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The role of allyl ammonium salts in palladium-
catalyzed cascade reactions towards the synthesis
of spiro-fused heterocycles
Fei Ye1,2,3, Yao Ge2,3, Anke Spannenberg2, Helfried Neumann 2 & Matthias Beller 2✉

There is a continuous need for designing new and improved synthetic methods aiming at

minimizing reaction steps while increasing molecular complexity. In this respect, catalytic,

one-pot cascade methodologies constitute an ideal tool for the construction of complex

molecules with high chemo-, regio-, and stereoselectivity. Herein, we describe two general

and efficient cascade procedures for the synthesis of spiro-fused heterocylces. This trans-

formation combines selective nucleophilic substitution (SN2′), palladium-catalyzed Heck and

C–H activation reactions in a cascade manner. The use of allylic ammonium salts and specific

Pd catalysts are key to the success of the transformations. The synthetic utility of these

methodologies is showcased by the preparation of 48 spiro-fused dihydrobenzofuranes and

indolines including a variety of fluorinated derivatives.
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The development of novel chemical transformations
increasing molecular complexity enables significant inno-
vation potential in life and material sciences. In this

respect, catalytic cascade or domino processes offer strong
impetus for new methodology developments1–3. Compared to
traditional consecutive procedures, they permit several practical
advantages: In addition to improved step-economy, waste gen-
eration from multiple iterations of reaction, workup, and pur-
ification procedures are minimized. Consequently, diverse and
complex organic molecules can be assembled not only in a faster,
but also more sustainable way.

Since their discovery in the 1970s and 80s4–8, palladium-
catalyzed C–C bond forming reactions have become the most
popular homogeneous catalytic processes in organic chemistry
and industrial fine chemical synthesis9–12. Their ability to form
(stereo)selectively carbon-carbon bonds under mild conditions
made them “a true power tool for organic synthesis”13. Specifi-
cally, the intramolecular Heck reaction provides an entry to useful
palladium complexes with quaternary carbon centers as inter-
mediates (Fig. 1b, I–2), which can be further valorized to a
multitude of valuable building blocks14–18. Notably, the combi-
nation of this reaction with C–H activation processes has also
been studied, giving access to structurally unique spiro com-
pounds19–31, which possess interesting biological activities
(Fig. 1c)32–38. However, the necessity of pre-synthesized starting
materials in the existing methods limits the full exploitation of
this elegant concept and is often tedious. In our quest for the
development of new cascade methodologies, we had the idea to
provide a more facile entry to this class of compounds by

combining three (or four) palladium-catalyzed coupling pro-
cesses, namely Tsuji–Trost and Heck reactions followed by
selective C–H activation (and alkyne insertion) to assemble
complex organic molecules from easily available substrates
(Fig. 1).

Herein, we describe our recent efforts to establish a palladium-
catalyzed allylic substitution/Heck/C–H activation(/alkyne) cas-
cade processes for the synthesis of spiro-fused heterocycles. Key
challenges of such processes are obviously the compatibility of the
well-matched reactant partners39, the required conditions of the
individual reactions, the development of a general catalyst system
able to promote all three (or four) transformations efficiently, and
to achieve the needed high chemo-selectivity, regio-selectivity,
and stereoselectivity throughout all elementary steps.

