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Detecting local genetic correlations with scan
statistics
Hanmin Guo 1,2, James J. Li3,4, Qiongshi Lu 5,7✉ & Lin Hou 1,2,6,7✉

Genetic correlation analysis has quickly gained popularity in the past few years and provided

insights into the genetic etiology of numerous complex diseases. However, existing

approaches oversimplify the shared genetic architecture between different phenotypes and

cannot effectively identify precise genetic regions contributing to the genetic correlation. In

this work, we introduce LOGODetect, a powerful and efficient statistical method to identify

small genome segments harboring local genetic correlation signals. LOGODetect auto-

matically identifies genetic regions showing consistent associations with multiple phenotypes

through a scan statistic approach. It uses summary association statistics from genome-wide

association studies (GWAS) as input and is robust to sample overlap between studies.

Applied to seven phenotypically distinct but genetically correlated neuropsychiatric traits, we

identify 227 non-overlapping genome regions associated with multiple traits, including

multiple hub regions showing concordant effects on five or more traits. Our method

addresses critical limitations in existing analytic strategies and may have wide applications in

post-GWAS analysis.
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Genome-wide association studies (GWASs) have been
carried out for numerous cosmplex traits and diseases,
identifying tens of thousands of single-nucleotide

polymorphisms (SNPs) associated with these phenotypes.
However, our understanding of most traits’ genetic basis
remains incomplete, in part due to the limited power and
interpretability of the traditional GWAS approach that corre-
lates one trait with one SNP at a time. Recently, statistical
methods that jointly model multiple phenotypes have quickly
gained popularity in human genetics research1–3. Leveraging
pervasive pleiotropy in the human genome, these methods
enhanced the statistical power to identify genetic
associations1,4–7, improved the accuracy of genetic risk
prediction8,9, revealed novel genetic sharing across diverse
phenotypes10–12, and provided great insights into the genetic
basis of a variety of diseases and traits13,14.

Genetic similarity between traits can be modeled at different
scales. Methods that identify SNPs associated with multiple
phenotypes have achieved some success15–17. However, most
complex human traits and their genetic overlaps are highly
polygenic, with top SNPs showing weak to moderate effects18–20.
Thus, single SNP-based methods modeling pleiotropy effects may
not be sufficient to characterize the full landscape of genetic
similarity of complex traits. An alternative approach is to estimate
the genetic correlation between different traits10,12,21,22. These
methods effectively utilize genome-wide genetic data, including
SNPs that do not reach statistical significance in GWAS, to
quantify the overall genetic sharing between two traits. In addi-
tion, recent methodological advances have enabled estimation of
genetic correlation with GWAS summary statistics10,11,23, making
these approaches widely applicable to a large number of complex
phenotypes. With these advances, genetic correlation analysis has
become a routine procedure in post-GWAS analysis and was
implemented in almost all large-scale GWASs published in the
past few years.

However, despite improved statistical power and wide appli-
cations, genetic correlation approaches fail to provide detailed,
mechanistic insights due to its oversimplification of complex
genetic sharing into a single metric. Two recent methods
improved genetic correlation analysis by providing local12 and
annotation-stratified estimates11. However, these methods rely on
strong prior evidence about which local region or functional
annotation to investigate. When applied to hypothesis-free scans,
statistical power is reduced. In this work, we introduce LOGO-
Detect (LOcal Genetic cOrrelation Detector), a method that uses
scan statistics to identify genome segments harboring local
genetic correlation between two complex traits. Compared to
other methods, LOGODetect does not pre-specify candidate
regions of interest, and instead, automatically detects regions with
shared genetic components with great resolution and statistical
power. In addition, LOGODetect only uses GWAS summary
statistics as input and is robust to sample overlap between
GWASs. We demonstrate its performance through extensive
simulations and analysis of well-powered GWASs for seven dis-
tinct but genetically correlated neuropsychiatric traits24,25. Our
analysis implicates a collection of hub regions (small genome
segments harboring local genetic correlations for multiple trait
pairs) in the genome that underlie the risk for several of these
traits.

Results
Method overview. Our goal is to identify genome segments
showing consistent association patterns with two different traits.
Here, we provide an overview of our approach and the technical
details are discussed in the “Methods” section. We propose the

following scan statistic:

QðRÞ ¼ ∑i2R z1iz2i
∑i2R li
� �θ ð1Þ

to quantify the extent of local genetic similarity in a genome
region, where R is the index set for all SNPs in the region, z1i and
z2i are the association z-scores for the ith SNP with two traits, li is
the linkage disequilibrium (LD) score for the ith SNP10, and θ
controls the impact of LD. Q(R) extends the scan statistic pro-
posed for single trait analysis26,27 to the framework of detecting
local genetic correlation. The scan statistic Q(R) is a LD score-
weighted inner product of local z-scores from two GWASs and is
conceptually similar to local genetic correlation—regions with
high absolute values of Q(R) show concordant association pat-
terns across multiple SNPs in the region and the sign of Q(R)
shows if the correlation is positive or negative. Of note, when the
candidate region is the whole genome and θ is equal to 1, the scan
statistic is an estimator for the global genetic covariance11. In our
framework, we do not assume that per-SNP genetic covariance is
the same for all SNPs across genome, but assume that genetic
covariance is localized in some small genome regions. Therefore,
we use the scan statistic in a local region, as a metric to detect
significant local genetic sharing. A full discussion of the func-
tional form of the scan statistic Q(R) is provided in Supplemen-
tary Notes. We search for genome segments with the highest
|Q(R)| values by scanning the genome while allowing the segment
size to vary (Fig. 1). Since we assume that the global genetic
covariance can be solely attributed to some small regions, thus,
the identified segments should collectively recapitulate a large
proportion of genetic covariance of two traits. Therefore we select
the optimal tuning parameter θ by maximizing the aggregated
genetic covariance of all the identified regions. Statistical evidence
of genetic sharing is assessed using a Monte Carlo approach.

Simulation results. We conducted simulations to compare the
performance of LOGODetect with three existing methods:
ρ-HESS12, coloc28, and gwas-pw17. ρ-HESS estimates local
genetic correlation in pre-specified genomic regions based on a
fixed-effect model, and coloc and gwas-pw are Bayesian
approaches that estimate the posterior probability of colocaliza-
tion for two traits. Note that the definition of genetic covariance
(correlation) in our study is consistent with the traditional defi-
nition of covariance (correlation) of additive genetic effects under
fixed-effect model10.

We used HAPGEN229 to simulate genotypes for 100,000 sam-
ples based on 503 individuals with European ancestry from the
1000 Genomes Project Phase 3 data30, and assessed the type I
error of the four approaches under a variety of settings (see the
“Methods” section; Supplementary Notes). First, we simulated
phenotypes under an infinitesimal model in which genetic effects
were assumed to be the same for all SNPs. We evaluated our
method across a range of heritability combinations for two traits.
We then compared different methods in two additional model
settings representing diverse genetic architecture: a heritability-
enrichment model where 3% of randomly selected SNPs explain
30% of trait heritability and the LDAK model31 with MAF-
dependent and LD-dependent architecture. In addition, we
investigated if overlapping samples between two studies, mis-
specified models with non-normal effects, and binary phenotypes
would bias the inference. The family-wise type I error rate of our
method was well-calibrated in all simulation settings with varying
heritability values, extent of sample overlap, and genetic
architecture (Supplementary Tables 1–8), showcasing the statis-
tical robustness of LOGODetect. Type I errors for ρ-HESS were
too conservative when heritability varies from 0.01 to 0.05 but
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showed substantial inflation when heritability was large (e.g. 0.2)
(Supplementary Table 9).

