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Analysis of human metabolism by reducing
the complexity of the genome-scale models
using redHUMAN
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Altered metabolism is associated with many human diseases. Human genome-scale meta-

bolic models (GEMs) were reconstructed within systems biology to study the biochemistry

occurring in human cells. However, the complexity of these networks hinders a consistent

and concise physiological representation. We present here redHUMAN, a workflow for

reconstructing reduced models that focus on parts of the metabolism relevant to a specific

physiology using the recently established methods redGEM and lumpGEM. The reductions

include the thermodynamic properties of compounds and reactions guaranteeing the con-

sistency of predictions with the bioenergetics of the cell. We introduce a method (redGEMX)

to incorporate the pathways used by cells to adapt to the medium. We provide the ther-

modynamic curation of the human GEMs Recon2 and Recon3D and we apply the redHUMAN

workflow to derive leukemia-specific reduced models. The reduced models are powerful

platforms for studying metabolic differences between phenotypes, such as diseased and

healthy cells.
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An altered metabolism is a hallmark of several human
diseases, such as cancer, diabetes, obesity, Alzheimer’s,
and cardiovascular disorders1,2. Understanding the

metabolic mechanisms that underlie this reprogramming guides
the discovery of new drug targets and the design of new therapies.
To this effect, tremendous efforts are now being made to use the
large amounts of now-available multi-omics experimental data to
gain insight into the metabolic alterations occurring in different
phenotypes. Unfortunately, current mathematical models can be
too complex for this analysis, rendering them too cumbersome to
employ for many systems biology studies.

In the field of systems biology, genome-scale metabolic models
(GEMs) integrate available omics data with genome sequences to
provide an improved mechanistic understanding of the intracellular
metabolism of an organism. GEMs have been reconstructed for a
large diversity of organisms spanning from bacteria to mammals3–5

and are valuable tools for studying metabolism6,7. The mathema-
tical representation of GEMs through the stoichiometric matrix7 is
amenable to methods such as flux balance analysis (FBA)8 and
thermodynamic-based flux balance analysis (TFA)9–13, which
ensure that the modeled metabolic reactions retain feasible con-
centrations and their directionalities obey the rules of thermo-
dynamics, to predict reaction rates and metabolite concentrations
when optimizing for a cellular function, such as growth, energy
maintenance, or a specific metabolic task. Additionally, GEMs can
be used for gene essentiality14, drug off-target analysis15, metabolic
engineering16–18, and the derivation of kinetic models19–22.

The first human GEM was reconstructed in 200723,24. Since
then, the scientific community has been working to develop high-
quality human GEMs, including HMR 2.025, Recon 226, Recon
2.227, and Recon 3D28. The human GEMs used for the analysis in
this article are Recon 2 and Recon 3D. Recon 2 is composed of
7440 reactions with 4821 of them associated to 2140 genes, and
2499 unique metabolites across seven compartments: cytosol,
mitochondria, peroxisome, Golgi apparatus, endoplasmic reticu-
lum, nucleus, and lysosome. Recon 3D is the latest consensus
human GEM. It is an improved more comprehensive version of
the previous GEMs consisting of 10,600 reactions, with 5938 of
them associated with 2248 genes, and 2797 unique metabolites

compartmentalized as Recon 2 with an additional compartment
for the mitochondria intermembrane space.

Human GEMs reconstruct the metabolic reactions occurring in
several human cell types. However, a given cell type only leverages a
portion of these reactions. This motivates the development of
methods to generate context-specific metabolic models that can be
used to study the differences in metabolism for different cell types29,
for healthy and diseased cells30,31, and for cells growing under
diverse extracellular conditions. Some examples of such methods
are (1) GIMME32, mCADRE33, and tINIT34 to reconstruct tissue-
specific models based on omics data and a set of tasks or a specific
objective function; (2) redGEM–lumpGEM35,36 to reconstruct
models around a specific set of subsystems of interest for the study;
and (3) iMM37,38 to characterize the extracellular medium and the
metabolites that are essential for growth under each condition.
Context-specific metabolic models have been extensively used to
understand the differences in metabolism between cancer cells and
their healthy counterparts39–45.

In this article, we present redHUMAN, a workflow to recon-
struct thermodynamic-curated reductions of the human GEMs
Recon 2 and Recon 3D. We integrate the thermodynamic prop-
erties of the metabolites and reactions into the GEMs and use
redGEM–lumpGEM to reconstruct reduced models around spe-
cific subsystems. Furthermore, we introduce redGEMX, a method
to identify the pathways required to connect the extracellular
compounds to a core network. redGEMX guarantees that the
reduced models have all the feasible pathways that consume and
produce the components of the extracellular environment of the
cell. Finally, we use metabolic data for leukemia as an example of
how to integrate experimental data to derive disease- and tissue-
specific metabolic models.

Results
Overall workflow. In order to generate reduced models from
human GEMs, we developed redHUMAN, a six-step workflow
that can be applied to any GEM or desired model system. The
overall workflow is briefly described here and shown in Fig. 1, and
the details of each step in its application to the human GEMs
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Fig. 1 redHUMAN workflow. (1) Thermodynamic curation: the Gibbs free energy of compounds and reactions are estimated and used to define the
reaction directionality. (2) Subsystem selection: the subsystems relevant for the study are selected. (3) Network expansion: the initial subsystems are
connected using reactions from the GEM to generate a core network. (4) Extracellular medium connection: the pathways that connect the extracellular
medium components to the core network are identified. (5) Biosynthetic reaction generation: the pathways required to produce the biomass building
blocks are classified. (6) Data integration and consistency checks: experimental values are integrated and the model is verified through consistency checks.
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Recon 2 and Recon 3D to generate thermodynamic-curated
reductions are provided in the subsequent sections. For the
workflow, the thermodynamic information for compounds and
reactions, which is assembled from earlier studies or estimated
using established group contribution methods, is first integrated
into the GEM. Second, the subsystems, or families of pathways
with a specific functional role for a biological process, are selected
based on the objectives of the specific study. These pathways are
explicitly represented and constitute the core of the reduced
model. For example, when studying cancer metabolism, this can
include reported subsystems that are deregulated in cancer cells in
addition to the standard central carbon pathways. Third, these
subsystems are expanded using reacti\ons from the GEM to
create a connected core network. In this step, we include every
reaction that connects core metabolites and that is not a member
of the formal definition of the selected subsystems in the core
model. In steps four and five, we include the shortest pathways to
connect the extracellular metabolites from the defined medium as
well as the shortest pathways to generate the biomass components
from the core network. These steps guarantee that the model has
all pathways that are essential for survival and growth of the cells
based on the availability of nutrients. In the sixth step, experi-
mental data for a specific physiological state is integrated in the
model, and the final model is verified through checks that ensure
the consistency of the reduced model with the original GEM.

