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Deep learning-assisted comparative analysis of
animal trajectories with DeepHL
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Hiroto Ogawa 5, Susumu Takahashi8 & Ken Yoda3

A comparative analysis of animal behavior (e.g., male vs. female groups) has been widely

used to elucidate behavior specific to one group since pre-Darwinian times. However, big

data generated by new sensing technologies, e.g., GPS, makes it difficult for them to contrast

group differences manually. This study introduces DeepHL, a deep learning-assisted platform

for the comparative analysis of animal movement data, i.e., trajectories. This software uses a

deep neural network based on an attention mechanism to automatically detect segments in

trajectories that are characteristic of one group. It then highlights these segments in visua-

lized trajectories, enabling biologists to focus on these segments, and helps them reveal the

underlying meaning of the highlighted segments to facilitate formulating new hypotheses.

We tested the platform on a variety of trajectories of worms, insects, mice, bears, and

seabirds across a scale from millimeters to hundreds of kilometers, revealing new movement

features of these animals.
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Recent advances in sensing technologies such as Global
Positioning System (GPS) and computer vision provide
“big behavioral data” of animals1–5. The challenge is how

best to capitalize on such data to understand animal behavior, a
challenge that has led to many significant cross-disciplinary
research projects combining biology and information science6–9.
One potentially powerful option involves deep learning artificial
intelligence (AI). The recent rapid evolution of this has exceeded
the capability of humans in a number of “intelligent” tasks
requiring human creativity, including the game of Go10,11.
Because big behavioral data require substantial effort for experts
to analyze manually, and because the complexity of the data
threatens to blur the capacity for insight, we believe that deep
learning-oriented AI is an extremely promising tool to meet
complex data challenges. Deep learning and classic machine
learning have been used as support tools to quantify animal
behavior (e.g., tracking1,12 and behavior recognition13) to reduce
the effort involved in manual data labeling by biologists. In
contrast, to take deep learning-assisted research one step further,
this study leverages deep learning to assist high-level intelligent
tasks associated with researchers requiring their insight, for
example, the proposal of a hypothesis. Here, we showcase an
example of this type of deep learning-assisted research, presenting
a computational method that supports the comparative analysis
of big behavioral data acquired by, and for, biologists.

Comparative methods have been used by biologists since pre-
Darwinian times. Today, with the advent of animal-tracking
technologies, comparative analysis, that is, comparison between
two groups, for example, experimental vs. control groups and
male vs. female groups, is one of the most fundamental approa-
ches to animal behavior analysis. Regarding this, biologists have
applied classic knowledge-driven approaches thus far, which are
illustrated in the upper portion of Fig. 1a. In this approach, the
biologists typically visually compare huge amounts of time-series
movement data, such as hundreds to thousands of trajectories, to
identify the behavior that characterizes one group for elucidation,
for example, sex-specific movement strategies, which requires
substantial effort from the researchers. Then, based on the find-
ing, the biologists design some statistical value computed from
the behavioral data that well separates the two groups, which is
called as a high-level feature in this study. After that, the biolo-
gists validate the finding using the computed high-level features
with a statistical test (e.g., testing the significant difference in the
high-level features between the male and female groups).

However, this approach possesses the potential risk of
researchers overlooking an important high-level feature. This
problem is obvious in the big data era. Although trajectory ana-
lysis based on classic machine learning has been studied, it still
relies on features handcrafted by experienced researchers based
on findings discovered by manually browsing a large amount of
behavioral data or high-level features designed based on
hypotheses formulated in advance, yielding a narrowly focused
analysis.

In this study, we present a data-driven approach based on deep
learning to support an analysis by biologists, as illustrated in the
lower part of Fig. 1a. Specifically, this study focuses on a com-
parative analysis, and a deep learning-based method is proposed
to help identify the differences between the trajectory data of two
groups. With this approach, to extract the high-level features
from the trajectory data for a classification of the two groups, we
leverage the feature learning capacity of deep learning, that is,
learning of the high-level feature extraction processes performed
within a deep neural network (DNN), which was originally
conducted by experienced researchers. Although a DNN can
extract high-level features objectively, unlike a classic approach, a
DNN is regarded as a black box, making it difficult to interpret

the meaning of the high-level features learned by the DNN, that
is, to observe the group differences detected by the network. To
address this problem, we developed DeepHL, a free, user-friendly,
web-based software, in which an interpretable neural network
with multi-scale layer-wise attention14 is used to elucidate the
characteristic segments in the trajectories to which the proposed
DNN model focuses on in order to distinguish between the tra-
jectories of the two groups (Fig. 1b, c). Because this method
informs researchers regarding “which parts of the trajectories
they should focus on for further analysis,” researchers can save
time and effort related to an otherwise manual analysis of huge
numbers of trajectories to derive the characteristic segments. In
addition, DeepHL finds handcrafted features prepared in advance
that are highly correlated with the identified segments to help the
researchers consider how best the segments can be explained.
Thus, this method facilitates data-driven research for a com-
parative analysis by supporting knowledge discovery from the
data. Figure 1b shows example outputs of DeepHL when we
compare trajectories from male seabirds to those from female
seabirds. DeepHL automatically finds trajectory segments char-
acteristic of each sex and then provides visualized trajectories
highlighting the relevant segments to researchers. Based on the
highlighted trajectories and highly correlated features, biologists
develop a new hypothesis related to sex-related difference. Then,
the biologists can design a high-level feature to validate the
hypothesis.

In this study, we present our analysis on a variety of movement
trajectories of worms, insects, and mice in laboratories, and
animals in the wild, such as bears and seabirds using DeepHL.
Behavioral data of these animals were provided by specialists who
have been intensively studying the behavior of these animals by
manual analysis and/or classic machine learning. We showed the
ability of DeepHL to discover new biological insights that have
not been found by the manual analysis or classic machine
learning. We believe that DeepHL, a web-based open system,
could be the first step to democratize AI for biologists who would
otherwise have difficulty setting up computing environments for
deep learning.

Results
Here, we briefly introduce the pipeline of the proposed method:
(i) DeepHL first trains our proposed network (hereafter called
DeepHL-Net) on the trajectory data from two classes. (ii) The
attention mechanism in DeepHL-Net then calculates the atten-
tion value of each data point in each trajectory for each layer in
DeepHL-Net. (iii) Once the attention values are computed, some
parts of the trajectories are highlighted by DeepHL using the
attention output from a particular layer that is assumed to cap-
ture differences in the two classes. To help a user of DeepHL find
such a layer (hereinafter, a “discriminator layer”) in DeepHL-Net,
DeepHL calculates the score for each layer based on attention
outputs from the layer. (iv) DeepHL also supports the user in
explaining the meaning of the highlighted segments based on a
list of handcrafted features from the trajectories prepared in
advance by calculating the correlation between the attention
values and each of the handcrafted features (Fig. 1d).

