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Unexpected complexity of everyday manual
behaviors

Yuke Yan!, James M. Goodman', Dalton D. Moore!, Sara A. Solla? & Sliman J. Bensmaia® 34

How does the brain control an effector as complex and versatile as the hand? One possibility
is that neural control is simplified by limiting the space of hand movements. Indeed, hand
kinematics can be largely described within 8 to 10 dimensions. This oft replicated finding has
been construed as evidence that hand postures are confined to this subspace. A prediction
from this hypothesis is that dimensions outside of this subspace reflect noise. To address this
question, we track the hand of human participants as they perform two tasks—grasping and
signing in American Sign Language. We apply multiple dimension reduction techniques and
replicate the finding that most postural variance falls within a reduced subspace. However,
we show that dimensions outside of this subspace are highly structured and task dependent,
suggesting they too are under volitional control. We propose that hand control occupies a

higher dimensional space than previously considered.
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can engage in a wide range of manual behaviors, high-

lighting the staggering flexibility of the hand, whose 27
bones and 39 muscles give rise to >20 biomechanical degrees of
freedom (DOF) for volitional movement!-2. This versatility is also
supported by a sophisticated neural system: the hand is one of the
most densely innervated regions of the human body?, and the
hand representation in sensorimotor cortex is disproportionately
large*. In addition, although primate motor cortex lacks a clear
somatotopic organization®, it nonetheless seems to contain a
specialized module for hand control®.

The complexity of the hand has called into question whether
the central nervous system (CNS) can fluidly control such a
complex effector’8. An appealing hypothesis is that hand pos-
tures—which in principle can exist over 20 or more DOF—are
reduced to a lower-dimensional manifold to simplify the control
problem”-%. Instead of spanning the full space afforded by all
available DOFs, hand control relies on a set of synergies that are
combined to give rise to manual behaviors. Broadly defined, a
synergy is a set of muscle activations or joint movements that are
recruited collectively rather than individually!0. This restriction
of volitional movements of the hand to combinations of a small
number of synergies is presumed to confer a number of com-
putational advantages, including robustness to noise and facili-
tated learning of novel movements®°. To date, many studies have
looked for hand synergies in different movement contexts, with a
mixture of evidence for and against the notion that the CNS
indeed constrains hand movements to the subspace spanned by
synergies as a limited basis set®~18.

The most compelling evidence for hand postural synergies
stems from analysis of hand kinematics or the muscle activations
that drive them, which seem to occupy a lower-dimensional
manifold within the space spanned by the collective DOFs.
Indeed, principal component analysis (PCA) of kinematics or
muscle activations reveals that a small number of principal
components (PCs) account for most of the variance in the
movements or activations associated with a given behavior (e.g.,
grasping, playing piano, and typing)!11219-22) The tacit
assumption underlying the interpretation of this dimensionality
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reduction is that high-variance PCs—the synergies—are under
volitional control, whereas low-variance PCs reflect motor or
measurement noise. Another possibility, however, is that the
exquisite control of the hand is mediated by high-dimensional
sensorimotor signals, and that low-variance PCs are critical to
achieving precise hand postures. A previous investigation of this
question concluded that grasping movements were confined to
six dimensions or less22—still far fewer than the multiple dozens
of DOFs of the hand.

The aim of the present study is to assess whether hand
movements exist in a manifold whose dimensionality is lower
than its maximum value, defined by the number of DOFs. To this
end, we have human participants perform two manual behaviors
—grasping and signing in American Sign Language (ASL)—while
we track their hand kinematics. We then assess the degree to
which low-variance PCs are structured by quantifying the degree
to which they carry information about the manual behavior. For
example, humans and nonhuman primates precisely preshape
their hands when grasping objects. Objects can thus be classified
on the basis of the hand postures adopted while grasping them,
even before contact. If low-variance PCs indeed reflect noise, they
should bear no systematic relationship with the object to be
grasped. If low-variance PCs reflect subtle but volitionally con-
trolled adjustments of hand posture to better preshape to the
object, these should also be highly object specific.

Results

Basic structure of hand kinematics for two manual tasks.
Subjects performed two tasks—grasping various objects and
signing in ASL—while we tracked their hand movements using a
camera-based motion tracking system (Fig. 1). First, we examined
the degree to which the structure of hand movements differed
across tasks and individuals. Second, we ascertained the degree to
which actual hand movements occupy a low-dimensional mani-
fold of the available space spanned by the hand’s DOFs.