Thermodynamic curation of the human GEMs (Step 1). We
first determine the directionality of the chemical reactions of the
network, which is directly associated with their corresponding
Gibbs free energy. The Gibbs free energy of a reaction can be
estimated from the thermodynamic properties of its reactants and
products. Therefore, we curated the GEMs Recon 2 and Recon 3D
(see “Methods”) and integrated the thermodynamic properties for
52.4% of the 2499 unique metabolites from Recon 2 and 67.5% of
the 2797 unique metabolites from Recon 3D (Fig. 2a and

Supplementary Data 1). Three main reasons prevented the esti-
mation of the thermodynamic properties of the metabolites: (1)
an unknown molecular structure (SMILE), (2) an incomplete
elemental description (for example, an R in the structure), and (3)
groups in the structure for which an estimated free energy does
not exist (for example, >N− group). We observed that as the
number of metabolites increases from Recon 2 to Recon 3D, the
percentage of thermodynamic coverage increases as well. This is
due to the improved annotation of the metabolite structures in
Recon 3D. Using the thermodynamic properties of the com-
pounds as constraints (see “Methods”), we estimated the Gibbs
free energy for 51.3% of the 7440 reactions present in Recon 2
and 61.6% of the 10,600 reactions in Recon 3D. These constraints
ensured that the reactions in the computed flux distributions
operated in thermodynamically feasible directions.

Subsystem selection to build the core (Step 2). A proper
metabolic model contains the pathways that are essential for the
survival of the cell as well as the pathways that are informative of
a specific metabolic behavior. In this work, we were interested in
the metabolism of cancer cells. Thus, we selected as core sub-
systems: (a) the central carbon pathways that provide the
energy, redox potential, and biomass precursors, and (b) the
subsystems that have been reported to be altered in cancer
cells46–49. Consequently, the core subsystems for our models
were glycolysis, pentose phosphate pathway, citric acid cycle,
oxidative phosphorylation, glutamate metabolism, serine meta-
bolism, urea cycle, and reactive oxygen species detoxification.
We have estimated the thermodynamic properties for the
metabolites and the reactions in these initial subsystems. In the
case of Recon 2, we provide an estimate for the Gibbs free energy
of formation for 236 metabolites (94.4% of the total in the initial
subsystems) and the Gibbs free energy of reaction for 143
reactions (83.1% of the reactions in the initial subsystems). In
the case of Recon 3D, we provide estimated values of the
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thermodynamic properties for 288 metabolites (97.6%) and for
183 reactions (91.0%).

Network expansion (Step 3). Subsequently, to reconstruct the
core network we pairwise connected the chosen subsystems using
redGEM (see “Methods”). The algorithm first performed an
intra-expansion of the initial subsystems. In this process, each
initial subsystem was expanded to include additional reactions
from the GEM whose reactants and products belong to that
subsystem. These reactions can be assigned to different sub-
systems in the GEM which are not any of the initial subsystems
and the core network would miss these additional reactions if we
had considered the formal definition of the initial subsystems.
The initial core subsystems of Recon 2 contained a total of 180
reactions. After the intra-expansion, 135 reactions from 21 sub-
systems were added. Examples of these added reactions included
three from pyruvate metabolism that interconvert acetyl-CoA,
acetate, malate, and pyruvate, which are all metabolites that
participate in the citric acid cycle subsystem. For Recon 3D, 171
reactions from 24 subsystems were added to the 211 reactions
from the initial core subsystems.

Next, the algorithm performed a directed graph search to find the
reactions from the GEM that connected the subsystems for different
degrees D (Fig. 2b and Supplementary Table 1), wherein D
represents the distance (in number of reactions) between pairs of
metabolites from the subsystems. Our final models included the
connections for degree D= 1, that is, all the reactions that in one
step connect two metabolites (excluding cofactors) belonging to any
of the initial subsystems. A degree D= 1 was enough to pairwise
connect all the initial subsystems (Fig. 2c). This resulted in a Recon
2 core network of 356 metabolites and 617 reactions and a Recon
3D core network of 440 metabolites and 796 reactions.

Extracellular medium connection (Step 4). Cells adapt their
metabolism to the available nutrients in their extracellular
environment. Consequently, a correct definition of the medium in
the metabolic model is fundamental for an adequate representa-
tion of the intracellular metabolism. Given the complexity of the
extracellular medium, it is particularly important to identify and

classify the essentiality of the medium components and the
pathways used for their metabolism. To this end, we curated the
representation of the interactions of the cell with its environment
into the human GEMs. First, we did not allow the exchange of
intracellular metabolites lacking associated transport reactions or
transport molecules containing P, CoA, or ACP (acyl carrier
protein). Secondly, we allowed the synthesis of generic fatty acids
from palmitate, with reactions from Recon 2 and Recon 3D
(Supplementary Note 1). We next characterized the in silico
minimal medium composition required for growth in the human
GEMs by applying iMM (see “Methods”), which identifies the
minimal set of metabolites that need to be uptaken to simulate
growth. The results showed that Recon 2 required a medium with
glucose, the nine essential amino acids, and some inorganics
(PO4, NH4, SO4, O2), and Recon 3D simulated growth in a
medium with glucose, the nine essential amino acids, the same
inorganics as Recon 2, and one of the two essential fatty acids
(alpha-linolenic acid and linoleic acid). The presence of the two
essential fatty acids in the iMM of Recon 3D is a consequence of
the improvement of the lipid metabolism28, where the essential
fatty acids participate in the synthesis of phospholipids. This
demonstrates how the algorithms and workflow can be used to
compare and validate updated model reconstructions for the
same organisms or between different organisms.

