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High-resolution single-cell 3D-models of chromatin
ensembles during Drosophila embryogenesis

Qiu Sun® 4, Alan Perez-Rathke® 24, Daniel M. Czajkowsky® 3, Zhifeng Shao® 3™ & Jie Liang® 2

Single-cell chromatin studies provide insights into how chromatin structure relates to func-
tions of individual cells. However, balancing high-resolution and genome wide-coverage
remains challenging. We describe a computational method for the reconstruction of large 3D-
ensembles of single-cell (sc) chromatin conformations from population Hi-C that we apply to
study embryogenesis in Drosophila. With minimal assumptions of physical properties and
without adjustable parameters, our method generates large ensembles of chromatin con-
formations via deep-sampling. Our method identifies specific interactions, which constitute
5-6% of Hi-C frequencies, but surprisingly are sufficient to drive chromatin folding, giving rise
to the observed Hi-C patterns. Modeled sc-chromatins quantify chromatin heterogeneity,
revealing significant changes during embryogenesis. Furthermore, >50% of modeled sc-
chromatin maintain topologically associating domains (TADs) in early embryos, when no
population TADs are perceptible. Domain boundaries become fixated during development,
with strong preference at binding-sites of insulator-complexes upon the midblastula transi-
tion. Overall, high-resolution 3D-ensembles of sc-chromatin conformations enable further in-
depth interpretation of population Hi-C, improving understanding of the structure-function
relationship of genome organization.
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ARTICLE

nderstanding the principles of genome organization is

essential for gaining insight into fundamental biological

processes such as gene expression and DNA replication! 3.
Studies based on chromosome conformation capture (3C) and
related techniques (4C, 5C and Hi-C) have uncovered important
structural features of genome folding*~7. Among these, topologi-
cally associating domains (TADs) are structural units within
which chromatin exhibits more frequent interactions®-10. They
are prominently found in Hi-C studies of many cell types® and
across different species!®. In addition, insulator complexes are
found to be preferentially located at boundaries of TADs in
multiple species!?-12. Despite abundant high-resolution informa-
tion provided by Hi-C studies, direct knowledge on how the
physical structure of the chromatin determines the relevant cel-
lular functions in individual cells could not be simply inferred due
to the intrinsic population-averaged nature of these studies.
Important questions such as how chromatin conformations of
TADs appear at the single-cell level also cannot be resolved based
on such data alone.

Recent single-cell Hi-C studies showed that many structural
features defined by population Hi-C such as TADs and com-
partments vary among individual cells!3-16, 3D fluorescent in situ
hybridization (FISH) and super-resolution imaging technologies
further revealed various details of TAD-like structures in indivi-
dual nuclei!’=20, A recent study with S2R+ cells, which are
derived from late embryos of Drosophila, revealed the well-
organized nature of repressed TADs in single cells!®. At the
nanometer-scale, single-cell TAD-like structures with sharp
boundaries are found to be widely distributed along the human
genome!8. A common finding from these single-cell studies is the
large variability of chromatin structures among individual cells.

Despite rapid progress, there are limitations to present single-
cell approaches. Although single-cell Hi-C captures chromatin
contacts and can characterize cell-to-cell variability, it is difficult
to obtain detailed chromatin structures at high resolution owing
to the highly sparse nature of single-cell Hi-C data2!. In contrast,
super-resolution imaging studies can indeed provide fine-
resolution information on single-cell genome folding, but are
restricted to limited coverage and a moderate number of cells.

Due to these limitations, our understanding of important
aspects of chromatin organization remains incomplete. While
population Hi-C studies can identify a large amount of chromatin
contacts, it is unclear to what degree they are physically required
for the formation of structures such as TADs?>23. It is also
unclear, among spatial neighboring relationships identified in
single-cell studies, which relationships reflect functional associa-
tions and which are due to random collision owing to volume
confinement and other factors?4-26. Furthermore, while 2D fre-
quency maps from population Hi-C exhibit highly detailed pat-
terns, the heterogeneity of the chromatin 3D structures in the
underlying cell population could not be quantified. In addition,
whether there are a small number of driver interactions of bio-
logical importance that are determinants of chromatin folding
remains unanswered?’-2%.
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In this study, we describe a computational approach providing
a unified and consistent model that simultaneously: (1) uncovers
a small set of important specific interactions from Hi-C mea-
surements that are not due to random collision, exhibit novel
biological patterns, and can drive chromatin folding; (2) provides
large ensembles of 3D chromatin conformations generated from
the specific interactions that largely reproduces population Hi-C
measurements; (3) quantifies the heterogeneity of 3D chromatin
structures in the cell population; and (4) provides detailed
information on chromatin architectures in models of single-cell
chromatin conformations.

We apply this method to study the 3D chromatin structures in
Drosophila cells at different stages of embryogenesis. Examination
of modeled single-cell chromatin conformations reveals a number
of novel insights. We find that in a representative region of 1 Mb,
TAD-like structures exist in >50% of pre-MBT (midblastula
transition) cells with boundaries at varying locations, even though
the corresponding population Hi-C maps have no TAD struc-
tures that can be detected with confidence and are essentially
featureless. The boundaries become more fixated at later devel-
opmental stages, with strong preference for binding sites of
insulator complexes. In addition, the overall heterogeneity of
chromatin conformations is significantly reduced at later devel-
opmental stages. This is accompanied by dramatic changes in 3D
measurements of chromatin compactness. Furthermore, a func-
tional unit of three-body interactions is found to exhibit stage-
dependent structural changes.

Opverall, our method can transform population Hi-C into 3D
models of single-cell chromatin conformations at high resolution.
It quantitatively connects statistical patterns in Hi-C maps to
physical 3D chromatin structures. Our method complements
current single-cell techniques, as it can be used to re-interpret
more abundantly available population Hi-C data, while not being
restricted in either genome coverage or the number of single cells.
Novel biological findings can be gained quantitatively through
analysis using our method, which can help to answer important
questions such as the relationship between genome structure and
genome function.

