entire
dislocation line together, resulting a finite dissociation distance
between the partial dislocations. To test this hypothesis, we use
the “local” SFE concept introduced in21 to estimate the range of
SFE values in selected alloys.

The detail of local SFE calculations is presented in the Methods
section. Figure 5b shows the normalized frequency histogram, i.e.,
the probability distribution of local SFE values in the three
selected alloys. The local SFE histogram fits closely to a Gaussian
distribution function, an evidence of randomness in the model
alloys. The mean and standard deviation of SFE values are
obtained from this Gaussian distribution. The mean is averaged
over the last 400,000 time steps of the simulation under NVT
condition at T= 78 K. The mean value (average SFE) for
Co70Ni30, Co85Ni15, and Co90Ni10 alloys are 19.8, −0.8, −7.4
mJ/m2 at 78 K. The corresponding standard deviation are 24.0,
19.4, 17.5 mJ/m2, respectively.

In addition, Fig. 5a shows that the energy difference between
hcp and fcc phases is nearly independent of temperature in the
model alloys. Therefore, we assume that the SFE values do not
depend on temperature either.

Next, we estimate the effect of local SFE and compare with the
elastic repulsive force per unit length Felastic between the partial
dislocations. We have examined the effect of temperature on the
elastic force between the dislocations by calculating the
temperature dependence of the elastic constants. The details of
these calculations are presented in Supplementary Note 2.
Supplementary Fig. 2 confirms that Felastic does not change
appreciably with temperature.

Figure 4 shows Felastic, computed from elastic constants at T=
0 K, as a function of the splitting distance between the
dislocations. Equation (1) implies that the intersection between
the elastic force curve and the SFE value should represent the
equilibrium condition. Since the SFE is no longer a unique value,
we choose the average SFE plus and minus one standard
deviation to represent the range of most likely SFE values. These
values are represented by color blocks in Fig. 4.

The equilibrium dsep values from energy minimization
simulations (Fig. 3a–c), are also shown on the same plot. In the
positive SFE alloy, the equilibrium dsep coincides with the
intersection of Felastic and the maximum value of the SFE.
However, in the other two alloys, the equilibrium dsep is smaller
than what is expected from the maximum SFE value. In addition,

Fig. 5 Comparison of finite temperature fcc-hcp free energy and local stacking fault energy in NiCo random alloy. a The free energy difference between
hcp and fcc phase for the NiCo alloy system. Negative energy difference indicates that the hcp phase is more favorable, and vice versa. Co85Ni15 (zero SFE)
alloy calculations at temperature higher than or equal to 850 K have a strong tendency to become amorphous instead of forming stable hcp phase during
TI. Results for zero SFE alloy is only considered up to 700 K. For the positive, zero, and negative SFE alloys, the energy difference is nearly constant at finite
temperature, supporting the assumption that the mean of local SFE is constant across the simulation temperature range. b Normalized probability
distribution of the local stacking fault energy (SFE) at finite temperatures for positive/zero/negative average SFE alloy at 78 K. The mean and standard
deviation of the local SFE distribution is assumed as constant across the 1–850 K temperature range.
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an argument based on SFE alone cannot explain the temperature
dependence of of dissociation distances in Fig. 3. The dissociation
distances increase with temperature while the SFE does not
change with temperature appreciably. The case of Co90Ni10 alloy
is the most intriguing, in which the average SFE increases slightly
with temperature, contrary to the trend in dissociation distance.
These observations suggest the presence of another thermally
activated process resisting the motion of the partial dislocations.
The following section will examine the resistance to the glide of
Shockley partials more closely.

Examining the force balance on partial dislocations. The con-
ventional approach to dislocation dissociation based on pure fcc
metals with negligibly low Peierls stress—assumes that the only
forces acting on the partial dislocations are the elastic repulsive
force per dislocation line length, exerted by the other partial
dislocation, balanced by the energy per area cost for slip, i.e., SFE.
Consider a dissociated dislocation in equilibrium. Assume, we can
apply an external resolved shear stress that would push the par-
tials to move in opposite directions. If the external shear stress
exceeds the SFE, the partial dislocations will decorrelate and move
away from one another, extending the stacking fault region in
between. The smallest shear stress to achieve this should exert a
force on the partials that is equal to the SFE. We call this critical
value of shear stress the decorrelation stress.