As might be expected, different joint trajectories were observed
when subjects grasped different objects or signed different ASL
letters (Fig. 2). Moreover, the kinematics were consistent within
condition—grasping a specific object or signing a specific letter—as

ASL signs

Fig. 1 Experimental design. a Subjects performed two manual tasks: grasping objects and signing in American Sign Language (ASL). Infrared cameras
tracked the 3D trajectories of markers placed on the subjects’ hand and joint angles were calculated from these marker trajectories using reverse

kinematics. b Grasped objects and ASL signs.
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Fig. 2 Example kinematic traces. Joint kinematics (metacarpophalangeal joints flexion of digits 1-3) when grasping three different objects or signing three
ASL signs five times each. Each trace shows a different trial of the same object/ASL sign.
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Fig. 3 Principal components analysis. a Cumulative percentage of variance explained vs. number of principal components. PCA is performed separately for
each task and subject. The curves are averaged across eight subjects for grasp and across three subjects for ASL. Error bars denote the standard error of
the mean. b Visualization of example PCs. For each task, we show the 1st and the 20th PCs (in terms of variance explained). The 20th PC accounts for less

than one percent of the variance.

evidenced by similar trajectories over repetitions of the same
condition (Fig. 2).

First, we wished to reproduce previous findings that much of
hand kinematics can be described within a low-dimensional
subspace. To this end, we performed PCA on the joint angles and
examined the cumulative variance plot. We found that 3-5 PCs
were sufficient to account for 80% of the variance in the
kinematics and that 8-11 PCs accounted for 95% of variance,
consistent with previous findings (Fig. 3a)!%23. We then
examined PCs with large and small eigenvalues (Fig. 3b). In line
with previous findings, the first two PCs of grasp and ASL
involved opening and closing the hand, engaging mostly
metacarpophalangeal (MCP) joint flexion/extension, some prox-
imal and distal interphaleangeal joint flexion/extension (PIP and
DIP), and some wrist flexion. One might expect PCs with small
eigenvalues to reflect motor or measurement noise, and thus be
unstructured. Instead, examination of low-variance PCs (for
example, the 20th) revealed coordinated joint movements (e.g.,

ring PIP and MCP flexion in ASL) that were systematically
dependent on condition (Fig. 3b).

We then compared the hand kinematics in the two tasks—
grasping and ASL—Dby comparing their respective kinematics
subspaces using cross-projection similarity. For each subject
doing both tasks (N = 3), we calculated how much variance in the
kinematics of one task were accounted for by the leading
dimensions of the other (within-subject similarity). Despite the
apparent dissimilarity of grasping and signing movements, we
found that the underlying subspaces were very similar: The
leading ten PCs of grasping explained ~85% of the variance in
ASL kinematics and vice versa (Supplementary Fig. 1). We also
found that different subjects yielded similar subspaces (Supple-
mentary Fig. 1).

Structure of low-variance PCs. Having replicated previous
results that hand movements can be reconstructed with high
precision using a reduced basis set, and having shown that similar
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Fig. 4 Object-specific kinematics in PC subspaces. a Projection of the kinematics onto PCs 21 through 23 for five grasps each of tape and banana. b
Projection of the kinematics onto PCs 21 through 23 for five repeated signs each of “two” and “seven” in ASL. ¢ Projection of the kinematics onto PCs 1
through 3 for the conditions shown in a. d Projection of the kinematics onto PCs 1 through 3 for the conditions shown in b. In all panels, separate objects
and signs are indicated by color, and different trials are indicated by traces of different lightness.

basis sets accounted for movements across both tasks and sub-
jects, we then examined whether low-variance PCs outside these
basis sets were structured in a condition-specific manner. We
found that the kinematics projected on the low-variance PCs
across repeated trials for the same condition (same grasped
object, same ASL letter) varied systematically with the grasped
object or signed letter (Fig. 4a, b), although this structure was
noisier than that for the high-variance PCs (Fig. 4c, d), as might
be expected. In other words, even the low-variance PCs reflect
structure rather than only noise in the kinematics. Indeed, the
trajectories along all PCs were far more consistent within con-
ditions than they were across conditions (Supplementary Fig. 2).
To quantify the degree to which kinematics differed across con-
ditions, we classified objects or letters using progressively reduced
kinematic subspaces that captured monotonically less variance
through the systematic removal of PCs (in decreasing order of
variance explained). We found that classification accuracy was
well above chance even after most PCs had been removed, and
that high performance was achieved even when all the remaining
PCs accounted for less than one percent of the variance in
kinematics (Fig. 5a, b). A similar result was obtained when

progressively removing linear discriminant analysis (LDA)
dimensions rather than PC dimensions (Supplementary Fig. 3).
Results from these classification analyses are thus inconsistent
with the hypothesis that low-variance PCs reflect motor or
measurement noise. Rather, these PCs seem to reflect subtle
dimensions of movement that are under volitional control and
contribute to the exquisitely precise preshaping of the hand to an
object or to the detailed execution of a complex hand con-
formation required to produce an ASL sign.