Results

Overview of our approach to 3D chromatin modeling. Our
method relies on the recently developed capability of deep sam-
pling to generate 3D chromatin ensembles?*28:30 (Fig. 1). We first
identify a set of specific chromatin interactions from deep-
sequenced population Hi-C data. They are unlikely due to liga-
tion of randomly collided loci and are identified by comparing
measured Hi-C frequencies to those simulated from an ensemble
of randomly folded 3D chromatin configurations. The specific
interactions identified are then used as restraints to generate an
ensemble of modeled single-cell chromatin configurations for
either a genomic region (200 kb to 4 Mb at 2 kb resolution) or a
whole chromosome (22 Mb at 5 kb resolution). Structural ana-
lysis, including Euclidean distance measurement and spatial
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Fig. 1 Overview of our chromatin modeling strategy. a We first construct an ensemble of random chromatin polymers as our physical null model. We then
b bootstrap the polymer ensemble to compute statistical significance of each Hi-C interaction. ¢ After removal of non-specific interactions, d we construct
an ensemble of 3D chromatin structures constrained by specific interactions we identified under a sequential Bayesian inference framework.

2 | (2021)12:205 | https://doi.org/10.1038/s41467-020-20490-9 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

clustering, is then carried out on the ensemble of modeled single-
cell chromatin configurations. This provides an overall quanti-
tative assessment of population 3D structural properties, such as
compactness, radius of gyration, domain boundaries, as well as
chromatin structural heterogeneity. Results from structural ana-
lysis are then integrated with other information such as enhancer/
promoter information and epigenetic modifications for additional
biological insights.

Modeling uncovers a small set of specific interactions. It has
been well known that Hi-C measurements may contain many
spurious contacts that simply result from random collisions of
chromatin fibers confined inside the nuclear volume?428. Yet
these data also contain specific contacts that play important roles
in generating the 3D chromatin structures. To distinguish
between these two, we sought a means to identify the random
contacts by using a null model based on biophysical simulation of
random chains to remove the random contacts. Specifically, our
null model, which has no dependence on the Hi-C data for its
construction, is that of a large ensemble of random, self-avoiding,
3D polymer chains of chromatin fiber in nuclear confinement.
Extending the technique of C-SAC?’, we use the fractal Monte
Carlo method®® (see Supplementary Methods) to construct our
null models. In this work, we focus on Hi-C data from three
Drosophila cell types at different developmental stages, namely,
embryos pre Mid-Blastula Transition3! (pre-MBT, cycles 9-13, or
stage 3-4), post-MBT3! (stages 5-8), and S2R+ derived from late
embryos!2, to characterize the changes in specific contacts during
embryogenesis.

Briefly, for our null model, we generate multiple chromatin
chains through a fractal Monte Carlo method based on chain
growth?>:28:30:32.33 i which monomers are added one at a time.
To overcome severe difficulties in sampling, this process is
optimized through a recursive resampling algorithm applied at
predetermined check-point lengths?>28-30, The target distribution
of the ensemble is over all geometrically realizable self-avoiding
chromatin chains within the specified volume confinement. This
target distribution is rigorously enforced through proper
importance weighting during chain growth (see Supplementary
Methods for more details).

For each cell type, the null model is an ensemble of 2.5 x 10°
chromatin chains of 4 Mb length, each consisting of 2000 beads at
2 kb resolution. The constraining volume is proportional to the
nuclear volume of each cell type (Fig. 1a, see Methods).

We estimate the random contact probabilities of pairs of loci
by counting the frequency of 3D conformations in which the
spatial distance of the corresponding pair of beads is within a
distance threshold of 80 nm?”28. We evaluate the statistical
significance of each Hi-C contact by bootstrapping the corre-
sponding random ensemble (Fig. 1b, see Methods). Hi-C
interactions with BH-FDR adjusted p-values below a threshold
of 0.01 are then identified as specific interactions (Fig. 1c and see
Supplementary Methods).

Based on this criterion, we are surprised to find that only a very
small minority of all Hi-C contacts are specific: there are 2.28 x
10° out of 42.39 x 10° counts of contact pairs (5.4%), 2.03 x 10°
out of 40.07 x 106 (5.1%), and 2.20 x 10° out of 34.98 x 10° (6.3%)
Hi-C contact pairs that are specific for the embryos at pre-MBT,
post-MBT, and S2R+, respectively.

Specific interactions recapture known long-range interactions.
While few, we find that specific interactions contain highly sig-
nificant information. This can be clearly seen in the heat maps of
a polycomb-repressed region shown in Fig. 2a. Despite the fact
that only ~5% of Hi-C interactions are retained, key structural

patterns such as the progressive formation of TADs and their
finer structures are all present (Fig. 2a, Supplementary Fig. 3a for
other regions).

To further evaluate the specific interactions identified, we
examined whether long-range interactions with known biological
functions are present in this data. In particular, we examined the
gene Bsg25A, which is transcribed during the minor wave of
zygotic genome activation (ZGA)3%, and forms a long-range
interaction with the gene, slam, in early embryos3!. This
interaction is indeed identified as a specific interaction in our
model as seen in the virtual 4C plot (Fig. 2b, lower half), which
appears to have captured all relevant long-range interactions,
while containing much less noise (Fig. 2b, upper half). Another
known long-range loop interaction in late embryos is between
gene Scyl and chrb313%, and this is also identified as a specific
interaction (Supplementary Fig. 3b).

Specific interactions reveal biologically-relevant patterns. The
predicted specific interactions also enable a more reliable iden-
tification of the biologically relevant trends in the genomic con-
tacts, which would otherwise be obscured. This is illustrated by an
analysis of the genome-wide epigenetic properties of the specific
interactions. Genomic regions of Drosophila can be classified
broadly into four chromatin states'>3 by clustering signals of 15
histone modifications and other biomarkers (Supplementary
Figs. 3c and 5, Supplementary Tables 2 and 3). These states are:
Active (A), Inactive (I), Polycomb-repressed (P), and Unde-
termined (U) (Supplementary Fig. 3c). The global distribution of
interaction types among specific interactions exhibits overall an
increasing number of Inactive-Inactive  (I-I)  and
Polycomb-Polycomb (P-P) contacts in later embryos of post-
MBT (stages of 5-8) and S2R+, while Active-Inactive (A-I) and
Active-Polycomb (A-P) interactions are found to have steadily
declined (Fig. 2c). In contrast, the global distribution of interac-
tion types of all nonzero Hi-C interactions in the original data
exhibit no clear pattern: there are only small and random varia-
tions among cells at different stages of embryogenesis, regardless
the interaction types (Fig. 2d).