Before describing our method in detail, herein we provide
definitions of the features used in this study. Primitive features
are basic features widely used in a locomotion analysis, that is,
speed and relative angular speed. Handcrafted features are low-
level features handcrafted by researchers, such as acceleration and
distance from the initial position, and include the primitive fea-
tures. High-level features are designed by researchers and char-
acterize a group through a comparative analysis. A high-level
feature is computed from the entire trajectory, such as the average
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Fig. 1 Trajectory highlighting and analysis with DeepHL. a Difference in research procedures between the conventional and proposed deep learning (DL)-
assisted approaches. b Screenshot of the DeepHL web interface comparing the trajectories of a female (left) and male (right) streaked shearwater. Some
characteristic segments of the trajectories are highlighted in red; these were detected by our neural network model trained to distinguish between the
trajectories of male and female birds. A user can observe that there is something worth investigating in the highlighted segments. In this case, the female
trajectory is highlighted when the female bird stays close to the coastline (see Supplementary Information, Application to the study of seabirds, for more
detailed analysis). In contrast, the male trajectory is highlighted when the male bird travels away from the coastline. Note that the small blue and red pins
on the maps indicate the starting and terminating points of the trajectories, respectively. The large blue pin on the map moves along the trajectory at a
speed proportional to the actual movement speed (Supplementary Movie 1). c DeepHL extracts the segments in an input trajectory to which the neural
network pays attention when classifying the trajectory by using a time series of the attention values. These segments reveal the importance of each data
point. The input trajectory is colored by the time series of the attention values. The range of colors used to color the trajectories is shown on the right of b.
d To facilitate a deeper understanding of the implications of the highlighted segments, DeepHL colors trajectories with the values of other sensor data or
handcrafted features highly correlated with the attention values; the angle between the vertical axis (y axis) and a line segment connecting the initial
position and each point is used in this example. Points with large angles are focused as shown in the red segments in the male bird trajectory of b. Base
map and data copyright OpenStreetMap contributors (License: www.openstreetmap.org/copyright).
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movement speed and duration of stay at a feeding location.
Although a DNN can also acquire high-level features or concepts,
we found it difficult to comprehend these high-level features. A
feature calculated in each layer in the DNN is simply called a
feature. We explain our method in detail as follows.

Trajectory highlighting in DeepHL. We first explain the method
of highlighting trajectories using deep learning. Our method
assumes that there are two groups of animals with different
properties, that is, class A and class B, and each trajectory belongs
either to class A or B. We first convert the time series of the
coordinates into time series of movement speed and relative
angular speed (Fig. 2a, b), which are widely used primitive fea-
tures indicating movement velocity and orientation15–17, to
achieve position and rotation-invariant trajectory analysis. (For
animals that freely move on an agar plate, for example, their
absolute coordinates are meaningless.) These features are then fed
into DeepHL-Net. DeepHL allows a user to easily input other
time series into DeepHL-Net, for example, original coordinates,
other primitive features, and other sensor data.

DeepHL-Net is designed to classify a trajectory into either class
A or B. We train DeepHL-Net on the extracted time series
associated with their class labels (Fig. 2c). Within DeepHL-Net,
we identify a discriminator layer that detects characteristic

segments, which is detailed later. Because DeepHL-Net is also
designed to output the segments in a trajectory to which the
discriminator layer pays attention, we color the trajectory using
the attention information (Fig. 2d, e). Figure 2f shows the
architecture of the proposed multi-scale layer-wise attention
model (DeepHL-Net) comprising eight stacks of 1D convolu-
tional or long short-term memory (LSTM) layers. Because
different filter sizes are used in different convolutional stacks,
these stacks are designed to extract features at different levels of
scale. In addition, the 1D convolutional layers (orange-colored
blocks in Fig. 2f) extract short-term features. In contrast, the
LSTM layers (pink-colored blocks in Fig. 2f) tend to extract
features reflecting long-term dependencies. Furthermore, more
abstract features tend to be extracted in deeper layers in each
stack. Therefore, the model is designed so that the layers extract
features at different levels of temporal scale to classify trajectories.
To elucidate which segments of the trajectories are considered to
be important by each layer, we introduce an attention mechan-
ism14 into the model. As shown in Fig. 2f, the outputs of each 1D
convolutional/LSTM layer for an input trajectory are used to
compute attention as follows:

a ¼ softmax ðtanhðWaZ
T þ baÞÞ: ð1Þ

Here, a 2 R1 ´ lMAX , which shows the importance (i.e., atten-
tion) of each data point in the trajectory and is also used to color
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Fig. 2 DeepHL trajectory highlighting.We assume that the trajectories of two classes are given: class A and class B in this example, which corresponds to
worms without and with prior odor learning, respectively. a, b Trajectories, that is, a time series of two-dimensional coordinates, are converted into time
series of speed and relative angular speed to achieve position- and rotation-invariant analysis. c DeepHL-Net is trained on the time series and then a
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the classification result. The “Softmax” block indicates the output softmax layer. For more details about the model, see “Methods” section.
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the trajectory, is an attention vector that has the same length as
the trajectory, where lMAX is the maximum length of the input
trajectories. Matrix Z 2 RlMAX ´N is an output matrix of the 1D
convolutional/LSTM layer, where N is the number of nodes in the
convolutional/LSTM layer. Finally, Wa 2 R1 ´N and ba 2
R1 ´ lMAX are the weight matrix and bias, respectively. The softmax
function ensures all the output values sum to 1, and the tanh
function limits the output value of its input to a value between
−1 and 1. Equation (1) is implemented as an artificial neuron in
DeepHL-Net (“layer-wise attention”; aqua-colored blocks in
Fig. 2f). The attention is multiplied by the outputs of the 1D
convolutional/LSTM layer to contrast the segments to which the
layer pays attention (“MatMul”; khaki-colored blocks in Fig. 2f).
The multiplied outputs of all layers are concatenated and then
used to output an estimate, that is, class A or B, in a densely
connected output layer using the softmax function, that is, the
final layer in DeepHL-Net (green-colored block in Fig. 2f). As
mentioned above, our model is designed to calculate attention
information at different levels of scale (see “Methods” section for
more details about the model).

Comparative analysis using DeepHL. A user of DeepHL dis-
covers knowledge using a web page that displays highlighted
trajectories (Fig. 1b). We explain the usage of DeepHL through an
analysis of the roundworm Caenorhabditis elegans, which is
commonly used as a model animal in neuroscience to understand
how learning modulates behavior18,19. Previous studies revealed
that worms learn prior experience of the repulsive odor 2-
nonanone in dopamine-dependent manner20,21: the worms pre-
exposed to the odor migrate further away from the odor source
more efficiently than naive worms do. Interestingly, the average
speeds of the worms with or without odor learning are not sig-
nificantly different, suggesting that the preexposed worms avoid
the odor more efficiently. To comprehensively determine the
high-level behavioral features characteristic of the repulsive odor
learning, we compared the trajectories of naive worms (control
class; 163 trajectories) to those of worms preexposed to the odor
(preexposed class; 162 trajectories) using DeepHL. The positions
of each worm’s centroid on a 9-cm agar plate were recorded at 1
Hz for 600 s (Fig. 3a; see “Methods” and Supplementary Table 2).
DeepHL-Net was trained on a multivariate time series of primi-
tive features that DeepHL automatically extracts from the time
series of trajectories (see “Methods,” Supplementary Information,
Algorithm, and Supplementary Table 1). Here, the classification
accuracy of the trained DeepHL-Net was 93.9% (see “Methods”),
indicating that DeepHL-Net was properly trained. When the
accuracy is low, for example, 50%, we can regard such a state as
having no differences between the two classes or the training data
having certain problems (e.g., an excessively small amount of
data).

In the following, we explain the process of knowledge discovery
using the functions of DeepHL:

1. Screening layers: Because DeepHL-Net comprises several
layers, DeepHL helps the user find discriminator layers by
computing a score for each layer using the following criteria:

● A discriminator layer should pay attention only to a portion
of a trajectory. Technically speaking, an attention vector from
the discriminator layer should have large values within
limited segments. When the attention values are identical
throughout the entire trajectory, the user cannot determine
which part of the trajectory is characteristic of the class of
interest.