Nonlinear manifolds of hand kinematics. We showed that low-
variance PCs are structured and task related. However, given that
PCA is a linear dimensionality reduction technique, we con-
sidered the possibility that hand kinematics occupy a low-
dimensional nonlinear manifold, and that the low-variance PCs
reflect a linear approximation of nonlinear dimensions. Indeed,
such a nonlinearity could in principle explain why low-variance
dimensions carry condition-specific information, thereby sup-
porting the classification of object identity or ASL sign (Fig. 5). To
address this possibility, we performed the same classification
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Fig. 5 Classification of condition (object, sign) based on different subspaces of kinematics. a Mean grasp classification performance after progressively
removing PCs, from high variance to low. Results are averaged across eight subjects with five repetitions each (random allocation of training and testing
data in each repetition, see “Methods" section for more details). Error bars denote the SEM. b Mean ASL classification performance based on reduced
kinematic subspaces, averaged across three subjects with five repetitions each. Vertical red lines denote the PC beyond which the subspace accounts for
<1% of the variance; error bars denote the standard error of the mean (SEM). Note that objects and letters can be classified accurately based on just a
handful of high-variance PCs (Supplementary Fig. 4). Classification performance is highly consistent both across repetitions of the same subject and across

subjects (note the small SEM).
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Fig. 6 Scree plot and classification performance using different dimension reduction techniques. a Cumulative variance explained by each dimension of
PCA, NLPCA, and Isomap, averaged across the down-sampled data of eight subjects. b Mean grasp classification performance after progressively removing
dimensions from high variance to low, for each of the three dimensionality reduction techniques. Results are averaged across eight subjects with five

repetitions each. Error bars indicate £ SEM.

analysis with two nonlinear dimension reduction techniques,
namely Isomap?* and nonlinear PCA (NLPCA)2°. Consistent
with previous findings?®, we found that PCA provides the most
parsimonious representation of the kinematics, as gauged by
variance explained (Fig. 6a), a counterintuitive result given that
PCA is restricted to linear transformations, whereas the other two
approaches are not. More importantly, all three algorithms yiel-
ded high classification performance (>50%) after removing the 20
leading dimensions, which collectively account for >90% of the
variance (Fig. 6b). If hand kinematics were low-dimensional and
nonlinear, nonlinear dimensionality reduction would account for
variance more parsimoniously and a smaller number of dimen-
sions would contain all the task-relevant information, but this is
not what we found. We conclude the high information content in

low-variance PCs is not a trivial artifact of nonlinearity, at least
not of a nonlinearity that could be captured by the two well
established approaches to nonlinear dimensionality reduction
used here. The possibility remains that a low-dimensional
manifold exists that cannot be captured with either Isomap or
NLPCA.

Conditional noise. Next, we examined the possibility that our
ability to classify objects based on low-variance PCs might be an
artifact of condition-dependent noise. Indeed, the variability in
the kinematics could in principle depend on which object is being
grasped, as might be predicted by optimal feedback control?’.
This condition-dependent noise might then shunt signal to the
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low-variance components to in turn be exploited by the classifier.
To test this possibility, we simulated kinematics by (linearly)
reducing the kinematics to ten dimensions and adding noise
whose structure depended on the object being grasped. We then
assessed the degree to which we could classify objects based on
the low-variance PCs. We found that, with the addition of
condition-dependent noise, the first ten PCs accounted for even
less variance in the kinematics than they did in the original
kinematics, despite the fact that, in principle, all the signal was
confined to those dimensions (Supplementary Fig. 5). None-
theless, classification performance with low-variance PCs (>10)
was above chance with these simulated kinematics, reflecting the
influence of condition-dependent noise (Supplementary Fig. 6¢).
However, performance dropped much faster as PCs were
removed with the simulated low-dimensional kinematics than
with the original kinematics (Supplementary Fig. 6¢), despite the
fact that low-variance PCs accounted for more variance in the
former than in the latter. Furthermore, the correlation between
within-object PC scores was near zero for the low-variance PCs
(Supplementary Fig. 7). That is, low-variance PCs in the simu-
lated kinematics were not nearly as structured as were the low-
variance PCs in the measured kinematics. In summary,
condition-dependent noise yields classification performance with
low-variance PCs that is only slightly above chance, and cannot
account for the observed structure in the low-variance PCs of
grasping and ASL kinematics.

