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Alternative splicing (AS) is a fundamental step in eukaryotic mRNA biogenesis. Here, we

develop an efficient and reproducible pipeline for the discovery of genetic variants that affect

AS (splicing QTLs, sQTLs). We use it to analyze the GTEx dataset, generating a compre-

hensive catalog of sQTLs in the human genome. Downstream analysis of this catalog pro-

vides insight into the mechanisms underlying splicing regulation. We report that a core set of

sQTLs is shared across multiple tissues. sQTLs often target the global splicing pattern of

genes, rather than individual splicing events. Many also affect the expression of the same or

other genes, uncovering regulatory loci that act through different mechanisms. sQTLs tend to

be located in post-transcriptionally spliced introns, which would function as hotspots for

splicing regulation. While many variants affect splicing patterns by altering the sequence of

splice sites, many more modify the binding sites of RNA-binding proteins. Genetic variants

affecting splicing can have a stronger phenotypic impact than those affecting gene

expression.
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A lternative splicing (AS) is the process through which
multiple transcript isoforms are produced from a single
gene1. It is a key mechanism that increases functional

complexity in higher eukaryotes2. Often, its alteration leads to
pathological conditions3. AS is subject to a tight regulation,
usually tissue-, cell type-, or condition-specific, that involves a
wide range of cis and trans regulatory elements4,5. Since AS is
generally coupled with transcription, transcription factors and
chromatin structure also play a role in its regulation6.

In recent years, transcriptome profiling of large cohorts of
genotyped individuals by RNA-seq has allowed the identification
of genetic variants affecting AS, i.e. splicing quantitative trait loci
or sQTLs7–12. sQTL analyses in a variety of experimental settings
have helped to gain insight into the mechanisms underlying
GWAS associations for a number of traits, such as adipose-related
traits13, Alzheimer’s disease10, schizophrenia9 or breast cancer14,
among others. sQTLs might actually contribute to complex traits
and diseases at a similar or even larger degree than variants
affecting gene expression15.

The vast majority of methods commonly used for sQTL
mapping treat splicing as a univariate phenotype. They assess
association between genetic variants and the abundance of indi-
vidual transcripts7,16, or the splicing of individual exons9,17 or
introns12,15. However, this approach ignores the strongly corre-
lated structure of AS measurements (e.g. at constant gene
expression level, higher levels of a splicing isoform correspond
necessarily to lower levels of other isoforms). In contrast, we
propose an approach that takes into account the intrinsically
multivariate nature of alternative splicing: variants are tested for
association with a vector of AS phenotypes, such as the relative
abundances of the transcript isoforms of a gene or the intron
excision ratios of an intron cluster obtained by LeafCutter18.

Based on this approach, we have developed a pipeline for
efficient and reproducible sQTL mapping. Here we employ it to
leverage the multi-tissue transcriptome data generated by the
Genotype-Tissue Expression (GTEx) Consortium, producing a
comprehensive catalog of genetic variants affecting splicing in the
human genome. Downstream analyses of this catalog uncover a
number of relevant features regarding splicing regulation. Thus,
consistent with the multivariate nature of splicing, we observe
that sQTLs tend to involve multiple splicing events. A substantial
fraction of sQTLs also affects gene expression, a reflection of the
intimate relationship between splicing and transcription. We find,
however, many cases in which the expression of a gene other than
the sQTL target is affected by the same variant. In these cases, the
pleiotropic effect of the regulatory locus is not mediated by the
interplay between the splicing and transcription processes, but it
is exerted through different mechanisms, acting upon different
genes that otherwise may not appear to be directly interacting.
We also find that sQTLs tend to be preferentially located in
introns that are post-transcriptionally spliced: these introns
would be consequently acting as hotspots for splicing regulation.
While many variants affect splicing patterns by directly altering
the sequence of splice sites, many more modify the binding of
RNA-binding proteins (RBPs) to target sequences within the
transcripts. We observe that sQTLs often impact GWAS traits
and diseases more than variants affecting only gene expression,
confirming earlier reports which suggest that splicing mutations
underlie many hereditary diseases15,19. For several conditions,
GWAS associations are particularly strong for sQTLs altering
RBP binding sites.

Results
Identification of cis splicing QTLs across GTEx tissues. For
sQTL mapping, we developed sQTLseekeR2, a software based on

sQTLseekeR20, which identifies genetic variants associated with
changes in the relative abundances of the transcript isoforms of a
given gene. sQTLseekeR uses the Hellinger distance to estimate
the variability of isoform abundances across observations, and
Anderson’s method21,22, a non-parametric analog to multivariate
analysis of variance, to assess the significance of the associations
(see Methods and Supplementary Note 1). Among other
enhancements, sQTLseekeR2 improves the accuracy and speed of
the p-value calculation, and allows to account for additional
covariates before testing for association with the genotype, while
maintaining the multivariate statistical test in sQTLseekeR. It also
implements a multiple testing correction scheme that empirically
characterizes, for each gene, the distribution of p-values expected
under the null hypothesis of no association (see Methods and
Supplementary Note 1). To ensure highly parallel, portable and
reproducible sQTL mapping, we embedded sQTLseekeR2 in a
Nextflow23 (plus Docker, https://www.docker.com) computa-
tional workflow named sqtlseeker2-nf, available at https://github.
com/guigolab/sqtlseeker2-nf.

Here we extensively analyze the sQTLs identified by sqtlseeker2-
nf, using the expression and genotype data produced by the GTEx
Consortium. For most of the analyses, we employed isoform
quantifications obtained from the V7 release (dbGaP accession
phs000424.v7.p2), corresponding to 10,361 samples from 53 tissues
of 620 deceased donors. 48 tissues with sample size ≥ 70 were
selected for sQTL analyses. Under the assumption that most
variants with cis effects on alternative splicing are likely to be carried
on the sequence of the primary transcript or its close vicinity, we
tested variants in a cis window defined as the gene body plus 5 Kb
upstream and downstream the gene boundaries. In addition, to
demonstrate that the statistical framework of sQTLseekeR2 is not
restricted to the analysis of transcript abundances, but it can
leverage other splicing-related multivariate phenotypes, we have
also computed the sQTLs based on the intron excision ratios
obtained by LeafCutter18 from the GTEx RNA-seq data (Supple-
mentary Note 2). Finally, we also provide the sQTLs identified by
sqtlseeker2-nf in GTEx V8, which we compare to the sQTLs
produced by the GTEx Consortium, described in a recent
publication12. We show that the two sets of sQTLs differ indeed
in the nature of the AS events captured. Our approach detects more
events affecting the gene termini and intron retention, while the
approach by the GTEx Consortium tends to detect more events
involving internal exons. The two sQTL sets also differ regarding
several biological features at variant and gene level. For instance,
our approach seems to have more power to identify sQTLs affecting
genes with lower expression levels and shorter introns, as well as
involving variants with lower minor allele frequency (MAF). In
contrast, the GTEx Consortium’s approach has larger power to
identify sQTLs affecting genes with higher expression and longer
introns (Supplementary Note 3, Supplementary Data 7).

At a 0.05 false discovery rate (FDR), we found in GTEx V7 a
total of 210,485 cis sQTLs affecting 6,963 genes (i.e. sGenes: 6,685
protein coding genes and 278 long intergenic non-coding RNAs,
lincRNAs). On average, per tissue, we identified 1,158 sGenes
(Supplementary Table 1). 44% and 34% of all tested protein
coding genes and lincRNAs, respectively, were found to be
sGenes. In an analogous experimental setting, the GTEx
Consortium reported genetic variants affecting gene expression
(expression QTLs, eQTLs) for 95% and 71% of all tested protein
coding genes and lincRNAs, respectively24. To illustrate the
nature of the sQTLs identified with sqtlseeker2-nf, in Fig. 1 we
show the example of the SNP rs2295682, an sQTL for the gene
RBM23 shared across 46 tissues, with larger effect in brain
subregions such as the cortex. The SNP strongly affects the
relative abundances of the AS isoforms of the target gene, the
dominant isoform depending on the genotype at the sQTL.
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As expected, the number of sGenes over the number of tested
genes grows with the tissue sample size (r2= 0.91). This is
explained by the gain of power to detect sQTLs as the number of
samples increases (Fig. 2a). No signs of saturation are observed.
Some tissues, such as skeletal muscle or whole blood (with less
sQTLs than expected), and testis (with more sQTLs than
expected), escape the general trend. This was also observed for
eQTLs24. The cell type heterogeneity of the tissue, estimated using
xCell25, does not seem to have a large impact on sQTL discovery
compared to the tissue sample size (the partial correlation
between the number of sGenes over the number of tested genes
and the estimated cell type heterogeneity, controlling for the
tissue sample size, is 0.23, p-value 0.11, see Methods).

sQTL effect sizes, measured as the absolute maximum
difference (MD) in adjusted transcript relative expression
between genotype groups (see Methods), are generally low to
moderate (MD from 0.05 to 0.20). Nevertheless, around 20% of
sQTLs account for large effects (MD ≥ 0.20). As one would
expect, the median effect size detected across tissues drops

substantially with increasing sample sizes (Supplementary Fig. 1),
given that larger sample sizes allow the detection of smaller
effects. Figure 2b represents sQTL effect sizes (MD values) vs p-
values, together with the distribution of the former, for two
tissues with markedly different sample sizes: tibial artery (n=
388) and hypothalamus (n= 108).