Seeking to identify the pathways that human cells use to uptake
and secrete extracellular metabolites, we next developed the
method redGEMX (see “Methods”). This algorithm finds the
pathways from the GEM that are needed to connect the
extracellular metabolites to the core network defined by redGEM.
In this work, we considered a complex medium composition of
34 metabolites (Fig. 3a), and redGEMX found the corresponding
GEM reactions that connected 26 of these extracellular
metabolites (we excluded the inorganics and the fatty acids) to
the core network.

An example of one of these connected metabolites is the
essential amino acid L-histidine which affects many aspects of
human physiology, including cognition functions and allergic
reactions. The classical pathway to metabolize L-histidine
consists of four steps that sequentially convert it into urocanate,
4-imidazole-5-propanoate, N-formimidoyl-L-glutamate, and
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ultimately, L-glutamate50. Interestingly, the resulting redGEMX
subnetwork for L-histidine uses this classical pathway to connect
it to the Recon 2 core metabolites L-glutamate and 4-
aminobutanoate, both from the subsystem glutamate metabolism.
The subnetwork is composed of 22 reactions, and it contains not
only the classical pathway but also all the additional reactions
required to balance the cofactors and by-products (Fig. 3b). These
additional reactions are essential for an active main pathway, as
they include the utilization of NH4, the sources of water and
tetrahydrofolate, and the conversion of the by-product 5-
formiminotetrahydrofolate to 10-formyltetrahydrofolate, which
regenerates tetrahydrofolate. Cellular metabolism has evolved to
give flexibility to the cells to survive and function under different
conditions. This flexibility is captured in the metabolic networks
with the existence of alternative pathways. For this reason, using
redGEMX we found three alternative pathways of minimum size
(22 reactions) to connect L-histidine to the core network of Recon
2. The alternatives emerge from the existence of different
transport reactions for the extracellular metabolites. In the case
of Recon 3D, L-histidine is connected to the core network using
20 reactions, and there exist two pathways of minimum size. The
subnetworks connect L-histidine to the Recon 3D core metabo-
lites L-glutamate, 5-10-methylenetetrahydrofolate, 2-oxoglutarate,
and pyruvate using the classical pathway to metabolize L-histi-
dine. The different topology of the Recon 2 and Recon 3D
networks manifests in differences in the pathways used to
metabolize and synthesize the compounds, thus, it is important to
characterize which are the pathways used in the models.
Following this approach, we added the reactions that compose
all the alternative subnetworks of minimum size to the core
networks to connect the 26 extracellular metabolites (Supple-
mentary Table 2 and Supplementary Data 2).

The subnetworks generated with redGEMX provide a new
perspective on the current understanding of metabolic pathways,
as they not only contain the main pathway but they also include
other reactions necessary to supply and consume all the cofactors
and by-products. Moreover, the alternatives can be used to
hypothesize which pathways cells use when growing under
different conditions, such as when different nutrients are present
in the environment or under different intracellular regulations
when different enzymes are operational. If metabolomics data are
available, the subnetworks generated with redGEMX can be
classified based on pathway favorability as it has been recently
done in refs. 9,51,52.

Biosynthetic reactions generation (Step 5). Cellular metabolic
functions, such as growth, structure maintenance, and repro-
duction, require the synthesis of several metabolites. In metabolic
models, this is represented using the biomass reaction53, whose
reactants, named biomass building blocks or BBBs, are the
metabolites that the cell needs to survive and perform its func-
tions. Therefore, the last step necessary for reconstructing the
reduced models is the integration of the pathways necessary to
synthesize the 37 BBBs that compose the defined biomass in
Recon 2 and Recon 3D. Among them, 19 are uptaken directly
from the extracellular medium or produced within the core
network. To find the minimum number of reactions in the GEM
that we need to add to the core network for the synthesis of the
remaining 18 BBBs, we used lumpGEM (see “Methods”). Simi-
larly to redGEMX, lumpGEM generates subnetworks that
account for the synthesis, degradation, and balancing of all the
by-products and cofactors required by the main pathway.
The alternative subnetworks generated with lumpGEM can assess
the flexibility of the cells to use alternative pathways to produce
the BBBs, which can lead to survival in different conditions and

drug resistance. Using lumpGEM, we calculated all the alternative
subnetworks (set of reactions) of minimum size to capture the
flexibility of the network for the biosynthesis of the BBBs (Fig. 4a,
Supplementary Table 3, and Supplementary Data 3). The reac-
tions that compose each of these subnetworks were summed up
together to form an overall reaction that represented the sub-
network. These lumped reactions were then added to the core
network.

The subnetworks generated with lumpGEM have the same size
and number of alternatives in both Recon models for most of the
BBBs, indicating that both models have the same level of
flexibility for synthesizing the BBBs, with the exception of
L-cysteine, dTTP and the purine nucleotides (ATP, GTP and their
deoxy equivalents), cholesterol, and the phospholipids and
sphingolipids. The core network of Recon 2 contains a reaction
that produces L-cysteine, however, the core network of Recon 3D
requires two reactions to produce it. The subnetworks that
produce dTTP have the same size in both models, but a different
number of alternatives. The subnetworks to produce the purine
nucleotides have one more reaction and more alternatives in
Recon 3D. Cholesterol is another BBB whose subnetworks agree
in size for both models, but Recon 3D has more alternatives than
Recon 2. The explosion of alternatives in Recon 3D is due to the
parallel description of the synthesis of cholesterol in three
compartments, namely cytosol, peroxisome, and endoplasmic
reticulum. The differences in the lumped reactions for the
phospholipids and sphingolipids between both models are due to
the introduction of the essential fatty acid in their synthesis in
Recon 3D.

