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Local field potentials in the parietal reach region
reveal mechanisms of bimanual coordination

Eric Mooshagian® 3*, Charles D. Holmes? & Lawrence H. Snyder® 2%

Primates use their arms in complex ways that frequently require coordination between the
two arms. Yet the planning of bimanual movements has not been well-studied. We recorded
spikes and local field potentials (LFP) from the parietal reach region (PRR) in both hemi-
spheres simultaneously while monkeys planned and executed unimanual and bimanual
reaches. From analyses of interhemispheric LFP-LFP and spike-LFP coherence, we found that
task-specific information is shared across hemispheres in a frequency-specific manner. This
shared information could arise from common input or from direct communication. The
population average unit activity in PRR, representing PRR output, encodes only planned
contralateral arm movements while beta-band LFP power, a putative PRR input, reflects the
pattern of planned bimanual movement. A parsimonious interpretation of these data is that
PRR integrates information about the movement of the left and right limbs, perhaps in service
of bimanual coordination.
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ARTICLE

rimates, including humans, are uniquely skilled at using

their limbs in complex ways to achieve a variety of goals.

Their behavioral repertoire includes manipulating objects,
brachiating, defensive, and offensive maneuvers. How the brain
coordinates the movements of multiple body parts to produce
coherent motor behavior remains a fundamental question in
systems neuroscience, applicable across a broad range of species
and motor outputs.

Each hemisphere primarily controls the limbs on the opposite
side of the body!2. To make a coordinated bimanual reach, some
regions must have information about both arms. Bimanual
responses have been characterized in cortical motor and pre-
motor areas3~7. Suggestive evidence also exists for bimanual
representations in the parietal cortex>>%8, but those studies did
not address bilateral contributions to the movement.

The posterior parietal cortex contains sensorimotor signals
involved in spatial visuomotor transformations, with different
cortical regions specialized for different effector systems®. In
macaques, reach planning and execution drives systematic pat-
terns of activity in the parietal reach region (PRR)!0-13. In
humans, functional neuroimaging shows reach planning activity
in possible homologs of PRR!4-17, In both species, the primary
organization is contralateral. Temporary inactivation of PRR
selectively interferes with contralateral arm movements!'$, and the
population average unit activity codes only contralateral arm
movements. Chang et al.!° showed that some individual cells in
PRR reflect plans for ipsilateral limb movements, but Mooshagian
et al.> showed that this response could more parsimoniously be
attributed to the presence of a behaviorally relevant stimulus in
the cells’ response field, and not to an ipsilateral limb movement
plan per se. The putative human homolog of PRR, though
similarly contralaterally biased, also shows some degree of bilat-
eral activation!>16. We hypothesize that information about the
reach plan for each arm is exchanged across hemispheres in the
parietal cortex, and particularly in PRR so that each PRR has
information about what the other arm will do and can adjust its
own plans accordingly.

We found that local field potentials (LFP) are coherent across
hemispheres, with the extent of the coherence depending on the
type of reach being planned. This is consistent with information
about reach plans being exchanged across the hemispheres. Since
spiking activity does not contain ipsimanual arm information, but
beta-band LFP power does, we suggest that this information
originates from PRR in the opposite hemisphere. This is sup-
ported by our finding of interhemispheric spike-LFP coherence in
the beta band that, like LFP-LFP coherence, is modulated by the
type of reach being planned. Interhemispheric spike-LFP coher-
ence is maximized when the LFP is lagged compared to spikes by
about 15 ms, consistent with the input to one hemisphere (LFP)
being driven by the output (spikes) from the opposite hemi-
sphere. Altogether, our results suggest that bimanual reach
planning is achieved in part by the interhemispheric transfer of
information at the level of the parietal cortex.

Results

We recorded single units and LFP in each hemisphere of two
monkeys to look for evidence of interhemispheric exchange of
information during the planning of bimanual limb movements.
Animals performed saccade, unimanual, and bimanual reaches on
interleaved trials. On each trial, animals were instructed to pre-
pare a movement to one or two spatial targets and then cued to
initiate that movement after a variable delay of 1250-1750 ms.
Unimanual reaches were made with either the right or left arm,
and electrophysiological responses were sorted based on whether
the arm was ipsilateral or contralateral to the recording site. On

bimanual reach trials, both arms reached the same target
(bimanual-together) or each arm reached a different target at
diametrically opposed positions (bimanual-apart) (Fig. 1a, b and
Supplementary Fig. 1). For bimanual-apart reaches, the arms
could be uncrossed or crossed (Fig. 1b). Reaches were accom-
panied by saccades. A fifth interleaved condition consisted of a
saccade without a reach, as a control to isolate any confounding
effects of saccadic eye movements by themselves. We recorded
LFP from 312 sites in PRR (133 from MKT and 179 from MKkZ)
and recorded single units from 113 of those sites (43 from MKT
and 70 from MKkZ) (Fig. 1c). There were no clear differences in
the population average single-unit activity of the cells recorded in
each anatomical area, with respect to the hypotheses or conclu-
sions of this study (Supplementary Fig. 2). Similar results were
obtained in an independent set of recordings that were performed
and published several years earlier from the same animals?.
Overall behavioral performance was good (Supplementary
Table 1 and Supplementary Table 2). The median movement
times were 170 and 211 ms for MKkT and MKZ, respectively. The
timing was consistent from trial to trial; the median standard
deviations were 22 and 32 ms, or 13 and 15% of the mean. For
bimanual movements, the start and end times of reaches with the
two arms were similar. In 80% of bimanual-together trials, the
two arms began moving within 66 and 67 ms of each other (MkT
and MKZ, respectively) and ended within 78 and 75 ms of one
another. For bimanual-apart trials, these values were 81 and
91ms, and 90 and 156 ms, respectively. For a more complete
treatment of behavioral performance in these tasks, see20.

Interhemispheric LFP-LFP coherence is frequency- and task-
specific. We first tested the hypothesis that there is interhemi-
spheric sharing of information between the two PRRs that
depends on the pattern of planned arm movement. Shared
information can be identified by an increase in shared variance.
Coherence is a measure of shared variance that, unlike correla-
tion, is robust to small-time lags produced by conduction delays.

We measured interhemispheric LFP-LFP coherence as a
function of frequency and task during the planning/preparatory
period 650-1150 ms after target onset. We made the following
predictions. (1) When only one arm will move, then bimanual
interactions do not occur, and no exchange of information is
necessary. Therefore, coherence should remain at or near the
baseline. (2) When both arms move towards the same target and
must reach that target at a similar time (bimanual-together task),
both spatial and temporal coordination of the two limbs is
required. This bimanual interaction will require an exchange of
information across hemispheres. If this exchange involves PRR,
then we expect that interhemispheric coherence will increase,
relative to a unimanual reach. (3) When each arm moves toward
a different target, that is, if the reaches are spatially dissociated
(bimanual-apart task), it is useful to functionally decouple the
activity of the two hemispheres. One way that could happen, or
one marker of that happening, would be a decrease in
interhemispheric coherence. We, therefore, predict that the
bimanual-apart task will not result in increased coherence relative
to a unimanual reach, and the requirement for independent
spatial control of each arm might even lead to a decrease in
interhemispheric coherence.

