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Sexual-dimorphism in human immune system
aging
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Differences in immune function and responses contribute to health- and life-span disparities

between sexes. However, the role of sex in immune system aging is not well understood.

Here, we characterize peripheral blood mononuclear cells from 172 healthy adults 22–93

years of age using ATAC-seq, RNA-seq, and flow cytometry. These data reveal a shared

epigenomic signature of aging including declining naïve T cell and increasing monocyte and

cytotoxic cell functions. These changes are greater in magnitude in men and accompanied by

a male-specific decline in B-cell specific loci. Age-related epigenomic changes first spike

around late-thirties with similar timing and magnitude between sexes, whereas the second

spike is earlier and stronger in men. Unexpectedly, genomic differences between sexes

increase after age 65, with men having higher innate and pro-inflammatory activity and lower

adaptive activity. Impact of age and sex on immune phenotypes can be visualized at https://

immune-aging.jax.org to provide insights into future studies.
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Human peripheral blood mononuclear cells (PBMCs)
undergo both cell-intrinsic and cell-compositional chan-
ges (i.e., cell frequencies) with age, where certain immune

functions are impaired and others are remodeled1. Analyses
of human blood samples uncovered significant aging-related
changes in gene expression2 and DNA methylation levels3.
Recent studies revealed that chromatin accessibility of purified
immune cells, especially CD8+ T cells, change significantly with
aging, impacting the activity of important receptor molecules,
signaling pathways, and transcription factors (TF)4,5. Together,
these changes likely contribute to aging-related immunodefi-
ciency and ultimately to increased frequency of morbidity and
mortality among older adults. However, it is unclear to what
extent these aging-associated changes are shared between men
and women.

Immune systems of men and women function and respond to
infections and vaccination differently6. For example, 80% of
autoimmune diseases occur in women, who typically show
stronger immune responses than males7. Stronger responses in
women produce faster pathogen clearance and better vaccine
responsiveness, but also contribute to increased susceptibility to
inflammatory and auto-immune diseases. Although not system-
atically described, these differences likely stem from differences in
both cell frequencies and cell-intrinsic programs. For example, a
study in young individuals showed that women have more B cells
(percentage and absolute cell counts) in their blood than men8.
Moreover, hundreds of genes are differentially expressed between
young men and young women in sorted B cells9. Recently, sex-
biased transcripts have been comprehensively described in pur-
ified immune cells (n= 1800), the majority of which are auto-
somal10. Furthermore, age- and sex-dependent differences in
immune responses to stimuli have been observed11,12. Despite the
importance of sex and age in shaping immune cell functions and
responses, it is not known whether men’s and women’s immune
systems go through similar changes throughout their lifespan,
and whether these changes occur at the same time and at the
same rate.

To study this, we profiled PBMCs of healthy adults by carefully
matching the ages of male and female donors. Computational
pipelines for functional enrichments, trajectory and breakpoint
analyses revealed immune system aging signatures including
longitudinal genomic trends. These findings uncovered in which
ways aging differentially affects the immune systems of men and
women. These results are shared via a searchable R Shiny
application (https://immune-aging.jax.org/).

Results
Profiling PBMCs of healthy adults. We recruited 172 community-
dwelling healthy volunteers (91 women, 81 men) whose ages span
22–93 years old (Fig. 1a, Supplementary Table 1): 54 young (ages
22–40: 23 men, 31 women), 59 middle-aged (ages 41–64: 31 men,
28 women), and 59 older subjects (65+: 27 men, 32 women).
No significant differences were detected between sexes in their frailty
scores or age distributions (Supplementary Fig. 1g, Supplementary
Table 1). PBMCs were profiled using ATAC-seq (54 men,
66 women), RNA-seq (41 men, 34 women), and flow cytometry
(62 men, 67 women). Male and female samples for each assay were
comparable in terms of frailty scores, BMI, and age except for young
samples profiled with flow cytometry; young women were slightly
older than men (~32.3 vs. ~28.35) (t-test p-value= 0.05) (Supple-
mentary Table 1). We took this difference into consideration while
interpreting the flow cytometry data.

Aging is the main driver of variation in PBMC ATAC-seq and
RNA-seq data. To identify major sources of variation in genomics

data, we conducted principal component analyses (PCA) using
open chromatin regions (OCRs; n= 78,167) and expressed genes
(n= 12,350) from high-quality samples (100 ATAC-seq, 74 RNA-
seq) (Supplementary Table 2). The first principal component
(PC1) captured 15% of the variation in ATAC-seq and 18.6% in
RNA-seq data and associated to age groups (Fig. 1b, Supple-
mentary Fig. 1a, b, Supplementary Table 3). PC1 differences
between young and old samples were more significant in men
(ATAC-seq: p < 0.05 vs. p < 0.001, RNA-seq: p=N.S. vs. p= 0.03,
Wilcoxon rank-sum test) (Fig. 1b). Annotation of PC1-related
genes using immune modules13 revealed genomic declines asso-
ciated with the ‘T cell’ module and gains associated with
‘myeloid lineage’ and ‘inflammation’ (Fig. 1c), confirmed by
enrichment analyses based on single-cell RNA-seq data (Supple-
mentary Fig. 1c). Together, these results suggest that aging is the
main driver of variation in PBMC epigenomes/transcriptomes,
where age-related variation is negatively associated with naive
T cells and positively associated with myeloid lineage and
inflammation, in agreement with the signatures of immunose-
nescence including impaired responsiveness of adaptive immunity
and increases in low-grade and systemic inflammation (i.e.,
inflamm-aging) with age, which together contribute to aging
diseases14.

Aging-related changes in PBMC cell compositions. We quan-
tified the frequencies of CD4+ and CD8+ T cells, CD19+ B cells,
and CD14+ monocytes in PBMCs (67 women, 62 men) (Sup-
plementary Table 4, Supplementary Fig. 2a). Among these, the
proportions of CD8+ T cells were the most significantly affected
with age (p= 8.2e−07 for men, p= 0.0069 for women, Wilcoxon)
(Fig. 1d). Similarly, CD4+ T cell frequencies declined both in men
(Wilcoxon p= 0.01) and women (Wilcoxon p= 0.0026). How-
ever, we detected a male-specific decline in B cell proportions
after age 65 (Wilcoxon p= 1.6e−05), resulting in a significant
difference in B cell proportions between older men and older
women (Wilcoxon p= 0.0032) (Fig. 1d, Supplementary Table 4).
We did not detect significant aging- or sex-related changes in
CD14+ monocytes (Kruskal–Wallis p-value= 0.32) (Fig. 1d).
These four cell types constitute the majority of PBMCs. However,
PBMCs also include NK cells (5%), DCs (1–2%), CD16+

monocytes (1%), ILCs (<1%)15. Among these, the abundance of
CD16+ monocytes have been reported to increase with age,
whereas ILC and DC subsets and CD56+ NK cells decrease with
age16. Furthermore, CD69+ CD16+ NK cells were more abun-
dant in men, whereas subsets of T cells and ILCs showed more
abundance in women.

We studied subsets of CD4+ and CD8+ T cells in a subgroup
of young and older individuals (n= 80): naive (CD45RA+,
CCR7+), central memory (CD45RA−, CCR7+), effector memory
(CD45RA−, CCR7−), and effector memory RA (CD45RA+,
CCR7-). Expectedly, naive T cell frequencies decreased with age,
particularly in CD8+ T cells (Supplementary Fig. 1d, e). As
previously reported17, women had more naive T cells compared
to men. For example, ~13.2% of PBMCs were naive CD4+ T cells
in young women, compared to ~7.8% in young men (Wilcoxon
p= 0.00057) despite the cohort of young women being slightly
older (Supplementary Tables 1, 4). Women have elevated
thymic function compared to men at all ages18, potentially
explaining observed sex-differences in naive T cells. Sex- and age-
related changes in other T cell subsets were not as significant and
as consistent as the changes in naive T cells (Supplementary
Fig. 1d, e).