As an example of the subnetworks that produce the BBBs, we
show the synthesis of the phospholipid phosphatidylserine
(Fig. 4b, c). The standard KEGG pathway54 for the synthesis of
phosphatidylserine comprises four steps, wherein glycerol 3-
phosphate is converted to lysophosphatidic acid, phosphatidic
acid, CDP-diacylglycerol, and phosphatidylserine. In Recon 2, the
subnetwork generated with lumpGEM for the synthesis of
phosphatidylserine was composed of eight reactions. It included
the KEGG pathway with the exception of the CDP-diacylglycerol
intermediate, which was not connected to phosphatidylserine in
the GEMs. Instead, phosphatidylserine was produced directly
from phosphatidic acid by attaching serine. Additionally, the
subnetwork contained the reactions required to generate from
acetyl-CoA the fatty acids that would attach to glycerol 3-
phosphate and to lysophosphatidic acid, which are important to
consider for the final synthesis of phosphatidylserine. All the
reactions involved in the synthesis of phosphatidylserine were
lumped together in one reaction.

For Recon 3D, the phosphatidylserine synthesis subnetwork
was generated with the same eight reactions, but in this case, four
alternative subnetworks existed (Fig. 4c and Supplementary
Table 4), indicating that Recon 3D has a higher flexibility in
producing this BBB. The alternatives emerged from the presence
of two reactions in Recon 3D that could be substituted by two
other reactions in the subnetwork. One of these reactions arose
from the participation of the essential fatty acid linoleate in
phospholipid generation, resulting in an alternative form of
synthesizing one of the tails of phosphatidic acid. Specifically, the
reaction ARTPLM2, which converts palmitoyl CoA into a generic
fatty acid, is not required, and instead, the essential fatty
acid linoleate is transported from the extracellular medium,
transformed into linoleyl-coA and attached to the lysopho-
sphatidic acid to form phosphatidic acid. Because the core
network of Recon 3D included a reaction that transforms
phosphatidylcholine in phosphatidylserine, the other substitution
occurred in the last step, where serine was replaced by choline
and phosphatidylcholine was synthesized. The lumped reactions
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Fig. 4 Biosynthesis of biomass building blocks. a Size of lumped reactions for Recon 2 and Recon 3D, and the corresponding number of alternatives to
synthesize the BBBs that cannot be produced by the core nor uptaken from the extracellular medium. b, c Subnetwork for the synthesis of
phosphatidylserine. Orange represents the metabolites from the core network. Blue represents the metabolites from the subnetwork for phosphatidylserine
synthesis. Pink represents the extracellular metabolites. Phosphatidylserine synthesis starts from the core metabolites glycerol 3-phosphate (glyc3p_c),
from glycolysis, and acetyl CoA (accoa_c), from TCA. In the first reaction, acetyl CoA is transformed into malonyl CoA (maloca_c). The next reaction
(KAS8) represents the synthesis of palmitate (hdca_c) in the elongation cycle74. A CoA molecule is attached to palmitate to form palmitoyl CoA
(pmtcoa_c), from which the two generic fatty acids are derived. These two generic fatty acids are attached to glycerol 3-phosphate to form
lysophosphatidic acid (alpa_hs_c) and phosphatidic acid (pa_hs_c). Finally, serine (ser_L_c) is attached to phosphatidic acid to form phosphatidylserine
(ps_hs_c). b Subnetwork from Recon 2 and corresponding lumped reaction. c The four alternative subnetworks of minimum size from Recon 3D.
Phosphatidic acid can be produced with two generic fatty acids or with one generic fatty acid and the essential fatty acid linoleic acid (lnlc_e) (light blue
reactions). Phosphatidylserine can be directly produced from phosphatidic acid by attaching serine (green reaction) or through the formation of
phosphatidylcholine (red reaction) and then changing choline (chol_c) for serine (orange reaction).
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can be classified based on the thermodynamic favorability of their
subnetworks, if metabolomics data are available, as in refs. 9,51,52.

The analysis performed with lumpGEM allows to characterize
and classify the metabolic pathways and their alternatives, leading
to an in-depth understanding of the flexibility of metabolism. In
the context of GEMs, such detailed analysis of the subnetworks is
often a difficult task due to their large size and interconnectivity.

By applying the redHUMAN workflow, we reconstructed four
reduced metabolic models for human metabolism (Table 1). Two
of them have Recon 2 as the parent GEM, and the other two are
generated from the Recon 3D GEM. For both GEMs, we
generated one model with the minimum set of pathways required
to simulate growth, that is, one lumped reaction per BBB with
subnetworks of minimum size, and another model with higher
flexibility containing all the alternative pathways of minimum size
required to simulate growth. The reduced models have a
thermodynamic coverage of more than 92% of the compounds
and more than 61% of the reactions.

Data integration and metabolic tasks (Step 6). Once the
reduced models were generated, we investigated the metabolic
tasks captured by the reduced models and we identified how the
models should be curated to recover the tasks that they could not
perform. First, we sequentially tested in the generated reduced
models the thermodynamically feasibility of 57 metabolic tasks
defined by Agren et al.34. The four models captured 45 of the 57
tasks, including rephosphorylation of nucleoside triphosphates,
uptake of essential amino acids, de novo synthesis of nucleotides,
key intermediates and cholesterol, oxidative phosphorylation,
oxidative decarboxylation, and growth (Fig. 5a).