Prior to the delivery of a task instruction, interhemispheric
(across hemispheres) LFP-LFP coherence is frequency-depen-
dent, ranging from 0.17 to 0.24 on a scale from completely
independent (0.00) to completely coherent (1.00) (Fig. 2, black
trace). During saccade-only and unimanual reach trials, LFP-LFP
coherence remained close to baseline across a wide range of
frequencies (black, yellow, and gray traces, respectively),
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Fig. 1 Delayed movement tasks and recording sites. a On each trial, after an initial fixation, a peripheral target appeared and instructed the spatial location
and effector to be used (eyes or arm[s]) for the subsequent movement(s). The stimulus remained visible during a variable delay period. Throughout
saccade and unimanual reach trials, the hand(s) that were not instructed to move were required to remain on the home pad(s). After the go cue (fixation
offset), animals made the instructed movements to the target location(s). On single-target trials, eye movements to the target were required. Movements
were either into or 180 degrees out of the RF. On bimanual-apart reach trials, eye movements were unconstrained once the animals were cued to initiate
the movement. One arm moved into the RF and the other arm moved out of the RF on each trial. Movement directions and movement types were randomly
interleaved. A saccade-only trial (white stimulus) is depicted. b Unimanual left or right arm reaches were instructed with a single green or red peripheral
target, respectively. Reaches with both arms to a single target (bimanual-together) were instructed with a blue stimulus. Reaches with each arm to a
different target (bimanual-apart) were instructed with one red and one green stimulus separated by 180 degrees across the central fixation. Unimanual
reaches were either to targets on the same side of the body (upper row) or crossed to the opposite side of the body (lower row). Bimanual-apart reaches
were made with the arms either uncrossed (upper row) and or crossed (lower row). Note that only one of the 4 possible target pairs is illustrated.

¢ Recording sites from the right hemisphere of each monkey. Coordinates of recorded cells in MkT (upper row) and MkZ (lower row) are shown projected
to a single MRI section perpendicular to the path of the recording electrode, with zoomed-in views on the right. IPS, intraparietal sulcus; Midline,
longitudinal fissure; POS, parieto-occipital sulcus; STS, superior temporal sulcus. The colored regions are from89; LIP, lateral intraparietal area; LOP, lateral
occipital-parietal area; MIP, medial intraparietal area; PO, parietal-occipital area. The medial, lateral, anterior, and posterior directions are labeled as M, L,

A, and P, respectively. The size of each circle indicates the number of cells recorded along that track. LFP recordings were obtained at these locations and
other sites within 2 mm. Left hemisphere sites (not shown) are similar.
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supporting prediction (1) above. During bimanual-together trials, period as a function of frequency on each trial and averaged
LFP-LFP coherence was significantly elevated compared to across trials, varies with planned movement type and with LFP
unimanual trials at 28-32 Hz, supporting prediction (2) (blue). frequency (Supplementary Fig. 5). Task-specific modulation is
During bimanual-apart trials, LFP-LFP coherence was signifi- most prominent in the frequency range from 12 to 30 Hz. To
cantly depressed compared to bimanual-together trials at isolate the effects of movement type independent of frequency, we
22-28 Hz (purple), supporting prediction (3). Similar effects normalized by dividing by baseline power at each frequency,
were found in both animals (Supplementary Fig. 3). The effect subtracting 1, and then plotted the result as a function of time.
first appears ~250 ms after the reach instruction is delivered This analysis revealed that LFP power in the beta range
(Supplementary Fig. 4). (20-30 Hz) contains substantial information about bimanual and

ipsilateral arm movements (Fig. 3a; see also Supplementary

Results). Different movement plans were associated with
Local power is frequency- and movement type-specific. Next, differences in the power of 10-20% (all P<0.05 even after
we tested whether the amplitudes of within-hemisphere LFP  correction for the 10 possible comparisons). Beta power was not
oscillations depend on the type of reach that will be made. LFP  tuned to the directional preferences of nearby spikes (Supple-
power (amplitude squared), computed during the preparatory mentary Fig. 6). This contrasts with single units, whose firing
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Fig. 2 Beta-band LFP-LFP coherence between PRR in the left and right
hemispheres distinguishes bimanual-together and bimanual-apart
movements from baseline and from unimanual movements. Coherence in
the beta band (-20-30 Hz) is elevated for bimanual-together movements
(blue) and decreased for bimanual-apart movements (purple) compared to
unimanual reaches (yellow) or to the baseline period (gray). Coherence
during saccade trials (black) resembled that seen during unimanual reach.
Data are averaged from the 113 pairs of sites (43 from MkT, 70 from MkZ)
recorded simultaneously in the two hemispheres, with coherence measured
in the —500-0 ms interval before the cue to move. Blue and purple
asterisks indicate significant differences of bimanual-together and
bimanual-apart, respectively, versus unimanual. Gold asterisks denote
comparison of bimanual-together versus bimanual-apart (two-sided t-tests,
large asterisks = P < 0.05 after Bonferroni correction for testing at each of
the 39 different frequency values plotted in the figure). Coherence outside
the pictured range (from 16 to 20 Hz and 100 to 240 Hz) was unaffected
(corrected P> 0.05). Error bars = +1s.e.m. Source data are provided as a
Source Data file.

rates distinguish only target location and the pattern of
contralateral arm movement at the population level, and even
at the single-unit level show only sporadic and non-systematic
effects of bimanual movements (Fig. 3¢; Supplementary Fig. 7; see
Supplementary Fig. 8a for individual animals; see also ref. 2 for a
detailed analysis of these effects).

Beta-band power is strongly suppressed even before the target
appears and then slowly recovers over the course of the delay
period. The recovery is fastest and most complete for saccades,
followed in order by ipsimanual reaches, contramanual, biman-
ual-together, and bimanual-apart. This order is consistent across
recording sites (Supplementary Fig. 9). Interestingly, task-specific
effects appear only ~250 ms after target onset in the LFP data,
~100 ms later than in the spiking data (compare divergences in
Fig. 3a, ¢). This observation implies that modulations of firing
rate by the task are not driven by modulations in beta power.
Instead, the modulation in firing rate may drive the modulation
in LFP. We return to this point in the next section.

Beta power drops after the go cue, reaching a nadir ~100 ms
prior to reach onset (Supplementary Fig. 10, middle). Subse-
quently, the power for trial types that include a contralateral arm
movement (contramanual, bimanual-together, and bimanual-
apart) rebounds and has a positive slope, up to the time of reach
onset. The pre-movement increase in LFP beta power is less clear
when the traces are aligned on either the go cue or saccade onset
(Supplementary Fig. 10, left and right). This suggests that LFP
power is closely related to contralateral limb reach initiation.
Indeed, there is no late increase in LFP power with ipsilateral
reaches or saccades.

In contrast to beta-band power, we found that normalized
gamma power (>70 Hz) is similar to unit activity (Fig. 3b, ¢ and
Supplementary Fig. 8b, c), consistent with previous work
suggesting that gamma-band activity is a direct correlate of local
spiking activity?!. For both spikes and LFP, there is an
anticipatory increase in power prior to target onset. Preferred
and null direction responses diverge after target appearance. The
LFP divergence appears to be synchronous with target onset, but
power is computed over a*100ms window so the actual
divergence occurs within 100 ms of target appearance, similar
to what is seen in single units. Also similar to single units, there is
a second divergence at ~150 ms. Trials in which the contralateral
arm will move in the preferred direction (contralateral only,
bimanual-together, and bimanual-apart trials) result in the
highest response, while ipsilateral only and saccade trials result
in intermediate responses. Within the intermediate and high
response groups, the early responses to different upcoming
movement types are not statistically different from one another
(50-350 ms after target appearance, paired t-tests of adjacent
traces from each site with an isolated single unit, 113 sites, all P>
0.1 after multiple comparison correction [and all but one P> 0.1
prior to correction]). Adding an ipsilateral arm movement to a
contralateral arm movement has little effect on gamma power.
That is, the bimanual-apart and bimanual-together responses
resemble the contramanual only response. A parsimonious
explanation of the activity on ipsimanual trials is that it is a
response to a target appearing in the response field. This
explanation is consistent with the fact that activity on ipsimanual
trials is very similar to that on saccade trials, and mirrors the
conclusions drawn concerning single-unit responses?. Thus, while
beta power carries information about the movements of each
arm, gamma LFP power, like unit activity, carries relatively little
information about ipsilateral arm movement.