Results
Reaction development. Recently, Lautens, Schoenebeck and co-
workers reported the synthesis of spiro-fused heterocycles
through an intramolecular Heck/C–H activation sequence using
specific alkene-tethered aryl iodides (Fig. 1a)40–42. Regarding the
starting materials, those substrates might be preferably prepared
through an initial palladium-catalyzed Tsuji-Trost allylation of 2-
halophenols, which would provide a more efficient and step-
economic way43–45. Following this initial idea, we investigated the
coupling of 2-iodophenol (1a) with 2-phenylallyl acetate (2a) in
the presence of PdBr2/L1 (Fig. 2a) and various other palladium
catalysts (for details see Supplementary Information, Supple-
mentary Table 1). Unfortunately, in no case the desired spiro-
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fused product 4a was observed and no conversion took place.
Similar results were obtained when the tert-butyl (2-phenylallyl)
carbonate (2b) was used instead of 2a. When more reactive 2-
phenylallyl bromide 2c was introduced, only the alkene-tethered
aryl iodide 3a was isolated in 73% yield instead of product 4a. To
improve the reactivity of the starting material further on, other
allylic leaving groups were considered. In this respect, allylic
ammonium salts, which have been largely neglected in inter-
molecular palladium-catalyzed allylic substitutions, attracted our
attention39,46,47. This class of compounds are in general highly
stable and can be conveniently prepared from a variety of amines.
Surprisingly, testing 2d in the presence of the PdBr2/L1 catalyst,
the desired cascade process took place and product 4b was

obtained in 87% isolated yield! This means that each individual
step proceeds with an efficiency of at least 95%. At this point, it
should be mentioned that allylic ammonium salts are also known
to undergo direct SN2-substitution or SN2’-substitution reactions
under basic conditions48–50. To understand whether the first
reaction step is really palladium-catalyzed, 2d was treated with 1a
in the presence of 1 equiv. of base. Interestingly, the allyl aryl
ether 3b was obtained in high yield (95%). Subsequent reaction in
the presence of our regular palladium catalyst led to full con-
sumption of 3b, providing the desired spiro-benzocyclobutane 4b
in 87% yield (Fig. 2b). Obviously, applying substrate 2d does not
allow to distinguish between SN2-mechanism and SN2’-mechan-
ism in the first reaction step due to its symmetry. Based on the
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actual interest in fluorinated building blocks51–53, the gem-
difluorinated allylic ammonium salt 2e39 was reacted with 2-
iodophenol, which gave product 3c in 99% yield and excellent
regioselectivity. Again, the following palladium-catalyzed steps
took place smoothly and provided 4c in high yield (80%). Simi-
larly, the direct conversion of 2e proceeded efficiently to give 4c
in 83% isolated yield (Fig. 2a, entry 5). It should be noted that
related fluorinated heterocycles in general cannot be easily pre-
pared54 and that to the best of our knowledge no example of such
spiro compounds has been reported yet. Apart from 2e, other
related ammonium salts 2f–2i underwent similar coupling pro-
cesses to provide the desired product 4c in slight lower yield
(62–75%) (for details see Supplementary Information, Supple-
mentary Table 2).

To obtain optimal results, an extensive evaluation of the
reaction conditions of the model systems was performed (for
details see Supplementary Information, Supplementary Tables 1–
9) and revealed three significant points: (1) The catalyst system is
crucial in this cascade process and only in the presence of
sterically hindered and electron-rich diadamantyl phosphines
such as L1, the desired product was obtained in high yield. (2)
Cs2CO3 and toluene were independently identified as the most
effective base and solvent, which nearly doubled the product yield
compared to other common bases and solvents. (3) In addition,
the concentrations of substrates are decisive. Using an equimolar
amount of both substrates led to the best result while an excess of
either ammonium salt or aryl halide considerably decreased the
yield of 4. Based on all these observations, a plausible mechanism
for the formation of benzocyclobutane derivative 4 is proposed in
Fig. 2c: Initially, 2-iodophenol 1 and ammonium salt 2 underwent
a base mediated SN2’ allylic substitution in a highly regioselective
manner. To further confirm the SN2’ route, deuterium substituted
ammonium salt was tested, details see Supplementary Informa-
tion, Supplementary Fig. 1. Next, intramolecular palladium-
catalyzed Heck reaction of the in situ generated compound 3
followed by site-selective C–H activation forms the spiropallada-
cycle III. Final reductive elimination regenerates the palladium
species and produces the desired product40. Noteworthily, this
novel cascade reaction is a rare example of a domino process
involving SN2´ substitution with subsequent metal-catalyzed
transformations55,56.