We also assessed the statistical power of LOGODetect under
various settings. Three different metrics (i.e. point detection rate,
segment detection rate, and G-score) were used to quantify the
statistical power (see the “Methods” section). Signal points
detection rate and signal segments detection rate measure the
sensitivity at the SNP level and segment level, respectively.
However, they do not reflect specificity of the method, as both
metrics will be 1 if the identified region is the entire genome. G-
score is a more informative alternative, which can jointly quantify
specificity and sensitivity. First, we evaluated the power of
LOGODetect with different θ under a heritability enrichment
model, where a higher level of heritability was attributed to
correlated regions (Supplementary Fig. 1). LOGODetect with
adaptive θ achieved universally higher statistical power in three
measures compared to the fixed θ approach, which demonstrated
that maximizing aggregated genetic covariance of the identified
regions could lead to a reasonable estimate of θ.

Further, we compared different methods under a heritability
enrichment model. As heritability increases, LOGODetect showed
improvements in all three measures of statistical power without
inflating the type I error (Fig. 2a–c). LOGODetect achieved greater
signal points detection rates compared to ρ-HESS when heritability
is low to moderate, compared to gwas-pw when heritability is
moderate to high, and compared to coloc in all heritability settings
(Fig. 2a). Moreover, LOGODetect showed almost universally higher
signal segments detection rates and G-scores compared to the other
three methods (Fig. 2b, c). LOGODetect achieved only slightly
lower signal segments detection rates than ρ-HESS in one
exceptional case when heritability is 0.05. We obtained consistent
results under the heritability enrichment model with varing
proportion of heritability (Fig. 2d–f). The gain of G-score can be
attributed to the fact that LOGODetect flexibly and precisely
identifies true signal regions, while ρ-HESS, coloc, and gwas-pw
pre-specify candidate regions, which in general are much larger
than the true signal regions, regardless of the disease phenotype. We
also investigated if sample overlaps or binary phenotypes would
affect the performance of our method. In addition, we compared
statistical power of different approaches under mis-specified
models, including LDAK model31 with MAF-dependent and LD-
dependent effect sizes, non-infinitesimal models with sparse effects,
and infinitesimal models with heavy-tailed effect distributions.
Details of simulation settings are shown in the Supplementary

Notes. We obtained consistent results under all simulation settings
(Supplementary Figs. 2–10). Finally, the presence of correlated
signal regions in the genome would not inflate type I error in non-
signal regions (Supplementary Tables 10 and 11).

Application to seven neuropsychiatric traits. Previous studies
have revealed pervasive pleiotropy32–34 and genetic
covariance35–38 among neuropsychiatric traits. However, there is
limited understanding of the specific genetic loci contributing to
multiple traits. We applied LOGODetect to study the pairwise
local genetic correlation between seven neuropsychiatric traits
(Supplementary Table 12): bipolar disorder (BIP; n= 51,710),
schizophrenia (SCZ; n= 105,318), major depressive disorder
(MDD; n= 173,005), neuroticism (NEU; n= 390,278), attention-
deficit/hyperactivity disorder (ADHD; n= 53,293), autism spec-
trum disorder (ASD; n= 46,350), and intelligence (IQ; n=
269,867), using summary statistics from the latest GWASs39–45.
We adaptively selected the best θ by maximizing the genetic
covariance in all identified regions (Supplementary Table 13). In
total, we identified 410 regions (merged into 227 non-overlapping
segments) showing concordant associations with multiple traits
(FDR < 0.05; Fig. 3a and Supplementary Figs. 11–28). 274 of the
410 regions showed positive correlations (Supplementary Data 1).
Size of the identified genome segments varied from 4 KB to 1.6
MB (Supplementary Fig. 29). The number of significant segments
identified in our analysis is proportional to the absolute value of
genetic correlation between each trait pair (Supplementary
Fig. 30; correlation r= 0.23). We identified 56 shared genomic
regions for BIP and SCZ (Fig. 3b; genetic correlation rg= 0.68, p
= 9.14e−87), 53 regions for SCZ and IQ (Supplementary Fig. 18;
genetic correlation rg=−0.23, p= 4.36e−28), 40 regions for
MDD and NEU (Supplementary Fig. 26; rg= 0.78, p= 6.38e
−41), and 261 regions for 16 other trait pairs, which is consistent
with the strong genetic overlap between these traits46–49. Overall,
we identified strong genetic sharing (higher genetic correlation
and more shared genome segments) among BIP, SCZ, MDD, and
NEU and among MDD, ADHD, ASD, and IQ. Sharing between
these two clusters was relatively weaker, which is consistent with
previous reports50.

LOGODetect identifies precise regions with genetic sharing. To
benchmark the performance of LOGODetect with existing
approaches, we also applied ρ-HESS, coloc, and gwas-pw to the

Fig. 1 LOGODetect workflow. a The inputs of LOGODetect include GWAS summary statistics for two traits and a reference panel for LD estimation. b Scan
statistic is defined over a region, as the LD-weighted inner product of two z-score vectors in this region. A large absolute value of the scan statistic would
hint at local genetic correlation. c LOGODetect identifies genome segments showing consistent associations with two different traits.
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Fig. 2 Assessment of statistical power under a heritability-enrichment model with varying trait heritability and heritability enrichment. The Y-axis
shows the statistical power assessed by three different metrics: a, d signal points detection rate measures sensitivity at the SNP level, b, e signal segments
detection rate measures sensitivity at the segment level, and c, f G-score jointly measures specificity and sensitivity. The heritability represents the trait
heritability on chromosome 1 and the proportion of heritability represents the proportion of the trait heritability explained by the signal regions. Significance
cutoffs for gwas-pw are adjusted so that the empirical type I error rate is controlled at 0.05. Details on the above three metrics and the adjustment
procedure for the significance cutoff are discussed in the “Methods” section. Source data are provided as a Source Data file.

Fig. 3 LOGODetect identifies genome regions contributing to multiple neuropsychiatric traits. a Heatmap shows the genetic correlation estimates
(upper triangle) and the number of segments with local genetic correlation identified by LOGODetect (lower triangle) between the seven neuropsychiatric
traits; Barplot shows the observed scale heritability estimates and standard errors of the seven traits using LDSC10. b Mirrored Manhattan plot for BIP and
SCZ. The 56 shared genome regions identified by LOGODetect are highlighted in red. One locus on chromosome 6 with � log10 P>20 in SCZ is truncated
at 20 for visualization purpose.
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same seven neuropsychiatric traits. We first assumed full sample
overlaps as suggested in the original paper that introduced
ρ-HESS. In total, ρ-HESS detected 778 regions for BIP and SCZ,
and 304 regions for SCZ and IQ (FDR < 0.05; Supplementary
Table 14). It only detected three regions for MDD and NEU, and
failed to detect any significant local genetic correlation for any
disorder pairs of MDD, ADHD, and ASD. Additionally, we also
estimated the shared sample sizes based on the reported size of
cohorts included in multiple studies (Supplementary Table 15),
and used these approximated values as inputs for ρ-HESS to
correct for sample overlap bias. The results remained consistent
(Supplementary Table 14). The colocalization methods also
detected strong genetic sharing between BIP and SCZ, between
SCZ and NEU, and between SCZ and IQ (Posterior probability >
0.95; Supplementary Table 14).

