A RTl C L E W) Check for updates

Self-organizing maps of typhoon tracks allow for
flood forecasts up to two days in advance
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Typhoons are among the greatest natural hazards along East Asian coasts. Typhoon-related
precipitation can produce flooding that is often only predictable a few hours in advance. Here,
we present a machine-learning method comparing projected typhoon tracks with past tra-
jectories, then using the information to predict flood hydrographs for a watershed on Taiwan.
The hydrographs provide early warning of possible flooding prior to typhoon landfall, and
then real-time updates of expected flooding along the typhoon's path. The method associates
different types of typhoon tracks with landscape topography and runoff data to estimate the
water inflow into a reservoir, allowing prediction of flood hydrographs up to two days in
advance with continual updates. Modelling involves identifying typhoon track vectors, clus-
tering vectors using a self-organizing map, extracting flow characteristic curves, and pre-
dicting flood hydrographs. This machine learning approach can significantly improve existing
flood warning systems and provide early warnings to reservoir management.
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aiwan’s location makes it vulnerable to the western North

Pacific Ocean tropical cyclone that regularly produces

damaging typhoons. Although small in size, Taiwan is 400
km long and 150 km wide, mountains reach elevations of 4000 m.
With a northeast to southwest orientation the mountains dom-
inate the eastern part of the island. Rivers in Taiwan are char-
acterized as steep gradient and short length producing high flows
within a few hours of typhoon passage. Existing reservoirs, in
general, are small and are rapidly filled during typhoon-related
rainfall resulting in significant flood hazards!2. For example, the
passage of Typhoon Morakot had major flooding produced by
2777 mm of rainfall3.

The increase in the number of unprecedented weather events,
including typhoons, is a part of weather patterns related to global
temperature change®°. In Taiwan, global temperature change is
expected to increase the frequency of damaging typhoons®-S.
When typhoons cross landscapes with mountainous terrains,
such as Taiwan, intense localized rainfall and flooding is common
due to orographic effects. Flood damage potential is related to
typhoon intensity class, the track each typhoon takes across the
island, and orographic influences of topography, which influence
local rainfall amount and intensity. To minimize typhoon-related
flood damage there is a clear need for improved flood forecasting
with early warnings that provide sufficient time to implement
flood hazard mitigation using reservoir storage and local flood
defense.

Accurate advanced forecasting of flooding is a formidable
challenge in Taiwan. Variable typhoon tracks, trajectory, speed,
and rainfall intensity related to mountainous terrain produce
spatial and temporal variability in rainfall amounts and related
runoff®10, Predictive model advancements are needed to provide
the lead time needed to adjust reservoir capacity for flood control
and implement flood defense procedures while meeting long-
term water supply requirements. Improved sensor networks in
Taiwan now provide easily accessible remote sensing data,
expanding modelling potentials!}12. A recent study of rainfall-
runoff modeling based on remote rainfall information found that
reliable real-time flood forecasts could be obtained up to six hours
before a typhoon event?. This six-hour forecast falls well short of
the time needed for reservoir storage development, which is
measured in days. Therefore, it is important to improve tradi-
tional modeling and rainfall-runoff analyses to develop typhoon
track and flood hydrograph predictions several days before
typhoon landfall.

Prediction of flood hydrographs is based on the spatio-
temporal variability of storm characteristics and the uncertainty
of hydro-geo-meteorological outcomes along a track produced by
track/terrain interactions. Artificial intelligence (AI) techniques
have recently emerged as an approach to analyzing highly
dimensional complex data sets to classify phenomena and sup-
port predictions!3-21, The AI techniques analyzed geographic,
hydrological, and meteorological data sets to enable automatic
information extraction from advanced sensor arrays through
machine learning?2-28. There is ample evidence that the use of
Al-based approaches has improved site-specific rainfall-runoff
prediction for individual typhoons, bridging the gap between
track prediction and flood forecasting by combining the analysis
of massive historical datasets and real-time remote sensing data.

The Al-based methodology developed in this study predicts
flood hydrographs based on the forecasts of a typhoon track both
before and after typhoon landfall and then constantly refines
flood forecasts during typhoon passage. Our study made the first
attempt to digitize analog typhoon tracks so that the whole
typhoon track, together with corresponding hydrologic and
geographic characteristics, could be integrated to support
hydrograph prediction. We based predictions on clusters of

vectorized historic typhoon tracks using a self-organizing map
(SOM) with event-specific flow characteristic curves (FCCs),
which are based on reservoir measurements related to typhoon
landfall, overland transit expectations and rainfall amount. Our
study showed that it was possible to make predictions with a lead
time of two days prior to typhoon landfall. We could provide an
early warning coupled with continuous prediction updates of
flooding along the typhoon track. Better predictions improve
reservoir operation, flood defense and integrated water resources
management.