Using generalized linear models (GLM), we studied the
relationship between age and sex of individuals and the variation
in their PBMC compositions, which confirmed that age is most
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strongly associated with CD8+ T cell proportions, especially for
naive cells (Supplementary Fig. 1f). Whereas sex is most strongly
associated with naive CD4+ T cells; women have higher
proportions compared to men (Supplementary Fig. 1d, f). Finally,
we observed that B cell proportions are associated with joint

effects of sex and age (Supplementary Fig. 1f), due to the male-
specific decline in B cell proportions after age 65 (Fig. 1d).
Together, these data uncovered shared and sex-specific changes in
PBMC cell compositions with age, some of which underlie
genomic changes.
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Shared and sex-specific chromatin accessibility signatures of
aging. We detected ATAC-seq peaks that are differentially
accessible (DA) between young and older individuals19 (FDR
5%). In men, 10,196 peaks were DA with age (13% of tested: 5782
closing, 4414 opening), compared to 4516 DA peaks in women
(5.8% of tested: 3309 closing, 1207 opening) (Fig. 2a, Supple-
mentary Table 5). Male and female DA peaks significantly
overlapped, despite thousands of sex-specific loci associated with
aging. Furthermore, a significant correlation was detected
between sexes in terms of their epigenomic aging signatures
(Pearson r= 0.445, p < 0.001). DA peaks corresponded to 6612
and 3634 genes in men and women, respectively (Supplementary
Fig. 2b). Functional annotation of these peaks using Roadmap
chromatin states in immune cells20 revealed that closing peaks
were mostly regulatory elements (promoters, enhancers) shared
across cells, especially T cell subsets (Fig. 2b, Supplementary
Fig. 2c). In contrast, opening peaks were mostly enhancers of
CD14+ monocytes and CD56+ NK cells in both sexes (Fig. 2b,
Supplementary Fig. 2d). As previously reported5, there were more
‘quiescent’ loci (i.e., loci without functional annotation) among
opening peaks, which may be due to global chromatin dereg-
ulation with age21.

To identify immune cells/functions affected by aging, we
studied changes at cell-specific loci (i.e., loci active in one cell
type) (Supplementary Fig. 2c). In both sexes, opening peaks were
associated with monocyte-, NK, and memory CD8+ cell-specific
loci, whereas closing peaks were associated with naive T cell-
specific loci (Fig. 2c, Supplementary Fig. 2e, f). Despite these
similarities, a greater number of cell-specific loci were affected
with aging in men. Notably, 960 monocyte-specific peaks
significantly gained accessibility with aging in men, whereas only
64 such loci were detected in women. Only B cells showed the
opposite changes between sexes, where B cell-specific loci were
more likely to be among opening peaks in women and among
closing peaks in men (Fig. 2c). Fold change distributions and
enrichment analyses confirmed these results. Interestingly,
closing peaks were enriched in B cell-specific loci only in men
(Supplementary Fig. 2e, f). Immune module13,22 and WikiPath-
ways enrichment analyses uncovered that inflammation-related
modules/pathways were associated to chromatin opening in both
sexes (Supplementary Table 6) (e.g., MyD88 cascade (WP2801)
pathway). In contrast, closing peaks were significantly associated
to modules/pathways related to T cells, notably the IL-7 Signaling
pathway as we previously observed5. Several molecules in this
pathway were associated to chromatin closing in both sexes
including IL7R, JAK1, STAT5B, and PTK2B (Supplementary
Table 6, Supplementary Fig. 3 for more examples). Together,
these data uncovered an epigenomic signature of aging shared
between sexes, which include gains in chromatin accessibility for

pro-inflammatory processes, monocytes and cytotoxic cells (NK,
CD8+ memory) and losses in accessibility for naive T cells.
Interestingly, these changes were more pronounced in men,
despite cohorts being comparable for age, frailty, and BMI
(Supplementary Fig. 1g, Supplementary Table 1). Furthermore,
we discovered that B cells age differently between sexes, where a
significant loss in chromatin accessibility was detected only
in men.

Correlated aging-related changes in transcriptomes and epi-
genomes. From PBMC RNA-seq data, we identified 918 differ-
entially expressed (DE) genes in women (539 up, 379 down) and
791 genes in men (510 up, 281 down) (FDR 10%)19 (Supple-
mentary Fig. 4a, Supplementary Table 7). DE genes overlapped
significantly between sexes. For example, 201 downregulated
genes were shared (Chi-square p-value= 8.12e−149) and inclu-
ded important T cell molecules (e.g., TCF7, LEF1, CCR7) (Sup-
plementary Fig. 4b). Annotations using cell-specific marker genes
from PBMC scRNA-seq data and sorted cell transcriptomes10,
revealed that upregulated genes were most significantly enriched
in marker genes for NK (Fig. 2e), monocytes and activated CD8+

T cells (Supplementary Fig. 4c, d, Supplementary Table 8). In
contrast, downregulated genes were most significantly enriched in
naive T cell marker genes (e.g., CD27, CCR7, LEF1) in both sexes
(Fig. 2e, f, Supplementary Table 8). Similar to the ATAC-seq data
(Fig. 2c), aging-related gene expression changes in the B cell
compartment were sex dimorphic. B cell-specific genes, especially
naive B cells (e.g., BCL7A, PAX5, CD79A) were downregulated
with age only in men (Fig. 2e, Supplementary Fig. 4d, e),
potentially due to changes in cell composition (Fig. 1d). Notably,
aging-related transcriptomic and epigenomic changes correlated
significantly in men (Pearson r= 0.31, p < 10e−4) and in women
(Pearson r= 0.21, p < 10e−4). Enrichment analyses confirmed the
upregulation of genes associated to cytotoxic cells and inflam-
mation in both sexes (e.g., GZMB, PRF1, NKG7 in women)
(Supplementary Fig. 4f) and downregulation of T cell genes (e.g.,
LEF1, TCF7, CCR7 in both sexes) (Supplementary Table 8). These
results demonstrate that age-related changes in epigenomes and
transcriptomes correlated significantly and uncovered an age-
related shift in PBMCs from adaptive to innate immunity in both
sexes, albeit more pronounced in men.

Age-related changes in monocyte- and B cell-associated loci
differ between sexes. Age-related changes in ATAC-seq (Fig. 3a,
Pearson r= 0.435, p < 0.001) and RNA-seq data (Fig. 3b, Pearson
r= 0.484, p < 0.001) positively correlated between sexes. How-
ever, enrichment analyses using Roadmap20 and scRNA-seq data
revealed that similarity between sexes depends on the cell type

Fig. 1 Age is the main driver of variation in PBMC genomic data. a Schematic summary of study design: PBMCs were isolated from blood samples of 172
healthy community-dwelling individuals (ages 22–93), from which ATAC-seq, RNA-seq and flow-cytometry data were generated. b Principal component
1 scores (PC1) were calculated for each individual from ATAC-seq (left) and RNA-seq (right) principal component analyses (PCA) results. Marker genes
are selected using PC1 scores that are ≥25th percentile: top positive scores (ATAC-seq n= 9392 peaks, RNA-seq n= 1413 genes) and top negative scores
(ATAC-seq n= 10,151 peaks, RNA-seq n= 1675 genes). PC1 scores from ATAC-seq and RNA-seq data increased with increasing age. Furthermore, we
detected differences in PC1 scores of sexes in older subjects, where older men had higher scores than older women. c Functional enrichment of PC1-related
genes based on immune modules22. Note that myeloid/inflammation-related genes were associated with high and positive scores, whereas adaptive
immunity/lymphoid related genes were associated with high and negative PC1 scores. These enrichments align well with an age-related increase in the
myeloid lineage and inflammation, and an age-related decline in naive T cell activity. Hypergeometric test was used to calculate enrichment p-values.
d Flow cytometry data from 128 individuals that reflect proportions of major cell types within PBMCs. Subjects were stratified based on age group and sex:
Young: 22–40, Middle-aged: 41–64, Older: 65+ years old. Wilcoxon rank-sum test was used to compare data from female (n= 67) and male (n= 61)
subjects. Note that T cell proportions decline with age in both sexes, whereas the decline in B cell proportions is specific to older men. Box plots represent
median and IQR values, whiskers extend to 1.5 times the IQR; ***p < 0.001, **p < 0.01, *p < 0.05, n.s.: non-significant. Source data are provided as a Source
Data file for (c).
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(Fig. 3c, d). For example, decreases associated with naive T cells
were highly correlated between sexes both in transcriptomic
(Pearson r= 0.698, Fig. 3d) and epigenomic data (Pearson r=
0.705, Fig. 3c, Supplementary Fig. 5a), likely due to the age-
related loss of naive T cells (Supplementary Fig. 1d, e). These
included shared changes observed in IL7R—a receptor associated