In case of the dissociated edge dislocation considered here, the
Shockley partials have equal and opposite screw components.
Therefore, a shear stress resolved along the dislocation line
direction (i.e., σyz), moves the dislocations apart. This process is
illustrated in Fig. 6a schematically. We apply an initial σyz stress
starting from equilibrium configuration. We then incrementally
increase the target σyz stress by 40MPa to find the critical
decorrelation stress. The actual simulation shear stress is
measured by averaging the global yz pressure output. The
decorrelation force per unit dislocation line, is then obtained from
Fdecorrelate= σyz. bs, where bs is the screw component magnitude of
the Burgers vector associated with the Shockley partial
dislocation.

First, we calculate the decorrelation force in pure Ni and find
the critical decorrelation stress to be 1730MPa. This shear stress
corresponds to a decorrelation force of 124 mJ/m2. This value
agrees well with the SFE of pure Ni which we calculate to be
125 mJ/m2.

Next, we apply this method to the three fcc alloys. In case of
alloys, the decorrelation stress depends on the dislocation line
length. We performed a convergence test of the decorrelation

force vs. dislocation line length for different alloy concentrations
and used the smallest line length beyond which the decorrelation
stress remained constant. More details are presented in
Supplementary Note 3. Supplementary Fig. 5 shows the
decorrelation force for various dislocation line lengths in the
three selected alloys. The decorrelation stress in the alloy,
measures the local resistance to slip which should be temperature
(and strain rate) dependent, if a thermally activated process
contributes to this resistance. Here, we consider the maximum
critical stress which is required in the absence of any thermal
energy. Therefore, we have performed all the subsequent
decorrelation stress calculations at T= 1 K.

Figure 6b shows the critical decorrelation force for the positive,
zero, and negative SFE alloys compared against the SFE. The
error bars represent the range of local SFE forces from the fitted
Gaussian distribution mean and standard deviation. The upper
bound for positive SFE alloy overlaps with the critical decorrela-
tion force. In zero and negative SFE alloys, the decorrelation force
is always higher than local SFE force. This indicates that there
exists an additional force acting on the partials to achieve force
balance in very low SFE alloys.

Given the fact that our model alloys are completely random
solid solutions, the difference in the decorrelation force and local
SFE, should therefore be due to the interaction of partial
dislocations with local solute environments. For an accurate
estimate of the solid solution strengthening, it is possible to use
the analysis and theory developed by Varvenne et al.39,40 with
modifications for partial dislocations. If the energy barrier from
all sorts of solute/dislocation interactions, including SRO, is of
interest, it is also possible to use the analysis from Antillon et al.41

to make reasonable estimations.
Next, we use the framework provided by the theory of solid

solution strengthening of Varvenne et al.40 to estimate the local
potential energy barrier for solute–dislocation interactions. We
emphasize that here, we study the dissociation of a perfect lattice
dislocation under zero stress. Therefore, while the partial
dislocations repel one another, the entire dislocation is not
moving or bowing out and the roughness along the dislocation
line is at a much smaller length scale than the amplitudes
corresponding to the bowing segments due to solid solution
strengthening. The solute/dislocation interaction is local and at
the atomic scale. We are merely, borrowing the method used in
Varvenne et al.40 to approximate the local potential energy
barrier, given by

ΔE0
bðLz;wÞ ¼

ffiffiffi
2

p
σΔUtot

ðLz;wÞ ð3Þ

Fig. 6 The decorrelation process of an edge dislocation in the NiCo random alloy. a Schematic of a decorrelation process of two partial dislocations. The
burgers vector of the two Shockley partial dislocations (b1, b2) can each be assembled by an edge and a screw component. A decorrelation force
(Fdecorrelate), acting parallel to the screw component, will drive the two partial dislocations to break away from equilibrium (deq) and move in opposite
directions in the glide plane (xz). b The measured decorrelation force compared to the local SFE and force from solutes exerted on the partial dislocation for
positive/zero/negative SFE alloys. The error bars represent one standard deviation in local SFE values.
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where σΔUtot
ðLz;wÞ ¼ ð Lzffiffi