In summary, beta power differs dramatically from the unit
activity and from gamma power in at least four ways. Most
importantly, units and gamma power show just two levels of
activity for preferred direction movements based on the type of
movement to be performed: high levels for the contralateral arm
and low levels for both the ipsilateral arm and the eye. In contrast,
beta power shows a distinct level of activity for each of the five-
movement types. Second, beta power, unlike gamma, is not
directionally tuned. Third, the ordering of response magnitudes is
inverted for beta power compared to gamma power and units.
For example, saccades and ipsilateral arm movements are
associated with the lowest level of spiking and gamma power,
but the highest level of beta power. Finally, movement plans affect
beta power only ~100ms after they affect gamma power and
single-unit activity. While temporal differences must be inter-
preted cautiously given the temporal smoothing in the beta LFP,
this smoothing will mainly shorten the LFP latencies and so
cannot be responsible for the divergences in LFP power lagging
the divergences in the single units.

We have shown LFP power at 20-30 and 70-120 Hz, but task
effects are continuous across frequencies, with at least two distinct
regimes separated by a transition zone (Fig. 4 and Supplementary
Fig. 11). Above 50 Hz, responses to preferred direction move-
ments depend strongly on movement type and only weakly on
frequency; similar power levels are attained for a given movement
type at 70 and 170 Hz. Power is elevated ~16% above baseline for
any task that includes a contramanual reach, is at baseline for
ipsimanual reaches (—1%), and is slightly suppressed for saccades
(—9%). The pattern for null direction responses is more complex.
Power is elevated for bimanual-apart, near the baseline for
bimanual-together, and suppressed for contramanual reach,
ipsimanual reach, and saccades.
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Fig. 3 A comparison of neural activity during 5 movement conditions. Data on the left are aligned to target onset (solid vertical line) and truncated at the
time of the earliest cue to initiate movement. Data on the right show the mean activity for preferred direction movements, relative to baseline, in the
interval from 650 to 1150 ms (gray rectangle). a Beta-band LFP power (20-30 Hz) contains information about movement type. Power is computed in
+200 ms intervals every 100 ms. Colored shading indicates +1s.e.m. Responses to preferred and null directions showed no difference and so are merged
across n = 312 sites. b Gamma-band LFP power (70-120 Hz) is similar but not identical to unit activity and unlike the beta band contains little additional
information. (See text for additional detail.) Format as in a except that preferred and null directions are shown separately. Power is computed in 2100 ms
intervals every 50 ms. ¢ Single-unit activity is high when the animal prepares a contramanual reach in the preferred direction, whether alone
(contramanual, solid red line), with an ipsimanual reach in the same direction (bimanual-together, blue), or with an ipsimanual reach in the opposite
direction (bimanual-apart, purple). Firing is intermediate for preferred direction saccades and for preferred direction ipsimanual reaches (solid green and
black), and for bimanual reaches in which the ipsilateral arm moves in the preferred direction and the contralateral arm moves out (bimanual-apart, dashed
purple). (Bimanual-apart reaches are labeled based on the direction of the contralateral arm.) Activity is low for single-target movements in the null
direction (dashed lines) during the delay period, independent of the movement type. Note that the divergence of firing rate associated with movement type
(dotted vertical line) occurs ~100 ms sooner than the divergence in beta LFP power associated with movement type. Data from n = 113 single units. Colored
shading indicates *1s.e.m. Source data are provided as a Source Data file.

A second regime occurs at lower frequencies, from about 16 to  point of minimum power occurs at a low frequency for saccades
32 Hz. Here LFP power depends strongly on both movement type (<8 Hz), at an intermediate frequency for ipsimanual reaches
and frequency, but only weakly on the direction. Responses (~8-16Hz), and at still higher frequencies for contramanual,
are not clustered but instead are ordered by movement type. The bimanual-together, and bimanual-apart reaches (12-20 Hz).
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Fig. 4 LFP power as a function of movement type and frequency. LFP
power is computed over the delay period for movements in the preferred
and null directions. In the 16-32 Hz range power depends on task and
frequency. In the 70-170 Hz range power depends on the task and is
relatively stable across frequency. Data are for the 113 sites from which a
tuned unit was simultaneously obtained. Source data are provided as a
Source Data file.

From 32 to 50 Hz there is a transition zone in which the effects
of task on power change rapidly with frequency. Sensitivity of
LFP power with task disappears almost entirely at ~36 Hz and
also at ~8-10 Hz. Below 8 Hz, the measurement interval (500 ms)
is too short compared to the wavelength being measured to
obtain reliable estimates of power (see “Methods” section).

Interhemispheric spike-LFP coherence is frequency- and task-
specific. We have shown that beta power encodes substantial
information about both contralateral and ipsilateral arm move-
ment plans, while spikes primarily encode information about the
contralateral arm. Where does the LFP information about the
ipsilateral arm come from? There are prominent connections
between homotopic cortical areas in the right and left
hemispheres22. Thus, one possible source of left arm information
in left PRR is signals from right PRR, and vice versa. The fact that
task effects in the beta power lag effects in the spikes (Fig. 3a, ¢) is
consistent with this assumption. We investigate this possibility
further using lagged interhemispheric spike-LFP coherence.

LFP is thought to be generated primarily by dendritic
currents?3-26, Therefore it reflects not only local recurrent signals
but also distal input, while spiking activity carries local recurrent
signals plus local output?”28, If some axons from the left PRR travel
to the right PRR, then some of the spikes recorded in the left PRR
may help generate dendritic currents in the right PRR (Fig. 5a).
These dendritic currents might help drive LFP in left PRR. If so,
then we might find that spikes from left PRR are coherent with LFP
from right PRR, particularly in the beta band (Fig. 5b, black). Since
the PRR spike rate depends on what type of movement is being
planned, movement plans that evoke higher spike rates might drive
differing amounts of spike-LFP coherence. Alternatively, if spikes
from PRR in one hemisphere do not drive LFP in the other PRR,
then spike-LFP coherence should be minimal.