Discussion

We found that the structure of the hand postures adopted in the
two tasks—grasping and signing ASL—were virtually indis-
tinguishable. Indeed, grasping and ASL—which each included
~30 distinct conditions—yielded subspaces that were no more
different than were the kinematic subspaces of different subjects
performing the same task (Supplementary Fig. 1). At first glance,
this finding seems to be inconsistent with previous observations
that kinematics are more similar within task and across subjects
than across tasks within subject!1:28. However, our analysis differs
from its predecessors in two fundamental ways. First, we sampled
the two tasks across many conditions (objects, signs) in contrast
to the more restricted conditions—such as manipulating a credit
card or flipping book pages—used in previous studies. The sub-
spaces we computed thus individually reflect a greater breadth of
possible hand conformations than would subspaces computed
from much more limited tasks. Second, the two tasks that we
implemented did not entail contact with objects, which intro-
duces hand conformations that cannot be achieved without
contact (for example, extension of the DIP). A manifold com-
puted from kinematics before and after object contact would thus
reflect not just volitionally achieved kinematics, but also the
structure of the object. Systematic examination of other manual
behaviors with and without object contact will be necessary to
conclusively establish the degree to which contact shapes
kinematics.

One hypothesis derived from optimal feedback control theory
stipulates that the CNS defines low-dimensional manifolds of
control to satisfy movement goals on a task-by-task basis, with
motor noise being preferentially shunted into dimensions outside
of such manifolds?’-2°. One possibility, then, is that the
condition-specific information in the low-variance PCs reflects
the influence of condition-dependent noise, which could in
principle support classification of objects or ASL signs. However,
kinematic trajectories projected onto low-variance PCs were far
more consistent within than across conditions (Supplementary
Fig. 2). Such consistency would not be present if these dimensions
simply reflected motor noise shunted into those dimensions.

One might argue that nonlinear dimensionality reduction is
better suited to reveal the dimensionality of hand postures.
However, linear approaches, including PCA, have been previously
shown to yield more efficient and reliable manifolds for kine-
matics than do nonlinear ones?®. Not only do we replicate this
result, but we also show that nonlinear dimensionality reduction
does not capture behaviorally relevant aspects of the hand kine-
matics more efficiently than does PCA (Fig. 6). Overall, our
results are consistent with the hypothesis that hand postures
occupy a high-dimensional manifold, even for an everyday
manual behavior, such as grasping.

High-dimensional kinematics do not imply wholly uncon-
strained control of the hand. Indeed, single-finger movements
attempted by monkeys3® and humans3! are never perfectly
individuated: they comprise incidental movements of the other
digits arising in part from co-contraction of musculature asso-
ciated with other digits. Recently, the analysis of the constraints
imposed on neural activity in primary motor cortex (MI)
revealed that activity patterns are constrained not only to a
particular linear subspace32, but also to a particular bounded
region—a “repertoire”—within that subspace33. The known
constraints imposed on volitional hand movements might be
better explained in terms of a bounded repertoire within a high-
dimensional subspace rather than an unbounded repertoire
within a low-dimensional subspace.

The complexity of hand movements might be interpreted as
evidence against the general notion that motor control occupies a
low-dimensional manifold34. Another possibility, however, is that
the hand is a uniquely complex effector and constitutes an
exception to this rule. Indeed, the kinematics of the hand are
higher dimensional than are those of other effectors!®3>-37,
Moreover, a subdivision of primate M1 has direct access to
motoneurons that innervate muscles, particularly muscles of the
hand®, which could be construed as anatomical support for the
notion that hand control is special. A common argument in
support of low-dimensional motor control is that the brain needs
to simplify the problem of controlling a complex effector, such as
a hand, to solve it. Note, however, that control signals required
for a 29 DOF effector still occupy a neural manifold whose
dimensionality is much lower than that of the possible neural
space spanned by the activity of all neurons modulated by the
task34. Recent advances in large-scale neuronal recordings suggest
that high-dimensional representations are possible if not com-
mon: sensory representations of natural scenes in primary visual
cortex exceed 500 dimensions®3, an order of magnitude more
than the implied representations of hand postures. Nonetheless,
visual percepts are highly intuitive and allow for the accurate,
rapid, and effortless identification of complex objects?®. In com-
parison, motor control is positively straightforward!

