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There is a robust observational relationship between lower birthweight and higher risk of

cardiometabolic disease in later life. The Developmental Origins of Health and Disease

(DOHaD) hypothesis posits that adverse environmental factors in utero increase future risk

of cardiometabolic disease. Here, we explore if a genetic risk score (GRS) of maternal SNPs

associated with offspring birthweight is also associated with offspring cardiometabolic risk

factors, after controlling for offspring GRS, in up to 26,057 mother–offspring pairs (and

19,792 father–offspring pairs) from the Nord-Trøndelag Health (HUNT) Study. We find little

evidence for a maternal (or paternal) genetic effect of birthweight associated variants on

offspring cardiometabolic risk factors after adjusting for offspring GRS. In contrast, offspring

GRS is strongly related to many cardiometabolic risk factors, even after conditioning on

maternal GRS. Our results suggest that the maternal intrauterine environment, as proxied by

maternal SNPs that influence offspring birthweight, is unlikely to be a major determinant of

adverse cardiometabolic outcomes in population based samples of individuals.
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There is a robust and well-documented observational rela-
tionship between lower birthweight and higher risk of
cardiometabolic diseases in later life, including cardiovas-

cular disease (CVD) and type 2 diabetes (T2D). The Develop-
mental Origins of Health and Disease (DOHaD) hypothesis
posits that adverse environmental factors in utero or in the early
years of life result in increased future risk of cardiometabolic
disease1–7. Evidence in favor of DOHaD has primarily come from
observational1,2,8 and animal studies9; however, definitive causal
evidence from human studies is lacking.

Mendelian randomization (MR) is an epidemiological method
used to investigate whether an observational association between
an exposure and an outcome represents a causal relationship10.
Several studies have recently attempted to use MR to investigate
the relationship between lower birthweight and cardiometabolic
disease to inform on the validity of DOHaD11–13. However, these
MR studies have used sub-optimal methodologies in which only
offspring genotypes are considered as genetic instruments to
proxy offspring birthweight14. This limitation contrasts strikingly
with the argument that many DOHaD proponents would make,
i.e. that an adverse maternal environment during pregnancy,
results in low birthweight and increased risk of future cardio-
metabolic disease1,4,6. This hypothesis is entirely distinct from
postulating that birthweight itself has a direct causal effect on risk
of cardiometabolic disease14. Thus, these early MR studies have
ignored the potential contribution of the maternal genome
(correlated 0.5 with the offspring genome15,16), meaning that any
association between offspring SNPs and offspring cardiometa-
bolic risk may in fact be due to maternal genotypes, violating core
assumptions underlying MR17, and complicating interpretation of
the results. Indeed, Smith and Ebrahim10 in their initial
description of the MR methodology, noted that the appropriate
way of using MR to investigate the effects of the intrauterine
environment on offspring outcomes (in their example maternal
folate intake and offspring neural tube defects), was to use
maternal genotypes to proxy the intrauterine environment10.

MR principles can be harnessed to test aspects of DOHaD
using maternal SNPs that are related to offspring birthweight
and/or adverse maternal environmental exposures during
pregnancy14,16,18–20. For example, one possibility is to test whe-
ther SNPs in the mother that are directly related to offspring
birthweight are also associated with offspring cardiometabolic
risk factors, after conditioning on offspring genotypes at the same
loci. To understand why this analysis would be informative,
consider Fig. 1, which illustrates four credible ways in which
maternal SNPs can simultaneously be related to offspring birth-
weight and future offspring cardiometabolic risk factors. In panel
(a), maternal birthweight associated SNPs produce an in utero
environment that leads to reduced fetal growth and subsequently
low offspring birthweight and developmental compensations that
produce increased risk of offspring cardiometabolic disease in
later life. In panel (b), low offspring birthweight itself is causal for
increased risk of offspring cardiometabolic disease. Under panels
(a) and (b), the existence of a relationship between maternal
alleles associated with lower birthweight and higher cardiometa-
bolic risk in the offspring (after conditioning on offspring geno-
type at the same loci) argues strongly in favor of a DOHaD
mechanism, where developmental compensations to reduced fetal
growth impact on future health. In panel (c), the inverse genetic
correlation between offspring birthweight and offspring cardio-
metabolic disease is driven entirely by genetic pleiotropy in the
offspring genome, and importantly, not via DOHaD mechanisms.
Under this model, maternal genotypes related to lower offspring
birthweight will not be associated with increased offspring car-
diometabolic risk after conditioning on offspring genotype.
Finally, in panel (d), SNPs that exert maternal effects on offspring

birthweight also pleiotropically influence offspring cardiometa-
bolic disease through the postnatal environment. If genotyped
father–offspring pairs are also available, then paternal SNPs at the
same loci can be tested for association with offspring cardiome-
tabolic risk factors (conditional on offspring genotype). The
existence of such associations would suggest that the postnatal
environment (i.e. early life DOHaD influences such as via genetic
nurture or dynastic effects rather than the intrauterine environ-
ment) may be responsible for the correlation between maternal
genotypes and offspring cardiometabolic risk factors.

In other words, the presence of correlation between maternal
genotypes and offspring cardiometabolic risk factors, after con-
ditioning on offspring genotypes at the same loci, is highly sug-
gestive of DOHaD mechanisms related to lower birthweight
(providing these associations are not replicated in father–offspring
pairs also). We emphasize that the paradigm illustrated in Fig. 1,
which we use in our study, only tests one aspect of DOHaD (i.e.
that maternal exposures that affect offspring birthweight are also
causal for increased offspring cardiometabolic risk). It is possible
that there are other maternal exposures that affect the offspring
prenatal or postnatal environment, but do not influence offspring
birthweight, and still affect future offspring cardiometabolic risk.
We do not test for the influence of these exposures on offspring
cardiometabolic risk in this study, but limit our attention to those
that exert an effect on offspring birthweight (a distinction we
explore further in the discussion).