Interhemispheric spike-LFP coherence is elevated above chance
levels during the delay interval for some tasks and at some
frequencies (Fig. 5c). In particular, spike-LFP coherence at
~20-50 Hz is elevated for bimanual-together movements (P <
0.01, permutation test) and elevated somewhat less for unimanual
movements (P < 0.05 permutation test). Coherence on bimanual-
apart trials was not significantly different from chance, and in fact
was less than that seen with unimanual movements, although the
suppression was not significant. Spike-LFP coherence for
bimanual-together movements was significantly higher than for

bimanual-apart movements over most of the beta range (two-
tailed ¢-test; asterisks in Fig. 5c). Similar results were obtained
using the pairwise-phase consistency (Supplementary Fig. 12).
This difference could not be attributed solely to strongly
oscillating LFP signals during bimanual-together compared to
bimanual-apart trials, since the elevation also occurs in phase-
locking value. (Phase-locking values take into account only spike
timing and LFP phase, not LFP magnitude; see “Methods”
section). An alternate scenario is that common input to the two
hemispheres is responsible for interhemispheric coherence. In
this scenario, common input drives similar LFP on each side, and
the similar LFP drives similar patterns of spikes (Fig. 5d). Thus
spikes on one side reflect LFP on the other side, even though
there is no direct (causal) link and the resulting spike-LFP
relationship is the same as with direct interhemispheric
communication (Fig. 5b, black versus gray).

If LFP reflects synaptic input, and if synaptic input in PRR is
driven in part by spikes from PRR in the opposite hemisphere,
then we might expect that the greatest effect of contralateral
spikes on ipsilateral PRR activity would occur only after a short
conduction delay (Fig. 5e, black). In the common input scenario,
however, since LFP drives spikes, the greatest coherence should
occur when spikes are lagged relative to LFP, rather than vice
versa as in the first scenario (Fig. 5e, gray).

We computed interhemispheric lagged spike-LFP coherence
and found that peak spike-LFP coherence occurs during
bimanual-together trials when LFP is lagged by ~10 ms relative
to the spikes (Fig. 5f). During bimanual-apart trials, spike-LFP
coherence reaches a nadir when LFP is lagged by ~15 ms relative
to the spikes. These results are consistent with spikes from one
PRR driving LFP in the other PRR, with a conduction delay
occurring as spikes travel from one hemisphere to the other.

An algebraic model of interhemispheric signal transfer
explains the beta frequency LFP responses. The spike-LFP
coherence results suggest that task effects in beta LFP could be
driven by a combination of local signals—spikes from the ipsi-
lateral PRR—plus signals from other areas, including spikes from
the contralateral PRR (Fig. 5). An alternative hypothesis is that
beta LFP arises exclusively from local (ipsilateral) signals. We
compared these two alternatives using a simple algebraic model.
A model based on 80% local input with the remainder coming
from contralateral PRR (Supplementary Fig. 13, red) fits the
observed data (dashed black) much more closely than did the
model based on 100% local input (blue). See Supplementary
Information for details.

Discussion

This study reveals mechanisms of bimanual coordination in the
posterior parietal cortex. Our findings support the hypothesis that
the task-specific changes observed in beta-band LFP (PRR input)
are driven, in part, by spikes (PRR output) from the opposite
hemisphere. First, interhemispheric spike-LFP coherence in the
beta band rises while planning bimanual-together movements
and falls while planning bimanual-apart movements. Second,
there is a reliable relationship between spikes in one hemisphere
and LFP in the other (Fig. 5¢), consistent with direct commu-
nication between the left and right PRR. Third, this relationship is
strongest when spikes are compared with LFP that occurs
10-15 ms later in time (Fig. 5h). Our findings also demonstrate
that beta-band LFP power contains information about planned
movements of either arm that is not present in the population
average spiking output (Fig. 3). Taken together, the data indicate
that signals describing how the contralateral arm will move
are sent from one PRR to the other and that these signals are
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Fig. 5 Interhemispheric beta-band spike-LFP coherence distinguishes between bimanual-together and bimanual-apart movements. a Schematic model
depicting local and distal inputs and outputs to and from PRR. Mass input and output of PRR is shown as arrows. The axon terminals of most neurons
contact other neurons locally (light gray arrows), but some portion project distally, including to the homotopic area in the opposite hemisphere (dark gray
arrows). Connections with non-homotopic areas are omitted for clarity. b Identical spike-LFP coherence predictions under interhemispheric communication
scenario (black curve) and common input scenario (gray curve). ¢ From 20 to 50 Hz, spike-LFP coherence is consistently high for bimanual-together
movements (solid blue), intermediate for unimanual movements (solid green), and low for bimanual-apart movements (solid purple). The distributions of
coherence expected by chance were computed by shuffling interspike intervals. The medians of these distributions are shown as dashed traces. The gray
shaded region covers 95% of the values expected by chance; values that exceed this are marked by thickened lines (P < 0.05). Values exceeding the light
gray line are significant at P < 0.01. Note that there is no effect of movement type on the shuffled coherences. For this reason, data are pooled across
movement types for the P<0.05 and P < 0.01 thresholds. Coherences that are significantly larger for bimanual-together compared to bimanual-apart are
indicated by asterisks (two-tailed t-test, P < 0.05). Dashed vertical lines indicate the beta range (20-30 Hz). Coherence was measured during the 800 ms
before the go cue. Data are averaged from n = 42 pairs of sites (24 from MkT, 18 from MkZ) recorded simultaneously in the two hemispheres. Only sites
with at least 500 spikes are shown. d Schematic model depicting common input to PRR in each hemisphere. Spike-LFP coherence predictions for common
input model. e Lagged spike-LFP coherence predictions for direct communication and common input models, respectively. f Extremes of spike-LFP
coherence (24-38 Hz) occur when spikes lead LFP by 10-15 ms (gray lines). Positive and negative x axis values indicate the relative temporal relationship
between spike times and the LFP in the original data. Source data are provided as a Source Data file.

manifest in the beta-band LFP of the receiving hemisphere. These Like these studies, we find that LFP power is strongly and
signals are likely to be used by PRR to adjust planned movements  differentially modulated by task and by frequency, especially at
of the contralateral limb in the service of bimanual coordination.  frequencies in and around the beta range (Fig. 4). Beta power

Beta oscillations are prevalent throughout the motor system and  initially decreases, falling nearly in half over the period from
are modulated in reach tasks??30, In many areas, beta oscillations 350 ms before to 200 ms after target onset, and then rises to a
are enhanced during the hold and instructed delay periods and plateau whose level depends on the task that has been instructed
during movement preparation, are suppressed around the time of  (Fig. 3a). Whether beta power is described as enhanced or sup-
movement, and rebound in the post-movement and reward pressed in any particular task depends on the choice of a baseline
periods®!-33. Enhanced beta power during delay periods, prior time interval. This choice may have had a similar influence in
to overt movement, has been attributed to coordination®¥, previous studies3®4!. Therefore, rather than characterize the
attention®!, movement preparation®, and maintaining a motor observed responses as enhancements or suppressions relative to
plan32, but effects vary by task and by area3®36-40, In PRR, task-  baseline, we focus instead on their rank order. Delay period
specific effects previously observed include an increase in beta power was most suppressed for movements of both arms to two
power for planning reaches compared to saccades’®, more pro-  different targets, followed in order by movements of both arms
nounced changes in power for reaches performed with an together to the same target, contralateral arm movements, ipsi-
accompanying eye movement compared to without one*!, and lateral arm movements, and saccades (Fig. 4). Dean et al.#3, also
both frequency- and monkey-specific differences in responses to  observed beta power that was suppressed more for reaches plus
memory-guided compared to visually-guided reaches*2. saccades than for saccades alone. In contrast, Scherberger et al38.
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observed the reverse effect: beta power was greater with con-
tralateral reaches than saccades. This difference may reflect dif-
ferences in task designs. We used a random-delay visually-guided
task, whereas Scherberger et al. used a fixed-delay memory task.
Power in visual versus memory tasks has been observed to vary
by task and even by monkey*?. In addition, we allowed coordi-
nated saccades with our reaches while Scherberger et al. did not,
and we used 5 interleaved trial types while Scherberger et al.
used 2.