● It is desirable that the way attention is paid to the segments of
trajectories belonging to one class by the layer is different

from that for another class. Technically speaking, a distribu-
tion of attention values using the layer for one class should be
different from that for another class. For example, when the
layer exhibits large attention values to segments in trajectories
belonging to only one class, the user can easily understand
that these segments are characteristic of that class.

See “Methods” section for an equation to calculate the score.
The DeepHL web interface provides a ranking of the layers based
on the calculated scores, enabling the user to easily find high-
scoring layers, which can provide an insightful highlight of the
trajectory.

2. Showing colored trajectories: In this stage, the user compares
trajectories colored by the identified discriminator layer. In the
example of Fig. 3b (colored by a discriminator layer with the
highest score), only the relatively straight segments of the
trajectories are highlighted in red. In contrast, the layer does
not pay attention to segments representing more complex
movement (yellow segments). The straight and complex move-
ments reflect the two major behavioral states of the worms: “run”
and “pirouette”15,19. DeepHL found that the run behavior of the
preexposed class differs from that of the control class.

Note that, because the number of trajectories to be analyzed is
large in many cases, DeepHL has a function for screening the
trajectories when the user attempts to show highlighted
trajectories by a discriminator layer. Especially when we deal
with the trajectories of wild animals, not all trajectories include
segments characteristic of a specific class. Therefore, DeepHL
computes a score of each trajectory, enabling the user to focus
mainly on, for example, trajectories with “female-like” segments.
The score is calculated as V(a), where a is a time series of
attention of the trajectory, to find trajectories with characteristic
segments. When the variance value is small, this indicates that the
layer does not pay attention to particular segments in the
trajectory. In addition, the DeepHL web interface provides a
classification result for each trajectory, permitting the user to
ignore misclassified trajectories when the user browses
trajectories.

3. Understanding meaning of highlights: DeepHL provides two
functions to help the user understand the reason why a segment
attracts attention using a discriminator layer. The first function
provides the correlation between the time series of attention
values and each of computed handcrafted features prepared in
advance (or other sensor data). This reveals which handcrafted
feature is related to the attention of the layer (Supplementary
Table 1). The second function provides the difference in
distributions of each handcrafted feature among the two classes
within highlighted segments. This reveals which handcrafted
feature has different distributions among the two classes within
highlighted segments (Supplementary Information, Algorithm).

Note that these handcrafted features are intended to help
interpret the meaning of the attention of DeepHL-Net and that
the handcrafted features do not always completely explain the
meaning of the attention. As shown in the animal studies below,
the biologists understand the meaning of such attention and then
manually design interpretable high-level features, which are used
in statistical tests, with the help of the functions.

In the worm example, the absolute correlation coefficient
between the attention values of the layer and the moving average
of the worm speed is the highest among all handcrafted features
(Supplementary Table 3). Therefore, we then focus on the speed
of the worms. Figure 3c shows the moving averages of speed
associated with the attention values. Here, we can employ the
second function to reveal the difference in speed between
preexposed and control worms within highlighted segments.
Interestingly, the difference in distributions of speed itself
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between preexposed worms and control worms within high-
lighted segments is smaller than that of the moving variance of
speed (0.22 vs. 0.25; see Supplementary Information, Algorithm
for detailed description about difference computation). DeepHL
also provides a graph of the distributions as shown in Fig. 3d. The
graph indicates that the changes in speed of preexposed worms

are larger than those of control worms. As shown in the graph
related to a control worm (Fig. 3c, upper panel), we can see that,
when attention values are high (colored line), the speed indicates
tiny high-frequency changes (black line). In contrast, in one
typical example of a preexposed worm (Fig. 3c, lower panel),
when attention values are high, the worm accelerates substantially
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Fig. 3 DeepHL analysis of repulsive odor learning in worms. a The experimental setup (left) for monitoring the worm’s trajectory (right). b Example
trajectories of worms colored by attentions of a discriminator layer. Segments of the trajectories corresponding to the run state of the worm are highlighted
(in red). c Time series of the moving average of speed (black lines) associated with attention values (colored lines). The upper and lower graphs are
obtained from the upper and lower trajectories shown in b, respectively. d Histograms showing the distributions of the moving variance of speed for each
time slice within the highlighted trajectory segments. e Frequency analysis of the velocity of a preexposed or control worm. A 128-s-wide sliding window
was shifted in 1-sample intervals and the amplitude of each frequency component was obtained from its fast Fourier transform (FFT). The upper and lower
spectrograms were, respectively, obtained from the upper and lower trajectories shown in b. f Frequency analysis of the velocity of all the preexposed or
control worms computed from entire trajectories. The histograms and box plot show the distributions of the dominant frequency of speed for each time
slice. The dominant frequency is the one with the largest amplitude within each window. Significant difference in the dominant frequencies were observed
by a generalized linear mixed model (GLMM) with Gaussian distributions (t = −6.60; d.f. = 322.8; p = 1.68 × 10−10, effect size(r2) = 0.232; **p < 0.01;
see “Methods”). The p value is two sided. The box plot shows the 25–75% quartile, with embedded bar representing the median; lower whiskers show Q1
− 1.5 × IQR (Q1: 25% quartile; IQR: interquartile range); upper whiskers show Q3+ 1.5 × IQR (Q3: 75% quartile). Control: n = 76, 784, preexposed:
n = 75, 750.
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and maintains a high speed, resulting in large low-frequency
changes in speed as well as large moving variance of speed.
DeepHL seems to detect the low-frequency changes in the speed
of the preexposed worms as a characteristic behavior of the
preexposed worms. Consistently, the lower frequency compo-
nents of the speed of the preexposed worms are more dominant
than those of the control worms (Fig. 3e, f). These results suggest
that, in worm odor avoidance behavior, two states for periodic
changes in velocity—long-term changes with a peak at 2/128 Hz
(i.e., 0.016 Hz; 64 s cycle) and short-term change that peak at 9/
128 Hz (i.e., 0.07 Hz; 14.2 s cycle)—exist (Fig. 3f), and that
learning modulates the ratio between these two states to avoid
odors efficiently. It is reasonable to speculate that maintaining a
high speed (resulting in long-term speed changes) only during the
run state contributes to efficient odor–source avoidance behavior.
Note that these results were not predicted before this analysis
because the average velocities of preexposed and control worms
are essentially similar20,22. The biological significance of the
worm and other animal analyses are described in the Supplemen-
tary Information.

Application to the study of mice. To test general applicability of
DeepHL, we compared the behavioral patterns of normal and