3
p

b
Þ1=2Δ~EpðwÞ is the standard deviation of

potential energy change from solute fluctuations and w is the
partial dislocation glide distance. As mentioned above, dislocation
bow-outs and critical roughening amplitude—(wc) in ref. 40—are
not relevant here. Therefore, the potential energy barrier is a
function of the dislocation line length (Lz) and the partial
dislocation glide length w.

The energy barrier as a function of glide distance can be
thought of as the work done by a force exerted from solutes on
the dislocation, while the dislocation moves by a distance w.
Therefore, for simplicity, we approximate the force per unit
dislocation line, exerted by solutes as

Fs ¼ ΔE0
bðLz;wÞ
wLz

ð4Þ

It is evident that ~EpðwÞ is the key quantity, which can be
obtained by directly calculating the interaction energy map39 of
Ni solutes in fcc Co, or approximated by the reduced elastic
interactions model40. Here, we take both approaches and
compare the predictions.

First, we use the reduced elastic interactions model from
Varvenne et al.

Δ~EpðwÞ ¼ μð1 þ vÞ
3πð1 � vÞ ΣijΔf ijðwÞ

h i1=2
´ ΣncnΔ�V2

n þ σ2ΔVn

h i1=2
ð5Þ

We modify the factor for dimensionless pressure field
f ðxi; yjÞ ¼ ΣiΔbeðxiÞ

yj
ðx2i þ y2j Þ

for a Shockley partial, where we

consider the Burgers vector be from the edge character
contribution of the partial dislocation such that
ΔbeðxiÞ

be
¼ e�x2i =2σ

2
=Σþ1

k¼�1e�x2k=2σ
2
, xi= nbe with n= 0, ± 1, ± 2...

and σ= 3be. In the equation, Δfij(w) is the change of the
anisotropic pressure field due to glide length w, cn is the
concentration for element n in an n-component alloy, Δ�Vn ¼
3�Vðana � 1Þ is the average misfit volume of solute n, σΔVn

is the
standard deviation due to local fluctuations, where �V and a are
the alloy volume and lattice parameter, and an is the lattice
parameter for element n.

Assuming the standard deviation (σΔVn
) is negligible, the

second term only depends on misfit volume of different alloy
composition. Here we use the average lattice parameter at each
concentration from minimization and we get ΣncnΔ�V2

n = 0.00429,
0.00258, 0.00183Å6 for Co70Ni30, Co85Ni15, and Co90Ni10 alloys,
respectively. The results happen to be similar to lattice parameter
calculations from the Vegard’s law.

Moreover, we calculate the partial dislocation/solute interac-
tion energy map using direct atomistic simulation via40,

Δ~EpðwÞ ¼ ΣijncnððUnðxi � w; yjÞ � Unðxi; yjÞÞ2 þ σ2ΔUn
ij
Þ

h i1
2

ð6Þ
where Un(xi, yj) is the interaction energy for a solute of type n
located at position (xi, yj), σΔUn

ij
the standard deviation due to

distribution of local fluctuations along dislocation line direction
zk and is negligible in our model.

Fig. 7 The Ni solute interaction energy map with a partial dislocation in fcc Co. a Shows the calculated solute-dislocation interaction energy map, while
(b) shows the modified solute-dislocation interaction energy map to eliminate the stacking fault interactions. We discard the interaction energies to the
right of the dashed line and assigned the interaction energy to the sites on the right of the line such that the values are symmetric with respect to the partial
dislocation center.