GO enrichment analysis of sGenes shows a wide variety of
biological processes, including cellular transport, immune
response, mitochondrial functions and, interestingly, RNA
processing (Supplementary Fig. 2a). This might suggest some
mechanism of splicing autoregulation, as it has been previously
described26. In contrast, tested genes without sQTLs are enriched
in functions related to signaling and, especially, development
(Supplementary Fig. 2b). This resembles the behavior reported for
genes without eQTLs24, as it does the fact that genes without
sQTLs are less expressed than sGenes in all tissues (two-sided
Wilcoxon Rank-Sum test p-value < 10−16).

The sQTLs found here are highly replicated in other studies.
We compared them with those obtained in the Blueprint
Project27 for three major human blood cell types (CD14+

monocytes, CD16+ neutrophils, and naive CD4+ T cells, see
Methods). The majority of GTEx sQTLs replicate at 0.05 FDR
(from π1= 0.80 in brain subregions to π1= 0.96 in whole blood).
As expected, whole blood displays the highest sQTL replication
rate (Supplementary Fig. 3).

We characterized the types of AS events associated with sQTLs
(see Methods, Supplementary Fig. 4a). Note that here we also
account for other relevant sources of transcript diversity, such as
alternative transcription initiation and termination28. sQTLs
generally involve multiple events (on average 2.63). Around
34% of sQTLs are related to at least one AS event involving
internal exons and/or introns. Among them, exon skipping is the
most frequent simple event (7% to 10% of all events). In addition,
58% of sQTLs are associated with events affecting first/last exons
and untranslated regions (UTRs). The landscape of AS events
associated with sQTLs is very similar across tissues. However,
brain subregions present some particularities when compared to
non-brain tissues, such as a larger proportion of exon skipping

Fig. 1 sQTL example. a Relative abundances of the three most expressed
isoforms in the brain cortex from the gene RBM23 (chr14:23,369,854-
23,388,393, reverse strand, RBM23-001, RBM23-002 and RBM23-003, all
protein coding), for each genotype group at the rs2295682 locus
(chr14:23,374,862, G/A in the reverse strand), represented as boxplots.
RBM23 encodes for an RBP that may be itself involved in splicing. The least
abundant isoforms are grouped in Others. The number of individuals in
each genotype group is shown between parentheses. Individuals that are
homozygous for the reference allele (GG) at the SNP locus, express
preferentially RBM23-002 (blue), while they barely express RBM23-003
(red). In contrast, AA homozygous express preferentially RBM23-003 (red).
Heterozygous individuals exhibit intermediate abundances. RBM23-001
(green) has similar levels in the three genotype groups. In boxplots, the box
represents the first to third quartiles and the median, while the whiskers
indicate ± 1.5 × interquartile range (IQR). Source data are provided as a
Source Data file. b Exonic structure of the isoforms of RBM23. Compared to
RBM23-001 (green), RBM23-002 (blue) lacks exon 6, and RBM23-003 (red),
exons 4 and 6. A sashimi plot corresponding to the highlighted area
displays the mean exon inclusion of exon 6 of RBM23 across all brain
cortex samples of each genotype group at rs2295682. The plot was
obtained using ggsashimi86. The dotted vertical line marks the location of
the SNP. The number of reads supporting exon skipping increases with the
number of copies of the alternative allele A, matching the changes observed
in isoform abundances. This allele has been previously associated with
increased skipping of exon 687.
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events and a smaller proportion of complex events involving the
3′ gene terminus (see Supplementary Fig. 4b, c for details).

We found that 52% of the identified sQTLs are also eQTLs for
the same gene and tissue, although the top sQTL coincides with
the top eQTL only in 3% of the cases. This relatively large overlap,
which departs from that reported in some previous studies15,

matches what was observed for sQTLseekeR sQTLs in the GTEx
pilot study29. This is partially due to our sQTLs being able to
involve transcriptional termini, in addition to canonical splicing
events. It also indicates a substantial degree of co-regulation of
gene expression and splicing, either at the level of transcription
(e.g. variants that impact transcription and thus, splicing), or at
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the level of transcript stability (e.g. variants that affect splicing,
and as a consequence, transcript stability and gene expression).

We focused on a set of 148,618 variants that were tested for
association with both the expression and splicing of two genes
(i.e. g1 and g2) or more, in at least two tissues, and identified 6,552
cases in which the variant is only sQTL for gene g1, but not for
gene g2, in one tissue, and it is only eQTL for gene g2, but not for
gene g1, in a different tissue (Supplementary Fig. 5a). These cases
uncover regulatory loci in the genome that, either through the
same causal variant or through different causal variants in linkage
disequilibrium (LD), have different effects on different genes
through likely different molecular mechanisms. We term this
phenomenon heteropleiotropy. Note that our identification of
heteropleiotropic loci should be considered a first approximation,
since we lack a specific statistical test to assess heteropleiotropy
(see Methods and Discussion). Nevertheless, we found additional
biological support for the dual regulatory behavior of these loci.
We identified the ChIP-seq peaks corresponding to six histone
modifications from the ENTEx Project overlapping the hetero-
pleiotropic variants above (see Methods). We hypothesized that
loci with different regulatory effects (i.e. splicing and expression)
in different tissues would be differently marked by histone
modifications in these tissues. Indeed, we observed histone
modification changes in 24% of the heteropleiotropic variants
(Supplementary Data 1), compared to 19% of the non-
heteropleiotropic variants (two-sided Fisher’s exact test p-value
0.045, see Methods). Regardless of the underlying causal
structure, heteropleiotropic loci would uncover genomic regions
that allow the coordinated regulation of different processes and
affect different genes which otherwise do not appear to interact
directly with each other. While further work is required to
establish the relevance and generality of this phenomenon, Fig. 2c
and Supplementary Fig. 5b show some potentially interesting
examples.

sQTLs are highly shared across tissues. The large number of
tissues available in GTEx allowed us to evaluate tissue sharing and
specificity of sQTLs. For every pair of tissues, we selected variant-
gene pairs tested in both and found significant in at least one, and
computed the Pearson correlation (r) between their effect sizes
(MD values). Hierarchical clustering based on these correlations
grouped tissues with similar sQTL sharing patterns (Fig. 2d). A
comparable clustering was obtained when using the more strin-
gent Jaccard index (Supplementary Fig. 6). Brain subregions

cluster together and apart from the rest of the tissues, which form
a second major cluster. We observe a high degree of sQTL sharing
within each of the two groups (�r ¼ 0.80 and 0.78, respectively),
but lower between them (�r ¼ 0.64). The same pattern was
depicted for eQTLs in GTEx24. We further estimated tissue
specificity as st= 1��rt , where �rt is the mean correlation between a
given tissue t and the others (tissue specificity estimates shown in
Fig. 2d). On average, brain sQTLs are more tissue-specific than
non-brain sQTLs (�st ¼ 0.31 vs 0.25, two-sided Wilcoxon Rank-
Sum test p-value 9.32 ⋅ 10−5). Other tissues with relatively high
tissue-specific sQTLs include testis (0.37), skeletal muscle (0.33)
or liver (0.32).

sQTLs with large effects are more shared than those with
smaller effects (Supplementary Fig. 7a). As with eQTLs24, the
detection of sQTLs with small effects requires larger sample sizes,
thus sQTLs in tissues with small sample sizes tend to be more
shared, while sQTLs identified in tissues with large sample sizes
tend to be more tissue-specific (Supplementary Fig. 7b). To rule
out an effect of the sample size in the patterns of sQTL sharing,
we downsampled the original dataset to 100, 200 and 300 samples
per tissue, and evaluated again sQTL sharing. We found that the
patterns of sQTL sharing above are replicated independently of
the sample size (Supplementary Fig. 8).

To capture more complex sharing patterns, we further
designed a geometric approach that compares changes in the
whole splicing phenotype due to sQTLs between tissues (see
Methods and Supplementary Fig. 9a). The derived tissue
dendrogram (Supplementary Fig. 9b) displayed high similarity
with the ones generated by simpler approaches (i.e. based on MD
values and Jaccard index), and also with the one obtained using
multivariate adaptive shrinkage30 on LeafCutter sQTLs from
GTEx V812 (Supplementary Fig. 9c). This strongly supports the
robustness of the sQTL sharing patterns observed.

sGenes are also markedly shared: 66% of the genes tested in all
tissues are sGenes in at least two tissues. To identify tissue-
specific sGenes, we computed τs, a variation of the τ index31 based
on sGene significance. We also employed the standard τ to
determine the tissue specificity of sGene expression (see
Methods). We found 469 genes under strong tissue-specific
splicing regulation (highly tissue-specific sGenes), 81 of which did
not display tissue-specific expression (Supplementary Data 2).
GO enrichment of these genes (universe: all sGenes) identified
biological processes related to RNA processing and its regulation
(three out of five significant terms at FDR < 0.1: RNA splicing via