We used the analysis of BIP and SCZ as an example to further
illustrate the performance of LOGODetect. We used genetic
covariance enrichment to quantify the precision of identified signal
regions (Supplementary Notes). First, regions identified by
LOGODetect showed the highest enrichment of genetic covariance
compared to other methods (Fig. 4a). Although ρ-HESS identified
more shared regions between BIP and SCZ, the enrichment of
genetic covariance was 9.4-fold higher in the regions identified by
LOGODetect, which is concordant with the simulation results
based on G-scores. Second, we broke down the regions identified by
ρ-HESS, coloc, and gwas-pw into two subsets: regions that overlap
and do not overlap with regions identified by LOGODetect. The
regions overlapping with LOGODetect results showed a higher
enrichment for genetic covariance while enrichment in the regions
identified by other methods alone were substantially lower (Fig. 4b).
Third, to avoid comparison at an arbitrary significance cutoff, we
ranked the regions identified by LOGODetect, ρ-HESS, coloc, and
gwas-pw, by the corresponding p-values and posterior probability
separately, and evaluated the proportion of explained genetic
covariance at various thresholds. LOGODetect substantially out-
performed other methods, explaining more genetic covariance with

the same proportion of SNPs (Fig. 4c; Supplementary Figs. 31–50).
We also used estimated overlapping sample sizes to de-bias ρ-HESS
estimates and results remained consistent (Supplementary Fig. 51).

There are two reasons why our method showed improved
performance compared to the other methods. First, ρ-HESS and
the colocalization methods pre-specify regions of interest, which
are generally much larger than the signal regions harboring true
genetic sharing (Supplementary Fig. 52), while our scanning
approach is data-adaptive and can precisely identify the
boundaries for signal regions. Second, both BIP (heritability h2

= 0.35) and SCZ (h2= 0.43) have high SNP heritability. As
demonstrated in the simulations, regions identified by ρ-HESS
may include a non-negligible proportion of false positive findings.

Further, we evaluated the identified regions in an independent
replication cohort. We tested whether the significantly correlated
regions between BIP and SCZ can be replicated in the UK
Biobank (UKBB). The summary statistics of BIP (ncase= 1064,
ncontrol= 365,476) and SCZ (ncase= 571, ncontrol= 365,476) in the
UKBB were collected (Supplementary Table 16). Due to the
unbalanced case-control ratio and limited effective sample size,
we used aggregated genetic covariance to evaluate the replication
(Supplementary Notes). Stratified-LDSC was not applicable due
to the imbalanced sample sizes of cases and controls, therefore we
applied GNOVA11 for stratified genetic covariance analysis of the
regions identified by four methods in the UKBB data,
respectively. The regions identified by LOGODetect and ρ-
HESS both showed significant genetic covariance, but the regions
identified by LOGODetect have a 6.7-fold higher genetic
covariance enrichment than that of ρ-HESS, which demonstrates
again that LOGODetect can more precisely detect the true signal
regions (Table 1; Supplementary Fig. 53). Regions identified by
gwas-pw showed no significant genetic covariance, while regions
identified by coloc showed significant genetic covariance with the
opposite sign.

We also replicated findings for body-mass index (BMI) and
height, for which independent replication cohorts of large sample

Fig. 4 LOGODetect identifies precise genomic regions harboring local genetic correlations. Genetic covariance and its corresponding enrichment were
calculated using stratified-LDSC10. a Genetic covariance fold enrichment (i.e. the ratio between the proportion of total genetic covariance and the
proportion of the total SNP counts) in regions identified by LOGODetect, ρ-HESS, coloc, and gwas-pw, respectively. b Genetic covariance fold enrichment
in regions identified by ρ-HESS, coloc, and gwas-pw that also overlapped with LOGODetect findings, and regions identified by ρ-HESS, coloc, and gwas-pw
alone. c Genetic covariance explained and proportion of SNPs covered by regions identified by LOGODetect, ρ-HESS, coloc, and gwas-pw.
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size are available (Supplementary Notes). We identified 24
regions with significant local genetic correlation in the discovery
analysis. 17 of 24 regions identified in the discovery stage were
successfully replicated, suggesting the effectiveness of LOGODe-
tect to identify replicable genomic regions with local genetic
correlations (Supplementary Table 17).

Tissue enrichment of hub regions shared by neuropsychiatric
traits. We used 66 GenoSkyline-Plus tissue-specific functional
annotations51 to investigate the functional relevance of the
genomic regions found to harbor local genetic correlations among
seven neuropsychiatric traits (Supplementary Table 18). We used
permutation tests to assess the enrichment of genome regions
shared by multiple traits in these annotation tracks. Genome
regions identified by LOGODetect were significantly enriched in
eight brain regions (minimum enrichment= 1.50, p= 4.00e−4)

(Fig. 5a). In addition to brain tissues, regions shared by neu-
ropsychiatric traits were also strongly enriched in mononuclear
cells from peripheral blood (enrichment= 1.93, p= 1.00e−5) and
pancreatic islets (enrichment= 2.11, p= 1.00e−5). Of note,
annotated functional regions in mononuclear cells and pancreatic
islets have substantial overlaps with annotations of brain tissues
(Fig. 5b). After conditioning on functional regions in the brain,
the enrichment in pancreatic islets was substantially reduced
(enrichment= 1.1, p= 0.224; Fig. 5c), while enrichment in
mononuclear cells remained significant (enrichment= 1.66, p=
3.55e−3).

To further assess whether enrichments are truly tissue-specific,
we performed conditional analysis on six generic annotations
(i.e., coding regions, enhancers, introns, promoters, 5′UTRs, and
3′UTRs, extended by a 500-bp window around each annotation)
in Finucane et al. 52. After conditioning on these annotations, the
enrichment in brain tissues remained significant (minimum

Table 1 Stratified genetic covariance analysis on UKBB replication cohorts.

Genetic Cova s.e. p-value Proportion of genetic cov (%) Proportion of SNPs (%) Fold enrichment

LOGODetect 2.18e−4 6.65e−5 1.04e−3 11.50 1.15 10.02
ρ-HESS 6.62e−4 3.16e−4 3.61e−2 30.00 20.12 1.49
coloc −5.70e−5 2.30e−5 1.33e−2 −2.85b 0.34 −8.36b

gwas-pw 3.84e−5 6.54e−5 5.57e-1 1.92 1.61 1.20

aGenetic Cov represents estimated genetic covariance of the identified regions using GNOVA.
bGenetic covariance of regions identified by coloc has opposite sign compared to global genetic covariance, therefore the corresponding proportion of genetic covariance and fold enrichment are
negative.

Fig. 5 Tissue-specific enrichment of genome regions conferring risk for multiple neuropsychiatric traits. a Permutation test results over 66 cell-type-
specific annotations. Fold enrichment is labeled next to each bar. b The overlap of predicted functional regions in pancreatic islets, mononuclear cells from
peripheral blood, and eight brain regions. c Enrichment in the predicted functional regions in pancreatic islets and mononuclear cells from peripheral blood
after conditioning on the annotation overlap with brain regions.
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enrichment= 1.37, p= 1.98e−3), suggesting that the observed
enrichment in functional genome in these brain tissues were not
driven by generic annotations alone (Supplementary Fig. 54).