We have previously used this paradigm to examine the asso-
ciation between maternal birthweight related SNPs and offspring
blood pressure in the UK Biobank study as a preliminary test of
the validity of this possible DOHaD mechanism18. Interestingly,
this showed that maternal SNPs related to low offspring birth-
weight were actually associated with lower offspring systolic blood
pressure after conditioning on offspring genotype at the same loci
(i.e. the opposite of what would be expected if maternal intrau-
terine effects that reduce fetal growth result in higher later-life
cardiometabolic risk). However, the number of mother–offspring
pairs used in this previous study was small (N= 3,886) and sys-
tolic blood pressure was the only cardiometabolic risk factor
investigated. Therefore, the results from this preliminary study
need to be replicated and further cardiometabolic risk factors
examined. The Norwegian based HUNT Study21, which contains
approximately 70,000 genotyped individuals, including 45,849
parent–offspring pairs, is one of the few cohorts where such
analyses can be conducted. The average age of the HUNT off-
spring is approximately 40 years, rendering this cohort not only
one of the largest cohorts in the world with genotyped
mother–offspring pairs (and father–offspring pairs) with birth-
weight information, but also one of the few with offspring old
enough to have developed adverse cardiometabolic profiles.

In this work, we perform genetic association analyses in up to
26,057 genotyped mother–offspring pairs from the Norwegian
HUNT Study in order to investigate whether there is evidence for
a causal effect of the intrauterine environment (proxied by
maternal SNPs that influence offspring birthweight) on offspring
cardiometabolic risk factors. We investigate whether maternal
genotypes associated with lower offspring birthweight are also
associated with later life offspring cardiometabolic risk factors
such as blood pressure, non-fasting glucose levels, body mass
index (BMI), and lipid levels, after conditioning on offspring
genotype at the same loci. We also perform similar analyses in up
to 19,792 father–offspring pairs to investigate whether there is
evidence for a postnatal environmental effect (genetic nurture or
dynastic effects), rather than an intrauterine environmental effect.
In the course of executing these analyses, we implement a com-
putationally efficient genetic linear mixed model that not only
enables the investigation of causal questions relevant to the
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specific DOHaD mechanism that is the focus of this paper, but
also simultaneously accounts for the non-independence between
siblings and the considerable cryptic relatedness within the
HUNT Study. We show no evidence for a causal effect of the
intrauterine environment (as proxied by maternal genetic effects
on offspring birthweight) on offspring cardiometabolic risk fac-
tors. We do, however, find evidence that offspring SNPs pleio-
tropically influence both birthweight and future cardiometabolic
risk factors, which helps explain the robust observational rela-
tionships between the variables.

Results
Phenotypic correlations. HUNT offspring with recorded values
for birthweight were on average 30.1 years old, with a minimum
age of 19, and a maximum age of 41 at the time of measurement
used in this study. Descriptive statistics on the mother–offspring
and father–offspring pairs are presented in Table 1. It is impor-
tant to note that only offspring born after 1967 had birthweight
recorded and were included in this part of the analysis. Table 2
shows the phenotypic association between own birthweight and
SBP, DBP, non-fasting glucose, non-fasting total, LDL and HDL
cholesterol, non-fasting triglycerides, and BMI. Consistent with
many previous observational epidemiological studies22–25, linear
regression yielded negative point estimates of the observational
relationship between birthweight and blood pressure, LDL, total
cholesterol, and BMI. We also found evidence for positive
quadratic terms in the model between birthweight and both BMI
and glucose, suggesting U-shaped/J-shaped relationships between
these variables. Finally, we found evidence for a positive linear

relationship between HDL cholesterol and birthweight with
additional evidence for a convex quadratic term indicating small
and large babies are likely to have slightly reduced HDL levels in
later life.

Analysis of fetal growth and cardiometabolic risk factors in the
HUNT offspring. We first checked whether the GRSs of birth-
weight associated SNPs from the latest GWAS of birthweight18

were also related to offspring birthweight in HUNT. The full
results are presented in Supplementary Table 1. In short, we
found that maternal GRSs were strongly associated with increased
offspring birthweight after conditioning on offspring GRS in
HUNT. Offspring GRS was related to offspring birthweight, but
this relationship attenuated after controlling for maternal GRS. In
the case of the GRS consisting of SNPs that only had a maternal
effect from the Warrington et al18 birthweight GWAS, offspring
GRS was not strongly related to offspring birthweight after con-
trolling for maternal GRS. As expected, paternal GRS was not
associated with offspring birthweight after conditioning on off-
spring GRS. The effect size of the offspring GRS was similar in
mother–offspring and father–offspring pairs, and did not
attenuate after adjusting for paternal GRS.

For the primary analyses investigating the effect of GRS on
offspring cardiometabolic traits, we had a total of 26,057
mother–offspring pairs and 19,792 father–offspring pairs. HUNT
offspring were on average 40 years old, with a minimum age of
19, and a maximum age of 85 at the time of measurement used in
this study. Descriptive statistics on all of the outcome variables in
the two samples are presented in Table 3. Our asymptotic power
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Fig. 1 Four credible ways in which maternal single nucleotide polymorphism (SNP)s can be related to offspring birthweight and offspring
cardiometabolic risk factors. a Maternal SNPs produce an adverse in utero environment that leads to fetal growth restriction and subsequently low
offspring birthweight and developmental compensations that produce increased risk of offspring cardiometabolic disease in later life. b Maternal SNPs
produce an adverse in utero environment that leads to fetal growth restriction and low offspring birthweight. Low offspring birthweight in turn is causal for
increased risk of offspring cardiometabolic disease. c Maternal SNPs produce an adverse in utero environment that leads to fetal growth restriction and
reduced birthweight. The same SNPs are transmitted to the offspring and pleiotropically influence offspring cardiometabolic risk through the offspring
genome. d Maternal SNPs produce an adverse in utero environment that leads to fetal growth restriction and reduced offspring birthweight. SNPs that
exert maternal effects on offspring birthweight also pleiotropically influence offspring cardiometabolic disease through the postnatal environment. The star
on the arrows denotes the act of conditioning on maternal or offspring genotype blocking the association between maternal and offspring variables. The
dotted paths indicate paths in which the maternal genotype can be related to offspring phenotype that are not to do with intrauterine growth restriction.
Finally, we note that some offspring SNPs may also exert direct effects on offspring birthweight (these not shown). The presence of direct effects from
offspring genotype on offspring birthweight is inconsequential so long as the relevant analyses are conditional on offspring genotype.
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calculations indicated that we had (≥80%) power to detect a
maternal genetic effect that explained as little as 0.04% of the
variance in offspring outcome (N= 26,057) (two tailed α= 0.05)
and slightly lower power (>68%) (N= 19,792) to detect a paternal
genetic effect responsible for a similar proportion of the offspring
phenotypic variance. Due to some missing data in the offspring’s
cardiometabolic risk factors, the number of mother–offspring and
father–offspring pairs differed slightly across the outcomes
(Table 3). Although the sample size for some of the analyses is
slightly lower (lowest being 25,461 mother–offspring pairs and
19,339 father–offspring pairs) we retain statistical power to detect
an association of maternal GRS with offspring cardiometabolic
risk factors (79% and 67%, respectively) using the same
parameters as above.