Fig. 2 Overall results, heteropleiotropy and sQTL sharing across tissues. a Proportion of sGenes (over tested genes) per tissue (y-axis) with respect to
the tissue sample size (x-axis). Tissue color codes are shown in Supplementary Table 1. b For two tissues with markedly different sample sizes, such as
tibial artery (left panel, n= 388 samples) and hypothalamus (right panel, n= 108 samples), we display the effect sizes (MD values, x-axis) of significant
sQTLs vs the−log10 of their association p-value (Anderson test) with the target sGene (y-axis). The density of points is shown, together with the sQTL
effect size distribution. Note that MD for sQTLs is bounded to [0.05, 1] (see Methods). c Example of a heteropleiotropic locus. The SNP rs8046859
(chr16:71,892,531, C/T) is an sQTL for the gene ATXN1L (chr16:71,879,894-71,919,171, forward strand) in Nerve Tibial (n= 361), but not in Muscle Skeletal
(n= 491). The SNP is not an eQTL for ATXN1L in any of the two tissues. In contrast, the SNP is an eQTL for the gene IST1 (chr16:71,879,899-71,962,913,
forward strand) in Muscle Skeletal, but not in Nerve Tibial. The SNP is not an sQTL for IST1 in any of the two tissues. In the left panel, the dots represent
the−log10 p-values of association with the expression (two-sided t-test, blue) and splicing (Anderson test, red) of the two genes in the two tissues, for
variants in a 20 Kb window centered at rs8046859 (the−log10 p-values corresponding to rs8046859 are highlighted by a diamond). The transparency of
the dots depends on the−log10 p-value. The significance level for each molecular trait, gene and tissue is shown as a colored, horizontal dashed line. When
this line is not present, the gene-level p-value is above the 0.05 FDR threshold and hence no variant is significantly associated with this molecular trait in
this tissue (see Methods). The shaded area represents the position of a H3K27ac ChIP-seq peak (see below). The right panel shows the fold-change signal
of the H3K27ac histone mark with respect to the input across ENTEx donors in Nerve Tibial and Muscle Skeletal, in the same genomic region of the left
panel. The line and colored area correspond, respectively, to the mean fold-change signal and its standard error (SEM) across four ENTEx donors (i.e.
mean ± SEM). The location of the SNP (vertical dashed line) and the overlapping ChIP-seq peak (intersection of the peaks in the four donors, black
rectangle) are also displayed. d Heatmap of sQTL sharing across GTEx tissues. Sharing estimates (see Methods) range from 0 (low sharing, blue) to 1
(high sharing, red). In addition, hierarchical clustering of the tissues based on sQTL sharing is displayed, together with the tissue sample sizes and tissue
specificity estimates. Source data for a–d are provided as a Source Data file.
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transesterification reactions, regulation of RNA splicing and
regulation of mRNA processing) suggesting again some mechan-
ism of splicing autoregulation26.

sQTLs are enriched in functional elements of the genome
related to splicing and in high-impact variants. To shed light on
the mechanisms through which sQTLs may impact splicing, we
built a comprehensive functional annotation of the human gen-
ome (see Methods). Overall, we observed a high density of
functional elements in the proximity of sQTLs (Supplementary
Fig. 10). We next evaluated the enrichment of sQTLs in every
functional category, with respect to a null distribution of similar
variants not associated with splicing (two-sided Fisher’s exact test,
FDR < 0.05). The top enrichments are summarized in Fig. 3a (the
complete list, together with the statistical significance associated
with each enrichment, is shown in Supplementary Fig. 11).

As one would expect from bona fide variants affecting splicing,
sQTLs are strongly enriched in splice sites (donors: OR= 12.98, adj.

p-value < 10−16; acceptors: OR= 12.23, adj. p-value 1.22 ⋅ 10−15).
They also display enrichments in exons, transcription factor binding
sites (TFBS, both activator and repressor), RBP binding sites
(including several relevant splicing factors and spliceosomal
components), and RNA Pol II sites. sQTLs tend to fall in open
chromatin regions and show enrichments for several chromatin
marks, particularly for H3K36me3 (OR= 2.85, adj. p-value < 10−16).
H3K27me3 regions, in contrast, are depleted of sQTLs (OR= 0.63,
adj. p-value < 10−16). sQTLs display large enrichments in predicted
protein loss-of-function consequences (stop-gained, frameshift, VEP
high impact variants, LOFTEE high-confidence loss-of function
variants (HC-LoF)) and potentially deleterious variants (according to
Polyphen32 and SIFT33 scores). In addition, we found an enrichment
in variants in high LD (r2 ≥ 0.80) with GWAS hits (OR= 2.08, adj.
p-value < 10−16). When performing stratified enrichments (see
Methods), we found that sQTLs with large effect sizes are more
enriched in high impact variants, splice sites and GWAS hits, while
sQTLs with small effect sizes show larger enrichments in RBP

Fig. 3 Functional enrichment and distribution of sQTLs. a Top enrichments of sQTLs in functional annotations. The height of the bars represents the odds
ratio (OR) of the observed number of sQTLs to the expected number of variants that are not sQTLs overlapping a given annotation (see Methods): Variant
Effect Predictor (VEP) categories (red) and impact (orange), ENCODE RBP eCLIP peaks (green), exons of GENCODE v19 protein coding and lincRNA genes
(yellow), Ensembl Regulatory Build elements (blue) and GWAS Catalog hits (purple). All these enrichments are significant at FDR < 0.05 and have OR
confidence intervals not overlapping the range [1/1.50, 1.50]. b Distribution of the mean proportion of sQTLs along the gene bodies of sGenes, their
upstream and downstream regions, introns and exons. The red dashed line represents the expected distribution under a uniform model (see Methods).
Source data for both a and b are provided as a Source Data file.
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binding sites, TFBS and open chromatin regions (Supplementary
Fig. 12).

In contrast to eQTLs, which tend to cluster around transcrip-
tion start sites (TSS)7,24, we found sQTLs preferentially located
towards transcription termination sites (TTS) (Fig. 3b), as
previously observed15. In addition, while exonic sQTLs are
uniformly distributed, intronic sQTLs are biased towards splice
sites. Overall, sQTLs are closer to splice sites than non-sQTLs
(two-sided Wilcoxon Rank-Sum test p-value < 10−16, Supple-
mentary Fig. 13).

sQTLs affect splice site strength and RBP binding. Enrichments
in functional annotations (Fig. 3a) suggested several mechanisms
through which sQTLs may affect splicing. One of them is the
modification of splice site strength. Thus, for each variant within
the sequence of an annotated splice site, we scored the site con-
sidering the reference and the alternative allele, using position
weight matrices (PWMs) (see Methods). Overall, when compared
to non-sQTL variants, a larger fraction of sQTLs modifies splice
site strength (63% vs 49%, OR= 1.79, two-sided Fisher’s exact
test p-value < 10−16). The absolute difference in splice site
strength is also larger for sQTLs (two-sided Wilcoxon Rank-Sum
test p-value 1.98 × 10−7), and increases with the sQTL effect size
(Fig. 4a).

Another mechanism through which sQTLs may affect splicing
is the modification of RBP binding sites. To investigate it, we used
eCLIP peaks of 113 RBPs available for HepG2 and K562 cell lines
from the ENCODE project34. We employed a k-mer-based
machine learning approach, which has been shown to outperform
PWMs to identify transcription factor binding sites35 and
provides a unique framework to assess the impact of genetic
variants on the binding36. First we trained, for each RBP, a
gapped k-mer support vector machine (gkm-SVM)37 on the
sequences of high-confidence eCLIP peaks. 79 RBPs with a mean
cross-validation ROC AUC ≥ 0.8 were kept. Then, we estimated
the impact of all variants (whether sQTLs or not) overlapping the
eCLIP peaks of each of these RBPs via the deltaSVM metric36,
which measures the difference in predictive potential between the
variant alleles (see Methods). To ensure the robustness of our
results, we further restricted the analysis to RBPs with at least
30 sQTLs among the top 5% variants most predictive of the
binding of the RBP at either allele, resulting in a final set of 32
RBPs (see Methods).

At FDR < 0.05, differences in ∣deltaSVM∣ between sQTLs and
non-sQTLs were found significant for ten RBPs (Fig. 4b, the
corresponding gkm-SVM ROC curves and motif logos are shown
in Supplementary Figs. 14 and 15, respectively). Notably, for nine
of these proteins the ∣deltaSVM∣ values are larger for sQTLs than
for non-sQTLs, as expected from variants regulating splicing. In
addition, three of them (PPIG, SF3B4 and PRPF8) are among the
top ten RBPs whose binding sites are more enriched in sQTLs
(Fig. 3a). In Fig. 4c, we show examples of the impact of the SNPs
rs4959783 and rs9876026, which are sQTLs for the genes PSMG4
and TAMM41 (see also Supplementary Fig. 16) and disrupt the
binding sites of the RBPs RBFOX2 and PRPF8, respectively.

We further investigated whether allele-specific RBP binding
(ASB) was occurring specifically at sQTLs. We obtained a set of
ASB variants identified in the ENCODE eCLIP dataset using
BEAPR (Binding Estimation of Allele-specific Protein-RNA
interaction)38 and overlapped them with our sQTLs (see
Methods). We found that sQTLs were highly enriched in ASB
variants, when compared to non-sQTLs, across all RBPs (OR=
2.30, two-sided Fisher’s exact test p-value < 10−16). When
considering individual RBPs, at FDR < 0.05 we found a significant
enrichment of sQTLs among ASB variants for 22 of them

(Supplementary Fig. 17), including six of the ones identified
above with larger ∣deltaSVM∣ values for sQTLs. Altogether, these
results suggest that sQTLs may affect splicing through allele-
specific binding of RBPs.