Scope for the formation of spiro-fused benzocyclobutene
derivatives. With the optimized reaction conditions in hand, the
general feasibility of this approach was examined. As shown in
Fig. 3, allylic ammonium salts with different substituents in 3-
position including H, F, CF3, directly afforded 4b–4e in all cases
in good to high isolated yields. For disubstituted substrate 2j with
–F and –CF3 substituents in 3-position, high diastereoselectivity
for two adjacent quaternary carbon centers was obtained (4e,
71%). Next, the reaction of gem-difluorinated allylic ammonium
salts 2k–2u with aryl halides 1a–1o (for details see Supplemen-
tary Information, Supplementary Fig. 2) was investigated. Most of
the ammonium salts were conveniently obtained from commer-
cially available phenylboronic acid and vinyl bromides via Suzuki
reaction, base-mediated amination, and final N-methylation39.
With regard to the cascade reaction, both electron-donating
groups including alkyl, aryl, alkoxy and aryloxy and electron-
withdrawing groups including fluoro and chloro were perfectly
compatible with the conditions, and the corresponding products
4f–4l were obtained in 53− 86% yield. The molecular structure of
these highly strained 5,4-spirocycles was unambiguously con-
firmed by X-ray crystal structure analysis of 4f. Both
diphenylamino-substituted and trimethylsilyl-substituted spiro
compounds 4m and 4n were successfully formed in high yield.

Furthermore, dibenzofuran-derived ammonium salt underwent
the cascade process, leading to the construction of the
heterocycle-embedded tetracyclic framework 4o in 60% yield.
Gratifyingly, the more complex derivative 4p containing two
spiro-fused benzocyclobutanes was smoothly generated in 51%
yield via a consecutive two-fold cascade process using the cor-
responding bis-ammonium salt as the reagent.

Next, we explored the scope of our methodology with respect
to the aryl halide coupling partner. In addition to 2-iodophenols
1a-1l, 2-bromophenol 1m, 2-chlorophenol 1n, and 2-iodoaniline
1o were also investigated. The latter case highlights the possibility
to construct 3-spiro-indolines, specifically 2-fluorinated indolines
(4ad and 4ae), which are of interest as natural products and
pharmaceutical molecules57,58. As depicted in Fig. 3, several
different aryl halides gave the expected tetracyclic products under
the standard conditions. Interestingly, considering the three-step
cascade, these transformations proceeded in good to excellent
yields with either electron-rich or electron-deficient substituents.
Notably, substrates containing heteroarenes, such as the quinoline
derivative 1k, provided the N,O-fused heterocycle 4ab in 60%
yield. Moreover, the L-tyrosine derived product 4ac was obtained
by a concise cascade transformation (dr= 1:1).

Three-component spirocyclization reaction. Considering the
versatility of the in-situ-generated palladacycles III16,26,27, sub-
sequent functionalization including carbene and alkyne insertion
should allow for the efficient construction of other classes of
novel spiro compounds29,30,41,42. To demonstrate this synthetic
potential, we performed the reaction of 1a and 2e with two equiv.
of an additional unsymmetrical alkyne 5a (ethyl 3-phenyl-pro-
pynoate). Indeed, the envisioned cascade process combining SN2’
substitution, palladium-catalyzed Heck/C–H activation and final
alkyne insertion provided in a straightforward manner only one
regioisomer of the respective 6,5-spirocycles 6 (regioselectivity:
>20:1). Under standard conditions, the desired product 6a was
obtained in 73% yield; however, in this case the highly reactive
palladacycle III also underwent minor reductive elimination and
the 5,4-spirocycle 4c was detected in 14% yield. Pleasantly,
increasing substrate concentration in the presence of the extended
ligand L3 provided exclusively 6a in high yield (85% isolated
yield; for a brief evaluation of reaction conditions see Supple-
mentary Information, Supplementary Table 10).