to aging (Fig. 2d)5—chemokine receptor CCR7, co-receptor
CD8A, and TFs TCF7 and LEF1 (Supplementary Table 6). Gene
expression levels of these molecules also decreased with age in
both sexes (Figs. 2d, 3e). Similarly, changes in cytotoxic cells were
highly correlated between sexes (Pearson coefficient NK cells:
RNA-seq r= 0.621, ATAC-seq r= 0.521; cytotoxicity module:
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RNA-seq r= 0.772, ATAC-seq r= 0.675) (Fig. 3c, d, Supple-
mentary Fig. 5b, c) and their activity increased with age in both
sexes. These included granzyme B (GZMB) and perforin (PRF1),
which have complementary cytotoxic functions, and KLRF1,
which is selectively expressed in NK cells23 relative to cytotoxic
T cells (CTLs) (Fig. 3e). Combined with our previous study5,
these results suggest that both CTLs and NK cells contribute to
the increased cytotoxicity with age in both sexes. In contrast, age-
related changes associated to monocytes and B cells showed the
lowest correlation between sexes (Fig. 3c, d, Supplementary
Fig. 5b, c). In monocytes, a majority of peaks/genes were activated
with age in both sexes; however, the magnitude of activation was
more pronounced in men (Fig. 2c), which reduced the correla-
tions (Pearson coefficient RNA-seq r= 0.267, ATAC-seq r=
0.171) (Fig. 3c, d). These included pro-inflammatory cytokines
IL18, IL1B and S100A8/S100A9 genes that modulate inflamma-
tory responses and serve as potential biomarkers of
inflammation-related diseases24. In B cells, the distinction
between sexes stemmed from the male-specific downregulation/
chromatin closing of B-cell specific loci/genes (Pearson coefficient
RNA-seq r= 0.195, ATAC-seq r= 0.017) (Fig. 3c, d), including
the chemokine receptor CXCR4 and B cell receptor CD79A
(Fig. 3e, Supplementary Table 6).

These data revealed that the similarity of the aging signatures
between sexes depends on the cell type. Age-related changes in
naive T cells (loss) and NK and memory CD8+ T cells (gain) were
similar. However, gains in monocyte-specific loci were greater in
men, which contributed to the sex-differences. B cell-specific loci
lost accessibility/expression with age only in men, representing
the most sex-dimorphic aging pattern.

Chromatin accessibility and gene expression changes over
adult lifespan. We uncovered chronological trends in epige-
nomic/transcriptomics maps using Autoregressive Integrated
Moving Average (ARIMA)25 models by first finding the best-
fitting ARIMA model to each peak/gene as a function of age and
selecting the ones that displayed a chronological trend sig-
nificantly different than random fluctuations. This uncovered
13,297 and 13,295 ATAC-seq peaks with a temporal trend in
women and men, respectively, grouped into three major clusters
(Fig. 4a, Supplementary Table 9). Cluster1 (F1/M1) included
peaks losing accessibility with age, whereas cluster2 and cluster3
included peaks gaining accessibility with age (F2/M2 and F3/M3).
In cluster3, the gains occurred earlier (~10–20 years) than in
cluster2.

Enrichment analyses revealed that, in both sexes, cluster1 was
associated to T cell-related loci, particularly naive T cells (Fig. 4b,

Supplementary Fig. 6a). Interestingly, cluster1 was significantly
enriched in B cell-specific regions only in men, reinforcing a
male-specific decline in B cells. Cluster2 was most significantly
enriched in monocyte-specific regions in both sexes, albeit more
significantly in men. Finally, cluster3 was most significantly
enriched in NK cell-specific regions in both sexes, more
significantly in men. Although less significant, we also detected
female-specific enrichment of B cell-specific regions in cluster2
and cluster3, contrasting the declines in men (Figs. 2c, 4b).

ARIMA models revealed temporal transcriptomic patterns
consistent with the epigenomic patterns. 1,068 and 1,471 genes
had temporal trends across human lifespan respectively in
women and men (Fig. 4c, Supplementary Table 9). We grouped
these genes into three clusters (men: M1–3, women F1–3) based
on the similarity of trends. Enrichment analyses10 revealed
changes shared between sexes including downregulation of naive
T cell genes and upregulation of monocyte, NK, and effector T
cell genes. Similar to the epigenomic trends, temporal genes of
men and women differed for the B cell compartment, due to a
male-specific downregulation of B and plasma cell-specific genes
(Fig. 4d, Supplementary Fig. 6b) and a female-specific upregula-
tion –albeit weaker– of plasma B cell-specific genes. These data
suggest that, other than for B cells, temporal epigenomic/
transcriptomic trends are shared between sexes and composed
of genomic declines in T cell-associated loci and increases in
monocytes and NK cell-associated loci.

PBMCs go through rapid epigenomic changes at two discrete
periods during adult lifespan. To study whether temporal epi-
genomic changes are acquired gradually over lifespan or more
rapidly at certain ages, we detected age brackets during which
abrupt changes take place, referred to as breakpoints. Within each
temporal cluster (Fig. 4a), we compared epigenomic profiles
observed at ages immediately preceding and succeeding a given
age (e.g., 5 years before/after) and calculated a p-value for dif-
ferences between the windows. By using a moving window
approach with varying window sizes, we ensured robustness to
outliers, sample sparsity at certain ages, and temporal fluctuations
(Supplementary Fig. 6c). Finally, for each age, we calculated
a combined p-value from different windows, where a smaller
p-value indicates rapid epigenomic changes at that age. Due to
RNA-seq sample sparsity, these analyses were restricted to
ATAC-seq samples.

These analyses revealed two periods in adult lifespan during
which rapid changes occur: (i) a timepoint in late-thirties/early-
forties, and (ii) a later timepoint after 65 years of age (Fig. 4e,
Supplementary Fig. 6c). The earlier breakpoint was detected

Fig. 2 Shared and sex-specific epigenomic signatures of aging. a Fold change (older-young) vs. read counts per million (logCPM) from ATAC-seq
differential analyses in women (left) and men (right) based on 78,167 ATAC-seq peaks (5% FDR after Benjamini-Hochberg P-value adjustment,
58 subjects). Differentially opening/closing peaks are represented in orange/purple. b Functional annotations of differentially accessible (DA) peaks in
men and women using chromHMM states in PBMCs and cell subsets. Closing peaks tend to be enhancers/promoters across all cell types, whereas
opening peaks tend to be enhancers in monocytes and NK cells. c Distribution of DA peaks among cell-specific loci from chromHMM states. Innate cell-
specific loci (monocytes, NK cells) are enriched in opening peaks, T cell-specific loci are enriched in closing peaks. B cell-specific loci are more likely to
be opening peaks in women and closing peaks in men. d Left: Average chromatin accessibility profiles (grouped by age and sex) around the IL7R locus—is
associated with chromatin closing with age in women (top, n= 32) and men (bottom, n= 26). Red bars indicate peaks and their significance value from
differential analyses (*p < 0.05, **p < 0.01, ***p < 0.001, no symbols: non-significant). Right: Normalized chromatin accessibility (combined from three
peaks shown in the figure) and gene expression levels for IL7R in young (n= 16) and older (n= 16) women (top) and young (n= 12) and older (n= 14)
men (bottom). In both sexes, chromatin accessibility and gene expression levels decline with age albeit more significantly in men. e Enrichment of
differentially expressed (DE) genes using cell-specific gene sets from scRNA-seq data. Enrichment p-values are calculated using hypergeometric test. Gene
expression programs for innate cells (NK, monocytes) are activated, whereas programs for T cells are inactivated in both sexes. B-cell specific genes were
downregulated specifically in men. f Average expression levels of T cell-specific genes grouped by age group and sex. Note the decline in both sexes. Box
plots on the top summarize the data from all genes represented in the heatmap. All box plots represent median and IQR (interquartile range) values, with
whiskers extending to 1.5 times the IQR. Source data are provided for (a, b, c, e).
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between ages 38–41 in women across three clusters and ages
40–42 in men in cluster1 and cluster3. Magnitude (breakpoint
p-values, Fig. 4e) and timing of changes for this breakpoint were
similar between sexes. Together with Fig. 4a, this timepoint
matched the start of aging-related epigenomic changes, i.e., the
start of chromatin accessibility losses in cluster1 and gains in

cluster2/3. The later breakpoint was detected between ages 66–71
in women across three clusters (Fig. 4e, Supplementary Fig. 6c).
Interestingly, in men, this breakpoint was observed earlier (ages
62–64). The magnitude of changes for the second breakpoint was
more pronounced in men than in women. Combined with Fig. 4a,
this breakpoint coincided with the acceleration of epigenomic
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changes, such as a faster loss of chromatin accessibility in
cluster1. In summary, breakpoint analyses revealed that although
aging-related changes accumulate gradually, there are at least two
periods in the adult lifespan during which the immune system
undergoes more abrupt epigenomic changes. The first breakpoint
manifests itself in both sexes similarly, whereas the second latter
breakpoint affects men more strongly and earlier than women.
Timing of breakpoints were comparable across clusters, suggest-
ing that cellular interactions might modulate these temporal
trends.