The initial drop in beta power, prior to the first stimulus, could
reflect the fact that the animal is about to receive a task
instruction. The drop may be more pronounced than that seen in
previous studies because of the larger number of possible tasks
that could be instructed. One could argue that this is consistent
with beta power reflecting the maintenance of a motor plan: when
a new plan is expected, beta power drops*44>. Note, however, that
beta power also drops shortly after the go cue and rebounds as
movement is initiated (Supplementary Fig. 10). The first drop in
power, at the time of target instruction, occurs while the move-
ment plan is changing and motor output is held constant. The
second drop in power, at the time of the go cue, occurs while the
movement plan is held constant but the motor output is chan-
ging. We conclude that elevated beta power has no single cor-
relate that applies across all areas, conditions, and times.

Beta power differed from spikes in its response to movement
type and direction. Unlike the population-averaged firing rate,
beta power was not tuned to the type of movement that was
planned. The dendrites from which beta LFP most likely arise are
driven by a mixture of inputs from local and distal sources. In
contrast, although we record spikes exclusively from local neu-
rons and their proximal axons, those axons may project to either
local or distal targets. Thus, beta LFP reflects local processing plus
distal inputs, while spikes reflect local processing and distal
outputs. In addition to this structural constraint, beta rhythms in
particular may be biased to reflect distal input. This is because
oscillations at beta frequencies are more likely to occur in con-
junction with total axonal loop delay times greater than 20 ms,
which will occur more often for axons coming from distal rather
than local sources#¢. Incoming signals from distal sources drive
dendritic currents but only indirectly influence spiking outputs.
This could explain why ipsimanual reach signals are explicitly
represented in beta LFP but not in the local population-averaged
firing rate. Since we sample only a fraction of the ~100,000 cells
per cubic millimeter found in the cortex, and the fraction that we
sample is likely biased toward large pyramidal cells*+47, it is
possible that signals related to ipsimanual movements may be
prominent in the spiking output of cells that are too small for us
to isolate.

Although not present in the population average, individual
cells do show idiosyncratic effects of ipsilateral arm movement
plans. We speculate that aspects of a contralateral movement plan
must be modified when an ipsimanual component is added. For
example, proximal musculature related to posture may depend on
whether the ipsilateral arm will remain at rest or move in the
same or opposite direction as the contralateral arm. The con-
tralateral movement trajectory and hand posture might also be
subtly altered, depending on whether both arms are approaching
the same target>. These subtle changes would not be systematic
across different patterns of coordination or movement direction,
and so would tend to disappear in the population average.

The fact that the ipsimanual arm only minimally affects the
spike rate is partly the result of our task design. We intentionally
designed tasks to minimize interaction effects between the two
arms so that any difference in activity between conditions could
be distinguished as reflecting either the ipsilateral arm movement
or a higher-order bimanual reach coordination signal. A task with

substantial interactions between the two arms, e.g., tying a knot
using both hands, would almost certainly find a substantial
influence of ipsimanual movements on PRR firing, but such an
influence could be an effect of bimanual coordination, rather than
its cause.

Beta power was not tuned to the directional preferences of
nearby spikes (beta power: Supplementary Fig. 6; spikes: Fig. 3¢;
compare this with gamma-band power, which shows clear spatial
tuning). These results confirm and extend Dean et al. (2012) who
showed little or no spatial tuning between 20 and 30 Hz and
strong tuning, congruent to spikes, at 35 Hz and above for con-
tramanual reaching. The lack of spatial tuning from 20-30 Hz
could reflect widespread pooling of signals from many individual
cells with diverse directional preferences. Dean et al. also saw a
significant reversal of spatial tuning below ~18 Hz, in the lower
beta range which was the focus of their study. We also see
reversed spatial tuning in the 10-16 Hz range, but the effect is not
significant even before multiple comparisons testing. The pooling
of individual cell responses does not, however, fully explain beta
power. Population-averaged spiking activity is insensitive to trial
type, while beta power differentiates each of the five types of
movement plans (Fig. 3a versus 3c). (Spiking activity can be
sensitive to trial type in individual cells, but the effects are not
systematic from one cell to the next and are therefore lost in the
population average?.)

Local pooling of effects across cells and cell processes can
explain why beta power does not depend on movement direction,
but pooling cannot explain the observed tuning for movement
type. We found no topography or even coarse clustering of
movement type sensitivity in single units (unpublished observa-
tions). Even if clustering exists, then local pooling would produce
different patterns of beta power sensitivity at different recording
sites, a pattern that we did not see (Supplementary Fig. 9). It is
therefore noteworthy that in our model, in which beta-band LFP
is driven by spikes from the opposite hemisphere, both obser-
vations are accounted for: the model-derived beta power depends
on movement type but not on movement direction (Supple-
mentary Fig. 13 and Supplementary Table 3).

Our model could be implemented using inputs from areas
other than contralateral PRR such as the contralateral premotor
cortex. Given that many different hemispheric inputs to PRR
exist?>48, it is highly likely that at least some of the ipsilateral
information originates from these areas. However, the finding
that interhemispheric LFP coherence reflects task type suggests
that either contralateral PRR is a major source of input, or that
areas such as the premotor cortex that provide ipsilateral input
project to both ipsilateral and contralateral PRR.

The coherence results support the idea that interhemispheric
interactions are responsible for the pattern of beta LFP results.
Interhemispheric beta LFP-LFP coherence (Fig. 2) and spike-LFP
coherence (Fig. 5) are movement-specific. A plan to move both
arms to the same target increases beta-band coherence while
planning to move each arm to different target results in a decrease
in beta-band coherence, compared to baseline and unimanual
reach levels. There were no modulations of LFP-LFP coherence
outside the beta band. Similarly, a plan to move both arms
together increased spike-LFP coherence compared to a plan to
move each arm to a different target. Again, this was most pro-
minent in the beta band. These results cannot be explained by
task difficulty, since coherence did not track the presumed effort
required to make each movement. The saccade-only condition is
likely easy to perform yet has intermediate coherence, while the
bimanual-apart condition is difficult yet has the lowest coherence.

It appears that information exchange between the hemispheres
is effectively facilitated with bimanual reaches in the same
direction (bimanual-together) and effectively inhibited with
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bimanual reaches in opposite directions (bimanual-apart).
Increases or decreases in information exchange are likely to
facilitate yoked or independent movement of the two arms,
respectively. Similar results have been found in the motor cortex
during the movement period itself*?, Temporal coordination is
required in both our bimanual tasks, but our results indicate that
it is the spatial aspects of the task that are responsible for dif-
ferences in the interhemispheric exchange of information. If
temporal coordination were the key aspect then we would expect
increased exchange in both bimanual-together and bimanual-
apart tasks®0-°1,

Two pieces of evidence suggest that spikes drive LFP instead of
the reverse. First, task coding emerges sooner after target onset in
the spikes (~125ms after target onset) compared to the fields
(~250 ms). Second, peak spike-LFP coherence occurs when LFP
lags spikes by 10-15ms. This lag is consistent with a spike ori-
ginating in one hemisphere affecting LFP in the other hemisphere
only after a short delay. Notably, the ~125 ms difference in task
coding onset between spike and beta power measurements is an
order of magnitude greater than the 10-15 ms peak lag in spike-
LFP coherence. This apparent discrepancy can be explained by
the fact that the two measurements capture different phases of the
task. Spike and LFP power reflect the onset of task coding, e.g.,
the presence of a visual stimulus in the receptive field. Spike-LFP
coherence, on the other hand, reflects the emergence of a later,
stable communication between the hemispheres.