In addition, we also find that the density curves of specific
interactions at different genomic distances exhibit increased
TAD-level (<400 kb) contact frequencies in embryos at post-
MBT (stages 5-8) and S2R+ (Supplementary Fig. 3d, top). In
contrast, no such pattern can be found in density curves of all Hi-
C interactions (Supplementary Fig. 3d, bottom). Thus, the set of
specific interactions in particular is in close agreement with
observations that TADs are established progressively during
Drosophila embryogenesis®!37.

Specific interactions can drive chromatin folding. To assess the
roles of specific interactions, we asked whether they alone can
drive chromatin to fold into conformations as measured in Hi-C
studies. To ensure that our conclusion is general, we examined 10
genomic regions of varying lengths (200 kb to 2 Mb, Supple-
mentary Table 1).

We constructed 3D ensembles of single-chain chromatin
conformations at high resolution of 2 kb using the frequencies
of the specific interactions. The conformations are generated
through a novel approach of sequential Bayesian inference
(Fig. 3a-b, see also Supplementary Methods and Fig. 1).

For each region, we construct a Hi-C concordant ensemble
of 50,000 single-chain conformations. To constrain the ensemble
according to the Hi-C interactions, we derive contact probabilities
from the Hi-C frequencies. To estimate this contact probabi-
lity, we take the minimalistic assumption that DNA fragments in
close proximity are available for Hi-C ligations. The contact
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Fig. 2 Overview of specific Hi-C interactions. a Heat maps of specific interactions identified in a polycomb-repressed region (chr2L: 16.3-16.5 Mb) of three
cell types at different developmental stages. Lower-left triangles represent all Hi-C interactions, upper-right triangles represent the identified specific
interactions. Cell types from left to right are embryos at pre-MBT stages (cycles 9-13), embryos at post-MBT (stages 5-8), and S2R+, respectively.

b A virtual 4C plot of the distribution of specific interactions in a 1.86 Mb region of embryos at pre-MBT stages (cycles 9-13). The red bar represents the
anchor which contains the gene Bsg25A, and the green bar represents a specific interaction that targets the gene slam. ¢ Pie charts of percentages of
different types of specific interactions in the three cell types. A: active, I inactive, P: polycomb-repressed. I-I interactions increase from 46.5% to 60.9%
and then to 66.1%, P-P increases from 1.8% to 2.8% and then to 4.9%, while A-| decreases from 29.8% to 19.7%, then to 12.8%, and A-P decreases from
3.8% to 2.3%, then to 1.4%. d Percentages of four interaction types of specific interactions (left) and all nonzero Hi-C interactions (right). These four types
are A-l, A-P, |- and P-P, respectively. Source data are provided as a Source Data file.

probabilities are then taken as the proportions of 3D conforma-
tions in which the spatial distances of the specific pairs of loci of
interest are within the distance threshold of 80 nm. Thus, the
target distribution of the chromatin ensemble is that of self-
avoiding chromatin chains that satisfy the Hi-C derived contact
probabilities at each chain growing step, where beads are placed
sequentially for each chain. Our sequential Bayesian inference
framework ensures that the chromatin chains are consistent with
the observed Hi-C, and ensemble properties can be accurately
estimated (Supplementary Fig. 7). We then aggregate single-chain
conformations to obtain the simulated Hi-C contact maps
(Fig. 3¢, Supplementary Fig. 8a).

As shown in Fig. 3d, simulated Hi-C contact maps using only
specific interactions consistently exhibit strong similarities to
measured Hi-C contact maps across the 10 regions (Supplemen-
tary Fig. 8, Pearson correlation coefficients r=0.91-0.98,
distance-adjusted correlation coefficients ¥ = 0.56-0.8138).
Moreover, the log-log scaling curve of simulated contact
probabilities at different genomic distances and the correspond-
ing curve from Hi-C largely match each other (Fig. 3e).

To validate such results over larger genomic regions, we then
constructed an ensemble of 3D chromatin conformations for the
whole X chromosome of S2R+ cells at 5 kb resolution, using
4,485 beads and only 6.1% of the Hi-C contact pairs that are
considered to be specific (Fig. 3h). Figure 3i shows two examples
of the conformations of the X chromosome. Again, the simulated
and measured Hi-C contact maps are highly concordant (r = 0.94
and ' = 0.64).

Overall, these results demonstrate that using only 5-6% of
measured Hi-C contacts that are predicted as specific interactions,
we can consistently reproduce experimental Hi-C contact maps
across different regions in a chromosome with high accuracy at
high resolution. This strong agreement is maintained at the whole
chromosome level. Our results thus demonstrate that predicted
specific interactions are sufficient to drive chromatin folding in
Drosophila.

Specific interactions recover 3D loops with improved clarity.
To further ascertain the roles of specific interactions, we compare
simulated ensembles of chromatin chains for the 10 different 4-
Mb regions using only specific interactions, or all Hi-C interac-
tions, or only non-specific interactions of the same number of

contact pairs as the specific interactions (Fig. 3c). Simulated heat
maps of contact probability using all or specific interactions
exhibit strong similarities to the corresponding heat maps of the
measured Hi-C (r=0.92—0.98, ¥ = 0.56-0.81 and r 091
—0.98, 1 0.58-0.81 respectively, and see Supplementary
Table 1). In contrast, simulated Hi-C heat maps using non-
specific interactions fail to capture much of the structural features
observed in the Hi-C maps (r=0.48—0.58, ¥ = —0.02—0.27,
Fig. 3c and d).

We note that although ensembles generated using all Hi-C
contact frequencies and using only specific interactions have
similar correlations with the measured Hi-C, the latter can
recover structural features such as loops with better clarity
(Fig. 3c). This is illustrated by the detailed height maps of contact
probability of the simulated 3D chromatin chains in a ~40 kb x
40 kb region, where a loop interaction site is located (Fig. 3g). The
height map of contact probability calculated from the ensemble
by specific interactions has a much stronger resemblance to the
original Hi-C frequency map (left) than that from the ensemble
by all Hi-C contacts. The control ensemble from non-specific
interactions fails to capture this loop structure.