Parkinson’s disease (PD) mice freely moving in an open field
(Fig. 4a). Although the primary cause of PD is considered to be
the loss of dopaminergic inputs to the striatum, the type of motor
symptoms it induces remains unclear. Neurotoxic lesion animal
models of PD have been utilized to elucidate the neuronal
mechanisms underlying PD. However, in such models, the degree
of dopaminergic cell loss can only be established post mortem. To
estimate the degree of cell loss before death, several behavioral
tests have been developed23,24. For instance, frequencies of
ambulation, immobility, or fine movement epochs in open-field
tests are evaluated. We compared normal mice to PD mice using
DeepHL to discover a new high-level behavior feature. The
classification accuracy for the mouse dataset is 74.7% (see
“Methods” for further details). Figure 4b shows typical examples
of trajectories highlighted using a discriminator layer. Segments
of the normal mouse trajectory that are far away from the initial
position are highlighted in red (see also Fig. 4d). In addition,
DeepHL indicated that the attention values highly correlate with
the straight-line distances from the initial position (highest;
Supplementary Table 3). As shown in Fig. 4c, when straight-line
distances from the initial position exhibit high values, the atten-
tion values also increase. This result indicates that the behavior of
visiting locations far away from the initial position is character-
istic of normal mice.
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Fig. 4 DeepHL analysis of normal and PD mouse behavior. a Experimental apparatus and lesion protocol. b Example trajectories of mice colored by
attention of the discriminator layer. The upper one is a trajectory of a normal mouse and the lower one is a trajectory of a 6-hydroxydopamine (OHDA)
lesion mouse model of Parkinson’s disease (PD). The upper trajectory shows that when the mouse is far away from the initial position, the layer pays
attention to the corresponding segments (red segments). c A time series of the straight-line distance from the initial position (black lines) associated with
attention values (colored lines). d A screenshot of DeepHL for comparing multiple trajectories colored by the discriminator layer at a glance (normal mice).
A blue balloon shows the initial position of each trajectory. e–g Average movement speed during ambulation periods, average movement speed during fine
movement periods, and average maximum distance within a ±60-s window in a session of normal and PD mice for each entire trajectory (see “Methods”).
Significant differences between normal and PD mice were observed for all three features (Wilcoxon rank-sum test, p = 3.486 × 10−5, p = 5.869 × 10−4,
p = 2.666 × 10−4; **p < 0.01; n = 22 original 10-min trajectories from normal; n = 30 original 10-min trajectories from PD). The p values are two sided. The
edges of the box plot correspond to 95% confidence intervals, the embedded bar represents the median, and whiskers show minimum and maximum
values. Dots show values for individual sessions.
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To investigate the usefulness of this finding in terms of PD
mouse detection, we designed a new high-level movement
feature based on it: the maximum straight-line distance within
a ±60 s window. We compare its performance to the
performances of existing high-level movement features, that
is, ambulation and fine movement speeds (Fig. 4e–g). We
compute these three feature values for each entire trajectory
and then evaluated the features using information gain25, which
is used to evaluate classification features. A larger value of
information gain indicates better classification performance.
While the ambulation speed, fine movement speed, and
maximum distance all exhibited statistical differences between
the normal and PD groups, their information gains were 0.269,
0.184, and 0.287, respectively, indicating that the maximum
distance is more useful for evaluating PD symptoms than
conventional measures.

The results suggest that normal mice prefer exploring unvisited
locations. This feature strongly relates to the straight-line distance
from the initial position and differs from widely used existing
high-level movement features based on speed. It is well known
that rodents such as mice and rats spontaneously prefer to
explore an environment, particularly in novel places. Thus,
DeepHL may have revealed that the abnormal behavior of PD
mice hinders such spontaneous behavioral traits.

Application to the study of red flour beetles. In addition to the
PD and normal mice, DeepHL was used to detect dopamine-
dependent differences in the trajectories of insects. Tonic
immobility (TI), sometime called as “thanatosis” or “death-
feigning,” is an antipredator behavior of many animals26,27.
Miyatake et al.28 performed a two-way artificial selection for the
duration of TI, and established the strains with short (S strain)
and long (L strain) duration of TI in the red flour beetle, Tri-
bolium castaneum. Tribolium castaneum is an insect model spe-
cies for which all the genomes are already known29. The S strain
showed significantly higher levels of brain dopamine expression
and a higher locomotor activity than those of the L strain30. In
the present study, we analyzed 419 walking trails collected from
S- and L-strain beetles on a treadmill using DeepHL (Fig. 5a and
Supplementary Table 2).

The classification accuracy for the beetle dataset is 84.5% (see
“Methods” for further details). Figure 5b shows typical
examples of trajectories highlighted using a discriminator layer.
The trajectories in Fig. 5b appear to be highlighted when the
beetles turn, which is the characteristic difference between the L
and S strains detected by DeepHL. Consistently, the difference
in distributions of the angle from the initial position between
the S and L strains within highlighted segments is large (0.61).
We can clearly see that the turn in the S-strain trajectories is
sharp, and we found similar patterns in other trajectories. (See
Fig. 5d, generated by a function of DeepHL that allows the
comparison of multiple trajectories at a glance.) Figure 5c
shows the angle from the initial position and attention values
used for highlighting trajectories in Fig. 5b, indicating increases
in attention values just before increases in the angle for the S
strain.

As shown in Fig. 5e, we computed an angle of a trajectory
segment for each point. Figure 5f shows the distributions of the
angles for the S and L strains (the number of data points for the
S strain is 185,884 and the number of data points for the L
strain is 219,497). We found that the angle for the S strain is
significantly smaller than that for the L strain, indicating that
the S-strain beetles walk with more angle changing. This finding
related to angle change, which has not been discovered by prior
studies30, may lead to new hypotheses concerning the survival

strategy of the beetles. The L-strain beetles are known to
perform death-feigning as an antipredator behavior. In
contrast, the S-strain beetles are assumed to select a survival
strategy of changing movement directions to escape from
predators.

Application to the studies of crickets and animals in the wild.
We also employed DeepHL to analyze context-dependent mod-
ulation of escape behavior in field crickets, Gryllus bimaculatus.
Fukutomi et al.31,32 revealed that an acoustic stimulus at high fre-
quency (>10 kHz) preceding an air puff alters crickets’ moving
direction in wind-elicited escape behavior, suggesting that the
crickets recognize the high-frequency sound as the echolocation
signal of bats and change their behaviors in the presence of pre-
dators. Here, we adopted DeepHL to compare two groups of escape
movement: prestimulated and control (no sound). In this analysis,
in addition to the speed and relative angular speed, we input
additional sensor data measured using a treadmill, that is, a rota-
tional speed of the body-axis computed from a body-axis angle
measured using the treadmill, into DeepHL-Net. Figure 6a shows
typical trajectories colored by the attention values of a discriminator
layer. DeepHL shows that the rotational speed of the body axis
transiently elevated and peaked earlier in the prestimulated group
(Supplementary Information, Application to the study of crickets;
Fig. 6b), indicating that the sound preceding the air puff provoked
the prompt rotational changes of the body axis.

In addition, we applied DeepHL to the trajectories of wild
animals. Figure 6c shows GPS trajectories of female and male
seabirds highlighted by a discriminator layer that pays attention to
the migration direction of the birds from their colony. Our
investigation revealed that the GPS measurements of the female
seabirds are significantly closer to the coastline than those of the
male seabirds. In this analysis, in addition to the speed and relative
angular speed, we input the absolute coordinates (longitude and
latitude) into DeepHL-Net because the absolute coordinates of the
specific places such as colonies and feeding sites can affect the
behavior of the seabirds. The longitude values were highly
correlated with the attention values for the female seabirds. Because
the coastline runs north–south, the distance between the coastline
and a position is related to the longitude of the position. Therefore,
this fact indicates that the behavior of the female seabirds is strongly
affected by the distance from the coastline (see Supplementary
Information, Application to the study of seabirds). As described
above, because we can input an additional time series in addition to
the speed and relative angular speed into DeepHL, we can see the
effect of the time series on the animal behaviors. Figure 6d shows
the trajectories of female and male bears highlighted by a
discriminator layer that pays attention to male trajectories when a
male bear travels a long distance after/before it remains in one
place. Our investigation revealed that the male bears combined long
distance movements with short rests at many locations and the
female bears remained in limited locations for a long time
(see Supplementary Information, Application to the study of bears).

