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South China Sea documents the transition from
wide continental rift to continental break up
Hongdan Deng 1,2✉, Jianye Ren2,3, Xiong Pang4, Patrice F. Rey5, Ken R. McClay6, Ian M. Watkinson7,

Jingyun Zheng4 & Pan Luo2

During extension, the continental lithosphere thins and breaks up, forming either wide or

narrow rifts depending on the thermo-mechanical state of the extending lithosphere. Wide

continental rifts, which can reach 1,000 km across, have been extensively studied in the

North American Cordillera and in the Aegean domain. Yet, the evolutionary process from

wide continental rift to continental breakup remains enigmatic due to the lack of seismically

resolvable data on the distal passive margin and an absence of onshore natural exposures.

Here, we show that Eocene extension across the northern margin of the South China Sea

records the transition between a wide continental rift and highly extended (<15 km) con-

tinental margin. On the basis of high-resolution seismic data, we document the presence of

dome structures, a corrugated and grooved detachment fault, and subdetachment defor-

mation involving crustal-scale nappe folds and magmatic intrusions, which are coeval with

supradetachment basins. The thermal and mechanical weakening of this broad continental

domain allowed for the formation of metamorphic core complexes, boudinage of the upper

crust and exhumation of middle/lower crust through detachment faulting. The structural

architecture of the northern South China Sea continental margin is strikingly similar to the

broad continental rifts in the North American Cordillera and in the Aegean domain, and

reflects the transition from wide rift to continental breakup.
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Continental extension typically results in one of two
dominant modes of rifting: ‘narrow rift’ and ‘wide rift’
modes1–3. In narrow rifts, extension and thinning is

concentrated in regions no larger than the thickness of the con-
tinental lithosphere. In contrast, in wide continental rifts exem-
plified by the ongoing extension of the North American
Cordillera and the Aegean domain, continental thinning occurs
over a continental width many times the thickness of the litho-
sphere1. This mode involves intense ductile flow of the lower
crust and upper crustal boudinage, facilitated in many cases by
the formation of detachment faults4–9. As a part of the wide
continental rifts, metamorphic core complexes (MCCs) are
crustal-scale domal structures flanked by low-angle detachment
faults that tectonically juxtapose upper crustal, brittlely
deformed rocks with lower crustal, ductilely deformed meta-
morphic rocks5,10–12. The massive ductile deformation is quite
different to that observed at cold magma-poor margins, such as
the West Iberia-Newfoundland margins, where progressive
cooling and embrittlement of the lower crust dominates exten-
sion that leads to mantle serpentinization and exhumation at
the ocean–continent transition zone13–17. In contrast, the
ocean–continent transition in hot magma-poor continental
margins, such as the Woodlark Basin, exhibit more pre-
dominance of ductile extension and magmatism in the lower
crust with no mantle exhumation18–21. While research on wide
continental rifting has focused on collapsed orogenic crust5,6

and studies on highly extended crusts have focused on wide
continent to ocean transitions16,22, few studies have considered
the possible link between the two21. Furthermore, despite the
prediction that continuous wide rifting of continental litho-
sphere could ultimately lead to passive margin formation23,24,
well-defined and characteristic MCCs have not been identified
in situ on highly extended crust, and therefore the transition
from wide continental rifting to breakup has not been com-
pletely understood. This is partly hampered by limited geo-
physical data coverage and resolution, and partly due to the
imaging problems prevalent in two-dimensional seismic time
sections in submarine areas of the distal continental margins.

Surrounded by the Pacific and Indian oceans and the Eurasian
plates (Fig. 1a), the South China Sea is the largest marginal sea of
the western Pacific25. Numerous studies have shown that south-
eastern China recorded a long history of northward subduction of
the proto-South China Sea starting in the Triassic and ending
during the latest Cretaceous, involving dominant back-arc
extension26–28. Continued and significant continental extension
of this domain started in the Early Eocene (~52Ma)29, char-
acterised by punctuated and diachronous phases of extension
leading to final continental breakup in the Early Oligocene
(~30Ma)30,31. Extension and rifting resulted in an ultra-wide
(up to 1000 km) northern South China Sea passive margin (Fig. 1
and Supplementary Fig. 1) and its southern counterpart (up
to 500 km)7,32–34, fringed by a stripe of highly extended
(<15 km) continental ribbons tapering into the oceanic litho-
sphere35–37.