Results

Reservoir watershed in need of flood hydrograph prediction. In
this study, the Shihmen Reservoir watershed was the focus for
flood forecasting. This watershed experiences an average of three
typhoons annually. The Shihmen Reservoir is a pivotal multi-
objective reservoir that provides flood protection and a water
supply of more than 800 million m3/year to meet the domestic,
agricultural, and industrial needs of the Taipei metropolitan area,
thus requiring careful management. The reservoir has a capacity
of 197 million m3 with a watershed area of 763 km2. The annual
precipitation for the Shihmen Reservoir watershed is about
2500 mm, primarily from typhoon-related rainfall. Reservoir
operational rules require reduction in the water level before
typhoon arrival to increase storage capacity. Storage is an element
of flood defense that is balanced against maintaining a high water
level to meet water supply needs. Therefore, reliable and accurate
flood hydrograph prediction during typhoon periods is crucial for
reservoir management to provide flood defense while meeting
water supply requirements.

Approach to predicting typhoon-induced flood hydrographs.
Typhoon track predictions are possible by analyzing historic
tracks. Similar tracks can be grouped, and groups can be classified
based on the path over Taiwan using K-means and fuzzy clus-
tering as prediction tools??-34, but these methods must be
improved to provide digital representations of typhoon tracks to
support the location-specific analysis for predicting rainfall
intensity related to terrain. Improvements needed include analog
to digital conversion of typhoon movement into digital track
vectors, characterization of track variability, and accounting for
track interactions with terrain.

We assembled hydro-meteorological data from 97 typhoons
occurring between 1965 and 2019 that tracked through the
Shihmen Reservoir watershed producing flood hydrographs
exceeding 600 cms. The maximum flow from the reservoir during
this period was 8594 cms. The data set supporting the Al-based
flood hydrograph prediction model developed in this research
used total rainfall, typhoon track, the date and time warnings
issued by the Central Weather Bureau (CWB), and hourly
reservoir inflow data from the Water Resources Agency (WRA).
The 97 typhoon events were divided into two groups, where 87
events were used to train the model and 10 events were used to
test model reliability.

Prediction of typhoon-induced flood hydrographs involved the
sequential implementation of four key modules, which were
typhoon track vectorization, track vector clustering in a SOM,
FCC extraction, and flood hydrograph prediction.

Typhoon track vectorization. We first converted each typhoon
track from an analog to a digital data set (vector). Recognizing
potential track variability, a diffusion process was applied to
better characterizing each track. Figure 1 illustrates the vector-
ization of a typhoon track passing across Taiwan with results of
the diffusion process presented. This track vectorization method
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Fig. 1 Vectorization process of a typhoon track passing across Taiwan. a An example typhoon track passing over Taiwan. b An example typhoon track
with the grid used to vectorize tracks. Variable size grid cells address topographic conditions (see Methods). ¢ Each grid cell through which the typhoon
moves is shaded. d To assess the spatial relationships of typhoon impacts, a weight diffusion process is applied to track plotting so that grid cells close to
the typhoon track is also included, but with lower weights. The shade of each grid cell represents its weight (see Methods).

allowed a decomposition of a continuous (analog) track into a
discontinuous grid vector without losing key features (e.g.,
direction, speed, and duration). We produced digitized typhoon
tracks for all the 97 events using the vectorization procedure on
277 grids.

Track vector clustering in a SOM. The second module used a
SOM algorithm to cluster the 87 tracks occurring between 1965
and 2015 selected for model training into a topological display.
The 87 tracks are illustrated in the Supplementary Fig. 1. Figure 2
shows the 4 x4 SOM results where vectorized typhoon tracks
similar in shape are grouped into the same cluster (neuron), and
Fig. 3 displays individual typhoon tracks classified in their own
cluster, where different typhoon tracks in each cluster are pre-
sented in different colors. Typhoons moved across different areas
of the Shihmen Reservoir watershed producing different rainfall
characteristics. The clustering results grouped similar tracks in
the same cluster. It was noted that the tracks behaved more
consistently between adjacent clusters than non-adjacent clusters.
For example, the typhoons approaching the northern coast where
rainfall occurred in the reservoir watershed clearly influenced
reservoir inflow (e.g., typhoon tracks in clusters #9, #10, #13, and
#14). This contrasts with typhoons that missed the Shihmen
Reservoir watershed and only low inflow was produced (e.g.,
typhoon tracks in clusters #7, #8, and #12).