As an additional measure of the effectiveness with which loops
are identified, we examined the spatial distances between the two
anchors of this loop interaction (Fig. 3f). From the ensemble
generated by specific interactions, 41.5% of conformations from
the ensemble by specific interactions have a spatial distance less
than the ligation threshold of 80 nm. In contrast, the percentage
is only 20.0% and 1.7% for ensembles generated using all Hi-C
and non-specific interactions, respectively. For a pair of loci in a
nearby region and of the same genomic distance but without
looping interaction, the fractions of conformations with the loci
within the ligation threshold are indistinguishable between
ensembles from specific and from all interactions (11.1% and
12.4%, Supplementary Fig. 8c).

These results show that chromatin ensembles reconstructed by
specific interactions have better structural clarity in defining loop
interactions without compromising detection specificity.

Single-cell conformations quantify chromatin heterogeneity.
Previous studies showed that chromatin organization is estab-
lished progressively during Drosophila embryogenesis3137. A
number of long-range interactions are found to exist during the
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Fig. 3 Specific interactions are sufficient to drive chromatin folding in Drosophila. a The chromatin polymer ensemble is constructed sequentially, with
the addition of one bead at a time. We make use of an optimized sampling distribution at each step to improve sampling efficiency, which is dynamically
adjusted after adding each bead. b In our model, Hi-C contact probability corresponds to the proportion of polymer chains that satisfy the ligation
threshold. ¢ lllustration of simulation results for a 1 Mb region (chr2L: 11.0-12.0 Mb) of S2R+ cells at 2 kb resolution. Heat maps from left to right represent
Hi-C propensities, simulated contact probabilities using all, specific, and non-specific interactions, respectively. d Pearson correlation coefficients of the
simulated contact probabilities and Hi-C propensities in 10 regions of different genomic lengths. The number of beads ranges from 100 to 1000. elog -log
scaling curves of contact probabilities with genomic distances (bin) derived from the original Hi-C data, simulated ensembles using specific, all, and non-
specific interactions. f Distance distributions of the two anchors of the loop shown in €. Loop anchors correspond to bead No. 170 and bead No. 190. ***
represents two-sided Wilcoxon rank sum test p-value < 0.001. g Height maps of contact probability of the loop interaction inside the polycomb domain
shown in ¢. h Constructed 3D conformations of chromosome X using specific interactions at 5 kb resolution. (Top) Simulated Hi-C heat map, with
measured Hi-C propensities at the bottom and simulated contact probabilities at the top. (Bottom) Zoomed-in heat map of a 2.5 Mb region. Pearson
correlation coefficient r is 0.94, distance-adjusted correlation r’ is 0.64. i Visualization of two examples of 3D conformations of chromosome X using

PyMOL. Source data are provided as a Source Data file.

minor wave of zygotic transcription at pre-MBT cycles 9-1334.
This is followed by the establishment of TADs and compartments
during the midblastula transition (MBT)3°. These TADs are
clearly discernible in Hi-C profiles of embryos at stages 5-8 and
S2R+ during and after MBT (Fig. 2a). However, these findings
are all based on two-dimensional analysis of population Hi-C,
and their implications in terms of the actual 3D folding of the
chromatin is not clear.

Therefore, we set out to examine the 3D structural changes of
chromatin during Drosophila embryogenesis. Specifically, we
examined a polycomb-repressed region and an active region of
the same length in cells at the different developmental stages,
namely, embryos at pre-MBT (cycles 9-13), post-MBT (stages
5-8), and S2R+. Overall, simulated heat maps of both regions
show strong similarities to the corresponding heat maps of
measured Hi-C (Supplementary Figure 9a for the repressed region
and S9b for the active region, r = 0.95-0.98, r' = 0.71-0.76).

As our simulated ensembles contain 5.0 x 10* properly-
sampled single-cell chromatin conformations (Fig. 3i), we are
able to quantify the heterogeneity of the modeled cell population,
which would not be possible for chromatin models based on a

single consensus structure such as those in%0-42. Using hierarch-
ical clustering®3, we grouped the modeled single-cell chromatin
conformations of all three stages of cells into 5 clusters (Fig. 4a
and b, see Supplementary Methods). We observe significant
differences among the different clusters of the 3D single-cell
conformations of the polycomb-repressed region in early
embryos of pre-MBT, while the heterogeneity reduced somewhat
in later embryos. In S2R+, two clusters dominate, accounting for
41.1% and 55.7% of the conformations, respectively. Interestingly,
the largest cluster (C5) is the same for pre-MBT (31.7%) and S2R
+ (55.7%), but a different cluster (C4) transiently become the
largest cluster (50.1%) at post-MBT (Fig. 4c). The active region
also exhibits significant heterogeneity among single-chain
chromatin conformations (Supplementary Fig. 9e and 9f). Thus,
there are similarities as well as notable differences in the modeled
conformations of subsets of cells at different stages of
embryogenesis, which are not apparent from the population-
level Hi-C maps.

Increasing compactness of polycomb regions in late embryos.
Consistent with previous qualitative observations of significant
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clusters in each cell type. pre-MBT: cycles 9-13; post-MBT: stages 5-8. d The left figure shows the simulated distance distributions of the a-c (Scyl-chrb)
interaction and another two control interactions (c-d and c-c'). c-d has the same genomic distance as a-c, while c-c' is a near-range interaction. The right
figure shows the distance distributions derived from the DNA FISH measurements#°. The three interactions are illustrated on the top. e A virtual 4C plot of
the region that contains a three-body interaction among two promoters and a putative enhancer, with the anchor shown in red bar. The gene Scyl is located
within this anchor region. Two target regions are shown in the blue bar and yellow bar. The gene chrb is localized in the blue region, and a putative enhancer
overlapped with a ChIP-defined cis-regulatory module (CRM) CRM4311 is in the yellow region. Tracks of RNA polymerase Il, H3K27ac, and RefSeq genes
are shown at the bottom. f The left figure shows an example of a two-body interaction between the promoters of genes Scyl and chrb which are labeled in e.
The right barplot shows the fractions of this two-body interaction in three different cell types. g The left figure shows an example of a three-body

interaction among the two promoters and the enhancer labeled in e. The right barplot shows the fractions of this three-body interaction among all Scyl-chrb

interactions in the three cell types. Source data are provided as a Source Data file.