In the above analysis of the worms, mice, insects, seabirds, and
bears, we could discover findings that were not revealed through a
manual analysis or classic machine learning. Here, we can easily
observe the differences between two groups from the highlighted
trajectories of the seabirds and bears. Specifically, it is impossible
to observe the relationships between the preferred locations of
female seabirds and coastlines without visualization. For the
mouse and beetle studies, we also observe the differences between
the two groups from the highlighted trajectories. In contrast, it is
difficult to find any differences between the two groups related to
the worms and crickets by just browsing the highlighted
trajectories. Therefore, leveraging both visualization functions
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and functions to help interpret the meanings of highlights is
important to discover knowledge, which is facilitated by the
DeepHL web interface (see also Supplementary Information, User
guide to DeepHL).

Discussion
In this study, we demonstrated that DeepHL is able to extract
group differences in trajectories for a variety of taxa that operate
across scales (for a quantitative evaluation of DeepHL using
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synthetic trajectory data, see Supplementary Information, Eva-
luation with synthetic data). This versatile trajectory analysis was
possible because of the useful functions of DeepHL. Furthermore,
we confirmed that DeepHL does not require a large number of
trajectories to train DeepHL-Net (Supplementary Table 5).

Discovering high-level features hidden in temporal dynamics,
for example, the frequencies of worm movement speeds and the
sustained rotation speed of crickets found with the help of
DeepHL, is difficult in classic machine learning without an
algorithm specifically designed for each task using prior knowl-
edge gained by manual analysis, which requires substantial effort.
In fact, this finding related to the worms has not been discovered
by prior study17 mainly performed by specialists who have been
intensively studying the behavior of worms based on a classic
approach, which comprehensively extracts 333 handcrafted
locomotion features, on the worm data that are also used in our

study even though the finding of our study was obtained from the
discriminator layer with the highest score. In addition, DeepHL
was able to help in finding a prominent mouse movement feature
related to exploration, which has not been a focus of prior studies
and also obtained from a discriminator layer with the highest
score. The discovered movement feature outperformed high-level
features found in prior studies in terms of feature importance.
This result is surprising because movement features of PD mice
have been intensively studied by neuroscientists23,24. While the
movement features of some animals such as seabirds and mice
found with the help of DeepHL seem to be simple, the fact that
these simple features have not been discovered after many years
of research indicates the value of the findings given the difficulties
of big behavioral data analysis based on classic approaches. Refer
to Supplementary Information, Comparison with classic
approaches, for analysis of the six animal species using classic

Fig. 5 DeepHL analysis of the red flour beetles. a Experimental apparatus (treadmill). b Example trajectories of the red flour beetles colored by the
attention values of a discriminator layer. The upper one is a trajectory of the L-strain (long-strain) beetle and the lower one is a trajectory of the S-strain
(short-strain) beetle. These trajectories show that segments corresponding to orientation change are highlighted. c Time series of the angle from the initial
position (black lines) associated with attention values (colored lines). The upper and lower graphs are obtained from the upper and lower trajectories
shown in b, respectively. The lower graph shows that the attention values have large positive values just before the angle increases. d Other trajectories
belonging to the S-strain class colored by attention of the discriminator layer. e We assume a circle centered at each point (p) on a trajectory with radius r
(100mm) and obtain points n and m where the trajectory first crosses the circle before/after p. We then compute the angle between a line segment
connecting p and n and one connecting p and m, showing the curvature around p. f Angles of the L and S strains. The box plot shows the 25–75% quartile,
with embedded bar representing the median; lower whiskers show Q1− 1.5 × IQR (Q1: 25% quartile; IQR: interquartile range); upper whiskers show the
maximum values, that is, π, with the violin plots showing the distributions of data points. Significant difference between the L and S strains was observed
using the two-sided ANOVA (F = 12.57; d.f. = 1; p = 0.001; effect size (η2) = 0.09; **p < 0.01; see “Methods”). # of data points for S strain is n = 185, 884;
# of data points for L strain is n = 219, 497.
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copyright OpenStreetMap contributors (License: www.openstreetmap.org/copyright).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19105-0

10 NATURE COMMUNICATIONS |         (2020) 11:5316 | https://doi.org/10.1038/s41467-020-19105-0 | www.nature.com/naturecommunications

https://www.openstreetmap.org/copyright
www.nature.com/naturecommunications


approaches. Whereas the classification accuracy of a classic
approach is not extremely different from that of DeepHL, as
shown in Supplementary Information, Comparison with classic
approaches, it was difficult to find fine-grained characteristics of
animal behaviors by using the classic approach because it
employs only high-level features prepared in advance extracted
from a whole trajectory.

In this study, we find a discriminator layer that focuses on a
part of trajectory. However, it is possible for many attention
layers to focus on the full trajectory. In such a case, we can
assume that the global features are important for classifying the
trajectories. We believe that such global features can be easily
identified through classic statistical techniques or manual
analysis.

Trajectory data observed from wild animals can include dif-
ferent noises. For example, the trajectory data from bears are
noisy because of the forest canopy, as shown in Fig. 6d. When
noises are included in the GPS measurements of both the male
and female bears uniformly, we believe that DeepHL-Net can
extract useful high-level features from the data. However, such
noises can also degrade the classification performance. One
possible solution to addressing this problem is to introduce a
denoizing autoencoder33 (e.g., reducing noises during the pre-
processing). In addition, the seabird GPS data include few sudden
large errors. We can remove such errors by thresholding calcu-
lated speed (see Supplementary Information, Application to the
study of seabirds). Moreover, GPS signals can be lost for a
moment. However, primitive features used in this study, that is,
speed and relative angular speed, are robust against such missing
measurements.

There are several deep learning studies related to our work.
Endo et al.34 visualize/generate typical trajectories for taxis using
an autoencoder. In addition, several visualization tools for
interpreting the behavior of LSTMs have been developed,
although these mainly focus on natural language processing35,36.
LSTMs have also been used to predict worm trajectories37,
although these studies do not focus on comparative analysis.
Recent deep learning studies have also employed attention
mechanisms to visualize distinguishing features38,39. Attention
mechanisms have also been actively studied in the computer
vision field. Xu et al.40 generated captions for an image by
leveraging the attention of the input image to identify an
important region in the image and generate each word. Zhang
et al.41 leveraged attention mechanisms to focus on foreground
regions to alleviate distractions from the background for image-
based salient object detection tasks. Park et al.42 employed an
attention mechanism to identify important regions in an image as
well as generate textual descriptions using an LSTM for an image
classification task. In the biology domain, Heras et al.43 leveraged
a deep attention network that predicts future turns of a zebrafish
in a collective to identify surrounding zebrafish that affect the
future turning of the focal zebrafish. Unlike in the above studies,
in the present study, deep attention networks have been used to
find distinguishing group-specific patterns in the trajectories.

Because the manual analysis of behavioral data is impractical
for big behavioral data, we suggest that we are now on the cusp of
changing the methods used for big data in biology research. We
envision that DeepHL will transform the hitherto standard
approach to comparative analysis from a hypothesis-driven
approach, which relies on individual experience or manual ana-
lysis by researchers, to a data-driven approach. Owing to the
useful functions proposed in this study, DeepHL enables
researchers to easily extract insightful information hidden within
a DNN that is trained on big data. Furthermore, because DeepHL
is simply designed to find distinguishing trajectory segments
between two groups, it can also be applied to a variety of

comparative analyses, for example, old vs. young animals, free-
ranging vs. captive animals, animals from different habitats,
animals with different life-history stages, food storing vs. non-
storing individuals/species, social vs. solitary individuals/species,
and specialists vs. generalists. Although many functions of
DeepHL are tailored to a trajectory analysis, DeepHL-Net can
process any type of time-series data. As a part of a future study,
we plan to apply our network to other time series such as sounds
emitted by animals.