The tasks not captured by the models encompassed the
synthesis of protein from amino acids, beta oxidation of fatty
acids, inositol uptake, and vitamin and co-factor metabolism. We
classified the causes behind their limitation into two categories:
(1) the model reconstruction, specifically the definition of the
biomass, or (2) the reduction properties, that is, the subsystems
included in the reduction and the representation of parts of the
network as lumped reactions. To recover these tasks such that
they are captured by the model, the following actions should be
performed: the synthesis of proteins from amino acids and
vitamin and co-factor metabolism can be recovered by modifying
the biomass to account for their synthesis and utilization; the
inclusion of lipid metabolism subsystems can recover the beta

oxidation of fatty acids; and finally, the utilization of inositol can
be recovered by adding the explicit reactions that compose the
subnetworks, as it was found to be hidden in the lumped
reactions of phosphatidyl-inositol. This demonstrates that red-
HUMAN allows to build reduced models consistent not only with
the GEM but also with the metabolic tasks, and these models are
suitable for targeted modifications and expansions.

We next demonstrated how generic reduced models were used
to integrate data to study disease physiology. We first integrated
experimental data from the NCI60 cell lines in the reduced
models to define the physiology of leukemia cells. In particular,
we considered the exometabolomics of the cell lines HL-60, K-
562, MOLT-4, CCRF-CEM, RPMI-8226, and SR, which corre-
spond to leukemia40,55. Additionally, we limited the maximal
growth to the doubling time reported for leukemia cells, which is
0.035 h−1, and we constrained according to literature values the
maximum uptake rate of oxygen to 2 mmol·gDW−1·h−1 40 and
the ATP maintenance to 1.07 mmol·gDW−1·h−1 56 (Supplemen-
tary Tables 5 and 6). We tested that all the models achieved the
maximum growth when maximizing for the biomass reaction
using TFA.

Next, to analyze the impact that the deletion of each gene had
on the network, we performed in silico gene knockout by
artificially removing a gene and measuring how the network was
affected. The genes whose knockout prevented the synthesis of
biomass could then be investigated as potential targets for
limiting cell proliferation. The consistency of the workflow used
to generate the reduced models ensures that they capture the
essentiality from the GEM, that is, the genes that are part of the
reduced models and are essential in the GEM they are also
essential in the reduced model (Fig. 5b and Supplementary
Tables 7 and 8). Furthermore, the reduced models allow the
assignment of functionality to the essential genes using the
lumped reactions. For example, the gene GART is associated with
the enzymes phosphoribosylglycinamide formyltransferase, phos-
phoribosylglycinamide synthetase, and phosphoribosylaminoimi-
dazole synthetase, which are all part of the subnetworks for the
synthesis of the nucleotides ATP, GTP, dATP, and dGTP.
Silencing this gene prevents the synthesis of these BBBs, and
consequently, the models cannot synthesize biomass.

Finally, because the model reduction affects the flexibility of the
network with respect to the GEM, we performed thermodynamic
flux variability analysis (TVA) on the common reactions between
the GEM and the reduced model. The top 20 reactions whose rate
ranges changed the most in absolute value included reactions from
glycolysis, the pentose phosphate pathway, folate metabolism, and
nucleotide interconversion among others (Fig. 5c). For reactions
such as phosphoglycerate kinase (PGK), transaldolase (TALA),
and methenyltetrahydrofolate cyclohydrolase (MTHFC), the
ranges of reaction rates in the reduced model decreased with
respect to the corresponding reaction rates in the GEM. Some
reactions, such as nucleoside-diphosphate kinase (NDPK9), were
bidirectional in the GEM and became unidirectional in the
reduced models. On the other hand, there were also reactions such
as fumarase, (FUM) lactate dehydrogenase (LDHL), or ribose-5-
phosphate isomerase (RPI) whose flux ranges fully agreed between
the reduced model and the GEM. Interestingly, if we look at the
percentage of rate flexibility change, the reactions from the initial
subsystems did not experience a large relative change in their
rates, with the exception of the reactions whose participants are
precursors for the lumped reactions of the BBBs as their reaction
rates are now constrained closer to the physiological state. A final
calibration of the models is done using the transcriptomics data
from the NCI data repository (https://www.ncbi.nlm.nih.gov/sites/
GDSbrowser?acc=GDS4296) for the corresponding leukemia cell
lines. We have identified that, in the four models presented in this

Table 1 Statistics on the generated reduced metabolic
models.

GEM Recon 2 Recon 3D

lumpGEM reactions One
per BBB

Smin One
per BBB

Smin

Number of metabolites 469 469 591 599
Num. enzymatic reactions 342 342 402 405
Num. boundary reactions 71 71 130 130
Num. transport reactions 946 946 1085 1092
Num. lumped reactions 15 37 15 105
Total number of reactions 1374 1396 1632 1732
Number of genes 699 699 747 748
% of metabolites with est.
Gibbs energies

92.8 92.8 93.7 93.8

% of reactions with est.
Gibbs energies

62.3 61.7 63.5 62.0

The models were generated from the human GEMs Recon 2 and Recon 3D. For each GEM, two
reductions were performed considering either one lumped reaction per BBB (one per BBB) or all
the alternatives lumped reaction with subnetworks of minimum size (Smin).
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study, over 99% of the enzymes with gene associations (more than
75% of the total enzymes) are expressed in the NCI60 leukemia
cell lines (Supplementary Table 9). This suggests that the pathways
selected for initializing and expanding the metabolic core network
are highly relevant for the specific physiology, which are also
consistent with the important pathways identified in the
experimental and medical studies46,48,57.

Physiology analysis. redHUMAN helps to navigate large human
genome-scale metabolic models to explore and classify the
metabolic pathways that cells use to function and survive under
specific conditions. The thermodynamic curation performed in
the genome-scale models guarantees that the reactions obey the
laws of thermodynamics, discarding possible pathways that would
not be compatible with the bioenergetics of the cell. As an
example of how thermodynamics reduces the space of solutions
to the thermodynamically feasible pathways, we analyzed the flux
variability with and without thermodynamic constraints in the
Recon 3D reduced model that has all the alternative lumped
reactions of minimum size (Smin). The reactions L-glutamate 5-

semialdehyde dehydratase (from arginine metabolism) and
L-glutamate 5-semialdehyde:NAD+ oxidoreductase (from urea
cycle) are bidirectional when flux variability is performed without
thermodynamics and become unidirectional when their thermo-
dynamic information is taken into account. Therefore, integrating
thermodynamic information reduces the space of reaction
directionality and the physiological solution space, and it elim-
inates thermodynamic infeasible reactions, excluding some
pathways.