Using high-resolution seismic data on the highly extended
northern continental margin of the South China Sea (Fig. 1a), we
have clearly imaged the marginal crust down to 8–12 s two-way-
time (25–35 km) on regional two-dimensional seismic lines
(Fig. 1b, c and Supplementary Fig. 2) and 10 km in depth-
migrated three-dimensional seismic coverage, the latter at a
spatial resolution of a few ten of metres. We then compare our
seismic studies with well-studied exposed analogues from the
North American Cordillera, the Aegean Sea, and the Woodlark
Basin. Our analysis allows us to critically evaluate the involve-
ment of MCCs and to propose that margins of the South China
Sea are typical of rifting of thermally weakened active margins.

Results
Subdetachment deformation. Along a north–south regional
seismic profile (X–X′ on Fig. 1b, c and Supplementary Fig. 2), the
northern continental margin of the South China Sea exhibits
strong upper crustal boudinage. Indeed, from north to south, the
thickness of the upper crust changes from ~5 s two-way travel
time (TWT) (13–16 km), along the intrabasinal highs of the
proximal domain, to 0–1 s TWT (<~3 km) below the Liwan sub-
basin, and to 4 s TWT (~13 km) in the distal domain further
south (Fig. 1b, c). An isocline of seismic energy is organised into a
pattern documenting 30–40 km long nappe folds (Fig. 1b, c)
below, and sub-parallel to, the Liwan detachment fault (Fig. 2).
The geometry of these deformations is interpreted based on the
distinctive patterns of the high- and low-amplitude reflectors
(Fig. 3). The envelope of the low-amplitude homogeneous
reflection shows a concentric (or diapir-like) pattern in the core,
mantled by layered high-amplitude reflectors (Fig. 3a). The axes
of the concentric and mantling reflectors are tilted and have a
small angle against the upper detachment fault. Both the high-
and low-amplitude reflections show continuous axes from the
homogeneous core to the layered mantle, and both the diapir-like
structure and the isoclines verge to the south, in agreement with
the inferred shear sense along the Liwan detachment fault (Fig. 3).
The sub-domes (D1, D2, and D3) are delineated by the coherence
and azimuth attributes of the detachment (Fig. 2b, c), which is
less smooth and lacks obvious grooves compared to the intact
surface. These domes generally trend E–W and have shorter axes
than that of the N–S corrugations. Grooves and corrugations have
been deformed by the sub-domes, as indicated by separation of
otherwise continuous striations and fold axes (Fig. 2a). In the
cross-sections, the three domes D1, D2, and D3 correspond to the
arching of subdetachment strata and faults (Fig. 3), implying that
some of the exhumed material from the deep crust impinged into
the supradetachment basin.

Geometry of detachment fault. The Liwan detachment fault has
been deformed (Figs. 1b, c–3) and shows fold pairs or corruga-
tions, domes, grooves, and supradetachment faults (Fig. 2a–c).
The orientation of the detachment surface is locally variable, but
generally dips about 6–10° to the south (Fig. 3). On the detach-
ment surface, the corrugations are parallel to the grooves that
trend 005° in the north and slightly curve to 010° in the south
(Fig. 2d–g and Supplementary Data 1). The detachment fault
corrugations have crest-to-trough amplitudes of 2–3 km and
crest-to-crest wavelengths of 10–15 km, extending >35 km along
fault dip and plunging to the south. The grooves are remarkably
well developed and are parallel to each other, with some groove
lengths up to 20 km (Fig. 2a–c). The supradetachment faults
trend E–W in the north and south and trend 065° in the central
part of the detachment (Fig. 2e–g and Supplementary Data 2).
These faults offset the grooves and corrugations (Fig. 2a–d) and
suggest that they developed in the later stage of detachment fault
formation.