changes in compactness during embryogenesis!-37, we observed
that later embryos have higher proportions of compact clusters
(C4 and C5) in the polycomb-repressed region (Fig. 4c). Yet our
models further enable a quantification of this difference in
compaction: there is an 8% reduction in the radius of gyration
(R)* in this region from the pre- to post-MBT but a more
significant 18% reduction in the S2R+- cells. Similarly, the end-to-
end distances change by only 6% from pre- to post-MBT whereas
there is an 18% change in the S2R+ cells (Supplementary Fig. 9¢).
Similar changes in these measurements are also observed in the
active region (Supplementary Fig. 9d and 9i). Such quantitative
measures of change in compactness can only be derived from Hi-
C and 3C-derived data via physical modeling of 3D chromatin
conformations.

Dynamic changes of functional three-body interactions. We
expected that these changes in the overall compaction at the
domain-level might also translate into functionally relevant
changes in specific three-body interactions. Genes Scyl and chrb
are involved in head involution and many other biological
functions®®> (Supplementary Fig. 6). Previous studies suggested

6

that the promoters of these genes interact physically with a
putative enhancer and this interaction changes during embry-
ogenesis (Fig. 4e)31:3%37,

To test this idea, we constructed 3D ensembles of single-chain
conformations of this region for cell at the three stages. As shown
in Fig. 4g, we found there exists a significant three-way
interaction between these regions in our models. We note that
the distribution of spatial distances between chrb and Scyl and
two other control regions derived from our model is highly
consistent with DNA FISH measurements (Fig. 4d)*. Our
simulations reveal that post-MBT embryos (stages 5-8) have
higher Scyl-chrb (Fig. 4f) and Scyl-enhancer (Supplementary
Fig. 9g) contact frequencies when compared to modeled
conformations at the other two stages, while chrb and the
enhancer contact more frequently in S2R+ (Supplementary
Fig. 9h). Despite a lower proportion of total Scyl-chrb interac-
tions, we find an increased propensity of three-body contact with
the putative enhancer among these Scyl-chrb interactions in
S2R+ (Fig. 4g). Thus, our results implicate this putative
enhancer® in forming a spatial unit of three-body interactions
with the promoters of Scyl and chrb.
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Fig. 5 TAD-like structures in modeled single-cell conformations during Drosophila embryogenesis. Simulated heat maps of the region (chr2L: 11.0-12.0
Mb) in embryos at pre-MBT cycles 9-13 (a) and S2R+ (d) are shown. The lower left triangles represent the experimental Hi-C propensities, and the upper
right triangles represent the simulated contact probabilities. Resolution is 2 kb. Boundary strength profiles of 5,000 conformations in embryos at cycles
9-13 (b) and S2R+ (e) are shown below the combo heat maps. They are ordered by the number of domain boundaries. Three representatives of single-cell
spatial-distance heat maps (on the left) and corresponding visualizations of conformations (on the right) in embryos at pre-MBT cycles 9-13 (¢) and S2R+
(f) are shown. These single-cell conformations have different numbers of domain boundaries. The number of boundaries from top to bottom is O, 3, and 5,
respectively. Arrows indicate their positions in the boundary strength profiles. Boundary strength curves are drawn under the spatial-distance maps, with
red dots representing the local maxima identified as domain boundaries. Bars in different colors under the boundary strength curves represent different
domains identified in that conformation, which are also labeled in 3D visualizations. g Correspondence between distance maps of two modeled single-cell
conformations (chr3R:12.20-12.90 Mb of Drosophila S2R+ at 2 kb resolution) with two conformations constructed from imaging studies in Mateo et al.
(r=0.75 and 0.79, Fig. 2d of?0 reprinted with permission). Proportions of single-cell conformations with different numbers of TADs are shown in h for

each cell type. Source data are provided as a Source Data file.

TAD-like structures in many single-cells of early embryos.
TADs are one of the most prevalent structural units of genome
organization that have emerged from Hi-C studies3-10. Previous
Hi-C studies showed that, during Drosophila embryogenesis,
TAD boundaries are only established during the MBT but are
otherwise not visible on the heat map at early stages3!-37-39,
Indeed, as shown in Fig. 2a, TADs can be clearly seen in Hi-C
heat maps of post-MBT embryos (stages 5-8) and S2R+ cells, but
not in early embryos. However, Hi-C heat maps are a reflection of
ensemble-averaged properties. This naturally leads to the ques-
tion of whether TAD-like structures could actually exist in indi-
vidual cells?!. Specifically, we ask if there are TAD-like structures
in early embryonic cells, and whether single-cell TAD structures
are different among cells at different developmental stages.

We examined a 1 Mb region on chromosome 2L, from which
several TADs can be found in Hi-C maps of late embryos

(Fig. 3c). The simulated contact maps from the aggregation of
5.0 x 10* modeled single-cell chromatin conformations are highly
similar to the corresponding measured Hi-C maps (Fig. 5a and d,
Supplementary Fig. 10a, r =0.97, 0.95, and 0.95 for embryos at
pre-MBT cycles 9-13, post-MBT stages 5-8, and S2R+,
respectively).

To characterize the chromatin structures of the modeled
single-cell conformations, we calculated the spatial distance
between each pair of beads and generated a spatial-distance
map for each modeled single-cell chromatin conformation,
following reference!® (Fig. 5c and f, Supplementary Fig. 10c).
There are clear TAD-like structures in the spatial-distance maps
of many modeled single-cell conformations of S2R+ (Fig. 5f),
consistent with studies of super-resolution imaging!8-20. Our
modeled single-cell conformations also agree well with single-cell
chromatin reconstructed from another imaging study?® (Fig. 5g
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and Supplementary Methods). Surprisingly, we also detect a
strong presence of TAD-like structures in many modeled single-
cell chromatin conformations of early embryos at pre-MBT cycles
9-13 (Fig. 5¢), even though no TADs can be seen in the
population Hi-C heat maps (Fig. 5a).