We also ran Gene Ontology-enrichment analysis using
FUMA53. The 968 genes in regions detected by LOGODetect
were significantly enriched for 83 GO terms (Supplementary
Table 19) after multiple testing correction, including RNA
metabolic process (p= 5.36e−13), nucleolus (p= 9.30e−6), and
protein arginine deiminase activity (p= 7.35e−9).

Hub regions contributing to multiple neuropsychiatric traits.
Next, we investigated hub regions shared by five or more traits.
Among the 227 non-overlapping genome regions identified in
our analysis, 91 regions were identified in two or more different
trait pairs (Supplementary Data 2). The five regions identified in
at least seven pair-wise analyses are summarized in Supplemen-
tary Table 20. Notably, LOGODetect consistently identified these
hub regions in more trait pairs compared to other methods. These
hub regions show consistent associations with multiple neu-
ropsychiatric traits and can potentially reveal key mechanisms
and pathways underlying the shared genetics across traits.

The region showing significant correlation in nine pair-wise
analyses is a locus spanning 711 KB on chromosome 11 (Fig. 6).
Interestingly, two independent peaks were identified in this
region between SCZ and NEU and between MDD and NEU.
SNPs in this region have previously reached genome-wide
significance in the SCZ40 (lead SNP rs2514218; p= 2.42e−12),
NEU45 (lead SNP rs35738585; p= 2.47e−17), and IQ GWAS44

(lead SNP rs2885208; p= 4.58e−8). Additionally, SNPs at this
locus showed consistent associations with BIP (lead SNP
rs10502165; p= 3.90e−5). More importantly, this genome region
covers the NTAD (NCAM1-TTC12-ANKK1-DRD2) gene cluster.
Multiple variants of DRD2 and NCAM1 are reported to be
associated with BIP, SCZ, MDD, and NEU54–56. Also, multiple
eQTLs for DRD2 (lead SNP rs6589381; p= 1.10e−14) and
NCAM1 (lead SNP rs1079021; p= 9.20e−16) are located in the
region.

Another region on chromosome 11 spans 488 KB and shows
significant correlations in seven pair-wise analyses (Supplemen-
tary Fig. 55). IGSF9B, a potential risk gene for SCZ40 and IQ44,
and its multiple eQTLs (lead SNP rs558709; p= 1.80e−13) are
located in this genomic region. The third hub region is located on
chromosome 14 spanning 694 KB and shows significant correla-
tions in seven trait pairs (Supplementary Fig. 56). Gene PRKD1
largely overlaps with this locus, and FOXG1, which is an
associated gene for SCZ40 and IQ44, lies about 200 KB away
from the locus. In addition, multiple eQTLs for PRKD1 (lead SNP
rs80019464; p= 6.40e−5) and FOXG1 (lead SNP rs138384350; p
= 6.10e−7), are located in the region. The fourth region on
chromosome 3 spans 258 KB and was identified in seven pairs
(Supplementary Fig. 57). Notably, most parts of this genomic
region are covered by the gene FOXP1, which is an implicated
risk gene for SCZ40 and IQ44. The final region spans 450 KB on
chromosome 10. This region was identified in seven trait pairs
(Supplementary Fig. 58) and largely overlaps with SORCS3, a
previously implicated risk gene for MDD and ADHD42,57,58.

Discussion
Through simulations and analyses of GWAS data, we demon-
strated that our method effectively identified genetic regions that
show concordant associations across multiple complex traits
with high resolution and statistical power. Compared to existing

Fig. 6 Putative target genes for the hub region in chr11 shared by nine
neuropsychiatric trait pairs. Locuszoom plot, recombination rate, and the
gene names are provided. The colored band denote the location of the
significant region and which trait pair is detected in.
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approaches, LOGODetect has greater statistical power and is
robust across various heritability settings and in existence of
sample overlaps. Applied to well-powered GWASs for seven
phenotypically distinct but genetically correlated neuropsychiatric
traits, LOGODetect identified numerous shared genomic regions
including hub regions that showed consistent effects for more
than four traits. The regions identified by LOGODetect explain a
larger portion of genetic covariance than existing approaches.
Furthermore, the enrichment holds true in independent replica-
tion studies.

Two genes (i.e. DRD2 and NCAM1) are located in the hub
region on chromosome 5 (Fig. 6). DRD2, also known as dopa-
mine receptor D2, encodes the D2 subtype of the dopamine
receptor. The dopamine hypothesis of schizophrenia suggests that
dopaminergic pathways are overactive in schizophrenia59. In
addition, multiple variants are reported to be associated with
psychiatric disorders54. NCAM1, short for neural cell adhesion
molecule 1, plays an important role in formation of plexiform
layers, neurite fasciculation, nerve–muscle interactions and other
aspects of neural development60. Expression of PSA-NCAM is
increased in antidepressant treatment, while in animal models of
depression or in depressed patients PSA-NCAM is reduced56.
Notably, NCAM1 was identified by LOGODetect as implicated
gene for MDD, but it cannot be identified by other three methods.

Other identified hub regions also included a handful of inter-
esting candidate genes. IGSF9B (Supplementary Fig. 55) encodes
a brain-specific cell adhesion molecule which is highly expressed
in GABAergic interneurons, concentrated to hippocampal and
cortical inhibitory synapses for their development into
interneurons61. Interestingly, promotion of IGSF9B for inhibitory
synapses development is coupled with NLGN2, loss of function
variants of which were found in autism and schizophrenia
patients62,63. PRKD1 (Supplementary Fig. 56) encodes a serine/
threonine protein kinase which is important in many cellular
processes, and regulates neuronal polarity, synapse formation,
and synaptic plasticity64–66. FOXG1 (Supplementary Fig. 56)
encodes the fork-head box protein G1 which is strongly expressed
in neural tissues, operates as a transcriptional repressor essential
in brain development67. It was suggested that PRKD1 locus reg-
ulates FOXG1 in a cis-acting way, and is associated with the
FOXG1 syndrome including mental retardation, absent language,
and dyskinesia67. FOXP1 (Supplementary Fig. 57) is one of the
FOXP transcription factor subfamily. It is expressed in cerebral
cortex, striatum, and spinal cord of the central nervous system,
and is shown to regulate striatum development, motor neuron
migration, and midbrain dopamine neuron differentiation68.
FOXP1 is associated with ASD, speech delay, and intellectual
disability69,70. SORCS3 (Supplementary Fig. 58) is highly
expressed in the CA1 region of the hippocampus, and is involved
in synaptic depression and spatial learning ability71,72. It is also
known to play an important role in protein networks associated
with PICK1, NGF, and PDGF-BB73,74, which have been impli-
cated in ADHD, ASD, MDD, and SCZ75–78.