Typhoon tracks in clusters #1-#7 came mainly from southeast,
made landfall on the east coast, and moved across the 4000 m
high mountains. In typhoons with this east to west movement,
the orographic processes caused rain to fall in other watersheds
while producing lower inflows to the Shihmen Reservoir. As for
typhoon tracks in clusters #11 and #15, these tracks were east or
north of the watershed, again resulting in lower reservoir inflows.
According to the 16 clusters, the cluster that a new typhoon track
best matched could be quickly and objectively identified.

FCC extraction. FCC is a cumulative curve that shows the per-
cent of time specified discharges were equaled or exceeded during
a typhoon event. It has a long history in the field of water
resource engineering and for scientific comparisons of streamflow
characteristics across watersheds. The normalized flow char-
acteristic curve plots the fraction of total discharge in the vertical
axis against the fraction of duration in the horizontal axis. The
third module produced FCCs, where the primary indicator used
was the slope for the rising and recession limbs of the hydro-
graph. Different watersheds have site-specific flow characteristics
and duration time for the FCC. For the Shihmen Reservoir
watershed, typhoon effect on inflow would last for an average of
28h with an average time interval between the arrival and
departure of a typhoon reaching 56h (based on 87 typhoon
events). To provide reservoir capacity for flood control the change
from 245m (full reservoir storage) to 240 m (the upper limit)
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Fig. 2 Results of track vectorization of 87 typhoons. Vectorized typhoon tracks similar in shape are grouped in clusters based on the 4 x 4 self-organizing
map. These subfigures include weight shading. Clusters are numbered, as shown in the bottom right corner of each cluster.

would take about 11 h at a rate of 1000 cms or about 37 h at a rate
of 300 cms. Therefore, the prediction of flood hydrograph with a
lead time of two days prior to typhoon landfall would be satis-
factory for flood control as well as water management.

Hydrographs were predicted from rainfall forecasts and
typhoon duration (TD). In this study, the FCC of a typhoon
event was normalized by a cumulative flow curve where both the
total flow rate and TD were converted to the same 0 to 1 scale. It
is understood that terrain complexity and flow travel distance
produced by each typhoon track brings different effects on the
watershed. We argue that similar typhoon tracks would produce
similar effects reducing analytical complexity. FCCs in the same
cluster could be estimated by use of the total flow volume that was
converted directly from total rainfall. The advantage of this
approach is that the calculation of flow hydrographs no longer
requires actual rainfall-runoff data, which is only available post-
event. Further, using this approach a flood hydrograph could be
converted from a FCC cluster and an expected typhoon track
supporting the development of advanced flood warnings.

We investigated the characteristics of the flood hydrographs in
each cluster, which was initiated with an extraction of the FCC for
each typhoon event. We then analyzed the features (e.g., duration,
peak flow, and time required to reach peak flow) and similarity of
all the FCCs in each cluster. Figure 4 shows the FCCs with time
required to reach peak flow (TP, hour), peak flow (QP, cms), and
(TD, hour) for each cluster. We found that the shape of an FCC
primarily depended on typhoon stage/duration. Considering this
time dependence, we used three schemes to characterize TD. The
first scheme characterizing TD spans between the arrival and
departure time of a typhoon over the gridded zone (Fig. 4). The
second scheme spans between the start rising flow limb

characteristics and the departure of the typhoon from the
gridded zone (Fig. 5). The third scheme spans between the start
rising limb characteristics and the cessation of rainfall (Fig. 6).

This approach allowed us to explore how typhoon stage/
duration would influence the group behavior of FCCs in each
cluster (Figs. 4-6). We noticed from Fig. 4 that the shape of the
FCC was not affected by typhoon scale or intensity and similar
FCCs were scattered in most of the clusters while the TD was
identifiable only in clusters with a minimum duration of 48 h and
a maximum duration of 167 h (cluster #5). We also noticed that
after a typhoon entered the grid (about 600 km from Taiwan) the
early stages of the rising limbs were inconsistent in each cluster.
This inconsistency was also noticed in recession limbs (ie.,
associated with typhoon departure from the gridded zone). To
explore the cause of this inconsistency, TD was re-defined using
the duration between the time that flow significantly increased
and the time that either the typhoon moved away from the
watershed (Fig. 5) or rainfall stopped over the watershed (Fig. 6).
The result of this redefinition was a shorter TD. The FCCs in each
cluster were then more similar in shape when effective TD was
reduced. For example, the difference between start-end hours in
neuron #5 was reduced from 48-167 (Fig. 4) to 35-120 (Fig. 5),
and to 23-66 (Fig. 6), respectively. This supported the notion that
a close relationship between typhoon tracks and their corre-
sponding flood hydrographs could be obtained in each cluster
when our TD calculation methods were implemented.