Supradetachment basin. Stratigraphic architecture of the
supradetachment basin shows progressive southward stacking of
the Eocene–Oligocene (Tg–T60) sediments (Fig. 3b), accom-
modated by depositional space generated by top-to-the-south
unidirectional removal of the hangingwall block in the Eocene.
Over the southern end of the detachment fault, Oligocene (T70)
stratigraphic onlaps (green arrows in Fig. 3) indicate progressively
vertical basin subsidence of 2–3 km. Underneath the Oligocene
basin, the Lower Eocene (Tg–T80) units are missing, and the
Upper Eocene (T80–T70) units are more attenuated than on the
flanks (Fig. 3). These observations suggest pure-shear extension
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during the Oligocene that localised at the southern end of the
Liwan detachment fault. The timing of the localised extension is
coeval with the upward doming of D1, D2, and D3 that are
topped by the Oligocene unconformity (T70 in Fig. 3).

Discussion
The North American Cordillera and the Aegean Sea are regions
that exemplify the wide rift mode of continental extension1,2,5. In
both regions, hangingwall supradetachment basins, detachment
faults, and footwall subdetachment nappes and sub-domes con-
stitute the system of MCCs that are well-exposed and have been
extensively studied in the last four decades5,38–43. The Woodlark
Basin is a region of continental extension in a relatively thick
crust (>26 km) that exhibits diapiric exhumation of lower crust
(MCCs)18,19. In all these extended back-arc regions the upper
plate has been thermally weakened by subduction related

processes. However, unlike the South China Sea, ongoing exten-
sion has not yet reached the transition from wide rifting to
extreme thinning and to drifting. Using high-resolution two- and
three-dimensional seismic data (Figs. 1–3) along the northern
margin of the South China Sea, we have identified an association
of structures that strikingly resemble those documented in the
North American Cordillera and Aegean domains as well as the
Woodlark Basin and analogue and numerical models.

The Liwan detachment fault shows characteristic corrugations,
domes, and grooves (Fig. 2) that are commonly observed in, and are
genetically linked to, the MCC systems (Figs. 4 and 5)41,44–47. The
aspect ratio (length/width) of the corrugations and domes of
the Liwan detachment fault is about 2.5, which lies within the range
of 2–3 for most gneiss domes of MCCs48 (Fig. 4a and Supple-
mentary Data 3). The corrugations of the Liwan detachment fault
are different from those of the shallow-dipping (<10°) detachment
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of the West Iberian margin49,50; the latter have smaller dimensions
(length < 8.0 km, width < 1.1 km) and larger aspect ratio (6–16)
(Fig. 4b and Supplementary Data 3). The differences in size and in
aspect ratio of hot and cold continental margins may suggest that
temperature plays a significant role in shaping the geometry of
MCC corrugation and doming of detachment faults.

The formation of an antiformal–synformal geometry of the
corrugated detachment fault (Figs. 2 and 5a) is possibly associated
with a uniaxial stress field that yields compression perpendicular
to the hangingwall transport direction46. Similar to the corruga-
tions, grooves on the detachment surface are a fundamental part
of the fault geometry (Fig. 2), which developed analogous to the
fault surface striations along detachment faults on the continent45

and exposed on the seafloor in oceanic core complexes51. The
E–W domes (D2 and D3 in Figs. 2a–c and 3) represent active
exhumation of lower crust in the Early Oligocene. These domes’
axes are perpendicular to the extension and are analogous to
extension-perpendicular domes of the Evvia-Mykonos MCCs in
the Aegean domain41 and D’Entrecasteaux-Dayman-Suckling
MCCs in the Woodlark Basin, Papua New Guinea18,19,52. The
presence of lower crustal doming favours strong deep crustal
ascent and abnormally hot conditions underneath the detach-
ment fault which becomes weakened and partially molten,
enhancing strain localisation3,7,53,54. The Liwan detachment fault
shows back-rotation of the footwall block bounded by southward
dipping faults that exhibit a bow-upward geometry at depth

(Fig. 1b, c). The concave-upwards geometry of the detachment
fault was likely locked up as extension and exhumation con-
tinued and was later replaced by the formation of new detach-
ment fault in the hangingwall55,56.