We found little evidence for an association between maternal
(or paternal) GRS and any of the offspring cardiometabolic risk
factors in later life, after adjusting for offspring GRS (Tables 4, 5;
Supplementary Data 1). These tables show the estimated expected
change in offspring cardiometabolic outcome per one unit (i.e.
allele) increase in maternal/paternal genetic risk score after
conditioning on offspring (or maternal/paternal) genetic risk
score. These results hold for systolic blood pressure, which had
previously been found to associate with maternal GRS in the
Warrington et al GWAS of birthweight18. In contrast, there was
strong evidence for a relationship between offspring GRS and
some of the offspring phenotypes after conditioning on maternal
GRS (Table 6). Specifically, there was evidence for a positive
association between offspring GRS and both offspring glucose
and LDL, and evidence for a negative relationship between
offspring GRS and both systolic blood pressure and triglycerides.
It is important to note that the blood samples used to measure
lipids and glucose were non-fasting samples, which could
influence these results.

Cardiometabolic pathology becomes more apparent with
increasing age. Indeed, it is possible that younger individuals
within the HUNT Study do not show observable compensatory
changes in cardiometabolic risk factors, reducing the power of
our analyses to detect evidence for the observational associations
between birthweight and cardiometabolic risk factors to be causal.
We therefore divided our dataset into two strata based on age of
the offspring (i.e. offspring under 40 years of age and offspring
between 40 and 60 years of age). Our asymptotic power
calculations indicated that we had (≥80%) power to detect a
maternal genetic effect that explained as little as 0.09% of the
variance in offspring SBP (N= 12,037 and N= 11,849) (α= 0.05)
and slightly lower power (>66%) (N= 10,393 and N= 8402) to

detect a paternal genetic effect responsible for a similar
proportion of the offspring phenotypic variance. Table 7 (and
Supplementary Table 2) shows the main results of the stratified
analyses compared with those previously reported in the UK
BioBank by Warrington et al in their GWAS of birthweight18.
Whereas Warrington and colleagues found a significant positive
effect of maternal GRS on offspring SBP when adjusting for
offspring GRS, we find no effect in the stratified analyses.

Discussion
The Developmental Origins of Health and Disease (DOHaD)
hypothesis posits that adverse environmental factors in utero or
in the early years of life result in increased future risk of cardi-
ometabolic disease1,4,6. In this study, we used an MR paradigm to
provide evidence for or against the existence of DOHaD
mechanisms that are related to fetal growth and lower birthweight
for a range of cardiometabolic risk factors16,18. Specifically, we
tested whether a genetic risk score in mothers intended to proxy
for maternal intrauterine influences on offspring birthweight was
also associated with offspring cardiometabolic risk factors, whilst
simultaneously conditioning on offspring GRS constructed from
the same birthweight associated loci. There was no strong evi-
dence of association in a sample of over 25,000 mother–offspring
pairs from the Norwegian HUNT study, implying that if such an
effect on cardiometabolic risk factors exists, it may be small
compared to other sources of inter-individual variation, or only
affects a few individuals.

Our study is, to the best of our knowledge, the largest
parent–offspring MR study of DOHaD performed to date. The
HUNT Study contains over 25,000 genotyped mother–offspring
pairs where the majority of the offspring are middle-aged adults,
and are therefore old enough to have begun developing obser-
vable signs of cardiometabolic disease. Our asymptotic calcula-
tions indicated that we had strong (≥80%) power to detect a
maternal genetic effect that explained as little as 0.04% of the
variance in offspring outcome (two tailed α= 0.05). In contrast,
our previous study in the UK Biobank18 (where we first used this
MR paradigm to investigate DOHaD), involved only 3886
mother–offspring pairs, and was likely underpowered. Interest-
ingly, Warrington and colleagues found evidence for a positive
relationship between maternal birthweight lowering SNPs and
reduced offspring SBP (i.e. the opposite of what DOHaD would
predict); however, this result did not replicate in our sample.
Possible reasons for the discrepancy include the differences in
sample ascertainment across the studies, or that the younger
offspring in HUNT did not manifest a large enough effect18.

Table 1 Descriptive statistics for offspring cardiometabolic risk factors in the phenotypic association analyses.

Mother–offspring pairs Father–offspring pairs

Phenotype N Mean SD Range N Mean SD Range

Birthweight (g) 7825 3570 482 1390–5900 6875 3572 480 1660–5900
Age 7825 30.1 6.6 19.1–41.4 6875 30.1 6.6 19.2–41.4
Sex (% male) 7825 45.3 – – 6875 45.7 – –
SBP (mmHg) 7792 122.9 13.4 70.0–207.0 6846 122.8 13.4 70.0–207.0
DBP (mmHg) 7790 69.0 9.8 36.9–117.0 6845 68.9 9.7 38.0–120.0
Glucose (mmol/L)a 7659 4.95 1.16 2.29–11.95 6727 4.95 1.17 2.29–11.47
Total cholesterol (mmol/L) 7684 4.89 0.97 2.00–9.90 6749 4.88 0.97 2.30–9.90
LDL cholesterol (mmol/L) 7674 2.92 0.84 0.27–6.98 6742 2.91 0.84 0.27–7.27
HDL cholesterol (mmol/L) 7682 1.31 0.32 0.50–2.80 6748 1.32 0.32 0.50–2.80
Triglycerides (mmol/L)a 7786 1.22 1.72 0.30–11.25 6839 1.21 1.72 0.30–11.25
BMIa 7803 25.79 1.19 15.64–49.40 6853 25.28 1.17 15.96–49.40

SBP systolic blood pressure, DBP diastolic blood pressure, Glucose non-fasting glucose, BMI body mass index, LDL non-fasting low density lipoprotein, HDL non-fasting high density lipoprotein, mmol/L
millimol per litre, N number of individuals, SD standard deviation.
aOffspring phenotype first (natural) logarithm transformed in analysis and converted back for overview purposes.
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When stratifying our analysis by age, we did find effects in the
same direction as our original study for the 40-60 years age
group; however, the statistical support for the effect was weak.
Taken together, the UK BioBank and HUNT results provide
converging evidence that maternal genetic effects that predispose
to low offspring birthweight are not associated with increased
systolic blood pressure in later life.