Methods

Experimental design. All procedures were approved by the Institutional Review
Board of the University of Chicago. Eight right-handed adult subjects between the
ages of 21-40 participated in the experiment with written consent. During the
experiment, subjects were instructed to perform two types of manual tasks:
grasping objects and signing in ASL (Fig. 1a). All eight subjects performed the
grasping tasks and three subjects—who had prior knowledge of ASL—performed
the signing task. All subjects performed one or both tasks with their dominant
hand, the right one.

In the grasping task, subjects began each trial by resting their right hand on a
table in front of them. The experimenter then placed an object at the center of the
table and subjects grasped the object with their right hand, lifted it, and held it up
for ~1 s before replacing the object on the table and moving their hand back to the
starting position. No time limit was imposed on the trial and this procedure was
repeated five times for each object. Twenty five objects, varying in size, shape, and
orientation, were used to elicit 30 distinct grasps (Fig. 1b), with more grasps than
objects arising from the fact that some objects could be grasped in several ways. For
example, a lightbulb can be grasped by the stem or by the bulb. Objects that
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afforded more than one grasp were presented repeatedly and subjects were cued to
use a specific grasp on each presentation.

In the ASL task, subjects began at the same position as in the grasping task. On
each trial, subjects signed an ASL sign—one of the 26 letters of the alphabet or a
number from 1 to 10—and repeated it five times. Again, no time limit was
imposed.

Measurement and preprocessing. Forty one infrared-reflective markers (hemi-
spherical, 4-mm diameter) were placed on the right hand of each subject, with two
markers covering each finger joint, two on the ulnar, and one on the radial bone of
the forearm (Fig. 1a). Fourteen infrared cameras (8MP resolution, 250 Hz; MX-T
Series, VICON, Los Angeles, CA) fixed to wall mounts and camera stands tracked
the 3D trajectories of each marker (100-Hz sampling rate), each of which was then
labeled based on its respective joint using Vicon Nexus Software (VICON, Los
Angeles, CA). We then calculated inverse kinematics using time-varying marker
positions and a musculoskeletal model of the human arm (https://simtk.org/
projects/ulb_project)*°-46 implemented in Opensim (https://simtk.org/frs/index.
php?group_id=91)*’. The model was modified to include three rotational DOF of
the first and fifth carpo-metacarpal joints to permit reconstructions of oppositional
movements of these digits. In total, we reconstructed the time-varying angles of 29
DOF, including all movement parameters of the hand and three of the wrist. We
only analyzed the intervals between the start of movement and 100 ms prior to
object contact or until full ASL posture.

PCs analysis and cross-projection similarity. Kinematic synergies have been
identified using PCA, which expresses hand postural trajectories in terms of a set of
orthogonal components, each of which reflects correlated joint trajectories. We
applied PCA to the hand kinematics obtained from each individual subject*8. To
compare PC subspaces across subjects or tasks, we computed the cross-projection
similarity!!. For this, we first calculated the total variance accounted for by the first
N PCs of one group (V1). Then, we projected the kinematics from the first group
onto the first N PCs of a second group (V2) and calculated the total variance
explained. Finally, we computed the ratio V2/V1, which approaches 1 to the extent
that the second subspace resembles the first. Note that this measure is not sym-
metric: if the first and second groups were to change roles in an alternative V2/V1
calculation, the resulting ratio would not necessarily be equivalent. Therefore, to
obtain a symmetric similarity measure, we computed the ratio V2/V1 in both
directions and report the average ratio as an index of subspace similarity.

Classification. Next, we assessed the degree to which hand kinematics were
condition specific. That is, we quantified the extent to which hand postures were
dependent on the object to be grasped or the letter/number to be signed. To this
end, we used LDA to classify conditions based on the instantaneous hand posture
(measured in joint angles) 100 ms before object contact, or when the ASL sign had
been achieved. Classification performance with the full kinematics provided an
upper bound on the achievable classification with LDA.

Then, we gradually removed PCs in descending order of variance and projected
the hand posture of each trial based on a progressively smaller subset of non-
leading PCs. We then used LDA on this restricted set to classify the grasped object
or the ASL posture. We used a trial-level leave-one-out cross validation: for each
object, we randomly select M-1 trials as training data (where M is the total number
of trials, M = 5) and trained a linear discriminant classifier on this training set. We
then attempted to classify objects on the remaining trials. We repeated this
procedure M times (each with a different trial left out) and performance was
quantified by the proportion of correct classifications.