A storm may approach the watershed from various directions
with different rainfall histograms (patterns), causing the timing of
flow rising to peak (TP) to be variable. As shown in Fig. 4, TPs of
the 87 typhoon events ranged between 7 and 55 h, but the mean
TP values in the 16 clusters tended to be less than 24 h, which
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Fig. 3 Individual typhoon tracks clustered in the 4 x 4 self-organizing map. Each typhon track in a cluster is plotted over grid cells. Different colors plot

different typhoon tracks.

made the reservoir operation difficult because of the inherent lag
time between alert and achieving the desired capacity was
insufficient. According to typhoon data of this study, peak flow
(QP) varied in a range from 662 cms to 8594 cms. The highest QP
values in clusters #1-#8 were generally <3000 cms while all the
highest QP values in neurons #9, #10, #13, and #14 exceeded
5000 cms. The configured SOM topological map showed that the
QP values were in general much smaller in the first two rows than
in the last two rows. This shows a clear indication of flow-related
impacts related to typhoon track, providing a useful tool to
suggest crucial guidance for flood defense and management. The
utility of TP, QP, and TD in defining typhoon characteristics
related to flooding provides a key to exploring the hydrograph
predictor.

Flood hydrograph prediction. Given the predicted track of an
approaching typhoon, a flood hydrograph prediction process
began by identifying from the SOM topological map a cluster
(denoted as the best matched cluster) that incorporated a
typhoon track the most similar to the predicted track. The FCC
prediction could use either of the following two selection strate-
gies. The first strategy selected the FCC of the best matched
typhoon track while the second strategy selected the average
(ensemble) of all FCCs in this best matched cluster. Using either
approach, the prediction of the flood hydrograph of an
approaching typhoon could be made and flood warnings could be
generated. To summarize model training, we recognize that past
methods for predicting typhoon impacts can benefit from
improved methods of typhoon track prediction?®3%, and with
these analyses impact prediction can be further improved with
flood forecasting using our AI approach.

We next evaluated the reliability of the constructed SOM
embedded with FCCs using the remaining 10 typhoon events
occurring in 2013 and 2019 as tests of our approach. The test
results for 10 typhoon events are shown in the Supplementary
Table 1. We found that the predicted flood hydrographs of the 10
test events generally matched the actual flood hydrographs
providing a long lead time (e.g., several days), with acceptable
variation in the timing and volume of peak flows. This is a major
improvement of existing prediction modeling approaches (e.g.,
physical, conceptual, and data-driven) that focus on rainfall-
runoff mechanisms providing a short lead time (e.g., one- to six-
hour)3¢-38. Figures 7-9 present the predicted flood hydrographs
of the three test typhoon events (i.e., Typhoon Fitow, Typhoon
Soulik, and Typhoon Dujuan, respectively) under three TD
schemes implemented with the two FCC selection strategies. The
results provided in Fig. 7 had classified Typhoon Fitow into
cluster #15 (Figs. 2 and 3). When implemented with the first FCC
selection strategy (the best matched track, Fig. 7b), the flood
hydrograph of Typhoon Fitow could be predicted almost
perfectly based on the FCC of the best matched track (Typhoon
Cora) under the second (Fig. 5) and the third (Fig. 6) TD
schemes. When implemented with the second FCC selection
strategy (average (ensemble) of all FCCs in the best matched
cluster, Fig. 7c), the flood hydrograph of Typhoon Fitow could
also be predicted nicely by averaging the four FCCs in the best
matched cluster (#15) under the third TD scheme (Fig. 6). As for
Typhoon Soulik shown in Fig. 8, it was classified into cluster #13
(Figs. 2, 3). When implemented with both FCC selection
strategies (Fig. 8b, c), the flood hydrograph of Typhoon Soulik
could be suitably predicted by the FCC of the best matched track
(Typhoon Herb) and by the average of the seven FCCs in the best
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Fig. 4 Normalized flow characteristic curves using the first typhoon duration scheme. The first scheme determining typhoon duration spans between the
arrival and departure time of a typhoon over the gridded zone. A normalized flow characteristic curve plots the fraction of total discharge against the

fraction of duration. Different colors are shown for each typhoon track.