The generality of this second three-component cascade
procedure is shown by variation of five aryl iodides, nine
ammonium salts and six alkynes (Fig. 4). In all cases, the domino
reaction proceeded smoothly with valuable substituents and
functional groups, including alkoxy, aryloxy, halide, silyl, and
amino, giving the corresponding products 6a–6h in good to high
yields with excellent regioselectivities. The molecular structure of
6a was confirmed by X-ray crystallography. Substituents on the
phenyl ring of aryl iodide displayed only a minor influence on the
reactivity and provided 6i–6k in high yields. Notably, various
unsymmetrical alkynes with different substituents on the triple
bond afforded 6l–6q with excellent degrees of both chemoselec-
tivities and regioselectivities. For example, internal alkynes
bearing −COPh, −COCH3, and −CO2Me substituents gave the
corresponding products 6l–6n in 79%, 45 and 79% isolated yield,
respectively. It is worthy to note that 3-phenyl-2-propynenitrile
and 1,3-diynes were compatible in this transformation, affording
6o–6q in 40–94% isolated yield. Finally, the construction of 3-
spiro-indoline 6r was also achieved in 54% yield.

Discussion
In summary, we have developed two efficient cascade processes
involving allylic substitution (via SN2’-mechanism), palladium-
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catalyzed Heck, remote C–H activation, and reductive elimina-
tion or alkyne insertion for the straightforward synthesis of 5,4-
spiroheterocycles and 6,5-spiroheterocycles in good to high yields
with excellent selectivities. Crucial for the success of these
transformations is the use of specifically activated allylic sub-
strates (ammonium salts) in combination with special PdBr2/
AlkylPAd2 catalytic systems. Under optimal conditions diverse
(fluorinated) spiro-dihydrobenzofurans and spiro-indolines are
achieved in an unprecedented fast and step-economic way,
without need for purification of intermediates. We believe these
methodologies demonstrate the potential of catalytic cascade
processes for a straightforward increase of molecular complexity
of simple and easily available aryl halides.

Methods
General procedure for the preparation of spiro-fused benzocyclobutanes 4.
To a 25 ml oven-dried pressure tube equipped with a magnetic stir bar were added
2-halophenol or aniline 1 (0.2 mmol), ammonium salt 2 (0.2 mmol), Cs2CO3 (130

mg, 0.4 mmol), PdBr2 (2.7 mg, 0.01 mmol), L1 (7.2 mg, 0.02 mmol), and then
degassed toluene (2.5 mL) was introduced under argon atmosphere. The sealed
pressure tube was heated and stirred at 110 °C for 22 h. The reaction mixture was
allowed cooling to room temperature, diluted with ethyl acetate (10 ml), and fil-
tered through a short pad of celite eluting with ethyl acetate (3 × 10 ml). After
evaporation, the residue was purified by chromatography on basic aluminum oxide
(It is worthy to note that the 2-fluorinated product can only be separated without
decomposition using basic aluminum oxide) to afford the desired product 4.

General procedure for the preparation of spiro-fused dihydronaphthalenes 6.
To a 25 ml oven-dried pressure tube equipped with a magnetic stir bar were added
2-halophenol or aniline 1 (0.2 mmol), ammonium salt 2 (0.2 mmol), alkyne 5
(0.4 mmol), Cs2CO3 (130 mg, 0.4 mmol), PdBr2 (2.7 mg, 0.01 mmol), L3 (7.7 mg,
0.02 mmol), and then degassed toluene (1 ml) was introduced under argon
atmosphere. The sealed pressure tube was heated and stirred at 110 °C for 24 h. The
reaction mixture was allowed cooling to room temperature, diluted with ethyl
acetate (10 ml), and filtered through a short pad of celite eluting with ethyl acetate
(3 × 10 ml). After evaporation, the residue was purified by chromatography on
basic aluminum oxide (It is worthy to note that the 2-fluorinated product can only
be separated without decomposition using basic aluminum oxide) to afford the
desired product 6.
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