Shared temporal genomic patterns between men and women.
We detected 3,197 peaks and 180 genes with shared temporal
trends between sexes, which grouped into three clusters (Fig. 5a,
Supplementary Fig.7a). Cluster1 captured a downward trend in
both datasets and was associated with naive T cells (Fig. 5b,
Supplementary Fig. 7b). Similarly, cluster3 exhibited an upward
trend and was associated to monocytes and NK cells. Interest-
ingly, cluster2 exhibited opposite temporal patterns between
sexes: a downward trend in men and an upward trend in women
and was associated to B cells (Fig. 5b, c, Supplementary Fig. 7b).

Further inspection of clusters identified temporal changes for
important molecules. Cluster1 included T cell development and
signaling genes, e.g., co-stimulatory molecule CD27 and TCF7—a
key TF in T cell development (Supplementary Table 9).
Expression of both molecules decreased with age, the decrease
was faster in men (Supplementary Fig. 7d). In contrast, cluster2
exhibited contrasting temporal patterns between sexes and was
associated to B and plasma cells, in both ATAC-seq and RNA-seq
(Fig. 5b, Supplementary Fig. 7b). These included the E-protein
TCF4 (E2.2) that control various aspects of B cell development26

and ORAI2 in the B cell receptor-signaling pathway; expression
levels of both genes increased in women and decreased in men.
Changes in cluster3 included upregulation of JAG2 in both sexes,
which is expressed specifically in NK cells10 and plays critical
roles in DC-mediated NK cell cytotoxicity27 (Supplementary
Fig. 7d).

To uncover potential regulators of epigenomic changes, we
identified TF motifs enriched in temporal peaks using 1,388
motifs for 681 TFs grouped into 278 families. Fifty of these
families were significantly enriched across three clusters (Fig. 5a).
These included families that were enriched across all clusters (e.g.,
a bHLH family motifs for TCF3, TCF4, TAL1) and enriched in a
single cluster (Fig. 5d, Supplementary Table 10, see Supplemen-
tary Fig. 7e for sex-specific analyses). TFs associated to naive
T cells10 were enriched in cluster1 (e.g., NPAS2, TCF7, SOX12,
FOXO1). Among these, TCF7 is a potential ‘pioneer factor’ and
can impact the chromatin accessibility levels28. Expression levels

of these TFs also decreased with age (Fig. 5e). Cluster3 was
enriched for motifs for MAFB, CEBPA, CREB5, and NFE2, which
are highly expressed in monocytes10 and were upregulated with
age in PBMCs (Fig. 5f). TF enrichments for cluster2 were not as
significant due to the size of this cluster. Combined analyses of
temporal trends in men/women uncovered shared changes: (i)
downward genomic trends in naive T cell genes/TFs, including
the pioneer factor TCF7; (ii) upward trends for genes/TFs active
in monocytes and cytotoxic cells. These analyses further
highlighted the stark differences between sexes regarding aging
of the B cell compartment.

PBMCs of men and women diverge with age. We compared
ATAC-seq and RNA-seq maps of men and women to describe
sex-bias in human PBMCs at different age groups. In young and
middle-aged subjects, very few differences were detected between
sexes. Interestingly, differences between sexes increased after the
age of 65, where 1011 differential peaks and 548 differential genes
were detected (Fig. 6a, b). Functional annotations of sex-
differences were conserved between the two assays, revealing a
bias towards myeloid lineage particularly for monocytes in older
men and a bias towards adaptive cells (B, T) in older women
(Fig. 6c, Supplementary Fig. 8a, Supplementary Table 11). Epi-
genomic enrichments20 (Supplementary Fig. 8b, c) confirmed
that male-biased peaks were enriched in monocyte-specific loci
and female-biased peaks were enriched in B/T cell-specific loci,
including important signaling molecules (JAK3, STAT5B) (Sup-
plementary Table 11). Furthermore, IL-7 signaling and other B/T
cell signaling pathways were more active in PBMCs of older
women compared to older men (Supplementary Fig. 6d, Sup-
plementary Tables 12, 13). Given that this pathway is down-
regulated with age in both sexes (Fig. 6d, right table), the
difference between older subjects suggest that the age-related
decline in T cells is greater in men. In contrast, older men had
higher activity for inflammation-related modules compared to
older women, including the pro-inflammatory cytokine IL18.
Chromatin accessibility levels for inflammation-related genes/loci
increases with age in both sexes (Fig. 6d, right table), suggesting
that although inflammation increases with age in both sexes, the
magnitude is greater in men. In agreement, serum protein mea-
surements from the 500 Human Functional Genomics con-
sortium11 (n= 267) revealed that older men have higher levels of
pro-inflammatory proteins (IL18, IL6) and their receptor
antagonists (IL18BP, IL1RA) compared to older women. IL18BP
and IL6 levels increased with age in both sexes, however, the
increase was greater in men leading to differences between older
adults. In contrast, serum IL1RA levels increased specifically in

Fig. 3 Sex-dimorphic changes in monocyte- and B cell-associated loci. Correlation of age-related ATAC-seq (a) and RNA-seq (b) remodeling between
women and men PBMCs. Note the overall large and positive Pearson correlation coefficients. Genes are associated to ATAC-seq peaks based on nearest
TSS, and are color coded in both plots according to their association to immune modules (purple: T cells, green: B cells, pink: NK cells, yellow: monocytes).
Only regulatory (TSS/enhancer) peaks are included and peaks-genes are matched between both plots (n= 10,707 loci). Blue-red gradient on data points
represents their relative local density. (c) Correlation between sexes for age-related ATAC-seq remodeling stratified by cell-specific loci from chromHMM
annotations. Note that the highest correlation is observed in naive T cells (n= 833 peaks), which is associated with negative fold changes (i.e., loss in
chromatin accessibility with age) in both sexes. Chromatin remodeling correlates the least between sexes for B cell- (n= 1645 peaks) and monocyte-
specific loci (n= 6861 peaks), with NK cells (n= 3,008 peaks) showing a positive trend in both sexes. d Correlation between sexes for age-related RNA-
seq remodeling stratified by cell-specific genes from single-cell RNA-seq data. Note that the highest correlation is observed in naive T cells (n= 70 genes),
which is associated with negative fold changes (i.e., downregulation with age) in both sexes. On the other hand, NK cells (n= 403 genes) are highly
correlated between sexes and associated with increased expression with age in both sexes. In agreement with ATAC-seq data, gene expression remodeling
correlates the least between sexes for B cell- (n= 144) and monocyte-specific genes (n= 748). Values at the top left corner represent the Pearson
correlation coefficient between sexes only for the genes/loci associated to that cell type. e Normalized expression and accessibility levels for important
molecules associated to T, cytotoxic, and B cells. LogFC =mean log2 of fold changes between old and young samples; MA =middle-aged. Box plots
represent median and IQR values, with whiskers extending to 1.5 times the IQR. Source data are provided as a Source Data file for (a–d).
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Fig. 4 Epigenome and transcriptome changes over human adult lifespan. a Heatmap of ATAC-seq data (fitted values from ARIMA models) with a
significant chronological trend in women (left, n= 13,297) and men (right, n= 13,295), as a function of age in years. Values represent z-score normalized
accessibility values relative to the row (i.e., peak) mean. K-means clustering was used to group these peaks into three clusters in men and women (M1/F1,
M2/F2, M3/F3). Color bar on the top represents discrete age groupings as defined in this study (young, middle-aged, older). Rows are annotated
according to their position relative to the nearest TSS: proximal if <1 kbp distance, distal otherwise. b ChromHMM state annotations of temporal peak
clusters in women (F1–F3) and men (M1–M3). Colors represent hypergeometric enrichment test p-values; light gray cells indicate insufficient number of
genes to run an enrichment test. c Heatmap of ARIMA-fitted expression values for genes with a significant chronological trend in women (left, n= 1068)
and men (right, n= 1471), as a function of age in years. Three clusters per sex are identified using k-means clustering: F1–3 and M1–3. Values represent z-
score normalized expression values relative to the row (i.e., gene) mean. d Annotation of temporal gene clusters using cell-specific gene sets derived from
single-cell RNA-seq data. Colors represent hypergeometric enrichment test p-values; light gray cells in plot indicate that there were insufficient genes in
the gene sets to run an enrichment test. e Inverse log p-value distributions from breakpoint analysis for each cluster for women (top) and men (bottom),
where curve height indicates magnitude of differences between preceding and succeeding age windows. Note that there are two age brackets where
epigenomic changes take place abruptly both in men and women. Points and vertical lines mark median age estimates for a breakpoint integrated over
multiple scales, and C1–C3 correspond to temporal clusters M1–M3 or F1–F3 from each sex (see the “Methods” section and Fig. S5c for details). Source
data are provided as a Source Data file for (a–e).
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men, also leading to a significant difference (Wilcoxon p=
0.0065) between older men and women (Fig. 6e).