Our method still has some limitations. First, the goal of
LOGODetect is to identify genomic regions harboring local
genetic correlations. We do not give explicit estimation of local
genetic correlation, but the sign of the correlation can be inferred.
Although local genetic correlation in identified regions can be
estimated by other methods (e.g., ρ-HESS) in principle, this
remains a statistically challenging problem. As shown in our
simulations, the estimation is inaccurate. Under the null
hypothesis that local genetic correlation is zero, ρ-HESS under-
estimates the standard error of local genetic covariance when
heritability is high and leads to inflated type I error rates, and it
overestimates the standard error of local genetic covariance when
heritability is low and leads to deflated statistical power. We note

that the deflation of type I error observed for ρ-HESS is not
contradictory to results published in ρ-HESS paper12. ρ-HESS
was formulated as an estimation problem instead of the
hypothesis testing problem in our manuscript. In their paper,
they have shown simulation results to demonstrate that the local
genetic correlation can be accurately estimated when the true
parameter is 0. However, the evidence shown in the ρ-HESS
paper could not rule out deflation when the method is used for
inference. These problems are further exacerbated when ρ-HESS
is applied to very small local genomic regions identified by
LOGODetect. Second, LOGODetect scans a large number of
genomic regions to search for local regions where the scan sta-
tistic significantly deviates from the null distribution. We cur-
rently do not have an analytical solution to derive or approximate
the theoretical null distribution. Instead, a Monte Carlo approach
is employed to quantify the null distribution of the maximal scan
statistic, which is computationally expensive. Third, we proposed
an empirical method to select the tuning parameter based on the
aggregated genetic covariance of the identified regions. Although
there is no theoretical guarantee, we have conducted extensive
simulations to demonstrate that the empirical strategy to estimate
θ works well with frequently used genetic models and leads to
superior performance of LOGODetect compared to competitive
methods, in terms of error control and statistical power. Fourth,
our simulations are conducted with simulated genotypes based on
the European ancestry individual data in the 1000 Genomes
Project. It would be interesting to simulate data with various
population structures to test our method. In real data applica-
tions, GWAS summary statistics are usually corrected for the
genomic control factor, thus we expect population structure to
have minor impact on the performance of LOGODetect. Fifth,
several recent methods have been proposed to jointly model more
than two GWAS traits to infer the structure of shared genetics
across multiple phenotypes14,47,79. A future direction is to gen-
eralize our method to search for genomic regions shared by more
than two traits. Finally, LOGODetect studies genetic correlation
from GWAS data, which uses a bivariate random effect model
and defines the genetic correlation as the correlation between
SNPs10,18,21,80. Under this model, the definition of genetic cor-
relation is consistent with the traditional definition of correlation
of additive genetic effects10. Yet the concept should be dis-
tinguished from the additive genetic correlation, since the esti-
mation could be biased to the partial effects of tag SNPs, and the
causal effects of untagged SNPs would be absorbed to effect of
random error term81.

Taken together, we have introduced LOGODetect, a scan sta-
tistic method to identify local genetic regions showing correlated
effects with multiple neuropsychiatric traits. Complementary to
single SNP-based approaches for pleiotropy mapping17,28 and
genetic correlation estimation methods utilizing genome-wide
data10,21, our method elucidates the shared genetic architecture
between two traits by identifying local genomic segments that are
concordant. The candidate genes and regions we identified may
be tapping into a set of transdiagnostic mechanisms that underlie
all of psychopathology (i.e., the “p” or general factor47). In
practice, LOGODetect can be used in combination with other
methods to further improve statistical power and biological
interpretability. For example, it may be of interest to first screen
the genome by identifying larger genetic regions12,82 or certain
functional annotations11 enriched for the shared genetics between
two traits. Then, LOGODetect can be applied to these candidate
regions to identify the precise genetic segments that explain such
sharing. Since high-dimensional sampling remains a challenge, a
multi-tier analytical strategy would improve the statistical power
and computational burden in the analysis. We believe that
LOGODetect has addressed some key limitations in the current
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practice of cross-trait genetic correlation analysis and will benefit
complex trait genetics research.

Methods
Genetic model. Suppose two standardized traits y1 and y1 follow the linear model
with random effects:

y1 ¼ Xβþ ϵ;
y2 ¼ Zγþ δ;

ð2Þ

where X and Z are fixed and standardized genotype matrices with M columns (i.e.
the number of SNPs is M); ε and δ are non-genetic effects; β and γ are M-
dimensional vectors denoting genetic effects. They follow the multivariate normal
distribution:

β

γ

� �
� N

0

0

� �
;

h2β
M IM

ρg
K
~IM

ρg
K
~IM

h2γ
M IM

24 350@ 1A;

where h2β and h2γ denote the heritability for two traits; ρg is the global genetic

covariance between two traits; ~IM is a diagonal matrix whose ith diagonal element
equals 1 if the effects of the ith SNP on two traits (i.e. βi and γi) are correlated and
equals 0 if otherwise; K is the number of SNPs such that βi and γi are correlated,
i.e., K ¼ tr½~IM�. β and γ are independent from non-genetic effects ε and δ. The
statistical model described here is similar to the polygenic model used in genetic
correlation estimation10. The difference is that we allow local genetic sharing and
do not assume the global genetic covariance to be equally attributed to all SNPs in
the whole genome. Compared to the local genetic correlation estimation method in
the literature12, we do not assume genetic effects to be fixed. Instead, our
framework is a direct generalization of the model developed for global genetic
correlation estimation10,11. Under the alternative hypothesis, we denote the non-
overlapping genetic regions that contribute to multiple traits to be R1; ¼ ;Rr and
the union set as R ¼ ∪ r

j¼1Rj such that ~IM½i; i� ¼ 1 if and only if i 2 R. While
under the null hypothesis, two traits share no genetic covariance, i.e., R ¼ ;.

Scan statistic and scanning procedure. We use a scan statistics approach to
identify regions showing correlated effects between different traits. This type of
approach has been used for burden test in a single-trait setting83. Suppose n1; n2
are the sample sizes for two GWASs, respectively, and we first consider the simpler
case that there is no sample overlap between two GWASs. Additionally, we denote
the association z-scores for two traits as

z1 ¼ z11; z12; ¼ ; z1M
� �T¼ 1ffiffiffiffi

n1
p XTy1;

z2 ¼ z21; z22; ¼ ; z2M
� �T¼ 1ffiffiffiffi

n2
p ZTy2:

ð3Þ

Then, we can define the scan statistic:

Q Rð Þ ¼ ∑i2R z1iz2i
∑i2R lið Þθ ; ð4Þ

where R is the index set for SNPs in a genome region, li is the LD score80 for the ith
SNP computed within a 1MB window, and θ is a tuning parameter that controls
the strength we penalize over the LD structure. If SNPs in the region R show
strong, concordant effects on both traits, then the inner product ∑i2R z1iz2i will
tend to have a larger absolute value and therefore yield a larger scan statistic. On
the contrary, if two traits are genetically independent in the local region, then the
corresponding scan statistic would be close to 0. Therefore, the scan statistic is
informative to detect local genetic correlation. The purpose of the LD score term in
the denominator is to normalize the effect of LD. The expected absolute value of
∑i2R z1iz2i is larger in regions with strong LD (Supplementary Fig. 59;
Supplementary Notes). Without the normalization term on the denominator, the
method will favor regions with large LD that may not be of biological interest.