We then examined the domain boundaries in the modeled
single-cell conformations. We calculated the boundary strength at
each genomic position using a spatial-distance ratio (see
Methods) and generated boundary-strength curves (see blue
curves in Fig. 5b and e, Supplementary Fig. 10b). We selected
single-cell domain boundaries from local maxima above a
threshold of 2.2 (in red dots, see Supplementary Methods for
details). We identified TAD-like structures from consecutive
regions with BH-FDR adjusted p-values below 0.05 between pairs
of adjacent boundaries (see Supplementary Methods). Finally, we
randomly selected 5,000 3D conformations from the ensemble of
each cell type in order to identify domain boundaries and TAD-
like structures.

We find that a large portion of modeled single-cell conforma-
tions contain sharp domain boundaries in early embryos. More
than half of the modeled single-cell conformations (54.4%) in
embryos at pre-MBT (cycles 9-13) possess at least one TAD-like
structure. This is certainly beyond what would be expected from
random fluctuations?> (see also Supplementary Fig. 11a), and is
only slightly below that of S2R+ where 60.0% modeled
conformations contain at least one TAD-like structure (Fig. 5h).
These results suggest that TAD-like structures could exist in
individual cells during Drosophila embryogenesis, even at the
early developmental stage, where TAD structures could not be
clearly detected with confidence from population-averaged Hi-C
dgita (see Supplementary Fig. 11b row 1, in contrast to rows 2 and
331,

However, there is strong variability in boundary positions
(Fig. 5b and e, Supplementary Fig. 10b) as well as domain sizes
(Supplementary Fig. 10d) among individual modeled conforma-
tions of early embryos at pre-MBT cycles 9-13. Our results thus
suggest that these variabilities are the main reason for the overall
absence of concordant TAD structures in the population Hi-C
heat maps in early embryos.

Insulator-binding at predicted single-cell domain boundaries.
A recent single-cell imaging study revealed that domain bound-
aries can occur at any genomic positions, but preferentially at
CTCF/cohesin binding sites in individual mammalian cells'8. We
calculated the boundary probabilities along the linear genomic
positions of the region that is the same as that of Fig. 5a for
Drosophila cells at the three developmental stages. Results show
that while there is no clear position preference for boundaries in
early embryos at pre-BMT cycles 9-13, strong preference for
specific genomic positions appear in embryos during and after the
MBT, at stages 5-8 and S2R+ cells (Fig. 6a). Despite the strong
preference, there is a non-zero probability for any genomic
position to be at a domain boundary in late embryos, which is
consistent with previous findings!8.

Previous studies showed that insulator proteins such as BEAF-
32/CTCF/Su(Hw)/CP190 are strongly enriched at TAD bound-
aries of Drosophila*®. We then examined whether the boundary
positions appearing in our 3D models of late embryos also
correlate with the preferred binding sites of these insulator
proteins. Our results show no enrichment of boundary prob-
abilities at the binding peaks of the insulators of CTCF and
cohesin (Fig. 6b). This is consistent with earlier Hi-C studies!247.
We then examine binding sites of other insulator complexes with
extensive presence in Drosophilal?#8, We find that domain
boundaries in 3D models of single chromatin chains of later

embryos are highly enriched at the binding peaks of insulator
complexes BEAF-32/CP190 and BEAF-32/Chromator (Fig. 6a
and c). Single-cell boundary probabilities are also enriched at
binding peaks of ZW5 (Supplementary Fig. 11), which may
facilitate specific long-range interactions at the single-cell level#®.
Moreover, our results are consistent with a recent study by Hug
et al.37, where reported boundaries in pre-MBT embryos are
associated with genes expressed zygotically before MBT. The
boundary probabilities calculated from our predicted ensemble of
single-cell conformations for the locus chr2L: 4.5-6.4 Mb are in
excellent agreement with data reported in3’ (Supplementary
Fig. 11d).

These results therefore show that TAD boundaries appearing
in our 3D structural models of single chromatin chains, once
aggregated, are consistent with findings from population-based
Hi-C studies*®. Furthermore, the heterogeneity in Hi-C data is
manifested by the presence of TADs with strongly heterogeneous
boundaries at an early stage, which is quantified in our modeled
individual chromatin structures.

Discussion

The computational method described in this study can quanti-
tatively connect statistical patterns in Hi-C maps to physical 3D
chromatin structures. While Hi-C measurements of cell popula-
tions have provided a wealth of information on chromatin
structures at high resolution!®12, physical structures of chromatin
in individual cells do not automatically follow from such popu-
lation ensembles. Furthermore, our method can bridge the gap
between high-resolution population Hi-C studies and fine-
detailed single-cell 3D structures of chromatin!3-20, which are
often sparse, with limited coverage and resolution, and are
restricted in the number of cells.

Our method identifies specific chromatin interactions from Hi-
C measurements, from which biological patterns emerge with
clarity. As many interactions in population-averaged Hi-C data
are due to experimental biases and random collisions of chro-
matin fibers in the cell nucleus?42>28, it is unclear which ones are
required for formation of chromatin structures such as TADs. It
is also not known whether all contacts identified in single-cell
studies are obligated for TAD formation. By constructing a ran-
dom model of self-avoiding 3D chromatin polymers in the
nuclear confinement (Fig. 1), our method can effectively remove
background noises due to random collision. The identified spe-
cific interactions exhibit clear biological trends such as increasing
Inactive-Inactive and Polycomb-Polycomb genomic interactions
during Drosophila embryogenesis, which are not seen in the
original Hi-C data (Fig. 2c and d).

Our method can be used to gain understanding the relation-
ship between genome structure and function. Results on Droso-
phila cells showed that although the identified specific
interactions constitute only a small fraction of measured Hi-C
interactions (5-6%), they are sufficient to fold chromatin into an
ensemble of conformations exhibiting the full patterns of popu-
lation Hi-C measurements (r ~ 0.95, Fig. 3c and d). It is probable
that there may exist even a smaller minimum set of interactions,
likely to be functionally important, which are sufficient to drive
chromosome folding and give rise to much of the topological
features observed in Hi-C30. That is, features such as TADs may
arise naturally from a small set of functionally important chro-
matin interactions that are sufficient to drive chromatin folding.
This is consistent with a recent study probing genome structure-
function relationship, where it was found that functional inter-
actions may play important roles in shaping genome structures>’.