These data suggest that older men show a bias towards innate
immunity whereas older women towards adaptive immunity.
This partially stems from the elevated activation of monocyte

related genes/loci with age in men (Fig. 2c, Supplementary
Fig. 4c). Fifteen times more monocyte-specific loci were activated
in men with age (960 vs. 64 peaks). (Supplementary Fig. 2f).
However, we did not detect significant sex differences in CD14+

and CD16+ monocyte cell numbers (counts and frequencies) in
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flow cytometry data from Milieu Intérieur Consortium12 (n=
892) (Supplementary Fig. 8d) or from our cohort (Fig. 1d). Even
though the number of CD16+ monocytes increase with age in
both sexes (Supplementary Fig. 8e), this increase was similar
between sexes (Supplementary Fig. 8d, e). In contrast, the female-
bias in adaptive immunity partially stemmed from male-specific
genomic declines in B cell-associated loci (Figs. 2c, 4d) and B cell
percentages within PBMCs (Fig. 1d). This trend was also
observed in the Milieu Intérieur cohort for different B cell
subsets (i.e., naive, transitional, founder) (Supplementary Fig. 8d,
e). Interestingly, mass-cytometry data from a third cohort29 (n=
190 Caucasians) also revealed significant age-related declines in B
cell percentages (Supplementary Fig. 8f). However, these declines
were observed in both sexes. Further studies are needed to
uncover whether B cell-related differences among cohorts can be
due to clinical and/or environmental factors.

Discussion
Despite well-characterized sex differences in immune responses,
disease susceptibility, and lifespan, it is unclear whether aging
differentially affects peripheral blood cells of men and women. To
fill this gap, we generated ATAC-seq, RNA-seq, and flow cyto-
metry data in PBMCs from 172 age-matched healthy adults.
Using novel systems immunology pipelines, we discovered a
genomic signature of aging that is shared between sexes including
(1) declines in T cell functions, (2) increases in cytotoxic (NK,
memory CD8+ T) and monocyte cell functions. This signature is
in alignment with known age-related changes in the immune
system including declining adaptive responses and increased
systemic inflammation with age14,30. Despite these similarities,
male PBMCs went through greater changes that are not attribu-
table to clinical differences. Notably, 15 times more monocyte-
specific loci were activated in men compared to women. Previous
studies in whole blood showed that DNA methylomes age faster
in men compared to women31. Here, we uncovered an accelerated
aging phenotype for men in ATAC-seq data and uncovered cell
types, cellular functions, and molecules that differentially age
between sexes. In addition, our data revealed for the first time
that aging has opposing effects on the B cells of men and women,
where B cell-specific loci/genes were modestly activated in women
but significantly inactivated in men, which might contribute to
sex-differences in auto-immunity and humoral responses.

We studied middle-aged individuals to capture chronological
changes and the timing of changes, which is essential in distin-
guishing age-related changes from those resulting from matura-
tion32. Chronological patterns in ATAC-seq and RNA-seq data
were correlated and included increasing accessibility/expression

for cytotoxic cells and monocytes, and decreasing accessibility/
expression for T cells in both sexes. Temporal patterns from men
and women further highlighted the differential aging of the B cell-
related loci. Breakpoint analyses uncovered that although aging-
related epigenomic changes accumulate gradually throughout
adult life, there are two periods in the human lifespan during
which the immune system undergoes abrupt changes. The first
breakpoint was similar between sexes, however the second
breakpoint was detected 5–6 years earlier in men, which is
comparable to the life-span differences: 76.9 for men and 81.6 for
women in USA33. In both sexes, the second breakpoint was
associated with accelerated epigenomic changes and occurred
~12–15 years before the end of the average lifespan. The differ-
ences in the timing of age-related changes can be helpful in
clinical decisions regarding when to start interventions/therapies.

PBMCs of men and women significantly differed after the age
of 65, contrary to our expectations due to declining sex hor-
mones. Annotation of sex-biased loci revealed that older women
have higher genomic activity for adaptive cells and older men
have higher activity for monocytes and inflammation. Some of
these differences, but not all, are attributable to changes in cell
compositions, e.g., the decline of B cell frequencies in older men
(Fig. 1d), which is confirmed in a second cohort12 (Supplemen-
tary Fig. 8d) and has been reported in a Japanese cohort34. This
concordance across cohorts suggests that sex-specific aging sig-
natures described here might be conserved across ethnicities/
populations, which requires further investigation. Age-related
increases were associated with inflammatory pathways/genes
more significantly in men, suggesting an accelerated inflamm-
aging signature for men. Data from an independent cohort11

supported this, where older men had higher levels of pro-
inflammatory cytokines (IL6, IL18) in their serum compared to
older women (Fig. 6e). Interestingly, we did not detect significant
differences between older men and older women in CD14+ and
CD16+ monocyte cell numbers/frequencies neither in this cohort
nor in a separate bigger cohort12 (Supplementary Fig. 8e).
Therefore, age-related activation and sex-differences in mono-
cytes potentially stems from cell-intrinsic changes. Future studies
are needed to explore reasons behind sex differences in inflam-
maging, including the role of sex hormones and differential
activation of DAMPs/PAMPs or transposable elements35.

Age-related changes in DNA methylation levels are predictive
of ages across tissues and conditions, most notably the Horvarth’s
clock including 353 CpG sites36. A total of 187 (53%)
of these CpG sites overlapped PBMC ATAC-seq peaks (86,145).
The missing overlap likely stems from differences in
technologies: CpG arrays vs. sequencing-based ATAC-seq assay

Fig. 5 Sex-specific patterns in temporal peaks/genes. a Heatmap of ATAC-seq peaks (fitted values from ARIMA models) with a chronological trend in
both women and men (n= 3197), as a function of age in years. Values represent z-score normalized accessibility values relative to the row (i.e., peak)
mean. K-means clustering was used to group these peaks into three clusters (C1–C3) using concatenated data from men and women. Color bar on the top
represents discrete age groupings as defined in this study (young, middle-aged, older). Rows are annotated according to their position relative to the
nearest TSS: proximal if <1 kbp distance, distal otherwise. b, c Annotations of shared temporal peaks using chromHMM states (b) and gene sets from DICE
database10 (c). Colors represent hypergeometric enrichment test p-values; light gray cells in plot indicate that there were insufficient genes in the gene sets
to run an enrichment test. The enrichment pattern strongly associates cluster C1 to T cells, suggesting a delayed loss of accessibility in women relative to
men; C2 to CD19+ cells, suggesting the presence of CD19+ specific loci with opposing temporal behavior in men and women; and C3 to monocytes and NK
cells. d Transcription factor (TF) motif enrichment results for each temporal cluster (C1–C3), relative to the other two clusters. Motif enrichment analyses
carried out on 1388 PWMs, grouped into families based on the sequence similarity, and most significant p-value for each motif family is represented here.
Tests were done using HOMER54. e, f Expression levels of TFs associated to cluster 1 (C1) and cluster 3 (C3) grouped by age group and sex whose
expression follows the same pattern as the peak temporal clusters where they are enriched. Cluster 2 (C2) is omitted since all TFs in this group show a
significant increase with age in females or both sexes. Box plots represent median and IQR values, with whiskers extending to 1.5 times the IQR. Wilcoxon
rank-sum test used to compare expression levels between sexes (significance value below boxes) and age groups (above boxes): *p < 0.05, **p < 0.01,
***p < 0.001, ns: non-significant. Sample sizes for young individuals n= 11 F, 6 M, middle-aged n= 10 F, 20 M, older n= 13 F, 14 M. Source data are
provided as a Source Data file for (a, b, d).
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that genome-wide capture active regulatory elements37. Only a
few CpGs in the clock overlapped opening/closing peaks (Sup-
plementary Table 16), suggesting that ATAC-seq and DNA
methylation arrays capture distinct epigenomic information and
aging signatures. ATAC-seq captures age-related changes in
regulatory element activity in a cell-specific manner. Although the
mechanism underlying the CpG clocks are not established with
certainty, they are proposed to represent widespread entropic
decay of the DNA methylation landscape38.