Nonlinear dimensionality reduction. We used two nonlinear dimensionality
reduction techniques to contrast with PCA: Isomap and NLPCA. We applied
Isomap using the MATLAB package from Tenebaum et al.2* with 29 nearest
neighbors (though the results were robust to changes in this parameter over a
range). We calculated the variance explained by each Isomap dimension by
dividing the eigenvalue of that dimension by the sum of eigenvalues. We then
performed the same classification analysis by removing Isomap dimensions in
descending order of eigenvalue. We also applied NLPCA, an autoencoder-based
approach, using the MATLAB package from Scholz et al.2>. NLPCA orders the
hidden nodes (termed “nonlinear PCs”, or NLPCs) by variance explained and
enforces a PCA-like structure on the low-dimensional embeddings?>. To obtain a
cumulative variance plot, we calculated the variance explained by dividing the
variance of the NLPCA-reconstructed kinematics by the total variance. We per-
formed the same classification analysis by progressively setting NLPC scores to
zero prior to reconstruction of the kinematics, starting with the NLPC that
accounted for the most variance and proceeding in order of decreasing explained
variance. Due to the high computational cost of nonlinear algorithms, we down-
sampled the kinematics (100-20 Hz) when performing the nonlinear analyses. As a
comparison, we also analyzed the down-sampled kinematics using PCA and
plotted the results alongside those of the nonlinear algorithms (Fig. 6). The results
of PCA on the down-sampled kinematics (variance explained and classification
performance; Fig. 6) are almost identical to those on the full sample (Figs. 3a
and 5).

Conditional noise. One possibility is that noise, especially non-isotropic,
condition-dependent noise as might be anticipated by optimal feedback control
theory, might push information about grasped objects into low-variance PCs and
thereby support classification with those PCs. To address this possibility, we
denoised the kinematics, reduced their dimensionality, then added condition-
dependent noise to the resulting kinematic trajectories. Specifically, we selected one
trial from each object and replicated it four more times to obtain a kinematics set
that contained no within-condition noise. We then reconstructed the (denoised)
kinematics with only the first ten PCs. Next, we drew from a multivariate Gaussian
distribution with zero mean and a condition-specific covariance matrix. Specifi-
cally, we randomly shuffled joint angle order and recalculated the covariance
matrix of the denoised data, repeating this procedure for each object. This way, the
within-object covariance (noise) was consistently of a similar magnitude as was the
between-object covariance (signal), but differed in orientation across objects. Then,
we rescaled the conditional noise such that, when added to the 10-D kinematic
trajectories, classification performance was similar to that using the original
kinematics (~95.5%). We then computed the PCs of these simulated kinematics
and performed the same classification analysis described above with sequentially
removed PCs. We repeated the procedures above five times, each time using a
different seed to generate the conditional noise distributions (by reshuffling the
joint angles and resampling from the resulting distributions).

We also examined the correlation of the scores along each PC across trials to
assess the degree to which individual PCs exhibited repeatable structure: for both
the raw kinematics and the 10-D simulated kinematics with conditional noise, we
computed the mean correlation coefficient across trials on which the same object
was presented, and across trials on which different objects were presented after
projecting the kinematics onto individual PCs. Note that all the noise in the
simulated kinematics was condition dependent, thereby maximizing the degree to
which trial-by-trial variability in the kinematics might support classification
performance.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The hand kinematics data recorded in this study has been deposited in the Bensmaia lab
repository on Github (https://github.com/yyan-neuro/BensmaiaLab/tree/master/
HandKinematics). We also provide the data underlying each figure as a Source data file
(SourceData.zip). The data underlying Figs. 3a, 5a, b, 6a, b and Supplementary Figs. 1, 2a,
b, 3a, b, 4a, b, 5, and 6a-c are provided in “Source Data.xlsx”. The kinematics trace data
underlying Figs. 2, 3b and 4a-d are provided as a MATLAB file “ASL and Grasp.mat”.
The data underlying Supplementary Fig. 7a-c are provided as “Supplementary Fig. 7.
mat”. A reporting summary for this article is available as a Supplementary Information
file. Source data are provided with this paper.

Code availability

The custom Matlab code used in this study has also been deposited in the Bensmaia lab
repository (https://github.com/yyan-neuro/BensmaiaLab/tree/master/

HandKinematics). Source data are provided with this paper.
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