In contrast, we did find evidence for association between off-
spring GRS and a number of offspring cardiometabolic risk
factors, even after conditioning on maternal GRS. These results
are broadly consistent with the Fetal Insulin hypothesis26–29 and
previous studies that have used LD score regression and G-REML
approaches to suggest that much of the phenotypic correlation
between birthweight and cardiometabolic risk is driven by genetic
pleiotropy in the offspring genome rather than DOHAD
mechanisms18,30. We note that the direction of the associations
involving the offspring GRS and offspring phenotypes are a little
difficult to interpret, since the GRS were defined on the basis of
maternal genotypic effects on offspring birthweight, whereas
these reported associations involve offspring GRS. Offspring
genotypes at some of the same loci are known to have quanti-
tatively and qualitatively different effects on offspring birthweight
(including the direction of association) compared to the maternal
effects. Also important to take into account is the fact that the
lipid and glucose measurements were performed in non-fasting
samples, which could influence these results, particularly as it is
known that mean blood glucose levels and triglycerides are
higher in the first three hours after calorie intake31. Nevertheless,
our results show clearly that maternal SNPs that influence off-
spring birthweight have pleiotropic effects on offspring cardio-
metabolic traits when these same SNPs are transmitted to their
offspring.

Another novel facet of our study was the use of the OpenMx
software package to model the complicated data structure within
the HUNT Study. Using traditional formulations of FIML to
model the relatedness structure using a genetic relationship
matrix would be computationally prohibitive within the HUNT
sample, as maximizing the likelihood would involve an inversion
of a matrix of order N. In contrast, our implementation permits
complicated tests of association to be performed in the fixed
effects part of the model, whilst simultaneously modeling cryptic
relatedness in the random effects part of the model in a com-
putationally efficient manner32. We hope that our implementa-
tion will prove useful in complicated genetic analyses of other
large scale population-based cohorts where cryptic relatedness/
population stratification is likely to be an issue. We have included
an example R script in Supplementary Note 1 of the manuscript
that can be used as a template by interested researchers. We
caution users, however, that specification of the covariance part
of the model is more rigid using our speed up in that only two
variance components can be fitted simultaneously, one being a
residual variance component that is uncorrelated across
individuals.

Our approach has a number of limitations which we discuss in
the remaining paragraphs. First, we assume that the maternal
SNPs that affect offspring birthweight do so via fetal growth (as
reflected in birthweight). This is important, because as many
others have noted, it may not be fetal growth/birthweight itself
that is relevant for the validity of DOHaD. Rather it could be
poor development of different key organs, in key stages of the
pregnancy or a particular adverse maternal environment due to
famine, disease or a range of other factors. Indeed, it would likely
be profitable to use the same framework to investigate the asso-
ciation between offspring cardiometabolic disease and other
adverse maternal exposures, such as maternal BMI, maternal
alcohol consumption, preeclampsia, and gestational diabetes.T
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Their effect may be qualitatively and quantitatively different from
the maternal effect on birthweight within healthy subjects deli-
vering babies within the normal range. However, even though the
mechanisms through which our maternal SNPs influence off-
spring birthweight are largely unknown (and therefore our
genetic risk score is largely unspecific), we know that they play an
important part in fetal growth of the offspring. Further MR
studies on different maternal exposures are warranted including
on those that do not necessarily exert observable effects on off-
spring birthweight, but proxy other more specific maternal
environments. Moreover, we used unweighted GRS of birth-
weight associated SNPs in our MR framework. Using a weighted
maternal GRS and conditioning on a weighted offspring GRS
does not completely block the path through the offspring’s gen-
ome, increasing type 1 error rate for the maternal effect on off-
spring cardiometabolic phenotype. To avoid the inflation in type
1 error, we use an unweighted maternal GRS and condition on
offspring unweighted GRS, which is sufficient to block this path.
However, the main reason for using an unweighted GRS is that
weighting SNPs by the strength of association between maternal
genotype and offspring birthweight would only be appropriate if
the effect of the maternal SNP on the offspring’s cardiometabolic
phenotype was mediated through offspring birthweight (i.e. panel
B of Fig. 1). However, we believe it is more likely that offspring
birthweight is a marker of several latent processes, which may
then affect the offspring’s cardiometabolic phenotype (i.e. more
akin to panel A of Fig. 1). Using weights derived from a maternal
GWAS of birthweight may not accurately reflect SNP associations
with these underlying latent processes, particularly if there are
many such processes that are relevant for later life disease risk.

Second, our example here, and MR approaches in general,
typically test small changes in an exposure. However, it may
be that DOHaD mechanisms are important in the genesis of
cardiometabolic risk, but only in the case of severe exposures
(e.g. famine or obesity) at the extreme ends of the spectrum.
These effects may be qualitatively different from small pertur-
bations in the environment that produce relatively subtle varia-
tions in the normal healthy population. If DOHaD is only
relevant in the case of extreme environmental effects, then MR
approaches applied to population data may not be well suited to
testing the hypothesis.

Third, although our methods rely on MR principles to inform
on the validity of DOHaD (i.e. we use genetic variants to increase
our study’s robustness to environmental confounding), we did
not perform formal instrumental variables analyses in this
manuscript. The reason is that we do not have appropriate esti-
mates of the effect of maternal genotypes on the intrauterine

environment. We only have estimates of the relationship between
SNPs and offspring birthweight, which is an imperfect proxy of
fetal growth restriction. Therefore, it does not make sense to
estimate causal effect sizes in our study as in typical MR analyses.
However, we note that it may be possible to estimate the effect of
a putative latent variable indexing growth restriction using, for
example, latent variable models; this is an area of future research
for our group.