Finally, we use the maximal scan statistic over all possible regions as the test
statistic:

Qmax ¼ max
Rj j≤C

Q Rð Þj j; ð5Þ
where C is a pre-specified parameter that defines the upper boundary of the SNPs
count in a region. In practice, C can be set based on the number of SNPs in the
dataset (e.g. the average number of SNPs in 1 million bases). LOGODetect takes
advantages of the flexible framework to scan local regions with varying sizes.
Compared to a sliding-window approach based on a pre-specified window size, our
method is more appealing since the size of signal region could vary substantially by
locus and by trait. We use a Monte Carlo type approach to assess the distribution of

Qmax under the null hypothesis. We draw 5000 pseudo-samples
z1
z2

� �
under the

null distribution using a procedure detailed in the next section. Then, we estimate
the empirical null distribution of Qmax and its 95% upper quantile, Q0:95. Taken
together, the scanning procedure works as follows. We scan the genome to find R1
such that Q R1ð Þj j reaches the maximum. If Q R1ð Þj j≥Q0:95, we claim that R1 is a
significant signal region and remove these SNPs from the analysis. Then, we repeat

the procedure on the remaining SNPs until no region is declared significant. This
procedure controls the family-wise type I error rate. Calculating Q Rð Þ over all
possible candidate regions is indeed computationally expensive, so we constrain Rj j
to be a multiple of 10 in practice, which reduced the computation burden by ~10
folds, with minimal reduction in accuracy. Finally, regions that are no more than
100 KB away from each other are merged into a single region.

Choice of parameter θ. Parameter θ affects the size of identified regions. A
relatively long segment may not have a large absolute value of scan statistic, due to

the penalty in the denominator ∑i2R li
� �θ

. A larger θ implies stronger penalty,
henceforth is more likely to detect smaller signal segments. In particular when θ
equals 1, Q Rð Þ

		 		 will attain local maximum with R containing only one variant. A
reasonable range for θ is between 0 and 1. In practice, it is important to consider
the “best” θ adaptive to the data. We used the proportion of genetic covariance of
the identified regions as the metric. We varied the value of θ in the candidate set,
and chose the best θ such that the corresponding identified regions have the largest
genetic covariance. In general, one can use any subset of [0, 1] as the candidate set
of θ values. However, extensively searching for θ substantially increases the com-
putation time. In practice, we suggest the set of {0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7}
would be sufficient. Denote the regions detected by LOGODetect under parameter
θ as R̂θ

1; ¼ ; R̂θ
m . We denote their union as R̂θ and denote the genetic covariance in

R̂θ as ρ R̂θ
� �

. In theory, ρ R̂θ
� � ¼ ∑m

i¼1 R̂θ
i \R		 		 ρg

K , where R is union set of true
signal regions, ρg is the global genetic covariance, and K ¼ jRj is the number of

SNPs in R. In practice, the true signal regions R is unknown. ρ R̂θ
� �

can be

estimated using the stratified-LDSC10. Let π θð Þ ¼ ρ R̂θð Þ
ρg

be the proportion of genetic

covariance explained by R̂θ to the global genetic covariance. We assume that
ρ R̂θ
� � ¼ 0 and π(θ)= 0 if R̂θ ¼ ;. We calculate π θð Þ for a candidate set of θ
values, and then we determine θ adaptive to data via the following optimization
problem:

θ̂ ¼ argmaxθ π θð Þ
		 		: ð6Þ

Monte Carlo simulation of pseudo-z-score vectors. In order to simulate the null
distribution of Qmax, we need to generate pseudo-z-score vectors. When two
GWASs do not have sample overlap, it can be verified that

var z1
� � ¼ 1

n1

h2β
M

XTXXTX þ 1� h2β


 �
XTX

" #
; ð7Þ

cov z1; z2
� � ¼ ρgffiffiffiffiffiffiffiffiffi

n1n2
p

K
XTXeIMZTZ: ð8Þ

And similarly for var½z2�. Therefore, under H0, the combined z-score vector

z1
z2

� �
� N

0

0

� �
;

1
n1

h2β
M XTXXTX þ 1� h2β


 �
XTX

h i
0

0 1
n2

h2γ
M ZTZZTZþ 1� h2γ


 �
ZTZ

h i
264

375
0B@

1CA;

asymptotically. Note that in practice individual genotype data is hard to obtain due
to privacy, it is meaningful to analyze based only on summary statistics. Here by
using reference panel (e.g. the 1000 Genomes Project Phase 3 data30), 1

n1
XTX and

1
n1
ZTZ can be estimated as V, 1

n21
XTXXTX and 1

n22
ZTZZTZ can be estimated asfV2 ¼ n�1

n�2V
2 � M

n�2V, where n is the sample size of the reference panel and V is the
LD matrix of the reference panel. And the genetic heritability for two traits h2β; h

2
γ

can be estimated through LDSC80. After plugging in the reference LD matrix, we
have

z1
z2

� �
� N

0

0

� �
;

n1h
2
β

M
fV2 þ 1� h2β


 �
V 0

0
n2h

2
γ

M
fV2 þ 1� h2γ


 �
V

264
375

0B@
1CA;

asymptotically under the null.
The random multivariate normal vectors have complex covariance structure,

which is computationally challenging as the dimension of the vector can be as high
as 107 in GWAS. We developed a computationally tractable method that leverages
the LD structure in the genome. First, we split the high-dimensional vector z into

sub-vectors z ¼ z 1ð Þ; z 2ð Þ; ¼ ; zðmÞ
h i

. These sub-vectors are defined by the genome

positions, each spanning 1MB genome block, i.e. chr1: 0–1MB, chr1: 1–2MB, etc.
We denote the variance matrix of z as Σ and it can be written as the block matrix
form. Denote Σi;j ¼ cov½z ið Þ; zðjÞ� as the submatrix of Σ, with rows indexed by the
ith block z ið Þ and columns indexed by the jth block z jð Þ. Then we use a block-wise
tridiagonal matrix to approximate Σ by shrinking Σi;j to 0 if i� jj j≥ 2. This
approximation is reasonable in the context of GWAS since SNPs should be
independent if they are physically apart. Then, we can use an iterative approach to
generate each block z ið Þ by conditioning on the previous block z i�1ð Þ via the
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conditional normal distribution:

zijzi�1 ¼ að Þ � N Σi;i�1Σ
�1
i�1;i�1a;Σi;i � Σi;i�1Σ

�1
i�1;i�1Σi�1;ia


 �
:

In practice, Σi;i may be rank deficient and therefore not invertible. We adopt the
truncated singular value decomposition (TSVD) method84 and use the top q
singular values and their corresponding singular vectors to calculate the inverse
matrix. For numerical stability, we choose q to be as large as possible such that the
conditional number is <100085. Finally, we standardize each pseudo z-score vector
so that it has the same mean and variance as the z-score vector in real data.

Application to binary traits. So far, we have based the derivation on the setting
that the both input traits are continuous. This is a common approach to intro-
ducing genetic correlation methodology10,11. However, most genetic correlation
methods, including LOGODetect, can be directly applied to GWAS summary
statistics of binary outcomes10,11. It is known that under the liability threshold
model, the following formulas hold10:

h2β;obs ¼
h2βϕ τ1
� �2

S1 1� S1
� �

P2
1 1� P1
� �2 ; ð9Þ

ρg;obs ¼ ρg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ2 τ1
� �

ϕ2 τ2
� �

S1 1� S1
� �

S2ð1� S2Þ
q

P1 1� P1
� �

P2ð1� P2Þ
; ð10Þ

where h2β;obs and ρg;obs denote heritability and genetic covariance on the observed
scale, respectively; P1 and P2 denote population prevalence for two traits; S1 and S2
denote sample prevalence for two traits; τ1 ¼ Φ�1 1� S1

� �
; τ2 ¼ Φ�1 1� S2

� �
,

ϕ and Φ denote the standard normal distribution density and its cumulative dis-
tribution function, respectively. When applying LOGODetect to binary traits, we
replace h2β; h

2
γ (i.e., heritability on the liability scale) with h2β;obs; h

2
γ;obs (i.e., herit-

ability on the observed scale).