matched cluster (#13) under the third TD scheme (Fig. 6).
Regarding Typhoon Dujuan shown in Fig. 9, it was classified into
cluster #3 (Figs. 2, 3). When implemented with the first FCC
selection strategy (Fig. 9b), the flood hydrograph of Typhoon
Dujuan could be perfectly predicted based on the FCC of the best
matched track (Typhoon Talim) under the second (Fig. 5) and
the third (Fig. 6) TD schemes. When implemented with the
second FCC selection strategy (Fig. 9¢c), the flood hydrograph of
Typhoon Dujuan could also be well predicted by the average of
the five FCCs in the best matched cluster (#3) under the third TD
scheme (Fig. 6).

Discussion

Because of variation in typhoon intensity and track is influenced
by landscapes in Taiwan, flash flooding is common within few
hours of typhoon passage, and reservoirs quickly fill during

typhoon events. Using hydrographs for reservoir capacity man-
agement is a crucial non-structural approach to flood defense in
water resources management. Modeling the rainfall-runoff pro-
cesses is one of the most popular yet complex practices of hydro-
informatics approaches (e.g., conceptual, physical, machine
learning models) while the high degree of spatio-temporal het-
erogeneity of typhoon-induced rainfall and the notoriously
nonlinear nature of rainfall-runoff relationship make reliable and
accurate flood forecasts very challenging, if not impossible.
Moreover, traditional approaches now only make short-term
(hourly-based in our case) forecasts due to the lack of reliable
rainfall predictions. As noted in the literature, forecast accuracy
deteriorates as the lead time increases®. These constraints restrict
operational hydrology applications in watershed management.
To translate short-term (hourly-based) flood forecasting into
long-term (daily-based) flood warning using typhoon tracks, we
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Fig. 5 Normalized flow characteristic curves using the second typhoon duration scheme. The second scheme determining typhoon duration spans
between the start rising flow limb characteristics and the departure of the typhoon from the gridded zone.

adopted the Al-based approach to predict flood hydrograph
based on the forecasted typhoon tracks and corresponding total
rainfall obtained from our CWB. To assess the reliability and
accuracy of this Al-based approach, we compared the prediction
results with those of a commonly used conceptual rainfall-runoff
model, i.e., the storage function model (SFM)4041,

As presently developed, the SFM cannot be applied without
known rainfall patterns. Thus, the historical rainfall patterns and
the corresponding runoff hydrographs of 97 typhoon events were
used for SFM modeling. In this modeling 87 events were used for
training and the remaining 10 events for testing. We noticed that
because only rainfall patterns were available, the results could
only be treated as simulated rainfall-runoff patterns, rather than
predicted runoff based on the previous rainfall histogram.
Therefore, the simulation results were adopted only to assess the
goodness-of-fit of our Al-based approach for predicting flood
hydrographs. The results of the Al-based and SFM methods for

the ten testing events are summarized in the Supplementary
Table 1. It appears that the proposed Al-based method improved
the performance for all the test events, in terms of smaller RMS
and larger R? values, especially apparent for events with high
peaks. To demonstrate the goodness-of-fit of both methods, we
examined performance for two special typhoon events, i.e., the
most recent typhoon in 2019, Typhoon Lekima (Supplementary
Fig. 2), and the highest flood hydrograph, Typhoon Aere in 2014
(Supplementary Fig. 3). Results show that the Al-based approach
is superior to the SFM method. This is especially true for
Typhoon Aere, whose peak is the highest among those of 97
events. The results show that the Al-based approach with the best
match strategy could fit the historical flood hydrograph very well
while the SFM method, which has three parameters calibrated
based on training datasets, could not produce a suitable flood
hydrograph and significantly underestimated the peak. Conse-
quently, we conclude the Al-based approach can, in general,
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Fig. 6 Normalized flow characteristic curves using the third typhoon duration scheme. The third scheme determining typhoon duration spans between

the start rising limb characteristics and the cessation of rainfall.

obtain reliable and accurate prediction of flood hydrographs
based on known typhoon tracks and corresponding total rainfall
amounts. Furthermore, we notice that the strategy based on the
best matched typhoon track, as expected, could, in general, pro-
duce more favorable results than those based on the averaged
ensemble tracks. Thus, the accuracy of typhoon track prediction
is one of the most crucial factors affecting flood hydrograph
prediction.