Fig. 8 Estimation of solute/dislocation interaction. The force per unit length of a partial dislocation exerted by solutes Fs is computed as a function of glide
distance from (a) reduced elastic interactions model and (b) direct solute–dislocation interaction energy.
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Figure 7a shows the interaction energy map of Ni solutes, with
one of the partial dislocations in fcc Co. The calculation details
are described in Supplementary Note 4. Recall that we seek to
separate the effect of solutes on the core of the Shockley partial,
from that on the SF region already considered in previous
sections. However, partial dislocations cannot exist without
creating a SF in the crystal.

In order to obtain a hypothetically separate interaction energy
map for the partial dislocation core, we cut off the interaction
energy from the stacking fault region, delineated with a vertical
line in Fig. 7a. The interaction energy values for this region are
then assigned by mirroring the map with respect to the center of
the dislocation core, determined by a Nye tensor analysis42. This
modified interaction energy map is shown in Fig. 7b. Note that in
this case, the partial dislocation will only move to the left (x < 0)
during the dissociation process. The two partial dislocations are
identical, therefore only one is considered.

Figure 8 compares the estimated force per dislocation line
length from solute interactions Fs obtained from the reduced
elastic interaction and atomistic interaction energy map. The first
glide step w= be corresponds to the highest force, which
determines the maximum resistance from solutes to dislocation
motion. The reduced elastic interaction (misfit volume) model
predicts the the maximum forces to be about 0.8–1.3 mJ/m2,
while the direct solute–dislocation interaction energy prediction
lies in the range of 17–30mJ/m2 for the three compositions.
Going back to Fig. 6b, we compare the Fs estimated from Fig. 8b
to Fdecorrelate. It is evident that the Fdecorrelate is equal to Fs in the
negative SFE alloy and nearly equal in the zero SFE alloy. Given
the simplifications used to calculate Fs, this agreement is
surprisingly well. These results demonstrate that (a) considering
only the size misfit is insufficient to describe the solute effects on
the dislocation core, and (b) the dominant resisting force to
motion of partial dislocations in the negative and zero
average SFE alloys is the interaction of solutes with the partial
dislocation core.

Therefore, going from elemental fcc metals to concentrated
alloys, the assumptions of equilibrium dissociation of lattice
dislocations, leading to Equation (1) should be revised. Figure 9
demonstrates this concept schematically. The elastic interaction
between the Shockley partial dislocations Felastic extends the
stacking fault area. The equilibrium separation distance
corresponds to the configuration where Felastic faces the
maximum resistance from the lattice. In elemental fcc metals,
the Peierls stress is typically much smaller than the SFE.
Therefore, at equilibrium, Felastic= γ, leading to Equation (1). A
concentrated alloy is different in at least two major ways. First,
the SFE consists of a range of values with its upper bound
represented by γmax. In addition, motion of dislocations in a
field of solutes is accompanied by solute interactions with the
dislocation core. The maximum barrier imposed by solutes is
overcome by a force per unit length Fs. The maximum of γmax

and Fs dominates the motion of Shockley partials. Therefore, at
equilibrium

Felastic ¼ Maxðγmax; FsÞ: ð7Þ

The results of our atomistic simulations support this conclu-
sion. The equilibrium separations denoted by circles in Fig. 4
intersect the Felastic curves at values corresponding to the
decorrelation forces computed independently in Fig. 6. Figure 6
also reveals that the decorrelation force in each alloy is equal to
the maximum of γmax and Fs which are computed separately.

We note that, in our model NiCo alloys, SFE variations, and
solute/dislocation interaction are the only sources of resistance
to dislocation motion. However, in application to real alloys

other sources might be present. For example, in alloys with a
tendency for SRO formation, the SRO contribution should be
added in Eq. (7).