Extension for sample overlaps. Suppose there are ns shared samples in the two
GWASs, then the linear models can be restated as

y1;ns
y1;s

" #
¼ Xns

Xs

� �
βþ ϵns

ϵs

� �
;

y2;ns
y2;s

" #
¼ Zns

Zs

� �
γþ δns

δs

� �
;

ð11Þ

where
y1;ns
y1;s

� �
;

y2;ns
y2;s

� �
are the standardized phenotypes of all individuals in each

GWAS.
Xns
Xs

� �
¼ X;

Zns
Zs

� �
¼ Z are standardized genotypes of all individuals in

each GWAS. ϵns; ϵs; δns; δs are the non-genetic effects where cov ϵs; δs
� � ¼ ρeIns . It

can be shown that

cov z1; z2
� � ¼ ρgffiffiffiffiffiffiffiffiffi

n1n2
p

K
XTX~IMZ

TZþ ρeffiffiffiffiffiffiffiffiffi
n1n2

p XT
s Zs; ð12Þ

While var z1½ � and var z2½ � have the same form as no sample overlaps setting. By
using reference panel, 1

ns
XT

s Zs can be replaced by V. Therefore, under H0, the

combined z-score vectors asymptotically follows multivariate normal distributions

z1
z2

� �
� N

0

0

� �
;

n1h
2
β

M
fV2 þ 1� h2β


 �
V ρensffiffiffiffiffiffiffi

n1n2
p V

ρensffiffiffiffiffiffiffi
n1n2

p V
n2h

2
γ

M
fV2 þ 1� h2γ


 �
V

264
375

0B@
1CA

Note that the variance matrix can be split into two terms as

Var
z1
z2

� �
¼

n1h
2
β

M
fV2 þ 1� h2β


 �
V ρensffiffiffiffiffiffiffi

n1n2
p V

ρensffiffiffiffiffiffiffi
n1n2

p V
n2h

2
γ

M
fV2 þ 1� h2γ


 �
V

264
375

¼
n1h

2
β

M
fV2 þ 1� h2β � ρensffiffiffiffiffiffiffi

n1n2
p


 �
V 0

0
n2h

2
γ

M
fV2 þ 1� h2γ � ρensffiffiffiffiffiffiffi

n1n2
p


 �
V

264
375þ

ρensffiffiffiffiffiffiffi
n1n2

p V ρensffiffiffiffiffiffiffi
n1n2

p V
ρensffiffiffiffiffiffiffi
n1n2

p V ρensffiffiffiffiffiffiffi
n1n2

p V

" #
;

ð13Þ

if ρens is positive, and can be split into two terms as

var
z1
z2

� �
¼

n1h
2
β

M
fV2 þ 1� h2β þ ρensffiffiffiffiffiffiffi

n1n2
p


 �
V 0

0
n2h

2
γ

M
fV2 þ 1� h2γ þ ρensffiffiffiffiffiffiffi

n1n2
p


 �
V

264
375þ

� ρensffiffiffiffiffiffiffi
n1n2

p V ρensffiffiffiffiffiffiffi
n1n2

p V
ρensffiffiffiffiffiffiffi
n1n2

p V � ρensffiffiffiffiffiffiffi
n1n2

p V

" #
;

ð14Þ
if ρens is negative. We can independently simulate pseudosamples following the

normal distribution with mean 0 and each variance term, respectively. Finally, by
adding up two vectors simulated with respect to different variance terms, we get the
pseudo z-score vector of interest. In particular, the parameters σ2β; σ

2
γ; ρens

appearing in the z-score null distribution are not of our interest, but we need their

values while doing Monte Carlo sampling of
z1
z2

� �
. We adopt LDSC10 to estimate

them. Note that LDSC is based on random effect random design model setup,
which is incompatible with our model assumption, yet we believe it should yield
little consequence.

Genome partition and FDR control. We separated the genome into 204 LD blocks
using ldetect86. Each LD block spans 15MB on average. We applied LOGODetect
to each LD block separately and identified the local regions with p-value < 0.05
under a family-wise type I error control. We aggregated all the candidate regions
across different LD blocks, and applied Benjamini–Hochberg procedure87 to
control FDR with a cutoff of 0.05, accounting for the multiple testing problem
concerning all LD blocks.

Computation time. The major computation step in LOGODetect is to compute the
maximal scan statistic in real data and in Monte Carlo samples. The computation
time depends on the number of SNPs in GWAS. For a typical GWAS with 6
million SNPs, it takes about 12 h on a 2.5GHz cluster with 22 computation cores.

Simulation settings. Based on 503 individuals with European ancestry from the
1000 Genomes Project Phase 3 data, we simulated genotype data for 100,000
individuals with minor allele frequency (MAF) > 5% on chromosome 1 using
HAPGEN229. 336,532 variants remained in the dataset after removing strand-
ambiguous SNPs. Samples were randomly divided into two subsets with equal
sample size, each with 50,000 individuals. We used each subset to simulate the
phenotype data.

First, we performed simulations under the null hypothesis to see whether our
approach would produce false positive findings. We follow the infinitesimal model,
where the effect size level of all the normalized SNPs are the same, and the per-
normalized-SNP genetic effect was drawn from a normal distribution Nð0; h2

336;532Þ
for both traits. To realistically model the polygenic genetic architecture with
different levels of genetic effects, we attributed 30% of the trait heritability to 5000
randomly chosen SNPs, while the remaining SNPs explain 70% of the trait
heritability. The per-SNP genetic effect was drawn from a normal distribution
Nð0; 0:3 � h2

5000Þ for SNPs with high heritability enrichment, and from Nð0; 0:7 �
h2

331;532Þ for SNPs with low heritability enrichment. The trait heritability h2 was set to
vary from 0.01 to 0.05 in each scenario. Note that a heritability value of 0.01 or 0.05
on chromosome 1 will approximately correspond to heritability values of 0.12 or
0.60 in the whole genome, which are realistic values for typical GWAS traits. Each
simulation setting was repeated for 100 times.

Next, we performed simulations to assess the statistical power under a
heritability enrichment model. We randomly selected N= 5 segments, each
containing L= 1000 SNPs, as the signal regions shared between two traits. We
attributed p ¼ 0:3 of trait heritability to the signal regions. The genetic effect size
for the SNPs in the signal regions follows a multivariate normal distribution

βi
γi

� �
� N

0

0

� �
;

ph2

NL
ph2ρ
NL

ph2ρ
NL

ph2

NL

" # !
:

The genetic effect size for the SNPs outside the signal regions follows a different
multivariate normal distribution without local genetic correlation.

βi
γi

� �
� N

0

0

� �
;

1�pð Þh2
336532�NL 0

0 1�pð Þh2
336532�NL

" # !
:

The trait heritability h2 was set to vary from 0.01 to 0.05, and the correlation of
genetic effect size of two traits ρ was set to 0.9. Each simulation setting was repeated for
100 times. Further simulation settings are described in detail in the Supplementary
Notes.

We adjusted the significance cutoff of different approaches to achieve the same
type I error. For coloc and gwas-pw, in those heritability settings with empirical
type I error >0.05, we increased the cutoff of the posterior probabilities so that the
empirical type I error is controlled at 0.05.