Overall, the effect sizes (MD) of sQTLs in splice sites are larger
than those of sQTLs overlapping RBP eCLIP peaks (two-sided
Wilcoxon Rank-Sum test p-value 1.98 ⋅ 10−7, Supplementary
Fig. 18), although the proportion of sQTLs in splice sites is much
smaller (1.5% vs 8.3% out of all sQTLs). Often, both mechanisms
may co-occur, as many RBPs bind near splice sites. This is the
case of PRPF8, which binds specifically to the sequence of splice
donors39. Indeed, the SNP rs9876026 (Fig. 4c), which modifies
∣deltaSVM∣ and has been identified as an allele-specific binding
SNP for PRPF8 by BEAPR, also disrupts a donor splice site.

sQTLs are preferentially located on post-transcriptionally
spliced introns. Although splicing generally occurs co-
transcriptionally (most introns are spliced prior to transcription
termination and polyadenylation), there is a group of transcripts,
often alternatively spliced, that tend to be processed more slowly,
even post-transcriptionally40. We evaluated the role of genetic
variants in the regulation of co- and post-transcriptional splicing
(here referred to as cs and ps, respectively). In order to identify cs
and ps introns, we determined the degree of splicing completion
of annotated introns in nuclear and cytosolic RNA-seq data
available for 13 cell lines from the ENCODE project (see Meth-
ods). We focused on a subset of introns consistently classified as
either cs or ps in at least 10 of the analyzed cell lines (14,699 and
6,419 introns, respectively).

We observe a higher variant density in ps introns than in cs
introns (4.38 vs 3.34 variants/Kb, differently distributed along the
intron, Supplementary Fig. 19a). The proportion of variants that
are sQTLs in ps introns is larger than in cs introns (9.2%
compared to 6.6%, OR= 1.47, two-sided Fisher’s exact test p-
value < 10−16). This enrichment is stronger when considering
sQTLs that are not eQTLs for the same gene and tissue (OR=
1.67, p-value < 10−16). Furthermore, sQTLs in ps introns display a
substantial enrichment, with respect to sQTLs in cs introns, in
RBPs and Pol II binding sites, and less markedly, in histone
marks such as H3K36me3 and H3K4me3, open chromatin
regions and TFBS (Supplementary Fig. 19b). The proportion of
sQTLs overlapping splice sites and GWAS hits is not significantly
different between the two types of introns.

These results suggest that splicing regulation occurs preferen-
tially at ps introns. This is expected, since these introns are
retained longer within the primary transcript, offering more
opportunities for regulation through the interaction with RBPs
and other factors, including chromatin-related ones.

sQTLs help to gain insight into disease and complex traits. To
explore the relevance of regulatory variation affecting splicing in
disease and complex traits, we assessed the overlap between GTEx
sQTLs and the GWAS Catalog (https://www.ebi.ac.uk/gwas),
extended to include variants in high LD (r2 ≥ 0.80) with the
GWAS hits. sQTLs display a substantial enrichment, when
compared to non-sQTLs, in variants associated with a wide
variety of GWAS traits and diseases (median OR= 3.23). Among
the diseases with the largest sQTL enrichment, we find many for
which alternative splicing has been previously related to their
pathophysiology (Supplementary Data 3). We integrated the
enrichment information with estimates of semantic similarity
between individual GWAS terms, computed from the Experi-
mental Factor Ontology (EFO)41. Then, we applied multi-
dimensional scaling (MDS) to summarize and represent the
results (see Methods). This allowed us to identify the major
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phenotype groups related to sQTLs. Trait measurements (right-
hand side of the MDS plot) and diseases (left-hand side) are the
two main groups of enriched GWAS terms observed (Fig. 5a).
Within the latter, we identify subgroups corresponding to cancer,
autoimmune diseases and other disorders (neurological, cardio-
vascular, metabolic, etc.).

We also compiled genome-wide GWAS summary statistics for
a subset of enriched traits representative of the observed clusters:
asthma42, breast cancer43, coronary artery disease44, heart rate45,

height46, LDL cholesterol levels47, rheumatoid arthritis48 and
schizophrenia49. We further characterized the contribution to the
disease phenotype of variants affecting splicing and variants
affecting exclusively gene expression using fgwas50 (see Methods).
Overall, both types of variants display effect sizes significantly
different from zero (Fig. 5b). Moreover, for some of the traits
analyzed, including asthma, breast cancer, heart rate and height,
we observe stronger GWAS associations among sQTLs than
among variants affecting only gene expression (Fig. 5c and

Fig. 4 Impact of sQTLs on splice sites and RBP binding sites. a Distribution of the absolute change in splice site strength for sQTLs with low, moderate
and high effect sizes (MD value). b Distribution of the absolute deltaSVM value (∣deltaSVM∣) of sQTLs and non-sQTLs, for RBPs with significantly different
mean ∣deltaSVM∣ between sQTLs and non-sQTLs (two-sided Wilcoxon Rank-Sum test, FDR < 0.05, total sample size for each test listed as follows:
nRBFOX2= 509, nPRPF8= 1,133, nGTF2F1= 376, nSF3B4= 595, nGRWD1= 736, nPPIG= 691, nGEMIN5= 345, nCSTF2T= 1,170, nRBM15= 373 and nXRN2= 450).
Data is shown as boxplots, where the box represents the first to third quartiles and the median, and the whiskers indicate ± 1.5 × interquartile range (IQR).
c Modification of the binding sites of the RBPs RBFOX2 (left) and PRPF8 (right) by SNPs rs4959783 (chr6:3,260,093, G/A, ∣deltaSVM∣ = 2.48) and
rs9876026 (chr3:11,849,807, T/G in the reverse strand, ∣deltaSVM∣ = 4.77), respectively. The lines represent the gkm-SVM scores of all possible
(overlapping) 10-mers in a 100 bp window around the SNP. Those corresponding to the 10-mers overlapping the SNP are colored according to the allele.
SNP positions are marked with a dashed line. The gray area includes the 90% middle gkm-SVM scores of 10-mers not overlapping the variant. The relative
location of the predicted RBP motifs and the corresponding sequence logos are also displayed. In the logos, the SNP position is marked with an asterisk.
Source data for a–c are provided as a Source Data file.
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Supplementary Fig. 20), suggesting that alterations in splicing
might play a relevant role in the molecular mechanisms
underlying these traits.

In addition, we observe that GWAS variants are especially
enriched among sQTLs located in splice sites (OR= 2.66, two-
sided Fisher’s exact test p-value 1.02 × 10−9) or within RBP
binding sites (OR= 1.78, two-sided Fisher’s exact test p-value <
10−16). In particular, some of the traits and diseases with

available summary statistics display stronger GWAS associations
for sQTLs in RBP binding sites than for other sQTLs. Notably,
this behavior seems to be trait/disease- and RBP-specific
(Supplementary Fig. 21).

An interesting example of how sQTL mapping can help to gain
insight into the mechanisms underlying GWAS associations is the
case of asthma and the gene gasdermin b (GSDMB). Asthma
displays the largest effect size for sQTL variants (maximum
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likelihood estimate= 2.32, Fig. 5b), and stronger associations for
sQTLs than for variants affecting only gene expression, or
variants affecting neither expression nor splicing (Fig. 5c). Indeed,
we identified over 850 sQTLs co-localizing with known asthma
loci, affecting the splicing patterns of genes related to immunity,
including interleukins and immune cell receptors (IL13, TLSP,
IL1RL1, TLR1), major histocompatibility complex components
(HLA-DQA1, HLA-DQB1) or interferon-activated transcription
factors (IRF1). However we also found other genes, such as
GSDMB, with a priori less clear roles in the pathophysiology of
the disease.

The GSDMB locus (17q21) has been consistently identified as a
contributor to genetic susceptibility to asthma42 and other
autoimmune diseases, such as type 1 diabetes51, ulcerative
colitis52 or rheumatoid arthritis53. Although its exact function
is unknown, GSDMB is highly expressed in human bronchial
epithelial cells in asthma54,55, and it is known that overexpression
of the human GSDMB transgene in mice induces an asthma
phenotype55. In addition, the lipid-binding N-terminal domain of
GSDMB and other gasdermins causes pyroptotic cell death56,
potentially leading to the release of inflammatory molecules that
trigger the asthma pathophysiology.

GSDMB is an sGene in 39 GTEx tissues, including lung (sGene
FDR= 1.42 × 10−10, median MD= 0.22). Indeed, sQTLs for
GSDMB are among the top associated variants with asthma in42

(Fig. 5d). Allele C of the splice acceptor variant rs11078928
(chr17:38064469, T/C) has been shown to lead to the skipping of
exon 6, which encodes 13 amino acids in the N-terminal domain,
disrupting its pyroptotic activity54. While the major allele (T) is
associated with a higher incidence of asthma, the C allele confers
a lower asthma risk54. We have identified rs11078928 as an sQTL
for GSDMB, whose alternative allele C precisely promotes
expression of isoforms GSDMB-001 and GSDMB-002 (exon
6 skipping) vs isoform GSDMB-003 (exon 6 inclusion) (Supple-
mentary Fig. 22).