We believe that these animal behavior analyses contribute
not only to biology research, but also to the sustainable
development of our society and coexistence with wild animals
by understanding animal behavior. In addition, livestock
farming has many potential applications of our animal behavior
analysis. For example, our method can be applied to identifying
characteristic behaviors of disease animals, productive cows,
and submissive cows in a social hierarchy. Moreover, because
trajectory data are observed from any moving objects, DeepHL
is capable of wide application. Specifically, we believe that
DeepHL can also be applied to trajectory analyses for humans
and automobiles, which can contribute to our society in various
aspects: improvement of work efficiency (e.g., analyzing tra-
jectories of workers in logistics centers), healthcare (e.g.,
comparing between patients and healthy subjects), and eco-safe
driving.

Methods
DeepHL system architecture. The DeepHL system consists of three server
computers. The first one is a web server that receives a trajectory data file from a
user and provides analysis results to the user (Intel Xeon E5-2620 v4, 16 cores, 32
GB RAM, Ubuntu 14.04). The second one is a storage server that stores data files
and analysis results. The third one is a GPU server that analyzes data provided by
the user (Intel Xeon E5-2620 v4, 32 cores, 512 GB RAM, four NVIDIA Quadro
P6000, Ubuntu 14.04). Supplementary Information, Algorithm, provides a com-
plete description of the DeepHL method. DeepHL is accessible on the Internet
through http://www-mmde.ist.osaka-u.ac.jp/maekawa/deephl/. Supplementary
Information, User guide to DeepHL, provides a user guide to DeepHL. In addition,
Supplementary Information, Usage of Python-based Software, and Supplementary
Software 1 present the Python code of DeepHL.

Preprocessing. An input trajectory is a series of timestamps and X/Y coordinates
associated with a class label. To perform position- and rotation-independent
analysis, we convert the series into time series of speed and relative angular speed
and then standardize them (Supplementary Information, Algorithm). Note that the
absolute coordinates of wild animals, which can relate to the distance from a nest
or feeding location, for example, are important in understanding behavior of the
animals. Hence, DeepHL allows the original coordinates to be input to DeepHL-
Net along with the speed and relative angular speed. In addition, other biological
time-series sensor data measured by the user can be fed into DeepHL-Net when
these time-series data are included in a data file uploaded by the user. For example,
a time series of the heading direction of animals obtained from digital compasses
can be useful for behavior understanding. Moreover, primitive features usually used
in trajectory analysis can be easily fed into DeepHL-Net. DeepHL automatically
computes the travel distance from the initial position, the straight-line distance
from the initial position, and the angle from the initial position (Supplementary
Table 1) as primitive features. Using the web interface of DeepHL, the user can
easily select primitive features and other sensor data to be fed into DeepHL-Net
(Supplementary Information, User guide to DeepHL). See Supplementary Infor-
mation, Effect of input features, for effects of input features on classification
accuracy. Normally, the inputs of DeepHL-Net are two-dimensional time series,
that is, speed and relative angular speed. When we input an additional time series
(such as the original coordinates) into DeepHL-Net, the additional time series are
added as additional dimensions of the inputs.

Multi-scale layer-wise attention model (DeepHL-Net). Here, we explain
DeepHL-Net shown in Fig. 2f in detail. The input of the model is a time series of
primitive features, that is, an lMAX × Nf matrix, where lMAX is the maximum length
of the input trajectories and Nf is the dimensionality of the time series, that is, the
number of the primitive features. Because the lengths of observed trajectories are
not identical to each other in many cases, we fill in missing elements in the matrix
with −1.0 and mask them when we train DeepHL-Net. In each 1D convolutional
layer of the convolutional stacks, we extract features by convolving input features
through the time dimension using a filter with a width (kernel size) of Ft. We use
different filter widths in the four convolutional stacks (3%, 6%, 9%, and 12% of
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lMAX) to extract features at different levels of scale. We use a stride (step size) of one
sample in terms of the time axis. We also use padding to allow the outputs of a
layer to have the same length as the layer inputs. In addition, to reduce an over-
fitting, we employ a dropout, which is a simple regularization technique in which
randomly selected neurons are dropped during training44. The dropout rate used in
this study is 0.5.

In each LSTM layer of the LSTM stacks, we extract features considering the
long-term dependencies of the input features. LSTM is a recurrent neural network
architecture with memory cells, and it permits us to learn temporal relationships
over a long time scale. LSTM learns long-term dependencies by employing memory
cells that hold past information, updating the cell state using write, read, and reset
operations with input, output, and forget gates (see Supplementary Information,
Algorithm). In addition, we employ dropout to reduce overfitting. The attention
information of each layer is computed by using Eq. (1), and then it is multiplied by
the layer output. Here, the softmax and tanh functions in Eq. (1) are defined as
follows:

softmax ðxjÞ ¼
expðxjÞ

P
i expðxiÞ

; ð2Þ

tanhðxjÞ ¼
expðxjÞ � expð�xjÞ
expðxjÞ þ expð�xjÞ

: ð3Þ

Note that parameters in Eq. (1) for each layer, that is, Wa and ba, as well as
parameters in the convolutional and LSTM layers are estimated during the network
training phase. Here, we introduced the tanh activation function into Eq. (1) to
smooth out the output attention values. When an outlying large value is included in
WaZT + ba at time t, attention values other than time t become extremely small
without using the tanh function. When we visualize a trajectory using such
attention values, only a single data point is colored in red, making it difficult for a
user to identify important segments.

Training and testing of DeepHL-Net. The DeepHL user can select the parameters
of DeepHL-Net used in the analysis, that is, the number of convolutional/LSTM
layers and the number of neurons in each layer (default: four layers with 16
neurons). Then, DeepHL-Net is trained on 80% of randomly selected trajectories to
minimize the binary classification error of the training data, employing back-
propagation based on Adam45 (Supplementary Information, Algorithm). (Note
that each trajectory has a class label for binary classification.) Then, the trained
DeepHL-Net is tested using the remaining 20% of trajectories to compute the
classification accuracy, providing an indication of the degree of difference between
the two classes.

Computing the score of each layer. To screen the layers in DeepHL-Net, we
compute a score for each layer according to Eq. (4)

sðAi;CA
;Ai;CB

Þ ¼ sfcðAi;CA
;Ai;CB

Þ þ sitðAi;CA
;Ai;CB

Þ: ð4Þ
Here, Ai;CA

is a set of attention vectors calculated from trajectories belonging to
class A using the ith layer. In addition, Ai;CB

is a set of attention vectors calculated
from trajectories belonging to class B using the ith layer. As mentioned in the main
text, an attention vector from a discriminator layer should have large values within
limited segments. Therefore, sfcðAi;CA

;Ai;CB
Þ in Eq. (4) calculates the averaged

variance of the attention values normalized by the average length of the trajectories,
as described in Eq. (5). When the layer focuses on a part of a trajectory, the
variance increases

sfcðAi;CA
;Ai;CB

Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
jAi;CA

∪Ai;CB
j � lðAi;CA

∪Ai;CB
Þ

X

a2Ai;CA
∪Ai;CB

VðaÞ
s

: ð5Þ

Note that V(⋅) calculates the variance and l(⋅) calculates the average length of the
trajectories. We take the square root of the average variance to derive the average
standard deviation. Using lðAi;CA

∪Ai;CB
Þ, which calculates the average length of

Ai;CA
∪Ai;CB

, we normalize the computed variance. Because the softmax function in
Eq. (1) ensures that all values sum to 1, resulting in a larger variance for longer
trajectories, we normalize the average variance using the average length.