Evaluate model performance. We use three different metrics to quantify the
performance of our approach. Denote the true signal segments as R1; ¼ ;RJ , and
the segments detected by LOGODetect as R̂1; ¼ ; R̂K . We define the signal points
detection rate as the number of true signal SNPs detected by LOGODetect divided

by the number of true signal SNPs, that is
∑J

j¼1 Rj\ð∪ K
k¼1 R̂kÞ

		 		
∑J

j¼1 Rj

		 		 . Similarly, we define

signal segments detection rate as the number of true signal segments detected by
LOGODetect divided by the number of true signal segments, namely
∑J

j¼1 I Rj\ ∪ K
k¼1 R̂kð Þ≠;

� 

J , where we call a segment true positive if it overlaps with a true

signal segment. Signal points detection rate and signal segments detection rate aim
to measure the sensitivity at the SNPs level and segments level, respectively. To take
the extent of the overlap into consideration, we also followed88 to define SðRjÞ, the

G-score with respect to a signal region Rj , as max
1≤ k≤K

R̂k \Rj

		 		ffiffiffiffiffiffiffiffiffiffiffiffiffi
R̂kj j Rj

		 		q , and further define the
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G-score measure as 1
J ∑

J
j¼1 SðRjÞ. The G-score aims to measure the specificity and

sensitivity together. The three metrics were also applied to quantify ρ-HESS, coloc,
and gwas-pw.

Implementation of different methods. We used ldetect86 to pre-specify 1703
approximately LD-independent blocks (spanning 1.6 Mb on average) as candidate
genomic regions, as suggested by ρ-HESS and gwas-pw. We also used these LD-
independent blocks as candidate genomic regions for coloc. In simulation studies,
we used 133 approximately LD-independent regions in chromosome 1 as the pre-
specified genomic regions for ρ-HESS, coloc, and gwas-pw. For ρ-HESS, the 1000
Genomes Project Phase 3 data30 was used as the reference panel, the number of
eigenvectors used in the truncated-SVD for LD matrix inversion is determined as
50 by default, and the minimum eigenvalue cut off in truncated-SVD is determined
as 1.0 by default, as suggested by the ρ-HESS software (https://huwenboshi.github.
io/hess/). ρ-HESS reported the estimate and significance of local genetic correlation
for each candidate genomic region, and we applied Benjamini–Hochberg
procedure87 to control FDR with a cutoff of 0.05, accounting for the multiple
testing problem concerning all genomic regions. Coloc (https://CRAN.R-project.
org/package=coloc) and gwas-pw (https://github.com/joepickrell/gwas-pw) esti-
mated the posterior probability that two traits shared at least one causal SNP for
each genomic region, and those genomic regions with posterior probability above
0.95 are determined as identified regions.

We used LDSC (https://github.com/bulik/ldsc) to estimate heritability in each
chromosome. Stratified-LDSC was used to estimate genetic covariance of the
identified regions. In detail, we manually created two annotations: the identified
regions and the remaining genome, then we ran the standard LDSC software to
calculate the genetic covariance and the proportion of genetic covariance of each
annotation. For both LDSC and stratified-LDSC, LD scores were computed with
the standard LDSC software from 503 individuals with European ancestry from the
1000 Genomes Project Phase 3 data. Both methods were applied with an
unconstrained intercept, using all SNPs as observations in the dependent variable
and LD scores as regression weights.

Application of LOGODetect to seven neuropsychiatric traits. We applied
LOGODetect to seven neuropsychiatric traits. The European ancestry genotype
data from 1000 Genomes Project was used as the reference panel to estimate the
LD matrix. For each GWAS data, indels and SNPs not present in the reference
panel were removed. The SNPs of MAF < 0.01 in the reference panel were also
removed. Then for each trait pair, we filtered out all the strand-ambiguous SNPs
and took the overlaps. For SNPs whose effect alleles were the same in the two
GWASs, the original z-scores were used. For SNPs whose effect alleles were
reversed in two GWASs, we reversed the sign of z-score in the second GWAS
accordingly. Thus, the allele coding schemes between any two studies were con-
sistent. Then we applied LOGODetect to perform the downstream analysis.

Enrichment analysis. We aggregated 227 non-overlapping segments identified by
LOGODetect in seven neuropsychiatric traits and investigated if these segments are
enriched in predicted functional regions for a given tissue or cell type. Tissue or cell
type-specific functional regions were defined using GenoSkyline-Plus annotations
and dichotomized with a cutoff of 0.5. The annotation is robust to the cutoff due to
the bimodal pattern in raw GenoSkyline-Plus annotation scores. To assess the
statistical significance of enrichment, we randomly selected 227 non-overlapping
segments across the genome while matching their sizes with the detected segments,
and calculated the overlaps with GenoSkyline-Plus annotations. We repeated the
permutation procedure 100,000 times to evaluate the significance of the observed
overlap.

We also assessed whether the detected regions were enriched in non-brain
tissue types after adjusting for the overlap of brain and non-brain annotations.
Specifically, for the pancreatic islets cell type annotation, we removed the
annotations that overlap with any of the eight significant brain cell type
annotations to define the conditional annotation of pancreatic islets. The same
procedure was taken to define the conditional annotation of mononuclear cells
from peripheral blood. Afterwards, permutation tests were performed on these two
conditional annotations. We performed conditional analysis on six generic
annotations including coding regions, enhancers, introns, promoters, 5′UTRs and
3′UTRs (extended by a 500-bp window around each of the annotations) in
Finucane et al. 52 by removing the overlapped regions between each generic
annotation and the brain tissue-specific annotations (merged from eight significant
brain cell type annotations). We used permutation test to assess the statistical
significance of enrichment in conditional analyses.

Using GENCODE V33lift37 on the UCSC genome browser, we extracted 968
genes with recognized Ensembl IDs in the genomic regions found to harbor local
genetic correlations among seven neuropsychiatric traits. We used FUMA53 to run
the Gene Ontology enrichment analysis with these 968 genes.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Summary statistics data of five psychiatric disorder were downloaded on the PGC
website, http://www.med.unc.edu/pgc/downloads; Summary statistics data of
neuroticism and intelligence were downloaded at the website of the Department of
Complex Trait Genetics, CNCR, https://ctg.cncr.nl/software/summary_statistics;
Summary statistics data of body-mass index and height were downloaded on the GIANT
consortium website http://portals.broadinstitute.org/collaboration/giant/index.php/
GIANT_consortium_data_files; Summary statistics for bipolar disorder, schizophrenia,
body-mass index, and height in the replication cohort were downloaded from UK
Biobank repository, http://www.nealelab.is/uk-biobank; phase 3 of the 1000 Genomes
Project ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/; FUMA, https://fuma.
ctglab.nl/; LDSC, https://github.com/bulik/ldsc; coloc, https://CRAN.R-project.org/
package=coloc;ρ-HESS, https://huwenboshi.github.io/hess/; gwas-pw, https://github.
com/joepickrell/gwas-pw; 66 GenoSkyline-Plus cell-type specific functional annotations,
http://genocanyon.med.yale.edu/GenoSkyline. Source data are provided with this paper.

Code availability
LOGODetect software is available at https://github.com/ghm17/LOGODetect (https://
doi.org/10.5281/zenodo.4559388).
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