Discussion
Using the unprecedented resource generated by the GTEx Con-
sortium, we have obtained and analyzed a comprehensive set of
genetic variants in the human genome affecting transcript iso-
form abundances (splicing QTLs, sQTLs). Unlike most methods
for sQTL detection, we use a multivariate approach that monitors
global changes in the relative abundances of a gene’s transcript
isoforms, rather than targeting specific splicing events. Leveraging
the correlated structure of isoform abundances is likely to result
in increased power for sQTL mapping. Indeed, our approach has
demonstrated the ability to detect sQTLs associated with complex
splicing events that often escape univariate approaches20. In

addition, we show that our method is not restricted to the analysis
of transcript abundances, but can also accommodate other AS
phenotypes, such as LeafCutter’s intron excision ratios18. A
comparison of the resulting sQTLs obtained employing the two
types of input data highlights the complementarity between glo-
bal and local views of alternative splicing, especially regarding the
types of splicing events identified20,29. We also compared our
sQTL set (obtained using RSEM + sQTLseekeR2) with the one
generated by the GTEx Consortium (LeafCutter + FastQTL)12

and observed analogous differences in the nature of the splicing
events identified, showing that the splicing phenotype employed
for sQTL mapping is a major determinant of the resulting sQTL
catalog. Moreover, while the overlap between the two sets is
moderate, the sQTLs identified exclusively by either approach
differ in a number of biological features, both at variant and target
gene level, underlining the complementarity between the two
sQTL mapping pipelines.

We have surveyed a large collection of tissues. Our analyses
show that sQTLs tend to be highly shared, suggesting that there is
a core set of variants that are involved in the regulation of splicing
independently of the tissue or cell type. This has also been
recently reported by the GTEx Consortium12. Among the genes
whose splicing is regulated by genetic variants (i.e. sGenes), there
is a consistent enrichment of functions related to RNA proces-
sing, maybe reflecting splicing autoregulation. Indeed, several
positive and negative autoregulation and cross-regulation
mechanisms, such as coupling to nonsense-mediated decay,
have been proposed for a large number of splicing factors26.

Overall, we found fewer genes regulated at splicing than at
expression level. This is in line with the smaller contribution of
splicing, compared to gene expression, to the global variability in
transcript abundances across tissues and individuals57,58.
Although this observation could be also due to the different
preprocessing steps and statistical methodologies applied in both
analyses, it is consistent with recent reports that use the same
approach to map both sQTLs and eQTLs in the GTEx dataset12.
In addition, many variants seem to be involved simultaneously in
the regulation of both processes. This is not surprising, given that
there is a substantial interplay between the molecular mechan-
isms underlying splicing and transcription, and because splicing
often takes place co-transcriptionally6. Moreover, variants alter-
ing splicing can affect RNA stability and, consequently, gene
expression59.

In this regard, we have observed that introns that are spliced
post-transcriptionally (ps) tend to be more enriched in sQTLs
than introns that are spliced co-transcriptionally (cs). This is
somehow expected, as ps introns are retained longer within the
primary transcript, offering more opportunities for splicing

Fig. 5 sQTLs and GWAS. a Multidimensional scaling-based representation of the semantic dissimilarities between GWAS traits and diseases whose
associated variants are enriched among sQTLs with respect to non-sQTLs (two-sided Fisher’s exact test FDR < 0.05). Each GWAS term is represented by a
dot, whose size corresponds to the enrichment odds ratio (OR), and its color to the Experimental Factor Ontology (EFO) parent category the term belongs
to. GWAS terms that lie close to each other are semantically similar. Eight representative traits with available summary statistics are highlighted. To help
visualization, only the labels for the non-redundant, confidently and highly enriched terms are displayed (p-value < 10−8, lower bound of the 95%
confidence interval (CI) for the OR estimate > 1.5, width of the 95% CI for the OR estimate below the median). b Maximum likelihood estimates and 95%
CIs (shown as dots and error bars, respectively) for the GWAS association effect size of variants affecting splicing (S), and variants affecting expression,
but not splicing (E), for eight traits and diseases. c Quantile-quantile plot of p-values for association with asthma in42 for sQTLs (black dots), eQTLs
without effects on splicing (blue line and area), and variants with effects neither on expression nor on splicing (black line and gray area). Lines and colored
areas represent, respectively, medians and middle 95% observed−log10 p-values across 10,000 random samplings from the corresponding variant set,
with the same size as the sQTL set. The identity line is shown in red. d p-values for association with asthma in42 (left y-axis) of variants in the region
chr17:38,010,000-38,130,000, around the GSDMB gene (highlighted). The larger dots correspond to variants identified as sQTLs for the GSDMB gene in
the lung. Linkage disequilibrium patterns (color-coded) and recombination rates are also displayed. The lower panels represent the location of RBP eCLIP
peaks, H3K36me3 marked-regions and other GWAS Catalog associations with asthma (shown as arrows). The highlighted variant (rs2305480) is in
perfect LD with rs11078928, previously shown to have an impact on GSDMB splicing54. Source data for a–d are provided as a Source Data file.
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regulation. Consistent with this, sQTLs in ps introns display a
larger enrichment, compared to sQTLs in cs introns, in RBP
binding sites, but also in Pol II binding sites and histone marks.
We note that chromatin-related features play a prominent role in
co-transcriptional splicing, often through the regulation of tran-
scription6. However, not fully spliced but already 3’-end mature
transcripts are present in the fraction of RNA attached to
chromatin60,61. In this context, interactions between chromatin-
side features and not fully spliced transcripts can occur post-
transcriptionally. Indeed, similar enrichments have been reported
for exons that are spliced more slowly40. Overall, it seems that
post-transcriptionally spliced introns play a larger role in splicing
regulation than introns quickly spliced during transcription.

In addition to variants that are sQTLs and eQTLs for the
same gene, we have found many variants that are sQTLs for a
gene and eQTLs for a different one. In order to rule out indirect
regulatory effects (e.g. when the variant directly affects the
expression – splicing – of one gene, and the product of this gene
directly affects the splicing – expression – of the other gene), we
considered each effect (splicing or expression) occurring in dif-
ferent tissues. Since our multivariate approach is not compatible
with currently available co-localization methods (see below), we
cannot distinguish the cases in which the two effects are indeed
caused by the same variant or by two different variants in LD.
Regardless of the underlying causal structure, these variants
uncover regulatory loci, which we termed heteropleiotropic, that
would be involved in the coordinated regulation, through different
mechanisms, of different genes which otherwise do not appear to
directly interact. Thus, heteropleiotropic loci could reveal reg-
ulatory relationships between genes that may not be easily cap-
tured by co-expression or splicing networks, highlighting the
complexity of the gene regulation program in eukaryotes. While
we provide biological evidence supporting this phenomenon, our
results should be considered preliminary. In particular, we lack a
specific statistical test to assess whether a given variant has a
regulatory effect on the expression of a gene only in one tissue
and, simultaneously, on the splicing of a different gene only in a
second tissue. Further work is thus required to investigate the
biological relevance of this phenomenon.

Our study also helps to understand the molecular mechanisms
through which genetic variants impact splicing. Two such
mechanisms appear to be the most relevant. On the one hand,
direct impact on donor and acceptor splice sites. On the other
hand, modification of binding sites of a wide variety of tran-
scriptional regulators, especially RBPs, which are major players in
RNA processing, transport and stability5,62. While the latter
seems to occur in a larger number of cases, the former often leads
to stronger effects on splicing. However, in many cases both
mechanisms are likely to cooperate, given that RBPs often bind
near splice sites.

Finally, our work provides new insights into the relationship
between genetic variation, splicing and phenotypic traits. Speci-
fically, we found that sQTLs are enriched in variants associated
with a number of complex traits and diseases, some of them
previously reported9,10,14,15. sQTLs display stronger GWAS
associations than variants not associated with splicing and, for
some traits, even stronger than variants affecting exclusively gene
expression. This grants splicing a key role in mediating the
impact of genetic variation in human phenotypes15. Because gene
expression is the main driver of biological function, we hypo-
thesize that genetic variants affecting expression are likely to have
a much larger biological impact than those affecting splicing:
often, they could be lethal during development. In contrast,
genetic variants affecting splicing may have subtler effects,
therefore being better tolerated and leading more frequently to
observable phenotypes. That genetic variants affecting splicing

may underlie most human hereditary diseases has already been
pointed out19. Especially relevant seems to be the implication of
sQTLs in the mechanisms underlying autoimmune diseases, also
supported by the overrepresentation of immune functions among
sGenes. Actually, sQTLs have been recently proposed as relevant
players in human immune response and its evolution16. In
addition, sQTLs altering RBP binding seem to play a prominent
role in disease. Indeed, the relevance of RBPs in human disorders
has been often remarked62.

A more detailed analysis of the relationship between sQTLs
and GWAS variants could be achieved by the usage of statistical
methods to assess co-localization63–65, and subsequent fine-
mapping of the sQTL candidates66–68 to assign causal prob-
abilities. However, currently available methods are not directly
applicable within our multivariate, non-parametric framework. In
addition, recent works have demonstrated the utility of in silico
splicing predictors to identify pathogenic variants affecting spli-
cing, especially in the case of Mendelian disorders69–71. These
methods provide a complementary view to RNA-seq-based
approaches that measure splicing changes associated with
genetic variants, such as sQTLseekeR2. Indeed, while the former
target rare variants in the vicinity of splice sites with strong
phenotypic effects, the latter focus on common regulatory var-
iation, not restricted to the splice region nor necessarily patho-
genic. Furthermore, the ability of pathogenicity predictors to
account for features such as evolutionary conservation or exon
importance provides valuable information about the relevance of
individual alleles71, which may help prioritize sQTLs in clinical
settings.