In addition, as mentioned in the main text, the distribution of attention values
by the layer for one class should be different from that for another class. Therefore,
sitðAi;CA

;Ai;CB
Þ calculates the difference between the distributions of the attention

values of classes A and B as follows:

sitðAi;CA
;Ai;CB

Þ ¼ ð1� Intersect ðhðAi;CA
Þ; hðAi;CB

ÞÞÞ: ð6Þ
Here, h(⋅) calculates a normalized histogram of attention with 200 bins, and
Intersect(⋅ , ⋅) calculates the area overlap between two histograms, and is described
as follows:

Intersect ðH1;H2Þ ¼
X

i

minðH1ðiÞ;H2ðiÞÞ; ð7Þ

where H1(i) shows the normalized frequency of the ith bin of histogram H1.

As described in Eq. (4), the final score is calculated as the sum of the two scores of
sfcðAi;CA

;Ai;CB
Þ and sitðAi;CA

;Ai;CB
Þ.

Here, sfcðAi;CA
;Ai;CB

Þ in Eq. (4) is used to find a layer that focuses only on a
portion of a trajectory. Owing to the term, only a small important portion of
trajectories is highlighted in many cases, as shown in Figs. 3, 5, and 6, especially for
the trajectories of beetles. However, substantial portions of several trajectories of
the normal mice are highlighted, as shown in Fig. 4d. Because the characteristics of
the normal mouse trajectories are the distance from the initial position, the
segments in the trajectories far from the initial position are highlighted.

Computing the correlation between attention values and handcrafted fea-
tures. To help the user understand the meaning of the highlights, DeepHL auto-
matically computes the Pearson correlation coefficients between the attention
values of each layer and handcrafted features computed by DeepHL, as shown in
Supplementary Table 1. In addition, the correlation coefficients with sensor data
and handcrafted features included in a trajectory data file are automatically com-
puted. Computing the correlation with environmental sensor data can reveal the
relationship between a behavior and environmental conditions. If a specific
behavior is exhibited only when the temperature is high, for example, we can infer
that the behavior relates to the high temperature condition. Furthermore, DeepHL
automatically computes the moving average, moving variance, and derivative of
each of the above features/sensor data, and then computes the correlation coeffi-
cients with the attention values, which are presented to the user (Supplementary
Fig. 1).

Computing the difference between distributions of each handcrafted feature
for the two classes within highlighted segments. To help the user understand
the meaning of the highlights, DeepHL automatically computes the difference
between distributions of each handcrafted feature for two classes within highlighted
segments. The difference is computed as follows:

diffðAi;CA
; Fj;CA

;Ai;CB
; Fj;CB

Þ ¼ 1� Intersect ðhðmðAi;CA
; Fj;CA

ÞÞ; hðmðAi;CB
; Fj;CB

ÞÞÞ: ð8Þ
Here, Fj;CA

is a set of time series of the jth handcrafted feature calculated from
trajectories belonging to class A. In addition, m(⋅ , ⋅) is a masking function that
extracts feature values within highlighted segments. Because the softmax function
in each attention layer ensures that all attention values in a sum of 1, we consider
an attention value larger than c/(# time slices) as a potential attended value (c = 1.2
in our implementation).

Data acquisition of worms. Data acquisition was performed according to
Yamazoe-Umemoto et al.22. In brief, several worms were placed in the center of an
agar plate in a 9-cm Petri dish, 30% 2-nonanone (v/v, EtOH) was spotted on the
left side of the plate, which was covered by a lid and placed on the bench upside
down. Then, the images of the plate were captured with a high-resolution USB
camera for 12 min at 1 Hz. Because the worms do not exhibit odor avoidance
behavior during the first 2 min because of the rapid increase in odor concentra-
tion46, the data for the following 10 min (i.e., 600 s) was used. From the images,
individual worms were identified and the position of the centroid was recorded by
an image processing software Move-tr/2D (v. 8.31; Library Inc., Japan). The
number of recorded trajectories is 325 (Supplementary Table 2). The comparison
was between the naive worms (control class) and the worms after preexposure to
the odor (preexposed class).

DeepHL analysis of worms. A multivariate time series of movement speed,
relative angular speed, distances from the initial position, and angle from the
initial position extracted from the time series of trajectories was fed into
DeepHL-Net, yielding a binary classification accuracy of 93.9%, where 20% of
the data are used as test data. The discriminator layer used in this investigation
has the highest score of all layers. As shown in Fig. 3d, which was calculated
from the moving variance of the speed within highlighted segments, we can state
that the changes in the speed of preexposed worms is larger than those of control
worms. Figure 3e shows spectrograms of the speed calculated from entire tra-
jectories (Fig. 3c) with a 128-s wide sliding window shifted in 1-sample intervals.
In addition, Fig. 3f shows histograms of the dominant frequency of speed cal-
culated from entire trajectories using the 128-s wide sliding window shifted in 1-
sample intervals. These results also indicate the difference in the frequency of
speed between the preexposed and control worms. Our investigation revealed
that the dominant frequency of speed significantly differs between the pre-
exposed and control worms using GLMM with Gaussian distributions
(t = −6.60; d.f. = 322.8; p = 1.68 × 10−10, effect size(r2) = 0.232). The p value is
two sided. Individual factors were treated as random effects. The number of data
points for the control class is n = 76, 784 and that for the preexposed class is
n = 75, 750. We used GLMM with Gaussian distributions because the objective
variable has a continuous value and we used the lmerTest package (v. 2.0–36) of
R (v. 3.4.3) for the analysis.

Data acquisition of mice. We collected 52 trajectories of normal mice and
unilateral 6-hydroxydopamine (OHDA) lesion mouse models of PD while they
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freely moved for 10 min in an open field (60 × 55 cm2, wall height= 20 cm;
normal: 22, PD: 30). The trajectories were detected by the animal’s head posi-
tion, which was captured by an overhead digital video camera (60 fps). Two sets
of small red and green light-emitting diodes were mounted above the animal’s
head so that it could be located in each frame. Custom softwares based on
Matlab (R2018b, Mathworks, MA, USA) and LabVIEW (Labview 2018, National
Instruments, TX, USA) were used for tracking. We then created 30-s segments
by splitting each trajectory because training a DNN requires a number of tra-
jectories. We used 966 segments in total (normal: 374, PD: 592) collected from
nine C57BL/6J mice (normal: 5, PD: 4). Note that we excluded 30-s segments
that contain no movements of a mouse.

DeepHL analysis of mice. Movement speed, relative angular speed, travel dis-
tances, straight-line and travel distances from the initial position, and angle from
the initial position were fed into our model. The accuracy for the binary classifi-
cation of normal and 6-OHDA model mice was 74.7%, where 20% of the data are
used as test data. The score of the discriminator layer was the highest of all LSTM
layers and the sixth highest of all layers. Our investigation revealed that the
behavior of visiting locations far away from the initial position can be characteristic
of normal mice.

To evaluate PD symptoms from animal behaviors, previous studies have
exclusively focused on the movement speed of animals in the open-field tests
(frequency and bout duration of ambulation as well as immobility or fine
movement) because typical symptoms in the animal model of PD are thought to
be slowness of movement and a paucity of spontaneous movements. As shown in
Fig. 4e–g, we found significant differences in average movement speed during
ambulation periods, average movement speed during fine movement periods,
and average maximum distance within a ±60-s window in a session. These
differences were derived from the findings of DeepHL using the two-sided
Wilcoxon rank-sum test (W = 544, p = 3.486 × 10−5, effect size (Cliff’s delta)=
−0.648; W = 511, p = 5.869 × 10−4, effect size (Cliff’s delta) = −0.548;
W = 521, p = 2.666 × 10−4, effect size (Cliff’s delta) = −0.579). The 95%
confidence intervals are [1.222, 3.481], [0.139, 0.468], and [13.726, 43.175],
respectively. We used the exactRankTests package (v. 0.8–29) of R (v. 3.2.3).
Note that these behavioral features are extracted from original 10-min
trajectories.