Each cerebral hemisphere primarily controls the limbs on the
contralateral side of the body. Single-unit recordings and rever-
sible inactivation indicate that this lateralized limb control is
implemented as early as PRR?18. Yet, human functional magnetic
resonance imaging studies report bilateral parietal blood-oxygen-
level-dependent (BOLD) responses for reaching!”>23, and arm
movements can be decoded from electrocorticogram (ECoG)
signals from the ipsilateral cortex>*. The BOLD signal, like
LFP and ECoG, likely reflects areal input and intracortical
processing®. Thus, the difference between the single-unit activity
and functional imaging results fits with our proposal. Measures
that are sensitive to outputs, like single-unit spiking, capture
lateralized motor activity in the early reach pathway, whereas
measures that are sensitive to inputs, like LFP, capture informa-
tion about movements on both sides of the body.

Dorsal premotor and M1 neurons are active during con-
tralateral and ipsilateral arm movements°>°3°6, Bimanual
movements are not coded as the linear sum of the activations of
the left and right arm in the SMA%, M134, or parietal cortex®”.
This arrangement may allow lateralized cortex to command
movement plans of the contralateral arm dependent on the state
of the ipsilateral arm. Controlling bimanual movements is a
particular challenge in the development of brain-machine inter-
faces for the restoration of motor function after paralysis®’.
Simultaneous recording of spikes from both hemispheres shows
promise for controlling two limb prostheses at once®8. LFPs offer
advantages over spikes in terms of signal degradation®%0 and the
combination of spikes and low-frequency LFP improves perfor-
mance beyond spikes alone®!. Our results indicate that, in order
to control both arms from signals from just one hemisphere, it is
critical to record beta band LFP power, either with or without
spikes.

Competing theories of callosal function focus on either its
excitatory®? or inhibitory®3 role in interhemispheric processing
and there is evidence for both in the human literature®*. Our
data indicate that interhemispheric connections can be func-
tionally either inhibitory or excitatory, depending on the parti-
cular task being planned. These data do not speak to whether
interhemispheric transmitters themselves are excitatory or
inhibitory®>.

Chronic hemiparesis after unilateral stroke has been attributed
to an imbalance of interhemispheric inhibitory interactions®®.
This hemispheric competition hypothesis posits that tonic inhi-
bition between the left and right cortex is disrupted by unilateral
lesions®3. This hypothesis is supported by tonic pre-movement
interhemispheric inhibition (IHI) from the intact to the lesioned
hemisphere in chronic stroke as measured by transcranial mag-
netic stimulation®”. As a result, downregulation of excitability of
the intact hemisphere to restore interhemispheric balance has
become a target of stroke rehabilitation®. However, our results
do not support this hypothesis. We find that interhemispheric
interactions in intact subjects do no change shortly before
movement onset—in particular, LFP-LFP coherence was
unchanged prior to a unimanual reach compared to baseline
(Fig. 2 and Supplementary Fig. 3). Maladaptive recruitment of the
intact hemisphere after unilateral lesions has been recently chal-
lenged, however, on the basis that release of IHI prior to unim-
anual movement onset is normal in acute stroke and only
becomes abnormal in chronic stroke®®70, Such findings raise
questions about the efficacy of targeting IHI to restore function in
the weakened limb. If the goal of rehabilitation is to improve the
function of the paretic limb, our results underscore bimanual
coordination training as another potential target for stroke
rehabilitation”1-73,

Additional factors may contribute to the observed coherence
effects, including visual effects of one versus two targets, spatial
effects of one versus two-movement goals, or the effects of having
motor plans that are congruent or incongruent. In our analyses
we do not consider the absolute side of the spike-field pairs, and
hence the directionality of interhemispheric communication, e.g.,
the laterality of the target in each trial, or whether or not reaches
cross the midline. There could be an asymmetry in interhemi-
spheric coherence depending on the specific task conditions (e.g.,
a left-arm reach toward a right visual field target versus a left-arm
reach to a left visual field target). As for an influence of the
associated eye movements, we showed previously that the direc-
tion of the initial saccade on bimanual-apart trials does not affect
PRR unit activity either during planning or movement’4. Saccade
direction also does not affect LFP power in PRR (data not
shown). Finally, while the lagged spike-LFP results support the
hypothesis that there is direct communication between PRR in
each hemisphere, we cannot rule out either common input or
indirect communication driving the coherence effects. This will
require an interventional experiment.

We only recorded from PRR. Other pairs of homotopic cortical
motor areas in the two hemispheres may exhibit task-specific
modulations in their interhemispheric coherence, and these may
facilitate yoked or independent movements of the two limbs.
While it is by no means clear that interhemispheric circuit
mechanisms should be common across brain regions, our pro-
posal that local beta power in PRR reflects a weighted sum of local
(ipsilateral) and distal (contralateral) spike inputs is consistent
with recent findings from SMA and pre-SMA. In these areas,
gamma power was observed to be stronger before a contralateral
compared to an ipsilateral arm movement, whereas beta power
showed the reverse effect®.

We found that information about the two limbs is shared
across hemispheres in a frequency- and movement-type-specific
manner. In PRR, both interhemispheric LFP-LFP and spike-LFP
coherence were modulated during bimanual movement plans.
Population average spiking and gamma-band LFP power encode
only contralateral arm movement plans, while beta-band LFP
power contains a rich representation of the pattern of bimanual
coordination. We conclude that the information about ipsilateral
arm movements encoded in the beta-band LFP is driven by spikes
from the opposite hemisphere, and that increased information
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transfer facilitates spatially coordinated movements while
decreased transfer facilitates disjunctive movements. More gen-
erally, beta LFP power reveals one site at which information about
the movements of each arm is shared across the hemispheres.

Methods

Contact for reagent and resources sharing. Further information and requests for
resources and reagents should be directed to and will be fulfilled by the Lead
Contact, Eric Mooshagian (ericm@eye-hand.wustl.edu).

Experimental model and subject details. All procedures conformed to the Guide
for the Care and Use of Laboratory Animals and were approved by the Washington
University Institutional Animal Care and Use Committee. Two male rhesus
macaques (Macaca mulatta), MKT (16-year-old male, 9.0 kg) and MKZ (14-year-
old male, 10 kg), were used in the study.

Methods details

Apparatus. Head-fixed animals sat in a custom-designed monkey chair (Crist
Instrument, Hagerstown, Maryland) with an open front to allow unimpaired
reaching movements with both arms. Visual stimuli were back-projected by an
LCD projector onto a translucent plexiglass screen mounted vertically, approxi-
mately 40 cm in front of the animal. Supplementary Fig. 1 shows the touch screen
in schematic form. The eight target positions on the screen were organized in a
rectangle centered on the fixation point, each target ~ 8 cm (11 deg of visual angle)
from the center fixation point. A small piece of plexiglass (2 in x 3/8 in) oriented in
the sagittal plane was mounted on the front of the projection screen to bisect the
touching surface at each target location (one plexiglass piece per target). Touches
were monitored every 2 ms using 16 capacitive sensors, mounted on the back of the
screen, with one sensor on each side of each of the 8 possible target locations (to
sense reach endpoints) and one sensor at each of the two home pads (to sense
reach starting positions). The animals were trained to reach with the left hand to
the left side of the plexiglass divider and with the right hand to the right side of the
divider so that each hand activated a unique capacitive sensor, even when both
hands reached to the same target (Supplementary Fig. 1). Eye position was mon-
itored using the 120 Hz ISCAN eye-tracking laboratory (ETL-400). Animals were
monitored in the testing room at all times using an infrared camera equipped with
an infrared illuminator.