We have shown that in transitioning from pure metals to
concentrated alloys, the assumptions on equilibrium dissociation
of lattice dislocations must be revisited. Conventionally, equili-
brium distance between partial dislocations is determined by a
balance between the repulsive elastic interaction between the
partial dislocations and the cost to create the stacking fault
ribbon, quantified as SFE. This concept is valid in pure close-
packed metals, where the SFE value is unique and the lattice
resistance to motion of partial dislocations is small. However, this
assumption is used to measure dissociation distances in alloys as
well, an example of which is shown in Fig. 1. As the alloy
concentration increases beyond dilute limit, the SFE represents a
range of values and the dislocation/solute interaction becomes
increasingly important. Ignoring the dislocation/solute interac-
tion energy results in an overestimation of SFE and explains the
discrepancy between experimental measurements and computa-
tional predictions of SFE based on DFT calculations. Figure 9
summarizes this concept schematically.

Fig. 9 Schematic demonstration of the various forces, acting on a
Shockley partial dislocation during dissociation. The process is shown in
(a) a pure metal and (b) an alloy. The elastic interaction Felastic pushes the
left partial dislocation to the left, provided it can overcome the maximum
resisting force to moving the dislocation incrementally by amount δ. The
Peierls barrier in elemental fcc metals is negligible hence the Felastic should
counteract γ. In an alloy, SFE is a distribution with its upper bound
represented by γmax. Both γmax and the solute/dislocation interaction Fs
resist the motion of the Shockley partial. In order to move the dislocation by
an amount δ beyond the equilibrium position, Felastic needs to counteract
the maximum resistance given by the maximum of γmax and Fs.
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We used the NiCo model system to span through the entire
composition range and chose alloys with positive, near-zero, and
negative average SFE values. In addition, the NiCo system is not
prone to ordering and as such, we were able to separate the effect
of SRO formation. The SFE values did not show a significant
temperature dependence either. We demonstrated that an edge
dislocation dissociates into Shockley partials with a finite
separation distance at low temperature, even when the average
SFE is zero or negative, suggesting that a new force balance state
must exist in these alloys. We demonstrated the presence of an
additional resisting force by measuring the decorrelation force
and comparing against the range of possible SFE values. We then
showed that additional resistance is due to the interaction of
solutes with partial dislocation cores in the model NiCo alloys.
This additional force is necessary to construct the force balance
according to Eq. (7), but is often neglected and not easy to
measure in experiments. This is the fundamental reason that
experimental measurements of SFE values should be taken
cautiously, particularly in concentrated alloys.

Methods
Computations. Atomistic simulations are performed using large-scale atomic/
molecular massively parallel simulator43. We use the Kim et al. Modified
Embedded Atom Method potential for NiCo alloy simulations34. The NiCo alloy is
chosen as a model system to study the dislocation behavior in fcc concentrated
solid solution alloys with a range of average stacking fault energies. Increasing the
concentration of Co favors the hcp structure over fcc. Therefore, by varying Co
concentration, we can access alloys that transition from stable fcc (positive SFE) to
metastable fcc (negative SFE) values. The transition concentration for the alloys is
roughly 85at% Co for the given potential.

First, we create random defect-free cells and calculate the equilibrium lattice
constants at 78, 300, and 850 K under constant temperature and zero pressure
(NPT) conditions. The thermal expansion ratio obtained from NPT simulations is
used to expand and remap the atoms in the dislocation cell.

Simulation cells containing dislocations are oriented along x ¼ ½1�10�, y= [111]
and z ¼ ½�1�12� directions respectively. We varied the dislocation line length (Lz) in
69, 519, 813, and 1195Å to ensure our results are converged. The simulation cell
size shown in Fig. 3 was chosen as 1100 × 523 × 519Å in x, y, and z directions and
consists of 27,213,840 atoms. We first introduce a full dislocation, where half of the
upper simulation cell is displaced with the shortest lattice vector, called Burgers
vector, with respect to the lower simulation cell. We apply the anisotropic
displacement-field solution to create a 1

2 h110i-type dislocation, the dislocation line
is designated along the z-direction. The elastic constants of the NiCo alloy at a
given concentration is interpolated from pure Ni and pure Co zero-temperature
elastic constants of the potential. Periodic boundary conditions in the glide plane of
the edge dislocation (x and z directions), and shrink-wrapped boundary condition
in the out of plane (y direction) are used. Two atomic layers of atoms on each the
top and bottom side along the nonperiodic boundary are set to be fixed, while the
rest of the system is relaxed to its equilibrium positions using energy minimization.