Subdetachment structures include nappe folds, intrusions, and
domes (Fig. 1b, c), among which the large dome exhibits a
symmetrical and upright geometry (Supplementary Fig. 3) that is
mostly observed in migmatite-cored MCCs12,57. In the footwall of
the southern flanking detachment, the highly laminated middle/
lower crust reflectors present an isoclinal geometry (Figs. 1b, c
and 3) evocative of the pattern observed in nappe folds58. These
high-amplitude reflections may represent mylonite foliations
wrapped around the rising domes that have been transposed by
top-to-the-south shear imposed by the hangingwall
movement58,59. The low-amplitude homogeneous reflection
below the Liwan detachment fault shows concentric zonation of
reflectors (Fig. 3a) with steps that pinch out to the south (Fig. 3b).
The steps are commonly observed in igneous intrusions with
characteristic magma fingers43,60. A similar magmatic origin also
applies to the concentric zonation of low-amplitude reflections in
the core that progressively evolve into high-amplitude reflections
in the mantle (Fig. 3a). This can be explained by a facies change
from coarse-grained, foliated granodiorite in the margin to fine-
grained, nonfoliated granodiorite in the core that is analogues to
plutonic intrusions in Serifos, Naxos, and Ikaria43,61–63. The
presence of volcanic material has been inferred previously by
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wide-angle seismic data36. However, the viscosity of the intrusive
body may not be very high, since it shows no evidence of piercing
into the overlying sedimentary succession of the supradetachment
basin; instead, it arches the basin (Fig. 3).

The development of a hangingwall supradetachment basin is
dominated by southward younging of laterally stacked sediments

followed by localised vertical accumulation of asymmetrical
subsidence in the southern end (Fig. 3), which as a whole
were southward-tilted by the uprising dome below the Liwan
detachment fault. Such asymmetrical basins are best observed
elsewhere in salt provinces64 but the distal continental margin of
the South China Sea shows no evidence of thick evaporite
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deposition29,32,37,65,66. In the regional context of the South China
Sea, their timing of localised basin formation corresponds to the
final stage of the continental breakup67,68. Hence, the formation
of asymmetrical subsidence at the distal part of the hyper-
extended margin is possibly the result of an accelerating exten-
sional rate and increasing geothermal gradient that was
accompanied by reduction of lower-crustal viscosity and strain
localisation during continental breakup5,54. Therefore, the
supradetachment basin was controlled by the development of
the Liwan detachment fault that was dominated by simple-shear
and locally by pure-shear extension.

Combining the analysis of depth-migrated, high-resolution
three-dimensional seismic data interpretation and well-known
natural analogues, we have documented along a highly extended
(<15 km) marginal crust an association of structures typical of
wide rifts (Fig. 5): MCCs with supradetachment basins, a corru-
gated and grooved detachment fault, and subdetachment defor-
mations on the continental margin of the northern South China
Sea (Figs. 1–3). Specifically, we document that (i) formation of
extensional-parallel and extensional-perpendicular folds or
domes and grooves are genetically linked to the formation of
MCCs (Fig. 5a); (ii) deep crustal domes associated with vertical
ascent (upright domes) and lateral flow (nappe folds) of partially
molten mass suggest intense ductile deformation and middle/
lower crust exhumation in the distal domain; (iii) the Liwan
detachment fault was chiefly controlled by simple-shear defor-
mation during the Eocene extension and by localised pure-shear
deformation during the Oligocene extension, the latter coeval
with deep crust extrusion and strain localisation during con-
tinental breakup.