It is not uncommon to incorrectly predict typhoon track,
consequently the track would be associated into different clusters
and result in poor flood forecasting. As known, the SOM is a
powerful tool to form a two-dimensional topological map where
similar tracks would be placed in the same cluster and relative
tracks would be placed in the adjacent clusters. The benefit of this
track clustering was the ability to match an approaching typhoon
track with a typhoon track similar in shape present in the SOM.
Nevertheless, in case of incorrect track forecast (but within

certain range), it would be classified into neighboring clusters and
produce relatively good predictions. Thus, the proposed method
could tolerate small errors in typhoon track prediction, which
provides a robust error-tolerant approach. We present a recent
case, Typhoon Lekima in 2019, which had a poorly predicted
track, with an error of 80 km away from the north of Taiwan. The
original predicted track should be mapped into cluster #15, while
the actual track is found in cluster #16. The projected results of
the actual track and the original predicted track are given in
Supplementary Figs. 4 and 5, respectively. We notice that inac-
curate track prediction does cause some differences in both the
forecasted flood peak and the occurrence timing of a peak while
these differences fall within a small (acceptable in a management
context) range. Thus, the SOM clustering method deals with false
predictions in an error-tolerant manner.

We notice that the quality of tropical cyclone (TC) track
forecasts, especially for the track of the TC’s center, has been
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Fig. 7 Predicted flood hydrographs for Typhoon Fitow. Predictions were made using two flow characteristic curve selection strategies under three

typhoon duration schemes. a Actual typhoon tracks grouped in cluster #15. This is the best matched cluster while Typhoon Cora, the best matched track,
has a track the most similar in shape to the track of Typhoon Fitow. b Predicted flood hydrographs using the first selection strategy. This strategy selects
the flow characteristic curve of the best matched track. ¢ Predicted flood hydrographs using the second selection strategy. This strategy selects the

ensemble of all flow characteristic curves in the best matched cluster. We use three schemes to characterize typhoon duration. The first scheme spans
between the arrival and departure time of a typhoon over the gridded zone. The second scheme spans between the start rising flow limb characteristics
and the departure of the typhoon from the gridded zone. The third scheme spans between the start rising flow limb characteristics and the cessation of

rainfall.

significantly improved over the last three decades, where errors
have been reduced by two-thirds in just 25 years*’, and an
averaged error <100 km has been achieved for the test typhoon
events*3, We expect that typhoon track forecasts for areas with
topographic influence will be improved by the new prediction
technology coupled with our CWB typhoon warnings before
typhoon landfall. In this setting, input data of our model can be
improved and more accurate flood hydrograph predictions can be
made by our approach, which will provide new critical infor-
mation for flood defense and water management.

We recognize that it is not possible to define the timing of
rainfall cessation as well as the timing of typhoon departure
from a watershed in advance. However, this information could
be extracted simply from historical records and/or be estimated
based on simple calculation, such as dividing the distance
by the speed, with acceptable estimation accuracy. To improve
the accuracy and reliability of flood hydrograph prediction,
the next step will include the total rainfall amount and TC
velocity. Although, in the present study, predictions are con-
ducted two days ahead, extension of the prediction time
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Fig. 8 Predicted flood hydrographs for Typhoon Soulik. Predictions were made using two flow characteristic curve selection strategies under three
typhoon duration schemes. a Actual typhoon tracks grouped in cluster #13. This is the best matched cluster while Typhoon Herb is the best matched track.
b Predicted flood hydrographs using the first selection strategy. ¢ Predicted flood hydrographs using the second selection strategy.

interval is straightforward once improved data becomes
available.

While typhoon tracks may change when crossing Taiwan, the
proposed methodology allows for continual updates of flood
hydrograph predictions based on recent track forecasts and total
rainfall before and/or during typhoon passing over Taiwan. This
approach generates real-time flood hydrograph predictions nee-
ded for reservoir flood control operation as well as water
resources management. For example, flood peaks and timing
demand for different reservoir operations. For example, a high
flood peak and rapid filling of the reservoir may threaten dam
safety. An unnecessary reduction in reservoir freeboard may
threaten water supply requirements.