Our results on Drosophila amply demonstrate that detailed
chromatin model conformations in individual cells can be
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Fig. 6 Domain boundaries are preferentially localized at insulator binding sites since MBT. a Distributions of domain boundary probabilities along
genomic positions of the same region in Fig. 5A (chr2L: 11.0-12.0 Mb) of three cell types are shown in the top three rows. Tracks in the 4-th to the 6-th row
indicate the binding sites of 3 different insulator proteins of BEAF-32, CP190, and Chromator, respectively. The track in the 7-th row indicates the
intersection of the binding sites between BEAF-32 and CP190 or between BEAF-32 and Chromator, the last track represents the intersection of the binding
sites between CTCF and Smc3 (cohesin subunit). All tracks are from S2-DRSC. b Enrichment curves of the averaged domain boundary probabilities at the
binding peaks of CTCF and Smc3. ¢ Enrichment curves of the averaged domain boundary probabilities at the binding peaks of BEAF-32 and Chromator.

obtained through modeling of population Hi-C data to enable
new insight. We found that a large portion (>50%) of modeled
single-cell conformations possess TAD-like structures in early
pre-MBT embryos (Fig. 5a and c), whereas population Hi-C data
are essentially featureless and no clear TAD structures can be seen
in previous Hi-C studies?!3”. Consistent with an earlier finding
that domain-like substructures can arise from nuclear volume
confinement alone?, our results show that Drosophila chromatin
is likely topologically organized to varying extents with TAD-like
structures present in single cells throughout different stages of
Drosophila embryogenesis. Furthermore, we find that the domain
boundaries in single cells are preferred at insulator binding sites
(Fig. 6a) of the same insulator complexes as found at the TAD
borders in population Hi-C analysis!>#3. As insulator-binding
preference is also found in mammalian single cells!$, there may
exist a conserved mechanism of genome folding at the single-
cell level.

Our method also addresses a long-standing challenge in 3D
genome studies, namely, the characterization of chromatin
structure heterogeneity. As population-based Hi-C studies offer
no directly interpretable information on the heterogeneity of 3D
chromatin conformations of the cell population, there is an
overall lack of quantitative understanding on the structural het-
erogeneity of chromatin®2, This prevents us from under-
standing the actual physical states that the chromatin in each cell
must adopt to be functional. With the ability to convert 2D high-
resolution population Hi-C heat maps into ~5.0 x 104 modeled
single-cell chromatin conformations at high resolution, our
method can provide quantification of chromatin heterogeneity
(Fig. 4c). This allows possible differentiation of chromatin con-
figurations that are functional from those that are not.

Our method is based on an explicitly constructed random 3D
polymer ensemble as the null model. This is a uniquely appro-
priate approach for chromatin studies, as polymer effects of the
random collision of chromatin fibers are explicitly modeled. This
null model allowed effective discrimination of specific interac-
tions from background noise of random chromatin collision.
Several other methods such as Fit-Hi-C>3 and GOTHiC>* can
also be used to identify specific interactions. However, these
methods rely on null models constructed from the Hi-C data
itself for removal of background noise®3>>6, which may lead to
inherent bias in the resulting null hypothesis test. Furthermore,
our physically constructed null model can be used to identify

higher-order specific many-body interactions®?, which is not
possible with null models derived solely from 2D Hi-C contact
maps. As shown in a separate study describing the cHROMATIX
algorithm, this null model can be used for analysis of many-body
chromatin interactions, such as those encountered in enhancer-
rich regions30.

We have further compared the specific interactions identified
by our method with those by Fit-Hi-C>* and GOTHiC** (Sup-
plementary Fig. 4a and Supplementary Methods). Overall, all
three methods identify a small fraction of specific interactions
(4.1-7.5% genome-wide for S2R+ cells), with varying degree of
overlaps (85.2% of Fit-Hi-C and 36.0% GOTHIC are present in
ours). Compared to Fit-Hi-C and GOTHIC, our method identifies
more long-range interactions (26.2% vs. 17.3% and 1.35% are of
2500 kb, Supplementary Fig. 4b-c). The small fractions of
interactions identified by all these methods are found to be suf-
ficient to drive chromatin folding for a 1 Mb region tested using
our folding algorithm, although ours gives the highest correlation
to Hi-C measurements (Supplementary Fig. 4d). We also exam-
ined the effectiveness of HiCCUPS!?, which identifies looping
interactions. Interestingly, we found that the much smaller frac-
tion (0.1%) of looping interactions identified by HICCUPS was
insufficient to drive chromatin folding (Supplementary Fig. 4).

Our approach for constructing 3D ensembles differs from
several existing methods?>27-57-59 (Supplementary Fig. 2). With
only basic physical considerations of fiber density and ligation
distance threshold, it is minimalistic and there are no adjustable
parameters. No chromatin states are assigned to polymer beads,
and there are no a priori assumptions on locations of loop
anchors. Furthermore, our method samples well. With deep
sampling enabled through Bayesian sequential inference, our
method is unique in its ability to generate a large number (e.g.,
5x 10%) of diverse chromatin conformations that are consistent
with Hi-C measurements.

Overall, our computational method can quantitatively connect
statistical patterns in Hi-C maps to 3D physical chromatin
structures. It can quantify chromatin heterogeneity and facilitate
discovery of biological patterns at both single-cell and population
levels. As demonstrated in the analysis of Drosophila, our method
can provide new perspectives on genome 3D structural changes
during biological processes such as embryogenesis, enabling dis-
coveries that would not be possible with traditional Hi-C analysis.
Our method is robust and can be used for arbitrary loci or full
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chromosomes. With quality Hi-C data becoming more abundant,
applications of our method can aid in overall understanding of
the mechanisms of genome folding and can help to decipher the
structure-function relationship of genomes.

Methods

Hi-C propensities. Hi-C data are obtained from the GEO database (embryos at
pre-MBT cycles 9-13 and post-MBT stages 5-8 from GSE103625, S2R+ from
GSE101317) and are mapped to the dm3 reference genome using Bowtie2 (v 2.2.9)
following!2. Hi-C contact matrices generated at 2/5 kb resolution are normalized
using ICE from the hiclib®®. Assuming neighboring regions always form Hi-C
ligations?’, Hi-C propensities are calculated as

Pansli ) :pi% ’ !

where C(i, j) is the Hi-C contact frequency of loci i and j, [g;,4(1) is the averaged
contact frequency of Hi-C pairs (i, j) with |i —j| =1 bin.