The maximum distance, which was derived from a finding of DeepHL, is more
useful for evaluating the PD symptoms than conventional measures based on the
movement speed. Note that the new feature is designed based on an insight drawn
from an analysis by deep learning. These results suggest that DeepHL helps find a
novel measure not directly linked to the movement speed, that is, a straight-line
distance within a certain time window. When the aim of an animal is to visit all
locations in an area, the travel distance over a short duration commonly becomes
longer. Besides, it is well known that rodents, including mice and rats,
spontaneously prefer to explore an environment, particularly in novel places. Thus,
DeepHL may capture the fact that the abnormal behavior of the 6-OHDA lesion
model of PD hinders such spontaneous behavioral traits of normal mice. Indeed,
the 6-OHDA lesion mouse model appears to remain in the same place. Although
this hypothesis should be verified based on the causality between behavioral traits
and neural activity patterns underlying PD symptoms using neuronal recording
together with its optogenetic manipulation in the basal ganglia and motor cortex23,
it is beyond the scope of this study.

Behavioral features of mice. According to Kravitz et al.23, ambulation was
defined as periods when the velocity of the animal’s center point averaged >2 cm/s
for at least 0.5 s. Immobility was defined as continuous periods of time during
which the average change of the trajectory was <1 cm for at least 1 s. Fine move-
ment was defined as any movement that was not ambulation or immobility.
Maximum travel distance within a ±60-s window was defined as the maximum
straight-line distance between the center of the window and each point within the
window. Note that each feature value is computed for each entire 10-min
trajectory.

6-OHDA injection of mice. Under isoflurane anesthesia, 6-OHDA (4 mg/ml;
Sigma) was injected through the implanted cannulae (AP −1.2 mm, ML 1.1 mm,
DV 5.0 mm, 2 μl). Animals were allowed to recover for at least 1 week before post-
lesion behavioral testing.

Histological verification of dopaminergic cell loss. After the mice were sacrificed
by pentobarbital sodium overdose and perfused with formalin, their brains were
frozen and cut coronally at 30 μl with a sliding microtome. For immunostaining,
sections were divided into six interleaved sets. Immunohistochemistry was per-
formed on the free-floating sections. Sections were pretreated with 3% hydrogen
peroxide and incubated overnight with primary antibody mouse anti-tyrosine
hydroxylase (1:1000; Millipore). As a secondary antibody, we used biotinylated
donkey anti-mouse IgG (1:100; Jackson ImmunoResearch Inc.), followed by
incubation with avidin–biotin–peroxidase complex solution (1:100; VECTASTAIN
Elite ABC STANDARD KIT, Vector Laboratories). The immunoreactivities were

visualized by 3-3′ diaminobenzidine tetrahydrochloride (Dojindo Laboratories).
The degree of dopaminergic cell loss was estimated by dividing the number of cells
manually counted across three sections of the SNc (most rostral, most caudal, and
the intermediate between them) of the lesioned hemisphere from that of the non-
lesioned hemisphere.

Data acquisition of beetles. In the present study, we analyzed 419 walking trails
collected from S- and L-strain beetles freely moving on a treadmill47 (tracking
software: custom software based on OpenCV, v. 2.4.9) using DeepHL (Supple-
mentary Table 2). The number of the S-strain (L-strain) beetles is 20, consisting of
10 males and 10 females. The sampling rate of the treadmill is ~14.3 Hz, and the
average duration of the trajectories is 52 s.

DeepHL analysis of beetles. In addition to the movement speed and relative
angular speed, the distances and angle from the initial position were fed into
DeepHL-Net. The classification accuracy for the binary classification between S and
L strains was 84.5%, where 20% of the data are used as test data. The score of the
discriminator layer in Fig. 5b was the third highest of all layers. Because the layer
seems to focus on turns, we computed an angle of a trajectory segment for each
point according to Fig. 5e. Figure 5f shows the average angles for the S and L strains
(the number of data points for the S strain is 185,884 and the number of data
points for the L strain is 219,497). We found that the angle for the S strain is
significantly larger than that for the L strain, indicating that beetles of the S-strain
beetles walk with more angle changing. Note that we used two-sided analysis of
variance (ANOVA) (F = 12.57; d.f. = 1; p = 0.001; effect size(η2) = 0.09). Because
multiple data points were computed from each individual beetle’s trajectory, we
treated the individuals as a random factor. The 95% confidence interval is [0.05,
0.18]. We used JMP 12.2.0., SAS. This result could indicate the difference in
strategies for survival between the S- and L-strain beetles. The L-strain beetles can
survive because of their long duration of TI against predators. In contrast, the S-
strain beetles attempt to escape from a predator by frequently changing their
moving directions.

Previous studies have shown a significantly lower expression level of brain
dopamine in the beetles derived from the L strain than those from the S strain30.
Nishi et al.48 showed that injection of caffeine, which activates dopamine,
decreases the duration of immobility in the L strain of T. castaneum. These
phenomena concerning dopamine show an analogy to PD, which alters walking
patterns49. In many animals, dopamine expression level relates to movement
patterns, and a specific trajectory segment pattern of the L strain might be
similarly deeply affected. To test this new hypothesis, the relationship between
dopamine expression and detailed analysis for walking ability, which should be
done apart from the present study, should be examined in the future. In
conclusion, the analysis using DeepHL revealed significantly different walking
trajectories between beetles from the S and L strains using ANOVA: the S-strain
beetles walk with more angle changes along the direction of travel compared to
the L-strain beetles.

Ethics statement. The studies on streaked shearwaters, mice, and bears were
approved by the Animal Experimental Committees of Nagoya University
(streaked shearwaters), the Doshisha University Institutional Animal Care and
Use Committees (mice), and the Institutional Animal Care and Use Committee
of Tokyo University of Agriculture and Technology (bears), respectively. The
research on streaked shearwaters was conducted with permits from the Ministry
of the Environment, Japan. All experimental procedures used in the bear
research followed the Guidelines Concerning Animal Experimentation of the
Tokyo University of Agriculture and Technology and the Mammal Society of
Japan. They specify no requirements for the treatment of insects in experiments.
Details of animals used in this study are described in Supplementary Informa-
tion, Animals.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The dataset of the worms analyzed during the current study is available in the Dryad
repository, https://doi.org/10.5061/dryad.37pvmcvf5, and included in Supplementary
Data 1. The datasets of the mice, beetles, crickets, and seabirds analyzed during the
current study are included in Supplementary Data 1. The dataset of the bears are
available from the corresponding author upon reasonable request because the release of
the bear data can increase the likelihood of poaching and stir up the fear in
residents. Source data are provided with this paper.

Code availability
The source code of DeepHL is distributed as Supplementary Software 1. The most recent
version of the software is available at https://doi.org/10.5281/zenodo.402393150. The use
of the software is exclusively limited to the purpose of undertaking academic,
governmental, or not-for-profit research. The DeepHL web system is accessible on the
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Internet through http://www-mmde.ist.osaka-u.ac.jp/maekawa/deephl/. We will keep the
website operating and freely accessible for the foreseeable future.
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