In summary, our implementation of an enhanced pipeline for
sQTL mapping based on sQTLseekeR2, Nextflow and Docker will
help sQTL discovery in multiple datasets, across different plat-
forms, in a highly parallel and reproducible manner. Here we
have employed it to identify sQTLs in the GTEx dataset. The
extensive catalog of sQTLs generated constitutes a highly valuable
resource for the field. As our initial analyses already show, this
resource will contribute to the understanding of the mechanisms
underlying alternative splicing regulation and its implication in
phenotypic traits, including disease risk.

Methods
GTEx data. Transcript expression (transcripts per million, TPM) and variant calls
(SNPs and short indels) were obtained from the V7 release of the Genotype-Tissue
Expression (GTEx) Project (dbGaP accession phs000424.v7.p2). These correspond
to 10,361 samples from 620 deceased donors with both RNA-seq in up to 53 tissues
and Whole Genome Sequencing (WGS) data available. Metadata at donor and
sample level and variant annotations (Ensembl’s Variant Effect Predictor, VEP,
v83, http://www.ensembl.org/info/docs/tools/vep, with the Loss-Of-Function
Transcript Effect Estimator extension, LOFTEE, https://github.com/konradjk/
loftee) were also retrieved. Data from dbGaP was downloaded using IBM Aspera
Connect v3.6.1 (the rest of the data downloaded for this work was obtained via
GNUWget v1.14). In GTEx V7, RNA-seq reads are aligned to the human reference
genome (build hg19/GRCh37) using STAR72 v2.4.2a, based on the GENCODE v19
annotation (https://www.gencodegenes.org/human/release_19.html). Transcript-
level quantifications are obtained with RSEM73 v1.2.22. WGS reads are aligned
with BWA-MEM (http://bio-bwa.sourceforge.net) after base quality score recali-
bration and local realignment at known indels using Picard (http://broadinstitute.
github.io/picard). Joint variant calling across all samples is performed using
GATK’s HaplotypeCaller v3.4 (https://software.broadinstitute.org/gatk/
documentation/tooldocs). Further details on GTEx data preprocessing and QC
pipelines can be found on the GTEx Portal (https://gtexportal.org).

sQTL mapping
Gene, transcript and variant filtering. 48 tissues with sample size n ≥ 70 were
selected for cis sQTL mapping. The cis window was defined as the gene body
plus 5 Kb upstream and downstream the gene boundaries, and provided a good
balance between the number of variants analyzed per gene and the computation
time (see also 20, 27 and 29). We considered genes expressed ≥ 1 TPM in at least
80% of the samples (samples with lower gene expression were removed from the
analysis of the gene), with at least two isoforms and a minimum isoform expression
of 0.1 TPM (transcripts with lower expression in all samples were removed).
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These filters correspond to the default parameters of sQTLseekeR2. We analyzed
only biallelic SNPs and short indels (autosomal + X) with MAF ≥ 0.01 and at least
10 samples per observed genotype group. In total, 3,588,609 variants and 16,010
genes (15,195 protein-coding, 815 lincRNA) were analyzed.

Covariates included. To evaluate the impact of known technical and biological
covariates at sample and donor level on transcript relative abundances, we
regressed the first ten principal components (PCs) of the transcript relative
expression matrix per tissue onto each available covariate, determining the per-
centage of variance explained (R2

adj). We selected donor ischemic time, gender and
age, as well as sample RIN (RNA integrity number), as the most relevant covariates.
We also included the first three genotype PCs (obtained from dbGap), to control
for population (i.e. ancestry) effects, and the genotyping platform employed
(Illumina HiSeq 2000 or HiSeq X). Selected covariates were regressed out from the
relative abundances of each gene’s transcript isoforms by sQTLseekeR2 before
testing for association with the genotype.

Software. For sQTL mapping we employed sQTLseekeR2 v1.0.0, an enhanced
version (see also Supplementary Note 1) of the sQTLseekeR R package20, which
identifies genetic variants that are associated with multivariate changes in the
relative abundances of a gene’s transcript isoforms (i.e. splicing ratios). sQTLsee-
keR2 was embedded in sqtlseeker2-nf, a highly parallel, portable and reproducible
pipeline for sQTL mapping developed using Nextflow23, a framework for com-
putational workflows, and Docker container technology. sQTLseekeR2 and
sqtlseeker2-nf are available at https://github.com/guigolab.

Details on significance assessment. We performed cis sQTL mapping on each tissue.
Nominal p-values were obtained using the function sqtl.seeker. To correct for
the fact that multiple genetic variants in LD were tested per gene, an adaptive
permutation scheme was applied (implemented in the function sqtl.seeker.
p). A Benjamini-Hochberg false discovery rate (FDR) threshold of 0.05 was
selected to identify sGenes. To retrieve all significant variant-gene pairs, we
employed a procedure identical to the one used in ref. 24 for expression QTLs
(implemented in the function sqtls.p). See Supplementary Note 1 for details. In
addition, as our test statistic is sensitive to the heterogeneity of the splicing ratios’
variability among genotype groups, a multivariate homoscedasticity test74 was also
performed for each variant-gene pair. Pairs failing this test (FDR across all nominal
tests < 0.05) were still assessed for significance and taken into account for multiple
testing correction, but they were not reported as significant sQTLs.

Cell type heterogeneity. We employed xCell25 to estimate the enrichment of 64
reference cell types from the bulk expression profile of each GTEx sample. We
applied the xCellAnalysis function in the xCell R package to the full gene
expression TPM matrix (56,205 genes × 11,688 samples), in order to maximize
tissue heterogeneity. We then applied the τ index31 (see also section sQTL sharing)
to median xCell enrichments across samples per tissue. The cell type heterogeneity
of a tissue was estimated as 1− τ. While these results should be interpreted with
caution, as xCell is not a deconvolution method but an enrichment method, they
were generally biologically meaningful. For example, the most homogeneous tis-
sues included brain subregions and transformed fibroblasts, and the most het-
erogeneous, spleen and whole blood. To determine the impact of the cell type
heterogeneity of a tissue on sQTL discovery, we computed the partial correlation
between the number of sGenes over the number of tested genes and the estimated
cell type heterogeneity (i.e. 1− τ), controlling for the tissue sample size.

sQTL effect size. We used the absolute maximum difference (MD) in mean
adjusted transcript relative expression between genotype groups as a measure of the
size of the effect. MD takes values in the interval [0, 1]. In practice, usual MD
values belong to [0.01, 0.4]. As a general rule, we considered MD values < 0.1 as
small effect sizes, MD values between 0.1 and 0.2 as moderate effect sizes, and MD
values greater than 0.2 as large effect sizes. sQTLs with MD values below 0.05 were
not taken into account for further analyses (default in sQTLseekeR2).

GO enrichment of sGenes. For each tissue, we obtained the corresponding set of
sGenes, and performed hypergeometric tests to assess Gene Ontology (GO) Bio-
logical Process (BP) term over-representation, selecting as gene universe all tested
genes. We set a FDR threshold of 0.1 to identify significantly enriched terms.
Similarly, we selected genes that were not sGenes in any tissue, and performed a
hypergeometric test to assess GO BP term over-representation in this set (FDR <
0.1, universe: all tested genes). Then, we employed REVIGO75 (http://revigo.irb.hr,
with parameters: allowed similarity= 0.9, database=H. sapiens, semantic metric=
SimRel) to remove highly redundant terms and generate semantic similarity-based
GO term representations for sGenes and non-sGenes.

sQTL replication. To assess replication of GTEx sQTLs, we examined the p-values
for matched variant-gene pairs identified as splicing QTLs by sQTLseekeR for three
immune cell types (CD14+ monocytes, CD16+ neutrophils, and naive CD4+

T cells) in the Blueprint Project27. Both studies have large differences in RNA

sources (tissues in GTEx vs cell types in Blueprint), library preparation (unstranded
polyA+ vs stranded Ribo-Zero), sequencing strategy (e.g. paired-end vs single-end
in monocytes and neutrophils) and data processing pipelines (e.g. different tran-
script quantification software). π1 statistics, that provide an estimate of the pro-
portion of true positives76, were computed for each pair GTEx tissue/Blueprint cell
type. A final replication rate for each GTEx tissue was calculated as the average π1
value across the three Blueprint cell types.

Alternative splicing events associated with sQTLs. To determine the nature of
the splicing events associated with sQTLs we selected, for each sQTL, the two
isoforms of the target sGene that changed the most (in opposite directions) across
genotypes. Then, we compared the exonic structure of both transcripts using the
function classify.events of sQTLseekeR, which extends the classification
proposed in AStalavista77. We considered the same event categories depicted in20:
exon skipping, alternative 5′ and 3′ splice sites, intron retention, mutually exclusive
exons, alternative first and last exons, alternative 5′ and 3′ UTRs, tandem 5′ and 3′
UTRs, complex splicing events (complex combinations of events affecting internal
exons) and complex 5′/3′ events (complex combinations of events affecting 5′/3′
termini). Some of these events are not explicitly involving splicing, but alternative
transcription initiation and termination sites. Note that each transcript pair, and
therefore each sQTL, can be associated with more than one event.