The leukemia-specific models generated in this study are
powerful tools to analyze how the metabolic pathways are altered
with respect to other cancer cells or normal cells. In particular, we
can analyze how leukemia cells utilize the nutrients available in
the microenvironment to biosynthesize the precursors required
for growth and cellular functionality. As an example, we
identified the minimal number of reactions that are required
for the synthesis of phosphatidyl-serine in the reduced Recon 3D
model with all the alternative lumped reactions of minimum size.
We found that at least 76 reactions should be active for the
production of phosphatidyl-serine including the interactions with
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Fig. 5 Model validation through metabolic tasks and consistency checks. a The 57 metabolic tasks tested in the generated reduced models. R2, R3: Recon
2, Recon 3D reduced model with one lumped reaction per BBB. R2s, R3s: Recon 2, Recon 3D reduced model with Smin. Classification of metabolic tasks in
those captured by the models (green) and those not captured by the models (red). MT1: rephosphorylation of nucleoside triphosphates, MT2: de novo
synthesis of nucleotides, MT3: uptake of essential amino acids, MT4: de novo synthesis of key intermediates, MT5: de novo synthesis of other compounds,
MT6: protein turnover, MT7: electron transport chain and TCA, MT8: beta oxidation of fatty acids, MT9: de novo synthesis of phospholipids, MT10:
vitamins and co-factors, MT11: growth. b Gene essentiality of the reduced models and their corresponding GEM. R2s has 829 genes associated to
reactions, 37 of which are essential both in the reduced model and in Recon 2 and 12 are essential only in the reduced model. R3s has 828 genes associated
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the extracellular medium, i.e., for some alternatives the uptake of
glucose, histidine, linoleic acid, oxygen, and phosphate, and the
secretion of succinate, ammonia, carbon dioxide, and water. The
main pathways active within the subnetwork of 76 reactions
are glycolysis, the citric acid cycle, serine metabolism, and the
electron transport chain. This type of analysis will enlighten our
knowledge on how cells adapt their metabolism to the
microenvironment allowing researchers to hypothesize how and
why the cancer cells change their expression profile to adapt and
survive.

Discussion
For a better understanding of the altered metabolisms that
accompany many human diseases, we have herein presented a
workflow to generate reduced models for common human GEMs
that can reduce the complexity of these systems to the relevant
processes to be studied, making detailed in silico analyses of
metabolic changes possible.

During the last years, there has been an increased generation of
metabolomics data that better study what is happening in the
physiology of cell metabolism compared to other omics data. This
has created a need to expand the classical constraint-based
modeling methods to include metabolomics information. Our
thermodynamic formulation and application of TFA12,51,58,59 in
redHUMAN allows to integrate endo- and exo-metabolomics in
the models, constraining the concentration of the metabolites
according to physiological data. The size of the model is directly
related to the percentage of metabolites that need to be measured.
Therefore, the continuous expansion in the size of genome-scale
models increases the demand of larger sets of metabolomics, and
such data are not always available. In addition, there is a com-
munity effort to expand constraint-based models to include
information on enzyme abundancy relating the metabolic fluxes
with enzymatic data and allowing to integrate transcriptomics
and proteomics data into the models. These data are currently
limited, but they can be continuously updated and integrated as
they become available60,61.

Moreover, most of the existing methods to build context-
specific models are data-driven, that is, the reduced models are
extracted from a GEM by considering only the enzymes asso-
ciated to highly expressed data, or literature-based pathways.
Then, they include additional reactions that are required to
simulate growth and cellular functions33,34,62. The main difficulty
with these methods is the large amount of data required to fully
characterize the initial set of reactions or core reactions. The lack
of data could lead to unconnected parts and the impossibility to
include reactions that could be important for the specific phy-
siology, affecting the final model and the predictions.

redHUMAN reconstructs reduced models considering only the
pathways of interest and their stoichiometric connectivity. The
reduced models are built unbiased from the data, guaranteeing
thermodynamic feasibility and consistency with the GEM and the
metabolic tasks. The reduced models can then be used to con-
struct context-specific models by integrating omics data, accom-
modating to also integrate partial data without sacrificing
reactions from the network. Overall, the reduced size of the new
models and their conceptual organization overcomes some of the
main challenges in building genome-scale context-specific models
as for example, the barrier of data network coverage. The reduced
models generated with redHUMAN are powerful representations
of the specific parts of the network, and they have promising
applications as they are suitable to use with existing methods
including MBA62, tINIT34, mCADRE33, uFBA63, GECKO64,
ETFL65, TEX-FBA66, and IOMA67.

Based on our results, we propose the following approach to
using these models as tools to explain and compare phenotypes.
First, generate a reduced model around a desired set of subsystems
and for a defined extracellular medium, and check that the model
captures the metabolic tasks. Subsequently, build physiology-
specific models by integrating experimental data into the reduced
models. Then, test the consistency of the reduced network with
respect to its parent GEM. Finally, integrate different sets of omics
data, including expression, to compare different physiologies, such
as diseased vs healthy or within several types of cancers. This
approach will help to better investigate the alterations in meta-
bolism that occur as diseases develop and progress. Moreover, the
same procedure can be used to analyze systematically and con-
sistently metabolic models for the same organism and to compare
metabolic models of different organisms, enhancing our under-
standing of their similarities and differences.