Fourth, our power calculations show that we were well pow-
ered (>80% at α= 0.05) to detect an association between
maternal genetic risk score and offspring cardiometabolic risk
factors responsible for as little as 0.04% of the phenotypic var-
iance. However, whilst our study, to the best of our knowledge, is
the largest and most powerful genetic investigation into DOHaD
to date, the actual variance in the offspring cardiometabolic risk
factor explained by the maternal GRS, depends critically upon the
underlying genetic model, and could be even smaller than 0.04%.
In an attempt to make this clear, Fig. 2 is a path diagram that
illustrates the relationship between maternal GRS, offspring GRS,
an intrauterine environment that reduces fetal growth (modeled
as a single latent unobserved variable), offspring birthweight and
an offspring cardiometabolic risk factor. In this diagram, and
consistent with most formulations of DOHaD, we assume that (i)
there is no direct causal effect of birthweight on cardiometabolic
risk (i.e. no arrow from birthweight to the cardiometabolic risk
factor), and (ii) no effect of maternal GRS on the offspring car-
diometabolic risk factor that goes through paths other than fetal
growth restriction (e.g. no postnatal mechanisms). To make cal-
culations and explication easier, we assume that all variables have
been standardized to unit variance. Under this model, the cor-
relation between birthweight and the cardiometabolic risk factor
is a function of two processes. One is the effect of the intrauterine
environment on birthweight and the cardiometabolic risk factors
(i.e. the product of path coefficients λ1 and λ2). The second is the
residual covariance between birthweight and the cardiometabolic
risk factors. This latter pathway includes both environmental
factors other than fetal growth restriction that affect both phe-
notypes and the effect of polygenes that are not modeled in the
experiment whose joint effects are quantified by the parameter Θ.
These correlations could be positive or negative individually, but
when combined produce a very small (|r | <= 0.05) negative
phenotypic correlation between birthweight and most of the
cardiometabolic risk factors. The point is that, unless the residual
covariance between birthweight and the cardiometabolic risk
factor is positive, the values for path coefficients λ1 and λ2 are
likely to be very small in order to be consistent with the observed
phenotypic correlations.

Table 3 Descriptive statistics for offspring cardiometabolic risk factors in the primary analyses.

Mother–offspring pairs Father–offspring pairs

Phenotype N Mean SD Range N Mean SD Range

Age 26,057 41.4 12.7 19.1–83.2 19,792 39.3 12 19.1–84.8
Sex (% male) 26,057 48.4 – – 19,792 48.4 – –
SBP (mmHg) 25,946 128.3 17.3 70.0–218.0 19,711 126.9 16.4 70.0–218.0
DBP (mmHg) 25,940 73.9 11.9 36.0–134.0 19,711 72.8 11.5 38.0–126.0
Glucose (mmol/L)a 25,461 5.16 1.20 2.29–12.81 19,339 5.16 1.19 2.29–12.81
Total cholesterol (mmol/L) 25,589 5.31 1.08 2.00–10.90 19,423 5.22 1.07 2.10–10.90
LDL cholesterol (mmol/L) 25,533 3.26 0.95 0.14–8.60 19,392 3.19 0.93 0.27–8.60
HDL cholesterol (mmol/L) 25,560 1.33 0.33 0.50–2.90 19,412 1.33 0.33 0.50–2.80
Triglycerides (mmol/L)a 25,916 1.35 1.73 0.18–11.70 19,680 1.32 1.73 0.49–11.70
BMIa 25,946 26.31 1.17 15.03–50.40 19,715 26.31 1.17 15.80–50.40

SBP systolic blood pressure, DBP diastolic blood pressure, Glucose non-fasting glucose, BMI body mass index, LDL non-fasting low density lipoprotein, HDL non-fasting high density lipoprotein, mmol/L
millimol per litre, N number of individuals, SD standard deviation.
aOffspring phenotype first (natural) logarithm transformed in analysis and converted back for overview purposes.
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The variance in birthweight explained by the maternal GRS is a
function of the direct association between the SNPs and the
intrauterine environment (the path coefficient γ), and the effect of
the intrauterine environment on birthweight (the path coefficient
λ1—the precise formula being: γ2λ12). The variance explained in
the cardiometabolic risk factor by the maternal GRS is equal to
the product of the SNPs’ direct effect on the intrauterine envir-
onment (path coefficient γ in Fig. 2), multiplied by the effect of
the intrauterine environment on the cardiometabolic risk factor
(path coefficient λ2 in Fig. 2) all squared. There are an infinite
number of ways these parameters can vary to make the under-
lying model consistent with the pattern of observed correlations
and the proportion of variance explained in birthweight by the
maternal GRS. To give the reader an idea of the potentially small
numbers involved, we assume that the correlation between
birthweight and the cardiometabolic risk factor is completely
explained by the intrauterine environment and λ1=−0.5 and
λ2= 0.1 (so that the observed correlation r= λ1 λ2=−0.05). In
order for the underlying model to also be consistent with the
maternal GRS explaining a small percentage of the variance in
birthweight (say 0.5% of the variance), then the path coefficient
between the maternal GRS and the latent intrauterine variable γ

would equal
ffiffiffiffiffiffiffiffi

0:005
λ2

q

= 0.1414. These values in turn would imply

that the variance explained in the cardiometabolic risk factor by
the maternal genetic risk score would be 0.14142 × 0.12= 0.02%,
which is a small proportion of the variance, and one that we are
only moderately well powered to detect (>50%) in our study. Our
point, however, is that the proportion of variance in the outcome
explained by the maternal GRS may be very small, and so power
may only be moderate despite the very large sample size of
HUNT. The corollary to this though is that we are very well
powered to detect larger effects of the intrauterine environment
influencing offspring birthweight on cardiometabolic risk factors,
and the fact that we do not detect these suggests that if such an
effect is present, it is likely to be small.