Heteropleiotropy and ENTEx histone modification analysis. Given a genetic
variant v and a pair of genes (i.e. g1 and g2) and tissues (i.e. t1 and t2), we define v as
heteropleiotropic with effects in different tissues if (i) v is an sQTL – but not an
eQTL – for gene g1 in tissue t1, (ii) v is an eQTL – but not an sQTL – for gene g2 in
tissue t2, (iii) v is neither an sQTL nor an eQTL for gene g2 in tissue t1 and (iv) v is
neither an sQTL nor an eQTL for gene g1 in tissue t2. Note that here we propose a
definition rather than a thorough methodological approach to determine whether a
locus displays (or not) this behavior. To the best of our knowledge, currently
available statistical tests cannot be used to assess this phenomenon. Hence, our
identification of heteropleiotropic loci should be considered a first approximation
based on indirect evidence. Out of 148,618 variants tested for association with both
the expression and splicing of at least two genes in at least two tissues, we identified
6,552 heteropleiotropic cases. In order to evaluate whether changes at epigenetic
level were occuring at these positions, we obtained ChIP-seq peaks corresponding
to six histone modifications (H3K27ac, H3K4me1, H3K4me3, H3K36me3,
H3K27me3 and H3K9me3) from the ENTEx data collection of the ENCODE
Project78,79 (https://www.encodeproject.org, accessed 2019-10-04, accession num-
bers and URLs provided in Supplementary Data 4). ENTEx is a joint effort between
the GTEx and ENCODE consortia to deeply profile overlapping tissues from the
same four donors (two male, two female) using shared technologies. The two
tissues of interest were available for at least three out of four ENTEx donors for
2,855 heteropleiotropic variants. By overlapping these with the ChIP-seq peaks in
the corresponding tissues, we identified 699 cases where one or more histone marks
present in a tissue were absent in the other (in at least three donors). We compared
this number with the one obtained for variants v0 affecting both the splicing and
expression of the two genes (g1 and g2) in the two tissues (t1 and t2), using two-
sided Fisher’s exact test for significance assessment.

sQTL sharing. For every pair of tissues, we selected variant-gene pairs tested in
both and found significant in at least one. We computed Pearson correlation (r)
between their effect sizes (MD values). Tissue specificity was estimated as st= 1��rt ,
where �rt is the mean correlation between a given tissue t and the others. To
determine the robustness of the observed sharing patterns with changes in the
sample size, we randomly downsampled every original tissue dataset once to 100,
200 and 300 samples, ran our sQTL mapping pipeline again and re-evaluated the
sharing patterns. Alternatively, we computed the Jaccard index on the sets of
variant-gene pairs identified in every pair of tissues. In this case, tissue specificity
estimates corresponded to 1��jt , where�jt is the mean Jaccard index between a given
tissue t and the others.

We further compared these approaches with a third strategy, aimed at
evaluating the changes in the whole splicing phenotype due to sQTLs between
different tissues, rather than relying on MD values or sQTL presence/absence. This
allows more flexibility, likely resulting in an increased ability to capture complex
sharing patterns. In short, we focused on variant-gene pairs tested in all tissues and
found significant in at least one. For every tissue ti, variant-gene pair j∈ {1…p},
and genotype group k∈ {0, 1, 2}, we computed the centroid of the adjusted (square
root transformed, covariate corrected) splicing ratios, cti jk . Then, we obtained:

dðt1; t2Þ ¼
1
p

Xp
j¼1

X2
k¼0

k ct1 jk � ct2 jk k ð1Þ

where dmeasures the distance between any two tissues (t1 and t2) in terms of sQTL
sharing, as the mean (across variant-gene pairs) of the sum (across genotype
groups) of the Euclidean distance between centroids (∥x∥ represents the Euclidean
norm of vector x). Small values of d correspond to large sQTL sharing, and vice
versa (Supplementary Fig. 9a illustrates the behavior of d for a single variant-gene
pair evaluated in 4 tissues). A distance matrix built upon d values was then
employed as input for hierarchical clustering.
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To compare the tissue clusters obtained using different approaches we
computed Baker’s Gamma (Γ), a metric of similarity between two dendrograms
given by the rank correlation between the stages at which pairs of objects combine
in each of the two trees80. Γ ranges from -1 to 1, with values close to 1
corresponding to high similarity between the two dendrograms. To assess the
significance of this similarity, we performed a permutation test (shuffling the labels
of one tree 10,000 times, keeping tree topologies constant). We also employed
Baker’s Gamma to compare our trees with the one obtained using mashr30 for
LeafCutter sQTLs in GTEx V812, available at https://github.com/broadinstitute/
gtex-v8.

Of note, we employed pairwise approaches to study sQTL sharing, rather than
methods to analyze QTL sharing jointly across tissues (such as mashr, to cite an
example), given that the latter, to the best of our knowledge, cannot be applied in
our multivariate, non-parametric setting.

In addition, for each sGene tested in all tissues and found significant in at least
one, we determined tissue specificity of the sGene expression, using the τ index31:

τ ¼
Pn
t¼1

ð1� bxtÞ
n� 1

; bxt ¼ xt
max
1≤ t ≤ n

ðxtÞ
ð2Þ

where xt is the expression of the gene in tissue t and n the number of tissues. τ takes
values between 0 (i.e. genes equally expressed in all tissues) and 1 (i.e. tissue-
specific genes). We calculated τ using median gene expression across tissues. In
addition, to assess tissue specificity of splicing regulation, we computed a variation
of τ, τs, where xt was the−log10(FDR) of the sGene in tissue t. For sGenes in the
top 20 percentile of the distribution of τs values, and the bottom 20 percentile of the
distribution of τ values, we evaluated GO BP term over-representation
(hypergeometric test, FDR < 0.1, universe: all sGenes).

Functional enrichment of sQTLs. ChIP-seq peaks (transcription factor binding
sites, histone marks) and open-chromatin regions were obtained from the Ensembl
Regulation dataset (ftp://ftp.ensembl.org/pub/grch37/release-86/regulation/
homo_sapiens/AnnotatedFeatures.gff.gz). eCLIP peaks in HepG2 and/or K562 cell
lines for 113 RBPs34 were obtained from the ENCODE Project78,79 (https://www.
encodeproject.org, see section sQTL impact on splice site strength and RBP binding
sites for details). Disease and complex-trait associated variants were retrieved from
the GWAS Catalog (https://www.ebi.ac.uk/gwas, accessed 2018-09-18), extended to
GTEx variants in high linkage disequilibrium (r2 > 0.8) with the GWAS hits.
Protein coding and lincRNA exons were derived from the GENCODE v19 anno-
tation. The coordinates of these functional elements were overlapped with all the
tested variants (either sQTLs or not) to obtain a functional annotation per variant.
The functional consequences of each variant (stop-gained, frameshift, etc.), com-
puted by the Variant Effect Predictor (VEP, http://www.ensembl.org/info/docs/
tools/vep), were obtained from dbGap (accession phs000424.v7.p2). Note that the
VEP leverages the Ensembl Variation dataset, which contains data from a wide
variety of sources (https://www.ensembl.org/info/genome/variation/species/
sources_documentation.html). From the VEP result we also identified variants with
high impact or in the categories: probably damaging (PolyPhen, http://genetics.
bwh.harvard.edu/pph2), deleterious (SIFT, https://sift.bii.a-star.edu.sg), pathogenic
(ClinVar, https://www.ncbi.nlm.nih.gov/clinvar) and high-confidence loss-of-
function (LOFTEE, https://github.com/konradjk/loftee).

The top ten most significant sQTLs per gene and tissue were compared to a null
distribution of 1,000 sets of randomly sampled variants not associated with splicing
(FDR > 0.05, i.e. non-sQTLs), of the same size of the sQTL set. The top ten were
selected to ensure the coverage of the less common annotations. Non-sQTLs were
matched to sQTLs in terms of relative location within the gene and MAF.
Specifically, we selected non-sQTLs so that they were located in the same bins (see
section sQTL location) within the genes for which they were not sQTLs, as sQTLs
within the genes for which they were sQTLs, and had MAFs equal to the sQTLs’
MAFs ± 0.02. The enrichment was calculated as the odds ratio (OR) of the
frequency of a certain annotation among sQTLs to the mean frequency of the same
annotation across the 1,000 non-sQTLs sets. To ensure enrichment reliability, we
filtered out annotations with a mean frequency across the non-sQTLs sets lower
than five. The significance of each enrichment was assessed using a two-sided
Fisher’s exact test. p-values were corrected for false discovery rate, selecting a
threshold of FDR < 0.05. Enrichments in a subset of relevant features, such as high
impact/potentially damaging variants, splice sites, GWAS hits, exons, TFBS (all TFs
pooled together), RBP binding sites (all RBPs pooled together), Pol II binding sites,
HK36me3 and open chromatin regions, were also carried out separately for high
effect size (MD ≥ 0.2) and low effect size (MD < 0.1) sQTLs.

sQTL location. We divided every sGene body into 20 bins of equal size and
assigned each sQTL to the corresponding bin according to its location. The number
of bins (20) was selected in order to provide a good balance between granularity
and bin size. We computed the mean proportion of sQTLs (with respect to the total
number of sQTLs per gene) on each bin. An identical procedure was applied to
exons, introns, downstream and upstream regions. In each case, to ensure a
minimum bin size, we filtered out the 20% shortest regions. Under the null

hypothesis of no preference in location, a uniform distribution for the mean
proportion of sQTLs across bins was expected.

sQTL impact on splice site strength and RBP binding sites. To estimate the
impact of genetic variants on splice sites, for each variant (either sQTL or not)
within the sequence of an annotated splice site we scored the site considering the
reference and the alternative allele, using PWMs built upon human splice sites81.
High scores corresponded to common/strong splice sites, while low scores corre-
sponded to rare/weak sites, probably leading to less efficient splicing. Then we
estimated the change in splice site strength as the absolute value of the difference
between alternative and reference scores.