Behavioral tasks. The task design and the movement conditions are shown in
Fig. 1b. The animals performed delayed saccades or reaches with the left, right, or
both arms2°. Animals first fixated on a circular white stimulus (1.5° x 1.5°) centered
on the screen in front of them. Left and right hands touched “home” pads situated
at waist height and 20 cm in front of each shoulder. After holding fixation (+ 3°)
and initial arm positions, for a fixed duration of 500 ms, either one or two per-
ipheral target(s) (5° x 5°) appeared on the screen. Fixation was required throughout
the instructed delay period. After 1250-1750 ms, the central eye fixation target
shrank in size to a single pixel, cueing the animal to move to the peripheral target
(s) in accordance with a specifically trained code conveyed by target color. Reach
trials could be unimanual or bimanual. A green target instructed a left-arm reach,
and a red target instructed a right-arm reach. Bimanual trials could be to one or
two targets. A blue target instructed a combined reach with both arms (bimanual-
together). When two targets appeared (red and green, “bimanual-apart”), they were
separated by 180° relative to the central fixation point, i.e., on the left and right, top
and bottom, or at opposed diagonal locations. For bimanual-apart reaches, the
arms could be uncrossed or crossed (Fig. 1b). A white target instructed a saccade
(no reach).

All trial types were randomly interleaved within sets of 10 or 40 trials (one each
per condition and direction; see below). Throughout saccade and unimanual reach
trials, hand(s) not instructed to move were required to remain on the home button
(s). On unimanual reach trials, eye movements were constrained to move to the
target. On bimanual reach trials, fixation was required up until receipt of the go
cue, after which time eye movements were unconstrained. On bimanual trials, the
left and right hands were required to hit their target(s) within 500 ms of one
another. For single-target trials, the animals were required to maintain their gaze
on the final target for 300 ms. For all reach trials, animals were required to
maintain their hand(s) on the final target(s) for 300 ms. Spatial tolerances were +3°
for reaches and +2° for saccades. When an error occurred (a failure to achieve or
maintain the required eye or hand positions), the trial was aborted and a short
(1500 ms) time-out ensued. Aborted trials were excluded from further analyses.
Successful trials were rewarded with a drop of water or juice.

Electrophysiological recordings. Recordings were made from the left and right
hemispheres of two adult male rhesus monkeys. Recording chambers were centered
at ~11 mm posterior to the ear canals and 8 mm lateral of the midline and placed
flush to the skull. Anatomical magnetic resonance images were used to localize the
medial bank of the intraparietal sulcus. Extracellular recordings were made using
glass-coated tungsten electrodes (Alpha Omega, Alpharetta, GA; electrode impe-
dance 0.5-3.0 M ohms at 1 kHz). Neuronal activity was referenced to the signal

recorded from a steel guide tube in the same recording well. Neural signals were
acquired using the Plexon MAP system (Plexon, Inc.). The continuous signals were
passed through a preamplifier and then separated into two signal paths. The LFP
channel was band-pass filtered between 0.7 to 300 Hz and digitized at 1 kHz. The
spike channel was band-pass filtered between 100 Hz and 8 kHz and digitized at
25 kHz. Single units were isolated online via manually-set waveform triggers.
During each recording session, one electrode was placed in PRR in the right
hemisphere and one in the left hemisphere. While searching for cells, animals
performed saccade and contralateral arm reach trials (with respect to the side of the
isolated cell) as described above. Online, the preferred direction for a cell was
defined as the target location that resulted in the largest sustained firing during the
delay period. The null direction was defined as the target location 180° from the
preferred direction across the fixation point. Data were then collected for all trial
types (Fig. 1b). We recorded LFP from 312 sites (133 from MKT and 179 from
MKZ) and single units from 113 of those sites (43 from MKT and 70 from MkZ). In
each case, we recorded LFP from both hemispheres simultaneously, along with a
single unit from either one or both hemispheres. We obtained data either for targets
in all 8 directions (29 neurons, 7, in MKT, and 22 in MkZ) or for the preferred and
null directions only (84 neurons, 36 in MKT, and 48 in MkZ). We obtained an
average of 15 repetitions for each of the 10 trial types for each of the 113 neurons.

Definition of PRR. PRR does not fit neatly into any single anatomical area, but
instead lies at the boundary of MIP and PO/V6A, though it also extends slightly
towards the lateral bank, towards LOP210, We therefore functionally identify PRR
as a region containing many neurons with a transient response to the presentation
of a visual stimulus, especially one instructing a reach; sustained activity during a
memory or delayed reach task that is greater than the sustained activity during
memory or delayed saccade task; and another (often small) transient at the time of
reach onset. (Not all neurons within the region show all of these properties).

Recording during the preparatory period. We focused on the preparatory period for
three reasons. First, there is considerable evidence that PRR is primarily involved in
movement planning rather than movement execution. Second, the preparatory
period in an instructed delay paradigm provides a long stable period in which to
measure responses. Within ~400 ms surrounding movement onset, multiple events
occur in rapid succession, including the go cue, a saccade to the target, the change
in visual input associated with that saccade, and the initiation and completion of
the reach. Each of these events could modulate neural responses’>. Spikes have
high enough temporal resolution to follow changes occurring in 10 ms or less. In
contrast, beta frequency LFP is an inherently slow signal, with accurate estimates of
20 Hz power requiring at least 100 ms and accurate estimates of coherence
requiring 500 ms’%. Thus, a stable preparatory period of 1 s or more is better suited
to analyzing the role of LFP signals than during the movement period. Third, once
movement begins, the parietal cortex receives proprioceptive feedback about pos-
tural changes of the limb77-80. This feedback has a short latency and can be
recorded even before frank movement begins$!-83, making it impossible to dis-
tinguish effects that drive a movement from effects that are driven by that
movement.

Quantification and statistical analysis. All data analyses were carried out using
custom code written in C8, R (version 4.0.3, https://www.R-project.org/5?),

and Matlab 2018a (Mathworks). Matlab code included the Chronux toolbox
(http://chronux.org/“).

LFP methods. For analysis, an interval of interest was identified. The continuous
LFP signal was windowed over the interval of interest for each trial. Here, we call
x,(t) the windowed LFP signal for trial n at time ¢.

LFP power: LFP power spectral density was estimated with a multitaper method.
In brief, for each trial, the LFP signal was windowed with each of a number of
orthogonal Slepian tapers, and Fourier transforms were estimated. The Fourier
transform of the LFP signal x,,(t) with the kth taper, d,(t) was estimated according
to Eq. (1)

X,uf) = X dutt, (0, M

where T is the length of x,,(t), f is the frequency, and j is the imaginary unit (i.e.,
v/—1). The power spectral density for a single trial n, S, ,(f), was then estimated
as a weighted average of auto-spectra across tapers according to Eq. (2)

1 K 2
Seen (f) :fiKkE wil X,k ()] )

where f; is the sampling frequency, K is the number of tapers, and wy are weights
determined by an adaptive algorithm®’. The power spectral density was then
averaged across trials to produce a single estimate of the power spectral density
according to Eq. (3)

1 N
Sxx (f) = Nniz:l Sxx,n (f)v (3)

where N is the number of trials.