These structures (Fig. 5) exhibit striking similarities to the
MCCs of the North American Cordillera, the Aegean Sea, and the
Woodlark Basin18,19, implying that the lower crust of the South
China Sea distal margin was rather hot and weak during the
development of continental thinning prior to and during the
onset opening of the South China Sea. This context explains
large-scale flow of crustal material associated with extensional
instabilities due to a thermal anomaly and the formation of large
detachment fault systems to the north of the Liwan sub-basin that
significantly thinned the crust. Highly extended hot continental
margin exemplified by this study is dominated by distributed
upper crust necking and boudinages coupled with exhumation of
middle/lower crustal (Fig. 5b), in stark contrast to large scale
mantle exhumation and usually one necking domain of cold
continental margins13,15,16,22,69. The northern margin of the
South China Sea documents the development from a wide con-
tinental rift to an highly extended continental margin and to
breakup in the context of a weakened lithosphere, and therefore
provides crucial insights into the transition from an advanced
wide continental rift (e.g. North American Cordillera/Aegean
Sea) to continental breakup.

Methods
Three-dimensional seismic data and bathymetry data. The three-dimensional
(3D) seismic dataset was acquired by CNOOC in 2011 using two airgun arrays
spaced 50 m apart, fired every 25 m at 2000 psi. The total volume used was 7750 in
ref. 3, towing at a depth of 6 ± 0.5 m throughout the survey. The data were collected
using twelve hydrophone streamers, each 600 m in length, containing 480 channels,
regularly spaced at 12.5 m. The data were recorded for 8192 ms at a 1-ms sample
rate. The data were reprocessed and generated pre-stack depth migration data by
PGS in 2012. It has an inline (N–S) and crossline (E–W) spacing of 12.5 m × 12.5
m, 5 m vertical sample rate, covers an area of ~1500 km2 and has a record length of
10 km. There are 3142 inlines and 3816 crosslines in the data volume. The main
frequency of the reprocessed volume is 30–45 Hz. The velocity model applied for
the depth conversion of the seismic volume is consistent with the velocity from
ocean bottom seismic survey OBS93 (ref. 36).

The bathymetry map of the northern South China Sea and adjacent areas was
made with the Generic Mapping Tool programme version 6 (ref. 70). The data for

plotting this map are downloaded from GEBCO one minute grid (https://www.
gebco.net/data_and_products/gridded_bathymetry_data/).

Detachment fault mapping and visualisation. Mapping of the detachment fault
was performed using GeoFrame v2012 on the Pre-stacked depth seismic volume.
The detachment surface was interpreted at 50 × 50 grid spacing (600 m × 600m)
and was then autotracked to map the entire volume based on the seeded grids.
Refined interpretation of distorted detachment surface due to the presence of
intrusion was performed with 10 × 10 grid, which were autotracked for a second
time. The resultant horizon was not smoothed or filtered in order that the subtle
deformation could be maintained.

3D perspective of the detachment fault was manipulated in the Geoviz module
of the GeoFrame. The detachment surface was viewed from a bird perspective
looking down towards the northwest and a light source was positioned in the
northwest at ~45° above the display.

Geometric and amplitude attributes. Two geometric attributes, azimuth and
variance, were used to highlight subtle shape changes and to validate the depth
structure of the mapped detachment fault. The azimuth attribute calculates the
azimuth at each sampling point (3 × 3 sample rate). In the colour-coded azimuth
attribute, the E–W faults were displayed in red and the N–S lineation were dis-
played in blue and yellow. The variance attribute is derived from measuring of
discontinuities of the reflection volume in the depth window ±5m around the
mapped horizon at 3 × 3 sampling rate. High discontinuities such as faults and
intrusive induced distortions are highlighted in black, whereas continuous reflec-
tion is marked as marked as white.

Apparent polarity attribute displays local maxima of Hilbert envelope. It
measures both reflection strength and polarities of the seismogram. Default
parameters were used for the seismic attribute extraction.

Measuring grooves and secondary faults. Orientation of the grooves and sec-
ondary faults of the detachment surface was manually measured. The detachment
fault with a dimension of 32 km wide and 35 km long in map-view were divided
into 1 km × 1 km grid. The measured results were plotted with Stereonet version
10.4.2 publicly provided by Richard W. Allmendinger.

Data availability
The authors declare that the proprietary 2D and 3D seismic data used in this paper are
from CNOOC. Other data are accessible within this article and its supplementary files.
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