Uncertainty is intrinsic in the current state of hydro-
metrological science. To capture uncertainty a more holistic
and transdisciplinary science that represents important linkages

between hydrology, metrology, and topography is needed in
water resources management. Further, improved approaches and
tools to communicate uncertainty and provide advanced warning
for flood defense are more urgent than ever. Our study digitizes
analog typhoon tracks for the first time. Now the vectorized track
can be associated with hydrologic data and geographic char-
acteristics to support flood hydrograph forecasting and flood
defense. The framework we developed can serve as an intelligent
diagnostic tool for hydro-meteorologists and can be used to
characterize an approaching typhoon for making flood hydro-
graph predictions with real-time updates. This not only provides
an adaptive early warning for flood defense as well as critical
information for reservoir operation but also better communicates
concerning uncertainty in support of decision and policy making
to best serve our society. The methodology is simple to use and
flexible with applications to tackling problems, ranging from
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Fig. 9 Predicted flood hydrographs for Typhoon Dujuan. Predictions were made using two flow characteristic curve selection strategies under three
typhoon duration schemes. a Actual typhoon tracks grouped in cluster #3. This is the best matched cluster while Typhoon Talim is the best matched track.
b Predicted flood hydrographs using the first selection strategy. ¢ Predicted flood hydrographs using the second selection strategy.

climatic change prediction extreme event series to financial
markets.

Methods
The proposed Al-based methodology has three stages: typhoon track vectorization
and clustering; FCC extraction; and flood hydrograph prediction, shown as follows.

Typhoon track vectorization and clustering. A total of 97 typhoons were used to
build the flood hydrograph prediction model, among them 87 typhoons were used
for model training and the remaining 10 typhoons were used for model testing. In
the first stage, typhoon tracks required an analog to digital conversion followed by
clustering of track vectors. Individual typhoon tracks were projected onto a 5x 5
geographic grid established between 116° and 126°E longitude and 20° and 30°N
latitude. This grid included Taiwan and surrounding areas. To provide a watershed
focus this study used the Shihmen Reservoir watershed where smaller grids were
developed, i.e., the grid size was further reduced to four smaller ones including

huge (2°*2°), large (1°*1°), medium (0.5°*0.5°), and small (0.25°*0.25") grids.
Then a grid was marked if a typhoon passed through this grid. The size of a grid
was determined mainly by the density of marked points present (the number of
times a grid was marked in response to 87 typhoon events). The higher the density
was, the smaller the size was. The largest grid size represented the lowest density
while the smallest grid size represented the highest density, which allowed location
specificity to connect typhoon tracks with watershed impacts produced by flooding.
Accordingly, a total of 277 grids of different sizes constituted the gridded zone by
resizing the 25 grids into finer grids, as shown in Fig. 1.

We next designed two rules to effectively vectorize typhoon tracks one by one
over the gridded zone. For each typhoon, track passage over a grid element was
identified. If a cluster had multiple tracks over the same grid element a positive
weight value was assigned based on grid element size (1 for the biggest grid
element, 2 for large grid elements, 3 for medium grid elements, and 4 for small grid
elements); otherwise, grid elements were assigned a zero value (a zero-weight grid).
Then, a weight diffusion process was carried out to address the issue of neighboring
zero-weight grids that would be the most likely to reflect track variability. For large
and medium weighted grid cells the adjacent zero-weight grids were re-assigned

NATURE COMMUNICATIONS | (2020)11:1983 | https://doi.org/10.1038/541467-020-15734-7 | www.nature.com/naturecommunications 1


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

values of 0.8 and 1.5, respectively. We also diffused the weight values over two
successive layers adjacent to small weighted grids by assigning their zero-weight
neighbors with 2.5 (within a radius of 1) and 1 (within a radius of 2, excluding
grids weighted 2.5). As a result, each typhoon track could be converted into a
digital vector of 277 variables (grids) with weight values (no shding-0, and gray to
black shading with 0.8, 1, 1.5, 2, 2.5, and 3 weight values in Fig. 1d). We recognize
that weight values are subjectively assigned based on trial and error; nevertheless,
weights were used in optimization algorithms.