Finally, we recognize that our act of conditioning on offspring
GRS, may have induced a (spurious) correlation between
maternal GRS and paternal GRS due to conditioning on a collider
variable, potentially biasing the results of our maternal GRS
analyses. However, any such bias is likely to be small in magni-
tude as it relies on the existence of (and is proportional to the size
of) direct paternal genetic effects from the same SNPs on the
offspring phenotype. As sizeable paternal genetic effects on off-
spring cardiometabolic risk are unlikely at these loci, we doubt
that collider bias is a serious impediment to the validity of our
study33.

In conclusion, we did not find evidence for a causal effect of the
intrauterine environment (as proxied by maternal genetic effects
on offspring birthweight) on offspring cardiometabolic risk fac-
tors in a population-based sample of individuals. We did, how-
ever, find evidence of genetic pleiotropy between offspring
birthweight and offspring cardiometabolic risk factors which
helps explain the robust observational relationships between the
variables.

Methods
HUNT study. The Nord-Trøndelag Health Study (HUNT) is a large population-
based health study of the inhabitants of Nord-Trøndelag County in central Norway
that commenced in 1984. A comprehensive description of the study population has
been previously reported21. Approximately every 10 years the entire adult popu-
lation of Nord-Trøndelag (~90,000 adults in 1995) is invited to attend a health
survey which includes comprehensive questionnaires, an interview, clinical
examination, and detailed phenotypic measurements (HUNT1 (1984 to 1986);
HUNT2 (1995 to 1997); HUNT3 (2006 to 2008) and HUNT4 (2017 to 2019)).
These surveys have high participation, with 89%, 69%, 54%, and 54% of invited
adults participating in HUNT1, 2, 3, and 4, respectively21,34. Additional phenotypic
information is collected by integrating national registers. Approximately 90% ofT
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participants from HUNT2 and HUNT3 were genotyped in 201535, and the gen-
otype and phenotype data used in the subsequent analysis are exclusively from
these two surveys.

The HUNT Study was approved by the Regional Committee for Medical and
Health Research Ethics, Norway and all participants gave informed written consent
(REK Central application number 2018/2488).

Genotyping, quality control, and imputation. DNA from 71,860 HUNT samples
was genotyped using one of three different Illumina HumanCoreExome arrays
(HumanCoreExome12 v1.0, HumanCoreExome12 v1.1, and UM HUNT Biobank
v1.0)35. Genomic position, strand orientation, and the reference allele of genotyped
variants were determined by aligning their probe sequences against the human
genome (Genome Reference Consortium Human genome build 37 and revised
Cambridge Reference Sequence of the human mitochondrial DNA; http://genome.
ucsc.edu) using BLAT36. Ancestry of all samples was inferred by projecting all
genotyped samples into the space of the principal components of the Human
Genome Diversity Project (HGDP) reference panel (938 unrelated individuals;
downloaded from http://csg.sph.umich.edu/chaolong/LASER/)37,38, using PLINK
v1.9039. The resulting genotype data were phased using Eagle2 v2.340. Imputation
was performed on the 69,716 samples of recent European ancestry using Minimac3
(v2.0.1, http://genome.sph.umich.edu/wiki/Minimac3)41 with default settings (2.5
Mb reference based chunking with 500 kb windows) and a customized Haplotype
Reference consortium release 1.1 (HRC v1.1) for autosomal variants and HRC v1.1
for chromosome X variants42.

Identifying genotyped parent–offspring pairs. Before the kinship analysis, the
plink files with genotyped SNPs underwent a second stage of cleaning. Any indi-
viduals whose inferred sex contradicted their reported gender (N= 348) as well as
individuals showing high or low heterozygosity (±5 SD from the mean) (N= 412)
were removed (760 individuals in total). In addition, variants with minor allele
frequency <0.005 or more than 5% missing rate were removed. Parent–offspring
pairs were identified by kinship analysis using the KING software version 2.2.443.
Only genotyped SNPs shared across the arrays on autosomal chromosomes were
used for the analysis – a total of 257,488 SNPs.

From the analysis, 46,428 parent–offspring relationships were identified, in
addition to 35,373 full siblings, 128,334 second degree relationships and 386,619
third degree relationships based on the kinship analysis performed using the KING
software and recommended thresholds for relatedness implemented as part of this
package43. Any parent–offspring pair with 15 years or fewer difference in birth year
was removed from further analyses. After removing these pairs, a total of 26,057
mother–offspring pairs and 19,792 father–offspring pairs of European ancestry
with genotype information passing QC were identified. Each parent had between
one and eight offspring available for analysis. Supplementary Table 3 shows the
number of offspring per mother/father available for analysis.

Genetic risk scores. SNPs previously associated with own or offspring birthweight
at genome-wide levels of significance in the Early Growth Genetics (EGG) Con-
sortium paper18 were extracted from the HUNT imputed genotype data in dosage

format using plink239. Dosages were coded so that increasing dosages reflected
maternal alleles associated with increased offspring birthweight based on condi-
tional genome-wide association study (GWAS) results previously published18.
Unweighted genetic risk scores (GRS) were constructed by simply adding the
expected number of increasing birthweight alleles together for each individual. We
used unweighted scores because we do not know the extent to which each allele
influences growth restriction, and so weighting the scores by e.g. their observed
effect on birthweight would be less appropriate. Three GRS were constructed—one
using all autosomal SNPs shown to have an effect on birthweight (N= 204) from
the recent EGG Consortium GWAS paper of birthweight18 that found 205 auto-
somal SNPs, but rs9267812 was not available in the HUNT data), one using SNPs
shown to have a maternal effect (N= 71; i.e. some of these SNPs also had a fetal
effect on birthweight), and one using SNPs that only had a significant maternal
effect (N= 31) (Supplementary Data 2).

Outcome variables. During the health surveys (HUNT1-4)21 clinical examination,
and detailed phenotypic measurements were performed on all participants, data
from HUNT3 or HUNT2 were used in the subsequent work. For all cardiometa-
bolic risk factors in the offspring (BMI, systolic blood pressure (SBP), diastolic
blood pressure (DBP), non-fasting glucose (Glucose), total cholesterol, high density
lipoprotein (HDL) cholesterol, low density lipoprotein (LDL) cholesterol, and
triglycerides), the most recent value (e.g. values measured in HUNT3) was used if
available. If the individuals were not a part of HUNT3, measurements from
HUNT2 were used. Age at participation was calculated to correspond with the
health survey chosen. Blood pressure was taken three times during the clinical
examination, and SBP and DBP measurements were calculated as the average of
the second and third measurement. For individuals who only had two blood
pressure measurements taken (12% of offspring in the mother–offspring pairs and
9% of offspring in the father–offspring pairs), the second measurement was used.