Throughout this paper, we have considered a specific set of
subsystems, a specific medium, and the biomass definition from
the GEMs. In the future, the reduced models could be further
expanded to include other pathways, a more complex medium, or
more biomass components. To introduce new subsystems or
pathways into the core network, redGEM should be run to find
the pairwise connections between the added pathways and the
rest of the core. For an expansion of the medium, redGEMX
would find the connections necessary for using the new extra-
cellular metabolites. In a similar manner, a further curation of the
biomass reaction could increase the number of BBBs, requiring
lumpGEM to be run to find the biosynthesis pathways for those
compounds. If a higher consistency was required between the
GEM and the corresponding reduction, we could find the reac-
tions missing in the reduced model to satisfy that condition.
Moreover, we have selected a set of metabolic tasks to test the
generated reduced model based on the definition within the
original GEM. However, these sets of tasks can be expanded or
redefined according to the needs of the specific studies, which can
be based on expert knowledge or experimental data, as done in
ref. 68.

Furthermore, in this study, we have used metabolomics, pro-
teomics, and growth data from the NCI60 cell lines to define a
generic physiology for leukemia cells. The core networks of the
reduced models are structurally the same across growth condi-
tions and depend only on the structure of the corresponding
GEMs. Therefore, these generic models are robust to variations in
growth or data for the same physiology, and thus data for indi-
vidual leukemia cell lines can be used without changing the
workflow. However, if there are important differences in the data,
for example across different physiological conditions, the authors
suggest running the lumpGEM workflow with data integration
and generate alternative subnetworks and lumped reactions,
which in turn will capture the different flux profiles for each
physiological state.

Overall, our analysis demonstrates how redHUMAN facilitates
the characterization of differences in metabolic pathways across
models and phenotypes.

Methods
Thermodynamic curation of the genome-scale models (GEMs). The thermo-
dynamic curation of the human GEMs Recon 2 and Recon 3D aims to include
thermodynamic information, i.e., the Gibbs free energy of formation for the
compounds and the corresponding error for the estimation, into the model. The
workflow to obtain this information is as follows.

We first used MetaNetX (http://www.metanetx.org)69 to annotate the compounds
of the GEMs with identifiers from SEED70, KEGG54, CHEBI71, and HMDB72. We
then used Marvin (version 18.1, 2018, ChemAxon http://www.chemaxon.com) to
transform the compound structures (canonical SMILES) into their major protonation
states at pH 7 and to generate MDL Molfiles. We used the MDL Molfiles and the
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Group Contribution Method to estimate the standard Gibbs free energy of the
formation of the compounds as well as the error of the estimation59.

Since the model for Recon 3D already incorporates the structure for 82% of the
metabolites in the form of SMILES, we used those SMILES and followed the
previous workflow from the point of obtaining the major forms at pH 7 using
Marvin.

Furthermore, we have integrated in the models the thermodynamic properties
for the compartments of human cells, including, pH, ionic strength, membrane
potentials, and generic compartment concentration ranges from 10 pM to 0.1 M
(Supplementary Table 10).

Thermodynamics-based flux analysis (TFA). TFA estimates the feasible flux and
concentration space according to the laws of thermodynamics11–13. TFA is for-
mulated as a mixed-integer linear programming (MILP) problem that incorporates
the thermodynamic constraints to the original FBA problem. The Gibbs free energy
of the elemental and charge balanced reactions is calculated as a function of the
standard transformed Gibbs free energy of formation (depending on pH and ionic
strength) and the concentrations of the products and reactants.

Considering a network with m metabolites and n reactions, the Gibbs free
energy,ΔrG

0
i; for reaction i is:

ΔrG
0
i ¼

Xm

j¼1

ni;jΔfG
0o
j þ RT ln

Ym

j¼1

x
ni;j
j

 !
; ð1Þ

where i ¼ 1; ¼ ; n; j ¼ 1; ¼ ;m: ni,j is the stoichiometric coefficient of compound
j in reaction i; ΔfG

0o
j is the standard Gibbs free energy of formation of compound j;

xj is the concentration of the compound j, R is the ideal gas constant,
R ¼ 8:31 � 10�3 KJ

K mol, and T is the temperature. In this case, T= 298 K.
The value of the Gibbs free energy determines the directionality of the

corresponding reaction and the thermodynamically feasible pathways. With this
formulation, we included the concentrations of the metabolites as variables in the
mathematical formulation. TFA allows the integration of metabolomics data into
the model.

Characterizing the extracellular in silico minimal media (iMM). iMM is for-
mulated as a MILP problem that introduces new variables and constraints to the
TFA problem to find the minimum set of extracellular metabolites necessary to
simulate growth or a specific metabolic task with the GEM37,38. iMM identifies the
minimum number of boundary reactions (uptakes and secretions) that need to be
active. The method defines new binary variables in the TFA problem that represent
the state of each boundary reaction, active or inactive. New constraints link the new
binary variables to the corresponding reaction rates such that if the reaction is
inactive, then it should not carry flux. The objective of the problem is to maximize
the number of inactive reactions.

Assuming a network with m metabolites and n reactions, the mathematical
formulation of the iMM problem is the following:

objective function max
Pnb

k¼1
zk

subject to

FBA constraints S � v ¼ 0;

vL ≤ v ≤ vU ;

TFA constraints ΔrG
0
i ¼

Pm

j¼1
ni;jΔfG

0o
j þ RT ln

Qm

j¼1
x
ni;j
j

 !
; i ¼ 1; ¼ ; n;

ΔrG
0
i �M þM � bFi ≤ 0

�ΔrG
0
i �M þM � bRi ≤ 0

vF;Ri �M � bF;Ri ≤ 0

bFi þ bRi ≤ 1

IMM constraints bF þ bR þ C � z≤C;
ð2Þ

where nb is the total number of boundary reactions in the model, zk are new binary
variables for all the boundary reactions, S is the stoichiometric matrix, v are the net
fluxes for all the reactions and vFi ; v

R
i are the corresponding net-forward and net-

reverse fluxes, so that, vi ¼ vFi � vRi ; for all i ¼ 1; ¼ ; n. vL and vU are the lower
and upper bound, respectively, for all the reactions in the network. ΔrG

0 is the
Gibb’s free energy of the reactions defined in TFA. bF and bR are the binary
variables for the forward or reverse fluxes of all the reactions (coupled to TFA). M
is a big constant (bigger than all upper bounds) and C is an arbitrary large number.
In this case, if zk ¼ 0, then reaction k is active.

redGEM, redGEMX, and lumpGEM. The redGEM, redGEMX, and lumpGEM
algorithms seek to generate systematic reductions of the GEMs starting from
chosen subsystems (or lists of reactions and metabolites, such as the synthesis
pathway of a target metabolite), based on the studied physiology and the specific
parts of the metabolism that are of interest.

redGEM is a published algorithm35 that extracts the reactions that pairwise-
connect the initial subsystems from the GEM, generating a connected network
named the core network.