Using a systems immunology approach in human PBMCs, this
study uncovered cell types and immune functions that are dif-
ferentially affected by aging between men and women. Changes in
bulk PBMCs were annotated using cell-specific regulatory element

loci inferred from reference epigenomic datasets10,20. Although
this approach was effective in annotating the aging signatures, it is
prone to biases in references, e.g., differences in data quality and
limitation to use cell types available in references. Future studies
are needed to describe these sex differences at single-cell resolu-
tion and in sorted cells and to establish their functional implica-
tions. Moreover, future studies are needed to study important
molecules identified here (IL7R, LEF1, TCF7, IL8, IL18) as sex-
specific biomarkers of immune system aging. Taken together,
these findings indicate that sex plays a critical role in human
immune system aging and should be taken into consideration
while searching for molecular targets and time frames for inter-
ventions/therapies to target aging and age-related diseases.

a c Annotation of sex-biased loci
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Methods
Human subjects. All studies were conducted following approval by the Institu-
tional Review Board of UConn Health Center (IRB Number: 14-194J-3). Following
informed consent, blood samples were obtained from 172 healthy volunteers
residing in the Greater Hartford, CT, USA region recruited by the UConn Center
on Aging Recruitment and Community Outreach Research Core (http://health.
uconn.edu/aging/research/research-cores/). For older adults 65 years and older,
recruitment criteria were selected to identify individuals who are experiencing
“usual healthy” aging and are thus representative of the average or typical normal
health status of the local population within the corresponding age groups5 Selecting
this type of cohort is in keeping with the 2019 NIH Policy on Inclusion Across the
Lifespan (NOT-98-024)39, increasing the generalizability of our studies and the
likelihood that these findings can be translated to the general population40. Subjects
were carefully screened in order to exclude potentially confounding diseases and
medications, as well as frailty. Individuals who reported chronic or recent (i.e.,
within two weeks) infections were also excluded. Subjects were deemed ineligible if
they reported a history of diseases such as congestive heart failure, ischemic heart
disease, myocarditis, congenital abnormalities, Paget’s disease, kidney disease,
diabetes requiring insulin, chronic obstructive lung disease, emphysema, and
asthma. Subjects were also excluded if undergoing active cancer treatment, pre-
dnisone above 10 mg day, other immunosuppressive drugs, any medications for
rheumatoid arthritis other than NSAIDs or if they had received antibiotics in the
previous 6 months. Beyond these steps to exclude specific chronic conditions we
also undertook further additional efforts to exclude older adults with any sig-
nificant frailty. Since declines in self-reported physical performance are highly
predictive of frailty, subsequent disability and mortality41, all subjects were also
questioned as to their ability to walk ¼ mile (or 2–3 city blocks). For those who
self-reported an inability to walk ¼ mile41, the “Timed Up and Go” (TUG) test was
performed and measured as the time taken to stand up from the sitting position,
walk 10 feet and return to sitting in the chair42. Scoring TUG > 10 s was considered
an indication of increased frailty and resulted in exclusion from the study43.
Information on medications in Table S1 illustrates that as expected medication
usage did increase with age. Nevertheless, these medications all reflected their use
for common and controlled chronic conditions unlikely to influence our findings
such as hypertension, hyperlipidemia, hypothyroidism, degenerative joint disease,
seasonal allergies, headaches, atrial fibrillation, depression, anxiety, or ADHD
(attention deficit hyperactivity disorder). Finally, smoking history data are not
typically collected in these studies—including ours—since smoking is a rare habit
among older adults.

Ethics. The study was conducted following approval by the Institutional Review
Board of UConn Health Center (IRB Number: 14-194J-3). All study participants
provided written informed consent at baseline using institutional review board-
approved forms. Individual-level human genomic data (ATAC-seq and RNA-seq)
are shared in a federal controlled-access database through dbGaP. Our study
complies with Tier 1 characteristics for “Biospecimen reporting for improved study
quality” (BRISQ) guidelines.

Flow cytometry data generation and analyses. PBMCs were isolated from fresh
whole blood using Ficoll-Paque Plus (GE) density gradient centrifugation. For the
analysis of the frequencies of Naive T cells (CD45RA+CCR7+), Central Memory
T cells (CM; CD45RA−CCR7+), Effector Memory T cells (EM; CD45RA−CCR7−),
and Effector Memory RA (EMRA; CD45RA+CCR7−), B cells and Monocytes,
PBMCs were stained with fluorochrome-labeled antibodies specific for CD3
(UCHT1) Biolegend-1:100 (cat# 300436), CD4 (RPA-T4) Biolegend 1:80 (cat#
558116), CD8 (SCFI21Thy2D3) Beckman Coulter 1:80 (cat# 6604728), CD45RA
(HI100) BD biosciences 1:80 (cat# 560674), CD19 (HIB19) BD biosciences 1:100
(cat#-555415), CD14 (MSE2) BD biosciences 1:80 (cat# 557923), CCR7 (150503)

BD biosciences 1:20 (cat# 561271). The stained cells were acquired with BD For-
tessa and analyzed with FlowJo software (TreeStar). Flow data is analyzed using
GLM to quantify the association between cell proportions and age, sex, and their
interaction (age and sex). For the analyses of major cell populations, we used age
(continuous variable) as a covariate, whereas for T cell subsets we used age group
(old vs. young) as a variable. We excluded one outlier individual (subject 104) from
downstream analyses.

ATAC-seq library generation and processing. ATAC-seq44 data was generated
from fifty thousand unfixed nuclei using Tn5 transposase (Illumina, Nextera DNA
sample prep kit) for 30 min at 37 °C. The resulting library fragments were purified
using Qiagen MinElute kit (Qiagen). Libraries were amplified by 10–12 PCR cycles,
purified using a Qiagen PCR cleanup kit (Qiagen), and finally sequenced on an
Illumina HiSeq 2500 with a minimum read length of 75 bp to a minimum depth of
30 million reads per sample. At least two technical replicates (average= 2.4
replicates) were processed per biological sample. Table S2 summarizes the depth,
peak number, and fragments in reads (FrIP) scores for ATAC-seq samples. ATAC-
seq sequences were quality-filtered using trimmomatic45, and trimmed reads were
mapped to the GRCh37 (hg19) human reference sequence using bwa-mem46. After
alignment, technical replicates were merged and all further analyses were carried
out on these merged data. For peak calling, MACS247 was used with no-model,
100 bp shift, 200 bp extension, and bampe option. Only peaks called with a peak
score (q-value) of 1% or better were kept from each sample, and the selected peaks
were merged into a consensus peak set using Bedtools multiinter tool48. Only peaks
called on autosomal chromosomes were used in this study. We further filtered
consensus peaks to avoid likely false positives by only including those peaks
overlapping more than 20 short reads in at least one sample, and peaks for which
the maximum read count did not exceed 500 counts per million (cpm) to account
for regions that are potential artifacts. Finally, we excluded peaks overlapping
ENCODE blacklisted regions downloaded from http://hgdownload.cse.ucsc.edu/
goldenpath/hg19/encodeDCC/wgEncodeMapability/. An additional quality-control
step was developed to filter out samples with a consistently poor signal, consisting
of an algorithm to discover and characterize a series of relatively invariant
benchmark peaks, defined as a set of peaks expected to be called in all samples.
Samples that consistently miss calls for a significant portion of these benchmark
peaks are flagged as having poor quality. A benchmark peak is defined based on
three criteria, namely (1) that it remains approximately invariant between the two
groups of interest (i.e., young and old samples), (2) that it captures a substantial
number of reads, and (3) that it is called in most samples. For each peak, the
absolute value of the log of the ratio of healthy old to healthy young mean nor-
malized read counts (log fold change, logFC) was used to assess the first criteria,
whereas the maximum read count over all samples (maxCt) is used to assess the
second one. In this study, a peak was considered apt for benchmarking when (1) its
absolute logFC was in the bottom quartile of the distribution over all peaks, (2) its
maxCt was in the top decile of the distribution over all peaks, and (3) the peak was
called in at least 90% of the samples. Using these parameters, 640 (out of 86,300)
peaks were selected as benchmark; only samples for which at least 92.5% of these
peaks were called were selected for analyses, which excluded 8 samples from fur-
ther analyses. We examined the effects of each of these parameter choices and
found that the same samples were consistently chosen as poor quality for a range of
values chosen to assess the benchmark criteria. After re-applying the peak selection
criteria to the remaining 100 samples, we arrived at a peak count of 86,145 peaks.
Among the samples that passed the QC step, we studied the distribution of FRIP
scores, depth of sequencing, and peak numbers (that are correlated measures),
which revealed a wide range of values. Neither of these measures were correlated
significantly with age in linear regression models (FRIP: Pearson r = 0.11, p = 0.29;
Depth: Pearson r= 0.081, p= 0.42; Peak number: Pearson r= 0.1, p= 0.32).
However, on the average samples from men had higher values compared to
samples from women (FRIP: 0.218 vs. 0.178; Depth: 103M vs. 72 M; Peak number:

Fig. 6 Genomic differences between sexes at different age groups. MA plots representing mean log2 fold change (male-female) vs. average log2 read
counts per million reads (logCPM) for ATAC-seq (a) and RNA-seq (b) data at three age groups using 78,167 peaks (12,199 genes) at autosomal
chromosomes. Both epigenomic and transcriptomic differences between sexes increase with age. Peaks and genes significantly upregulated in women
(men) relative to men (women) are represented in red (blue). Fold changes obtained via GLM modeling of the data sets; statistical significance assessed at
a 5% FDR threshold based on Benjamini-Hochberg p-value adjustment. Tests based on n= 100 (ATAC-seq) and n= 74 (RNA-seq) independent samples.
(c) Enrichment of significantly sex-biased peaks/genes in older individuals using cell-specific gene sets obtained from single-cell RNA-seq data. Note the
male bias toward increased accessibility/expression for monocytes and DCs and the female bias toward increased accessibility/expression for T and B
cells. P-values are based on hypergeometric enrichment tests. Numbers on bars represent the number of differential genes overlapping each gene set.
d Left: Selected pathways/module enrichments for male-biased and female-biased genes/loci. The complete list of enrichments is presented in Tables S12,
S13. * represents annotations obtained from ATAC-seq data analyses. Right: Arrows indicating whether the same pathway/module has been significantly
associated with age-related changes. Significant enrichments (FDR 5%) and their directions are represented with arrows. Red arrows for women, blue
arrows for men. NS= not significant. The complete list of enrichments is presented in Tables S6, S8. e ELISA data from 500 Functional Genomics (500FG)
project to measure serum levels of pro-inflammatory cytokines (n= 267). Protein expression levels are compared between sexes and between young and
older individuals. P-values were calculated using Wilcoxon rank sum (two sided). Box plots represent median and IQR values, with whiskers extending to
1.5 times the IQR. Source data are provided as a Source Data file for (a–c).
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37,046 vs. 29,170). To account for these differences, prior to statistical analyses,
ATAC-seq read counts were normalized to each sample’s effective library size (i.e.,
the sum of reads overlapping peaks) using the trimmed mean of M-values nor-
malization method (TMM)49. In addition, we used the effective library size and
significant surrogate variables as co-variates in differential analyses (see Differential
analyses for details). Accordingly, we noted that SV1 in these analyses correlate
significantly with library depth (Pearson r=−0.68 p= 6.8e−15) and number of
peaks (Pearson correlation r=−0.31, p= 0.0016) in old-young comparisons and
with library depth (Pearson r=−0.56, p= 1.7e−09) and FRIP score (Pearson r=
0.2, p= 0.044) in men-women comparisons.

RNA-seq library generation and processing. Total RNA was isolated from
PBMCs using the Qiagen RNeasy (Qiagen) or Arcturus PicoPure (Life Technol-
ogies) kits following manufacturer’s protocols. During RNA isolation, DNase I
treatment was additionally performed using the RNase-free DNase set (Qiagen).
RNA quality was checked using an Agilent 2100 Bioanalyzer instrument, together
with the 2100 Expert software and Bioanalyzer RNA 6000 pico assay (Agilent
Technologies). RNA quality was reported as a score from 1 to 10, samples falling
below threshold of 8.0 being omitted from the study. cDNA libraries were prepared
using either the TruSeq Stranded Total RNA LT Sample Prep Kit with Ribo-Zero
Gold (Illumina) or KAPA Stranded mRNA-Seq Library Prep kit (KAPA Biosy-
tems) according to the manufacturer’s instructions using 100 ng or 500 ng of total
RNA. Final libraries were analyzed on a Bioanalyzer DNA 1000 chip (Agilent
Technologies). Paired-end sequencing (2 × 100 bp) of stranded total RNA libraries
was carried out in either Illumina NextSeq500 using v2 sequencing reagents or the
HiSeq2500 using SBS v3 sequencing reagents. Quality control (QC) of the raw
sequencing data was performed using the FASTQC tool, which computes read
quality using summary of per-base quality defined using the probability of an
incorrect base call50. According to our quality criteria, reads with more than 30% of
their nucleotides with a Phred score under 30 are removed, whereas samples with
more than 20% of such low-quality reads are dropped from analyses. Bench-
marking is also applied on RNA-seq data using the same benchmark parameters as
ATAC-seq, which resulted in 304 benchmark genes, none of the RNA-seq samples
were dropped due to poor quality. Reads from samples that pass the quality criteria
were quality-trimmed and filtered using trimmomatic45. High-quality reads were
then used to estimate transcript abundance using RSEM51. Finally, to minimize the
interference of non-messenger RNA in our data, estimate read counts were re-
normalized to include only protein-coding genes. Table S2 summarizes the quality
control measures for our PBMC RNA-seq samples.

Differential analysis. To identify differentially open chromatin regions from
ATAC-seq and differentially expressed genes from RNA-seq data, the R package
edgeR was used to fit a GLM to test for the effect of aging between healthy young
and healthy old samples by sex, as well as the effect of sex by age group. In addition
to sex and age group (old vs. young), our models included the base-2 log of
effective library size to ensure peakwise normalization. We isolated a batch effect
correlated to time period whereby samples were collected and libraries were pre-
pared, and used ComBat to adjust the data for this effect. Finally, we used surrogate
variable analysis (SVA52) to capture unknown sources of variation (e.g., localized
batch effects, subject-level heterogeneity, variation in library preparation techni-
ques) statistically independent from age group assignments. SVA decomposes the
variation that is not accounted for by known factors like age group or sex, into
orthogonal vectors that can then be used as additional covariates when fitting a
model to test for differential accessibility or expression. Using the built-in per-
mutation-based procedure in the R package sva, we choose to retain one SV to
include as covariate in the GLM model for PBMC ATAC-seq and none for RNA-
seq data analyses53. GLM models where implemented using a negative binomial
link function, including both genome-wide and peak-specific dispersion para-
meters, estimated using edgeR’s “common,” “trended,” and “tagwise” dispersion
components, calculated using a robust estimation option. Benjamini-Hochberg
p-value correction was used to select differentially open peaks at a false discovery
rate (FDR) of 5%. To generate a set of model-adjusted peak estimates of chromatin
accessibility (i.e., batch-, and SV-adjusted) for downstream analyses and visuali-
zation, we used edgeR to fit a “null” model excluding the sex and age group factor,
and then subtracted the resulting fitted values from this model from the original
TMM-normalized reads.