Model parameters and contact model. We model random chromatin fibers as
self-avoiding polymer chains consisting of beads, each represents a 2 kb or 5 kb
genomic region, the same as the resolution of the Hi-C matrices. We assume beads-
on-string®! chromatin fiber has a mass density of 165 bp/11 nm®?, thus the bead
diameter is roughly 25 nm. The spherical volume within which the polymer chains
are confined is proportional to the nuclear volume of each cell type. We choose
292 um? as the volume for S2R+93, 335 um? for embryos at cycles 9-13%4 and
524 um? for embryos at stages 5-8%%. The genome size is approximately 700 Mb for
tetraploid S2R+ and 350 Mb for diploid embryos at cycles 9-13 and stages 5-86566,

We assume regions that are in close proximity are available for Hi-C ligation.
Contact probabilities are then calculated as the proportions of modeled single-cell
conformations satisfying the distance requirement, namely, the distances of the
pair of loci of interests are within a threshold, which is the longest distance for
ligation.

Constructing physical null model of chromatin chains. We generate random
chromatin polymer chains using a novel Monte Carlo approach (see Supplemen-
tary Methods) and construct an ensemble of 2 x 10° random polymer chains within
a defined space for each type of cell (Fig. 1a). They are used as our null model to
estimate contact probabilities p,,, of random collisions which lead to non-specific
Hi-C interactions. py,; were defined as

L 196, jyw®)]
Zszl wi) 7

where 1% (i, j) is an indicator function of 1 if the distance between i and j in the k-
th chain is <d,, with d. = 80 nm27:28, N is the total number of polymer chains, and
w®) is the importance weight of the k-th chain for bias-correction due to deviations
of the sampling distribution from the target uniform distribution in our null model.

o (i ) = )

Identification of specific interactions. For each ensemble of random polymer
chains of a cell type, we assign a statistical p-value to each pair of loci based on the
percentage of random contact probabilities in bootstrap replicates that exceed the
relative Hi-C propensity. We use Bag of Little Bootstrap (BLB)®7 (see Supple-
mentary Methods) to generate a total of 5,000 bootstrap ensembles (Fig. 1b).
Although each BLB ensemble contains only a small subset (~1300 polymer chains,
or <1%) of the original ensemble, the average physical properties of the BLB
ensembles reflect that of the original polymer ensemble®’. For each BLB ensemble,
Poun(i,7) is calculated as described above. After quantile normalization of p, . (i,5)
and p (i, ), we assign a p-value to each pair of loci (7,j) according to the per-
centage of p. . (i,7) that exceed p (i, /)

iy P,(Qn(iv 7)< Pops (i 1) (3)
Py = o .,

where I(-) is a indicator function of 1 if the specified condition is satisfied. M is the
total number of bootstrap ensembles. Here we have M = 5000. Hi-C interactions
with BH-FDR adjusted p-values < 0.01 are chosen to be the specific interactions
(Fig. 1¢).

Deep sampling of ensembles of chromatin structures using Hi-C frequencies.
We generate 3D chromatin structures under a sequential Bayesian inference fra-
mework using frequencies of specific, non-specific or all Hi-C interactions. To
generate an ensemble E from the Hi-C data, our goal is to maximize the probability
P(E|H), where H represents Hi-C propensities selected as modeling frequencies,
and E consists of chromatin polymers X(1), X, ..., X(\). By Bayes’ rule®s,

P(E|H) = P(H|E)P(E)

P with P(H) being a constant. We generate chromatin polymers

sequentially:
P(E|H) = P(E,\|H,)P(E,|H,) - - P(E,[H,) @
=T P(EJH,) o TI, P(H/|E,)P(E,),
where 7 is the length of each chain, H; the selected Hi-C propensities p,(x, ),
Pobs (X2, %) =+ » Pops (%1—1, X,). E¢ is the intermediate ensemble XEI),XEZ), e ,XSN)
at the step ¢, each chain consists of (t — 1) beads that are previously placed and a
newly generated bead xgk).

P(H,|E,) evaluates the similarities between simulated contact probabilities
derived from chromatin conformations and Hi-C propensities. We model this term
through a Poisson distribution, which is robust and can decrease the influence of
the dominance of large contact counts®®. P(E,) is reversely proportional to the
number of all possible valid intermediate ensembles E; given the previously
constructed E, ;. We apply an iterative optimization strategy to find the best
polymer ensemble that maximize P(E,|H,) at each growing step (See
Supplementary Methods).

Identification of modeled single-cell domain boundaries. We adopt a method
similar to!8 to define the domain boundaries in modeled single-cell conformations.
Details can be found in Supplementary Methods.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Hi-C data are downloaded from GEO database (embryos at cycles 9-13 and stages 5-8
from GSE103625, S2R+ from GSE101317). In Fig. 2, ChIP-chip datasets for clustering
are downloaded from modENCODE database with IDs listed in Supplementary Table 2.
In supplementary Figure 5, ChIP-chip or ChIP-seq data of H3K27me3, H3K4me3 and
H3K36me3 at cycle 12 are downloaded from GSM1424916, GSM 1424909 and
GSM1424919. H3K27me3, H3K4me3 and H3K36me3 data at cycle 14c are downloaded
from GSM1424918, GSM1424911 and GSM1424921. Expression level of gene Scyl (top)
and chrb (bottom) during Drosophila embryogenesis are downloaded from the Flybase
(https://flybase.org/). The source data underlying Figs. 2c-d, 3d, 4d, 5g and
Supplementary Figs. 3d, 4b, 5, 7c, 7h, 8¢, 9c are provided as a Source Data file. Source
data are provided with this paper.

Code availability

Source code for null model chromatin folding by fractal Monte Carlo is available via git
repository at https://bitbucket.org/aperezrathke/chr-folder. Source code for Sequential
Bayesian inference framework is available via https://github.com/qiusun0215/sBIF.
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