The dislocation cells are then thermalized at 78, 300, and 850 K using a
Nose–Hoover thermostat under constant temperature and volume (NVT)
conditions. The dislocation cells are rescaled according to the thermal expansion
ratio at the target temperature. Langevin dynamics coupled with the target
temperature was first applied for 5 ps to pre-thermalize and reduce the time for
convergence. The system is then switched to NVT conditions until convergence is
achieved. The dsep values are averaged over 50 ps intervals. We consider the
simulation to be converged when the difference between the last two evaluated
average dsep values is <2%. We first examine the external stress-free conditions, to
see what is the finite temperature effect on dislocation cells. We then apply the
target constant stress on the dislocation cell. We use the constant traction
boundary condition to apply the desired stress on the dislocation. This method has
been widely used in the literature41,44. We first strain the whole simulation cell
according to our target stress state. Then we apply the force Fj= ± σijA/N on each
atom in the top and bottom layers. To study the decorrelation force on the partial
dislocations, we apply various σyz values and obtain the critical value. The same
conditions were used, where Langevin dynamics was first applied and then
switched to NVT conditions for 100–150 ps.

We use thermodynamic integration (TI) to calculate the free energy of fcc and
hcp phases of the chosen NiCo alloys. Given a known initial equilibrium state, we
can numerically integrate the work done to reach another equilibrium state of
interest. In this study, we have employed the nonequilibrium TI method developed
by Freitas et al.45. We get the free energy of the final equilibrium state by adding
the free energy difference such that

Ff ðN;V ;TÞ ¼ FEðN;V ;TÞ þ ΔF: ð8Þ

Where Ff(N,V, T) is the free energy of our final equilibrium state, FEðN;V ;TÞ ¼
3NkBTln ð _ωkBT

Þ is the reference equilibrium state where we use the known Einstein

crystal, and ΔF is the free energy difference. The nonequilibrium TI method
assumes that the forward and backward integration processes are identical.
Therefore we can approximate the change in free energy as

ΔF ¼ 1
2

Wirr;E! f þ Wirr;f !E

h i
: ð9Þ

Where Wirr,i→ j is the irreversible work done to transform from state i to state j. In
our study, we use 32,928 atoms and six different random configurations for the
alloys to compute the free energy of both fcc and hcp phases.

To study the effect of local SFE distribution, a large cell with 480,000 atoms is
used. In which we assign atoms into 2500 small groups, each one having ≈ 87Å2 SF
area, so that we have the mean and standard deviation that are statistically
significant. A tilt method for local and average SFE calculations as a function of
concentration and temperature are performed8. The bulk reference cells are first
constructed and minimized along ½1�10�, ½11�2�, and [111] direction, where the Ni
and Co atoms are dispersed randomly according to the given concentration. A
translation vector is then applied to the perfect cell to get the SF cell structure, and
minimization is performed with x, y positions fixed. The zero-temperature SFE is
computed using the difference in energy of the two cells divided by the SF area. The
finite temperature SFE are computed similarly. We apply NVT simulations at 78 K
after rescaling the box according to thermal expansion ratio and remapping
the atoms.

Experiments. Experimental details regarding to the fabrication of test alloy, general
microstructure, and deformation behavior can be found in a previous
publication27. Specimens for transmission electron microscopy (TEM) study were
mechanically ground down to a thickness of about 100 μm. Final perforation of
TEM foils was completed using electropolishing in an electrolyte consisting of 20%
perchloric acid in methanol at −30 Â °C and a voltage of 10–13 V. Dissociated
dislocations were characterized using the recently developed WB DF STEM26. The
details of WB DF STEM imaging can be found elsewhere26. WB DF STEM imaging
was conducted in a FEI Tecnai TF20 TEM/STEM microscope operating at an
accelerating voltage of 200 kV.

Data availability
All relevant data are available upon request from the authors.
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