For the blood measurements, samples were taken from non-fasting participants.
In HUNT3, participants’ total cholesterol was measured by enzymatic cholesterol
esterase methodology; HDL cholesterol was measured by accelerator selective
detergent methodology; triglycerides were measured by glycerol phosphate oxidase
methodology; and glucose was measured by Hexokinase/G-6-PDH methodology
(Abbott, Clinical Chemistry, USA). In HUNT2, participants’ total and HDL
cholesterol and triglycerides were measured by applying enzymatic colorimetric
cholesterol esterase methods (Boeheringer Mannheim, Mannheim, Germany) and
glucose was measured by an enzymatic hexokinase method. The measurements are
shown in millimole per liter. Weight and height were measured in light clothes and
BMI was calculated as weight (kilograms) divided by the squared value of height
(in meters).

We adjusted the blood pressure measurements of individuals who self-reported
using blood pressure lowering medication by adding 15 mmHg to their SBP and 10
mmHg to their DBP. We chose this procedure over including medication use as a
covariate to avoid introduction of possible collider biases into the analyses44. Non-
fasting LDL cholesterol was calculated using the Friedewald formula45. All values
more than 4 standard deviations from the mean were removed. If the variable was
not normally distributed (non-fasting triglycerides, BMI and non-fasting glucose)
the values were natural log transformed before removing outlying values.

Table 7 Association between maternal or paternal GRSa influencing offspring birthweight and offspring SBP after conditioning
on offspring GRSa in different age strata compared with previous results from Warrington et al. 18.

Autosomal SNPs (N=204) Autosomal SNPs with maternal
effect (N=71)

Autosomal SNPs with maternal
effect only (N=31)

Analysis sample N Effect
estimate

SE p-value Effect
estimate

SE p-value Effect
estimate

SE p-value

Age 20–40 in HUNT:
Mother–offspring pairs 12,037 −0.0155 0.0095 0.1035 −0.0046 0.0095 0.6377 −0.0092 0.0095 0.3349
Father–offspring pairs 10,393 −0.0080 0.0102 0.4352 −0.0126 0.0101 0.2142 −0.0025 0.0102 0.8108
Age 40–60 in HUNT:
Mother–offspring pairs 11,849 −0.0059 0.0105 0.5739 −0.0061 0.0087 0.6549 0.0011 0.0103 0.9125
Father–offspring pairs 8,402 −0.0079 0.0124 0.5228 0.0085 0.0123 0.4691 0.0179 0.0122 0.1475
UK Biobank results from
Warrington et al:18

Mother–offspring pairsb 3,886 0.043 0.030 0.152 0.117 0.050 0.018 0.213 0.083 0.011
Father–offspring pairsb 1,749 0.032 0.044 0.459 0.091 0.075 0.221 0.029 0.125 0.820

All analysis are adjusted for age, sex, measurement occasion and GRS of offspring. Results with p-values less than 0.05 are shown in bold. Effect estimates and standard errors in HUNT are standardized.
The regression coefficients give the estimated expected change in offspring SBP (mmHg) per one unit (i.e. allele) increase in maternal/paternal genetic risk score after conditioning on offspring genetic
risk score. P-values reflect minus two log-likelihood chi-square tests between the full model and a sub-model where the relevant parameter is fixed to zero. All p-values are two sided uncorrected for
multiple testing.
GRS genetic risk score, SBP systolic blood pressure, SNP single nucleotide polymorphism, N number of individuals, SE standard error.
aMaternal, paternal and offspring GRS were coded so that increasing dosages reflected maternal alleles associated with increased offspring birthweight based on conditional GWAS results previously
published.
bUnstandardized values.
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Phenotypic relationship between birthweight and cardiometabolic risk fac-
tors. Own birthweight was available for individuals in HUNT after linking with the
Medical Birth Registry of Norway (MBRN)46 using the unique 11-digit identifi-
cation numbers assigned to all Norwegian residents. This was performed by a third
party and the researchers only had access to de-identified data. The registry
commenced in 1967, when health authorities began reporting pregnancy-related
data; therefore, birthweight measurements were only available for HUNT partici-
pants born in 1967 or later. The validity of information on birthweight in the
MBRN has previously been reported as very good47. Individuals in HUNT with
own birthweight who were part of a multiple birth (210 twins and 4 triplets) were
excluded from the analysis. Additionally, we excluded individuals with a known
congenital malformation (N= 317), if their birth was induced or performed via a
cesarean section (N= 2,488), if their birthweight was under 1000 g (N= 1), or if
they were born before 258 days of gestation (N= 451). To investigate if we could
replicate the previously reported phenotypic associations between birthweight and
cardiometabolic risk factors, we fitted a linear mixed model to N= 7,825
mother–offspring pairs and then N= 6,875 father–offspring pairs using the soft-
ware package OpenMx48 using the procedure described below. We modeled off-
spring cardiometabolic risk factor as the outcome and included offspring
birthweight, offspring birthweight squared, offspring age, offspring sex and mea-
surement occasion (HUNT2 or HUNT3) as fixed effects. Offspring birthweight
squared was included as a fixed effect to capture a possible non-linear relationship
between birthweight and cardiometabiolic risk factors, as has been observed in
some studies previously49–51. The other covariates were included to reduce error
variance in the cardiometabolic risk factor and consequently increase the power of
the analyses. The non-independence between siblings and the cryptic relatedness
between offspring was modeled using a genetic relatedness matrix in the random
effects part of the model as described below.