The inputs for redGEM are (i) the GEM, (ii) the starting subsystems or an initial
set of reactions, (iii) the extracellular medium metabolites, (iv) a list with the GEM
cofactor pairs, and (v) the desired degree of connectivity. The algorithm then
performs an expansion (by graph search) of the starting subsystems by finding the
reactions that pairwise-connect the subsystems up to the selected degree (see ref. 35 for
further details). For example, for a degree equal to 2, it will connect the metabolites
from the starting subsystem that are one and two reactions away in the GEM.

redGEMX is a formulated algorithm that finds the pathways in the GEM that
connect the extracellular medium to the core network generated with redGEM
(Fig. 6). These pathways are added to the core network.

The redGEMX method involves five steps:
(1) Classify the extracellular metabolites of the GEM into 3 classes:

(a) Those that are part of the medium that we want to connect,

medium
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reactions

other [e] metabolites

core
network core

network

extracellular

intracellular intracellular

GEM reactions
a b GEM reactions

de
fin

ed
m

ed
iu

m
[e

] c
or

e
m

et
ab

ol
ite

s

medium
metabolites

de
fin

ed
m

ed
iu

m
[e

] c
or

e
m

et
ab

ol
ite

s

Fig. 6 redGEMX method. a Classification of the reactions from the GEM into core (green) and non-core reactions (orange), and classification of the
extracellular metabolites from the GEM into those that are part of the medium that we want to connect (blue), those that are present in the core (pink),
and the others (gray). The algorithm will block the non-core reactions that involve only extracellular metabolites as well as the boundary and transport
reactions of the metabolites that are not part of the medium (gray). b The algorithm finds the minimal set of reactions that are required to connect each of
the medium metabolites (blue) to the core network, uses the core network to balance the reactions, and secretes metabolites from the medium (blue
or pink).
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(b) Those that are already present in the inter-connected subsystems
network,

(c) Those that do not belong to (a) nor (b).
(2) Classify the reactions from the GEM into 2 classes:

(a) Those that belong to the inter-connected subsystems network (core-
reactions),

(b) those that do not belong to the inter-connected subsystems network
(non-core reactions).

(3) Block the flux through the reactions in the GEM that involve only
extracellular metabolites.

(4) Block the flux through the boundary reactions of other metabolites in the
GEM (1c). Steps (3) and (4) guarantee that the subnetwork reaches the core
network.

(5) Force the uptake of a medium metabolite (1a, one-by-one) and minimize
the number of non-core reactions (2b) required to connect this extracellular
metabolite to any core metabolite participating in a core reaction (2a). Note
that the subnetwork will contain any reaction required to balance the by-
products secreted by the subnetwork and/or the core network.

The redGEMX is a MILP problem that is formulated as follows:
(i) Consider the TFA problem of the model that we want to reduce.
(ii) Create binary variables zi for each non-core reaction (2b). Non-core

reactions are denoted as Rnc.
(iii) Generate a constraint that controls the flux for each non-core reaction:

bF þ bR þ z≤ 1; ð3Þ
where bF and bR are the binary variables for the forward and reverse fluxes
of all the reactions (coupled to the TFA constraints); when zi= 1, the
corresponding reaction is inactive.

(iv) Build the following MILP problem for each extracellular medium metabolite
(1a)

max
XRnc

i¼1

zi ð4Þ

subject to:

bF þ bR þ z≤ 1; ð5Þ

veM;j ≥ c; ð6Þ
where veM,j is the flux of the jth extracellular medium metabolite (1a), and c
is a small number.

lumpGEM is a published algorithm36 that generates elementally balanced lumped
reactions for the synthesis of the biomass building blocks (BBBs). Using a MILP
formulation, lumpGEM identifies the smallest subnetwork (minimum number of
reactions from the GEM) required to produce each BBB from metabolites that
belong to the core network using reactions from the GEM that are not part of the
core. With this formulation, we can identify all the alternative subnetworks (of
minimal size or larger) for the synthesis of each BBB (one by one). lumpGEM
generates, for each BBB, an overall lumped reaction by adding all the reactions that
constitute each subnetwork (see ref. 36 for further details). Note here, different
subnetworks can give rise to the same overall lumped reaction. This implies that
although we produce all the alternative subnetworks with their associated lumped
reactions, only the unique lumped reactions will be added to the final reduction.

Software. The simulations of this article have been done with Matlab 2017b and
CPLEX 12.7.1. Escher73 has been used to draw the subnetworks in the figures.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The models generated in this work and the data integrated in the models to define the
physiology of leukemia cells are available under the APACHE 2.0 license at https://
github.com/EPFL-LCSB/redhuman.

Code availability
The scripts to generate the results for this paper are available under the APACHE 2.0
license at https://github.com/EPFL-LCSB/redhuman. The code for TFA is available at
https://github.com/EPFL-LCSB/mattfa. The code to reduce the human GEMs (redGEM),
to connect the extracellular medium to the core (redGEMX), and to generate the
biosynthetic lumped reactions (lumpGEM) are available at https://github.com/EPFL-
LCSB/redgem.
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