Cluster analysis provides a systematic way to categorize instances into
subcategories. In this study, the Al-based SOM clustering method was
implemented to classify the vectorized typhoon tracks. The SOM is a powerful tool
to explore high dimensional data sets and is widely applied to clustering problems
in various fields*4-48, The SOM can extract patterns from large data sets with high
dimensionality providing a method to form a two-dimensional topological map for
visualizing and exploring data structures. The novelty here was to classify each
vectorized typhoon track based not only on a few points of its trajectory as
commonly used in previous studies!>#8 but also on its full track approaching close
to the target watershed. The diffused vector of each typhoon track constituted
model input, which would be mapped onto the two-dimensional array (neurons) of
the SOM. Because the number of input variables is limited (87-diffused vectors)
and the dimension of the data is large (277 grids), only three SOMs with small map
sizes (i.e, 3% 3, 4 x4, 5x5) were trained to configure topological maps for
selecting a suitable SOM topology for clustering purpose. The results of map size
evaluation found that the 3 x 3 network could not distinctly present the
classification while the 5 x 5 network resulted in a dispersion of few tracks in each
cluster. In contrast, the SOM with 4 x 4 neurons provided the best mix of
classification presentation and track numbers in clusters producing a typology
supporting our analysis (Fig. 2). Consequently, we used a 4 x4 SOM to analyze
FCCs in this study. The benefit of this track clustering was the ability to match an
approaching typhoon track with a typhoon track similar in shape present in the
SOM expanding opportunities for prediction.

FCC extraction. The FCC of each typhoon event in the same cluster could be
estimated based simply on the total flow volume converted directly from total
rainfall. More precisely, an event-specific FCC could be developed by analyzing the
overall flood hydrograph of the typhoon event using a normalization process. The
normalization process used incorporated a dimensionless analysis that transformed
the cumulative inflow volume and TD into a common scale ranging between 0 and
1. The curve of the normalized ratio of the cumulative inflow over time to the total
inflow would start with a minimum value of 0 and continuously increased to a
maximum value of 1 over time. Therefore, a FCC curve could then be tagged to the
SOM cluster with which this typhoon was associated. The total rainfall and the
duration of a typhoon event were two crucial factors significantly affecting the
shape of its FCC. It was observed that TD might last for hours or days. We thus
used three approaches to define effective TD with the goal of fitting the shape of
event-specific FCCs using a comparison of shape.

The TD calculation was refined into three schemes. The first scheme focused
on the arrival and departure time of each typhoon over the gridded zone. As a
typhoon was entering the zone, it would commonly take one to three days to
raise flow, depending mainly on the speed (intensity) of the typhoon. Therefore,
the rise in flow in the same cluster could be inconsistent at the early stage, which
would make FCCs rather different in the same cluster. The second scheme
emphasized the rising limb characteristics related to the departure of the
typhoon from the gridded zone. As a typhoon was approaching the watershed
and an obvious increase in flow was detected, the watershed was indeed
influenced by the typhoon, where flow at this stage consistently increased to
reach the peak and then dropped. The influence of typhoons on flow at this stage
was complicated particularly where mountains were coupled with other complex
geomorphological features. A particular issue is the change in intensity class
from a typhoon category to a tropical depression, which was related to the
localized influence of rainfall. The third scheme was centered on the rising limb
characteristics related to the cessation of rainfall. After a typhoon passed
through the watershed, rainfall might cease or keep falling subject to external
circulation. We noticed that the FCCs in each neuron would become more
consistent in shape if the duration between the rise of flow and the cessation of
rainfall was adopted. This provided good evidence that flow patterns in the same
cluster (neuron) were closely related to the corresponding typhoon tracks and
similar typhoon tracks would produce similar FCCs.

We recognized that it was not possible to define the timing of rainfall cessation
in advance. We further noticed that the timing for flow increase related to the
timing of typhoon departure from a watershed could be extracted simply from
historical records and/or be estimated based on simple calculation, such as dividing
the distance by the speed, with acceptable estimation accuracy.

The TD calculation method we developed effectively addressed concentration
time in a flood hydrograph, particularly considering the inclusion of rising limb
characteristics.

Flood hydrograph prediction. In this study, flood hydrograph prediction offered
by our proposed methodology depends mainly on four components including the
forecasted typhoon track, forecasted total rainfall, typhoon track classification, and

FCC extraction. For an approaching typhoon, the representative FCC of a cluster
can be determined by visually identifying a matched cluster that had a typhoon
track the most similar to the forecasted typhoon track announced by the CWB.
Consequently, the flood hydrograph of the approaching typhoon can be derived
based on the representative FCC of the best matched cluster together with the
forecasted total rainfall.

Data availability
The full data that support the findings of this study are available at http://www.icwe.tku.
edu.tw/TyphoonData/.

Code availability
The custom codes and algorithms developed/used in this study are available from Prof.
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