Analysis of fetal growth and later life outcomes in the offspring. Cryptic
relatedness is a problem for genetic studies of large population-based cohorts like
HUNT. Whilst point estimates from genetic association analyses will often be
unbiased in the presence of cryptic relatedness, standard errors can be too small,
meaning that statistical tests of association may have inflated Type 1 error rates.
Dropping one person from each pair of putatively related individuals is inefficient
and requires an arbitrary threshold to be specified in order to declare a pair of
individuals related (e.g. first-order relatives). Thus, dropping individuals is unlikely
to remove the non-independence of the error terms completely. In the case of
single SNPs, this problem can be solved by using custom-written software
packages. These software packages allow users to fit linear mixed models where a
dataset is analyzed as one large set of related individuals and the similarity between
individuals is parameterized by a genome-wide genetic relationship matrix.
However, these software packages are designed for GWAS analysis and may not
have the flexibility to enable users to fit more complicated statistical models such as
those involving genetic risk scores and conditional association analyses, as we wish
to do here.

We therefore parameterized our statistical model using the OpenMx package48

in the R statistics software. OpenMx allows users to model multivariate normal
data flexibly in terms of fixed and random effects, and to estimate parameters
simultaneously using full information maximum likelihood (FIML). We used the
fixed effects part of the model to test for genetic association between the maternal
GRS and offspring phenotype, and modeled the similarity between individuals in
the random effects part of the model. The model for the fixed effects included
terms for the genetic risk score of the mother (father), the genetic risk score of the
offspring, age, sex and the measurement occasion (HUNT2 or HUNT3). Again, the
inclusion of age, sex and measurement occasion in the fixed effects part of the
model was to reduce error variance in the cardiometabolic risk factor of interest
and hence increase power. In the random effects part of the model we modeled the
similarity between individuals in terms of a genetic relationship matrix (GRM) and
an identity matrix for residual effects:

Σ ¼ Aσ2g þ Iσ2e ; ð1Þ
where Σ is the expected N x N phenotypic covariance matrix, A is an N x N genetic
relationship matrix calculated using the GCTA software version 1.9352, I is an N x
N identity matrix, σ2A and σ2E are variance components due to additive genetic and
residual sources of variation respectively, and N is the number of individuals in the
analysis. When creating the GRM it was important to exclude the SNPs (and the
SNPs in linkage disequilibrium around them) used in the genetic risk scores.
Otherwise we would risk some of our association signal in the fixed effects part of
the model being attenuated because they would also be modeled in the random
effects part of the model. The GRM was therefore calculated after excluding the
known birthweight SNPs and any SNPs 1Mb away from them.

Estimating these parameters using FIML in OpenMx is computationally
intensive in that it involves inverting a matrix of order N. Indeed, our initial
attempts to do this suggested that fitting the model to the HUNT data this way may
not be possible given the limitations of our computing hardware. We therefore
reparametrized the statistical model using a factor rotation which converted the
problem from one involving an N x N matrix, to one involving a 1 ×1 matrix (see
Supplementary Note 2 for details). Our implementation involved first performing a
spectral decomposition of the genetic relationship matrix (A), and then pre-
multiplying the matrices of outcomes and fixed effects respectively by the matrix of
eigenvectors32. This pre-multiplication has the effect of “rotating away” the
dependence between outcome trait values, leaving the random effects uncorrelated.
The problem then reduces from N correlated observations (modeled by an N x N
matrix), to N independent observations, greatly facilitating computation. An R
script with code illustrating our method is included in the Supplementary Note 1.

We first tested the relationship between maternal GRS and offspring
birthweight in N = 7,825 mother–offspring pairs and N = 6,875 father–offspring
pairs to confirm that our GRS explained some of the variance in offspring
birthweight. We then performed our primary analyses testing the relationship
between maternal GRS and each of the offspring cardiovascular risk factors, whilst
conditioning on offspring GRS. We performed the same analyses in
father–offspring pairs to assess whether there was evidence for a postnatal effect
from either parent (Fig. 1d). In addition to analyzing all of the offspring together,
we stratified the data into two groups; one group with offspring under age 40 at the
time of measurement and one for offspring between 40 and 60 years of age. This
was done to obtain a sample that would be easier to compare with the previous
analysis of SBP in the UK Biobank Study by Warrington and colleagues18. Age
strata for individuals over 60 is not presented due to the low number of individuals.

A flowchart of the sample selection is presented in Fig. 3.

Power calculations. We were interested in the statistical power of our approach to
detect maternal genetic effects on offspring cardiometabolic risk factors. We
therefore used the Maternal and Offspring Genetic Effects Power Calculator
(https://evansgroup.di.uq.edu.au/MGPC/) to calculate power to detect associa-
tion53. We assumed N = 26,057 complete mother–offspring pairs, the absence of
offspring genetic effects, and a Type 1 error rate of α = 0.05 (the presence/absence
of offspring genetic effects has little influence on power to detect maternal genetic
effects so long as the proportion of variance explained is small53).

Intrauterine
environment
that reduces
fetal growth

Offspring
cardiometabolic

risk factor

Maternal
genetics

Offspring
genetics

Offspring
birthweight

1

0.75

1
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γ
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Fig. 2 Path diagram of the relationship between maternal Genetic Risk
Score (GRS), offspring GRS, the intrauterine environment, offspring
birthweight and an offspring cardiometabolic risk factor. Variables within
square boxes represent observed variables, whereas variables in circles
represent latent unobserved variables. Unidirectional arrows represent
causal relationships from tail to head, whilst two headed arrows represent
correlational relationships. Greek letters on one headed arrows represent
path coefficients which quantify the expected causal effect of one variable
on the other. Greek letters on two headed arrows represent covariances
between variables. The two epsilon variables represent residual latent
factors (both environmental and genetic) that are not modeled in the study.
The coefficient Θ represents the covariance between the residual terms.
We assume that all variables are standardized to have unit variance.
Consequently, the residual variance of the offspring GRS is set to 0.75 since
¼ of the variance comes from the maternal genotype. For the purposes of
the power calculation described in the discussion, we assume that maternal
single nucleotide polymorphism (SNP)s that affect offspring birthweight
do so through a single latent intrauterine factor, and that this factor also
exerts long term effects on the offspring cardiometabolic risk factor of
interest.
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Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The empirical datasets used with the HUNT study will be archived with the study and
will be made available to individuals who obtain the necessary permissions from the
study’s Data Access Committee. Due to privacy issues, access to individual-level data
requires permission from the HUNT Study, the Medical Birth Registry of Norway and
the regional committee for medical research ethics. Requirements for access to data from
the HUNT Study are described at www.ntnu.edu/hunt.

Code availability
Example code is provided in Supplementary Note 1.
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