To estimate the impact of genetic variants on RBP binding sites, we obtained
eCLIP peaks in HepG2 and K562 cell lines for 113 RBPs34 from the ENCODE
Project78,79 (https://www.encodeproject.org, accessed 2018-04-16, accession
numbers and URLs provided in Supplementary Data 5). For each RBP, we selected
the peaks significant at FDR < 0.01 and with a fold-change (FC) with respect to the
mock input ≥ 2. We further required a minimum overlap between replicates (50%
of the length of the union of a given pair of peaks). This constituted our positive set
of RBP-binding sequences. We generated an equally-sized negative set of matched
(in terms of GC content, length and repeats) sequences, not overlapping eCLIP
peaks from the same RBP. We combined both sets of sequences to build our
training set. To achieve feasible memory usage and running times, we limited the
size of the training set to 30,000 sequences.

We then trained a gapped k-mer support vector machine (gkm-SVM)37 with
default parameters (word length l= 10, informative columns k= 6), as recommended
for our training set size range36. Other choices of l and k barely changed the overall
performance (Supplementary Fig. 23). The option addRC (add reverse
complementary) was set to FALSE as we were working with RNA sequences. The
classification performance was evaluated using a 5-fold cross-validation. 79 RBPs with
a mean cross-validation area under the Receiver Operating Characteristic curve (ROC
AUC) ≥ 0.8 were kept. To predict the impact of variants on RBP binding, for all the
variants overlapping the eCLIP peaks (FDR < 0.01, FC ≥ 2) of a given RBP, we
computed the deltaSVM metric36. The gkmSVM assigns a weight to each possible 10-
mer, quantifying its contribution to the prediction of RBP binding. Each variant is
given a score computed as the sum of the weights of the 10-mers overlapping it (10-
mer SVM scores were used as a proxy for weights). deltaSVM computes the difference
between the score of the alternative and the reference allele, quantifying their
difference in predictive potential. Here we used the minor and the major allele instead
of the alternative and the reference allele, respectively.

We focused on the most predictive variants of the binding of each RBP (score of
the variant at either allele among the 5% highest scores for this RBP). This was
done to target those variants lying on sequences likely to be highly relevant for RBP
binding (i.e. potential binding sites). To ensure the robustness of our results, we
further required at least 30 sQTLs with deltaSVM values per RBP, resulting in a
final set of 32 RBPs. Of these, for 10 RBPs with significantly different ∣deltaSVM∣
values between sQTLs and non-sQTLs (two-sided Wilcoxon Rank-Sum test,
FDR < 0.05), we obtained the 100 highest-scoring 10-mers, aligned them using
mafft v7.407 (high accuracy mode L-INS-i)82, removed the columns of the
alignment with more than 50% of gaps and built sequence logos using WebLogo
standalone v3.6.0 (http://weblogo.threeplusone.com).

To evaluate allele-specific RBP binding (ASB), we obtained the ASB variants
identified in the same eCLIP dataset using BEAPR (Binding Estimation of Allele-
specific Protein-RNA interaction), available from Yang et al.38. In short, BEAPR is
a method to identify ASB events in protein-RNA interactions from eCLIP data. It
accounts for crosslinking-induced sequence propensity and variability between
replicates, outperforming commonly used count-based approaches. We only
considered ASB variants for which the same alleles had been genotyped in GTEx.
We focused on sQTLs, non-sQTLs and ASB variants overlapping eCLIP peaks
(FDR < 0.01, FC ≥ 2) for any of the 113 RBPs of interest in HepG2 and/or K562 cell
lines. We assessed the significance of the difference in the proportion of sQTLs and
non-sQTLs overlapping ASB variants across RBPs using two-sided Fisher’s exact
test. We also performed this analysis separately for each RBP, using false discovery
rate for multiple testing correction (FDR < 0.05).

Co- and post-transcriptional splicing. We obtained RNA-seq data from nuclear
and cytoplasmic fractions (2 replicates per fraction) corresponding to 13 cell lines
available from the ENCODE project78,79 (https://www.encodeproject.org, accessed
2018-05-25, accession numbers and URLs provided in Supplementary Data 6). A
Nextflow implementation of the Integrative Pipeline for Splicing Analyses (IPSA),
developed in-house (https://github.com/guigolab/ipsa-nf), was employed to
determine the number of reads supporting splicing completion and splicing
incompletion, for each intron annotated in GENCODE v19. We excluded from this
analysis introns that overlapped either exons or non-identical introns in terms of
chromosome, start and end positions. To assess the significance of the difference in
the proportion of reads supporting splicing completion between nuclear and
cytoplasmic compartments we employed two-sided Fisher’s exact test. False dis-
covery rate was employed for multiple testing correction (FDR < 0.05). Introns with
significantly larger proportions of reads supporting splicing completion in the
cytoplasm were classified as post-transcriptionally spliced (here referred to as ps).
Introns that did not pass the FDR threshold were labeled as either unprocessed (i.e.
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intron retention events) or co-transcriptionally spliced (here referred to as cs),
depending on the degree of splicing completion in both cellular compartments. We
focused on introns consistently classified as either ps or cs in at least ten of the
analyzed cell lines. We computed variant density (number of variants per Kb of
intron) at ten bins of equal size along both types of introns (ten was selected to
ensure that enough variants were present in each bin). We also assessed the
enrichment in functional elements of sQTLs in ps introns with respect to sQTLs in
cs introns using two-sided Fisher’s exact test. False discovery rate was employed for
multiple testing correction (FDR < 0.05).

GWAS analyses. We downloaded the GWAS Catalog, including the Experimental
Factor Ontology (EFO) annotations for the GWAS terms (https://www.ebi.ac.uk/
gwas, accessed 2018-09-18). We used LiftOver (https://genome.ucsc.edu/cgi-bin/
hgLiftOver) to convert variant coordinates from hg38 to hg19 and PLINK
v1.90b6.2 (https://www.cog-genomics.org/plink2) to extend the Catalog to the
variants in high linkage disequilibrium (r2 ≥ 0.8) with the GWAS hits. The sQTL
enrichment was calculated as the odds ratio (OR) of the frequency of GWAS
variants among sQTLs to the mean frequency of GWAS variants across 1,000
matched non-sQTL sets (see section Functional enrichment of sQTLs). In parallel,
we obtained the complete EFO ontology (https://www.ebi.ac.uk/efo) in Open
Biomedical Ontologies (OBO) format. For the GWAS terms with an OR > 1, we
used the ontologySimilarity R package83 to compute the pairwise semantic simi-
larity (method= resnik) between the enriched GWAS terms, and built a similarity
matrix, S. From it, we derived a distance matrix, D, as max(S)− S, and performed
multidimensional scaling (MDS). This is an analogous strategy to the one
employed in REVIGO75 to visualize GO terms.

We further compiled genome-wide GWAS summary statistics for eight traits
representative of the clusters observed in the MDS representation: asthma42, breast
cancer43, coronary artery disease44, heart rate45, height46, LDL cholesterol levels47,
rheumatoid arthritis48 and schizophrenia49. In each case, we employed fgwas50

v0.3.6 (https://github.com/joepickrell/fgwas, default parameters, except for window
size set to 2,500 bp to ensure convergence) to obtain the maximum likelihood
estimate and 95% confidence interval for the association effect size, both for (i)
sQTLs (variants affecting splicing, independently of their effect on expression), and
(ii) variants affecting expression, but not splicing (GTEx V7 eQTLs tested also in
our setting and not identified as sQTLs). To display the regional GWAS association
results for the GSDMB locus we employed LocusZoom standalone v1.4 (https://
github.com/statgen/locuszoom-standalone).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All the data employed in this study is publicly available. GTEx data was obtained from
dbGaP (https://www.ncbi.nlm.nih.gov/gap), accessions phs000424.v7.p2 and phs000424.
v8.p2. ENCODE and ENTEx data was obtained from the ENCODE Portal (www.
encodeproject.org, accession numbers and URLs provided in Supplementary Data 4-6).
The Ensembl Regulation dataset was obtained from ftp://ftp.ensembl.org/pub/grch37/
release-86/regulation/homo_sapiens/AnnotatedFeatures.gff.gz. The GWAS Catalog and
the Experimental Factor Ontology (EFO) were obtained from https://www.ebi.ac.uk/
gwas and https://www.ebi.ac.uk/efo, respectively. A detailed description of the data can
be found in Methods and Supplementary Note 3. The sQTL catalog generated is available
at https://doi.org/10.5281/zenodo.405875984. Source data are provided with this paper.

Code availability
Our pipeline for sQTL mapping is publicly available at https://github.com/guigolab/
sqtlseeker2-nf (https://doi.org/10.5281/zenodo.4065497)85. Detailed information about
the software can be found in Methods and Supplementary Note 1.
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