10 | (2021)12:2514 | https://doi.org/10.1038/s41467-021-22701-3 | www.nature.com/naturecommunications


https://www.R-project.org/
http://chronux.org/
www.nature.com/naturecommunications

ARTICLE

We used a time-half-bandwidth product of 2.5, affording us 4 Slepian tapers.
We used either 400 ms or 200 ms windows, affording us frequency resolutions of
+6.25 or +£12.5 Hz, respectively. Band-limited power was estimated by summing the
power spectral density estimate over the band of interest. Power time signals were
estimated by stepping the time window by either 100 ms (400 ms windows) or
50 ms (200 ms windows) and estimating band-limited power centered at each time
step. In most cases, we present power time signals and power spectral density as a
percentage of baseline power or power spectral density, respectively. Baseline values
are estimated as the average value over 500 ms before the target presentation.
Power was computed at each LFP recording site individually before averaging
across the population.

The bands of interest, 20-30 Hz and 70-120 Hz, were not selected a priori.
Instead, these bands were selected empirically early in our study to capture general
trends in the power density spectra and then maintained as we collected more data.
Note that with a frequency resolution of +6.25 Hz (400 ms time windows), the
band labeled 20-30 Hz actually included information from frequencies from 13.75
to 36.25 Hz. The same is true for measures of synchronization described below. The
entire analysis was repeated using the Chronux toolbox (http://chronux.org/%).
Although estimates were performed at slightly different frequencies, the results
were essentially identical.

LFP-LFP synchronization: The degree of synchronization between two LFP
signals was quantified with coherence. Like variance, coherence is a measurement
across trials. Coherence between two LFP signals, x and y, was estimated according
to Eq. (4)

Sy (f)
Cylf) =2, s
! Sec (£)S,,(6) @

where S, (f) and S, (f) are the mean power density spectra across trials for LEP
signals x and y, respectively, and S, (f) is the mean cross-spectrum across trials for
LFP signals x and y. Power spectral densities were estimated with the same
multitaper method described above. Cross spectra were computed in a manner
similar to power density spectra. The cross-spectrum for a single trial n, S, , )
was then estimated as a weighted average of the cross spectra across tapers
according to Eq. (5)

1 X *
Sxy.n (f) = fgiK ; Wan,k (f> Yn,k (f) (S)

where X, (f) and Y, (f) are the Fourier transforms of time series x(f) and y(t),
respectively, and Y,  (f) is the complex conjugate of Y, (f). The mean cross-
spectrum across trials is then estimated according to Eq. (6)

1 N
Sxy <f) = anzjl Sxy‘n (f)7 (6)

where N is the number of trials.

Spike-LFP synchronization: Synchronization between spikes and LFPs was
quantified with three different measures: spike-LFP coherence, phase-locking value,
and pairwise phase consistency. All three measures were computed over an 800 ms
time window just before the go cue. Each measure was computed separately for
each movement type. To protect against differences in mean spike rate driving
spike-LFP coherence, all analyses were restricted to neurons with at least 500 spikes
in each movement condition. Restricting the analysis to exactly 500 (randomly
sampled) spikes from each cell for each condition resulted in similar results.

Spike-LFP coherence was estimated using the Chronux toolbox (http://chronux.
org/%%). The methods of the toolbox are briefly summarized here. For each trial,
Fourier transforms were computed separately for spike and LFP signals using a
multitaper method. For each taper, the LFP and spike signals were windowed by
the taper and a Fourier transform was computed using a fast Fourier transform
(FFT) algorithm (http://fftw.org®). Before computing the FFT of the spikes, the
mean spike rate of the trial was subtracted away to remove the DC component. The
Fourier transforms were then used to compute coherence values as with LFP-LFP
coherence above. We elected to use a time-half-bandwidth product of 12, which
afforded the use of 23 Slepian tapers and yielded a frequency resolution of +15 Hz.
Analyses using narrower frequency resolutions revealed the same effects but
included additional narrow-band noise. This narrow-band noise likely reflects the
fact that we interleaved 10-80 trial types (5 task types and 2 to 8 directions) and
therefore had limited numbers of trials per trial type.

Phase-locking values (PLV) were computed for a range of frequencies. For a
given frequency, the LFP phase at the time of each spike was estimated with a
wavelet transform. Phases were then pooled across trials. PLV was estimated
according to Eq. (7)

PLV = é Zi)exp (j6.) 7)

where 6, is the phase at the time of spike s and S is the number of spikes.
Significance was assessed with a Rayleigh test.

Pairwise-phase consistency (PPC) was assessed in a similar manner to PLV.
Phases at the time of spikes were obtained using a wavelet transform. However,

phases were not pooled across trials. PPC was estimated according to Eq. (8)

1 N 1 S, . 2 N 2
PPC= N(N-1) ( ngl (75:0 P (Je"‘s>> ' B n§l ) ®

where N is the total number of trials, and S,, is the number of spikes in trial n, and
0,5 is the phase at the time of spike s in trial n.

Many neurons have well-defined preferred directions for reach and saccade
trials. To test whether LFP also shows preferred directions, one can find the
movement direction at each site that produces the strongest modulation, average
those strongest responses together, and contrast them with the response obtained
for movements in the opposite direction. While such a procedure will capture a
tuning if it exists, it is also highly likely to produce a statistically significant
differential effect even in the absence of tuning. Appropriate analyses can exclude
such artifacts, but we instead ask a simpler question. We restrict the data to sites at
which a well-tuned single unit was recorded on the same electrode (113 sites, 43
from MKT and 70 from MKkZ) and ask what information is coded by LFP power
when each cell’s preferred direction is considered.

& Sew(s..)

Statistics. No statistical methods were used to pre-determine the sample size, but
the numbers of monkeys used for these experiments are comparable to those used
in the field and in previous studies. Data collection and analysis were not per-
formed in a manner blind to the conditions of the experiments. Both animals
performed all tasks and were not randomly assigned to a specific experiment group.
All testing occurred during the light cycle. All trial types were randomly interleaved
for each cell or site in a recording session.

Statistical analyses used trial-averaged data. Unless specified otherwise, data were
pooled across sessions and monkeys. We used pooled t-tests unless specified. All
tests were two-sided. The criterion for all tests was alpha = 0.05. Values are reported
as the mean + standard error of the mean (s.e.m.). We use a conservative approach
(Bonferroni) for multiple comparison corrections. When reporting significant
differences, we include the correction, but when reporting no difference, we do not.

Significant spike-LFP coherence at each frequency was tested against the null
hypothesis that there was no spike-field coherence using a permutation test. We
generated the null distribution for no spike-field coherence by permuting the
interspike intervals on each trial (188 permutations). The permuted significance
thresholds for each movement condition are similar so the mean thresholds are
displayed. Spike-field coherence was tested during the delay period in the 800 ms
immediately before the go cue.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

All the relevant data are that support the findings of this study are available at http://eye-
hand.wustl.edu/supplemental/Mooshagian2021. A reporting summary for this Article is
available as a Supplementary Information file. Source data are provided with this paper.

Code availability
The code used for the analyses that support the findings of this study are available from
http://eye-hand.wustl.edu/supplemental/Mooshagian2021.
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