Peak annotation and downstream analyses. Multiple data sources were used to
annotate ATAC-seq peaks with regard to functional and positional information.
HOMER54 was used to annotate peaks as “promoter” (i.e., within 2 kb of known
TSS), “intergenic”, “intronic”, and other positional categories. For functional
annotation of peaks, we used a simplified scheme integrating public chromatin
states calculated for major PBMC subpopulations with ChromHMM from Road-
map Epigenomics20, Blueprint Epigenome, and a third reference data55: First, we
intersected the chromHMM-generated states with our set of consensus peaks, and
solved conflicting cases where multiple chromatin states overlap the same ATAC-
seq peak so that each peak was assigned a single annotation, according to the
following priority rules: if a peak overlaps both an active TSS and enhancer region,
which state takes priority depends on whether the peak is proximal (i.e., within

1000 bp of the nearest TSS), in which case it is annotated as a promoter, or distal
(distance to nearest TSS greater than 1000 bp), when it is annotated as an enhancer
instead. For all other states, rules apply as follows: Active Enhancer > Genic
Enhancer > Bivalent TSS >Weak Enhancer > Bivalent Enhancer > PolyComb
repressed > TSS Flanking > Transcription > ZNF Genes and repeats > Hetero-
chromatin > Quiescent/Low signal. Then, to facilitate interpretation and visuali-
zation, we simplified the original sets of chromatin states to a scheme with 6 pooled
meta-states, namely (1) TSS, collecting active, flanking, and bivalent TSS states; (2)
Enhancer, pooling active, weak and bivalent enhancer states; (3) Repressed Poly-
Comb, combining both weak and strong PolyComb states; (4) Transcription,
including both weak and strong transcription states, (5) the quiescent chromHMM
state; and (6) other states (ZNF, heterochromatin) combined together. To annotate
peaks as cell-specific for a given subset obtained from one of the three datasets
listed above, we determined for each peak whether it was annotated as an active
promoter or an active enhancer in a single-cell population or lineage, and in such
cases labeled the peak accordingly as cell- or lineage specific. For example, if a peak
is annotated as an active enhancer in both naive and memory CD4+ T cells but as
another state (e.g., repressed) in every other subset, then the peak would be con-
sidered CD4+ T-specific. For gene-based analyses, HOMER was used to assign
each ATAC-seq peak to the nearest TSS, as measured from the peak center. To
improve confidence on these annotations, gene-based analyses were further
restricted to include only peaks located within 100 kb of their corresponding TSS.
ATAC-seq peaks were also annotated using gene sets provided by curated immune
function-related co-expression modules13. These gene sets comprise 28 modules
defined from multiple compiled transcriptomic data sets, which were originally
annotated based on expert knowledge of representative functions of the gene
ensemble in each module. In this study, we have preserved and used these anno-
tations to test for enrichment of these modules in gene sets of interest, such as the
set of genes associated to chromatin peaks gaining or losing accessibility with aging.
We assessed enrichment using the hypergeometric test followed by Benjamini-
Hochberg FDR adjustment for P-values. Further functional enrichment analyses
were carried out using Wikipathways pathways56, immune modules22, gene sets
from DICE database10 and single-cell RNA-seq data in PBMCs. Gene sets from
PBMC scRNA-seq data is driven from one-vs-all cell cluster comparisons. First, we
identified 17 clusters from PBMC scRNA-seq data (n= 26 samples) using the
Louvain clustering in the ScanPy toolkit57. These clusters were manually inspected
and assigned to different cell types by studying the expression of known marker
genes. For each cluster, differentially expressed genes were identified using one-vs-
all approach based on T-test followed by FDR. Marker genes for a cluster (or cell
population) were found by using FDR ≤ 5% and logFC > log2(1.25) using differ-
ential analyses results. Similarly, marker genes from the DICE database are
obtained using their differential analyses results and the same cutoffs for cell-
specific genes (FDR ≤ 5% and logFC > log2(1.25)). Gene sets used in our differ-
ential analyses are provided as a supplementary table (Table S14). Similarly, peak
sets from ChromHMM states used in the enrichment analyses are provided as a
supplementary table (Table S15). For each gene set, we tested for enrichment using
the hypergeometric test, against a background defined by the set of genes that are
expressed, as determined by RNA-seq data, or potentially expressed, as given by
promoter accessibility, in PBMCs. We used the Benjamini-Hochberg FDR multiple
test correction to assess significance of hypergeometric p-values.

ATAC-seq and RNA-seq comparisons. Gene expression (RNA-seq, see above)
data were generated for a subset of subjects with ATAC-seq profiles (summarized
in Table S1). These data were normalized to protein-coding transcripts, and
annotated to ENSEMBL GRCh37 gene symbols. Genes for which at least three
normalized reads per million were obtained in at least two samples were considered
as expressed, all others removed prior to analysis. This resulted in a total estimate
of 14,157 expressed genes in PBMCs. We built a data set comprising paired ATAC-
seq and RNA-seq samples by matching promoter peaks to nearest gene (TSS)
annotations, defining promoters as the regions within 1000 bp flanks of each TSS.
Whenever multiple expressed genes were matched to the same promoter peak, the
peak with the maximum fold change was chosen for visualization.

Inferring chronological aging trends. We used ARIMA models as implemented
in R on age-ordered normalized chromatin accessibility and expression data
separately for each sex, to select genomic features (ATAC-seq peaks or mRNA-seq
transcripts) to uncover significant chronological trends, as opposed to unstructured
“noise” fluctuations undistinguishable from stationary data. Input data from all
subjects in the study (see Table S1) were normalized as described above in “Dif-
ferential Analyses”, i.e., corrected for known batch effects using ComBat, and
model-adjusted to correct for library size and unknown batch effects (i.e., surrogate
variables) using EdgeR. Thus, ARIMA-modeled data contains variation due to age,
sex, and error variance unaccounted for by batch and library size effects. For model
fitting, genomic features were converted into z-ordered objects (using R package
zoo) after averaging values obtained for the same sex and chronological age (in
years), and into time series objects. Formatted time series were then analyzed using
auto.arima (from the forecast R package), using stepwise search and Akaike
Information Criterion (AIC) to select the best model. This algorithm scans a wide
range of possible ARIMA models and selects the one that satisfies the optimality
criterion, i.e., the smallest AIC. Only non-seasonal models with a maximum
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difference (D) of 2 were considered in this study, such that a non-stationary trend
the data can be modeled after integrating a stationary series once or twice. Overall,
best-fitting ARIMA models based on chromatin accessibility or gene expression
data included models with 0–7 AR, 0–5 MA, and 0–7 AR+MA parameters for
accessibility and 0–4 AR, 0–3 MA, and 0–4 AR+MA parameters for expression.
From these models, we chose for inspection only the ones carrying a “significant”
trend, defined as those where (1) the difference order from stationary was higher
than zero, and (2) at least one AR or MA coefficient was included in the model (i.e.,
D > 0 ∩AR+MA> 0). These criteria allow sampling a wide variety of trend pat-
terns if they were present in the data. For accessibility data, 14,594 (18.7%) and
13,591 (17.4%) peak models had D= 1 (none had D= 2) in females and males
respectively, out of which 13,297 (17%) and 13,295 (17%), respectively, also were
estimated to have AR+MA> 0, and hence chosen for further analyses. Out of the
chosen peaks, 12,941 and 11,566 had only MA (9082 in females, 8696 in males) or
AR (2,562 in females, 2574 in males) coefficients, whereas only 4196 (31.6%) and
4,181 (31.4%) were estimated to have two or more non-zero (AR+MA) coeffi-
cients in females and males, respectively. A total of 3197 (4.1%) peaks were chosen
in both sexes, whereas the remaining peaks were treated as sex-specific. For
expression data, 1367 (11.1%) and 1665 (13.5%) models had D= 1 (none had D=
2) in females and males respectively, out of which 1068 (8.6%) and 1471 (11.9%),
respectively, also were estimated to have AR+MA> 0, and hence used in further
analyses. Out of these, 1359 and 832 had only MA (511 in females, 903 in males) or
AR (480 in females, 372 in males) coefficients, whereas only 503 (36.8%) and 554
(33.3%) were estimated to have two or more non-zero (AR+MA) coefficients in
females and males, respectively. A total of 180 (1.5%) peaks were chosen in both
sexes, whereas the remaining peaks were treated as sex-specific.

Temporal peak/gene analyses. After selecting genomic features with a significant
trend, we used their estimated parameters to fit the original data to reduce noise
and facilitate the discovery of common trend patterns across multiple features.
Fitted values were computed at the same chronological ages observed in the data
for each sex, converted to z-scores for comparability, and then submitted to k-
means clustering for aggregation into k sets of similar chronological aging patterns.
Chosen features for each sex were clustered separately, and additionally features
chosen as common to both sexes were concatenated as a single sequence of two
age-ordered ages prior to normalization. This concatenation approach was
designed to facilitate the detection of features with consistent chronological pat-
terns across sexes. For clustering, we used the R-stats version of the k-means
algorithm (kmeans), starting from nstart= 1000 random sets of k cluster centers
and running each for max.iter= 100 iterations. To choose k, we opted for a bio-
logically informed criterion as opposed to a purely statistical one, after noting that
criteria such as maximization of within- vs. between-cluster variance tended to
select a large (>20) number of slightly different clusters, likely emphasizing small
differences in ARIMA model parameters with little biological significance. Instead,
we computed optimal clusters for values of k between 2 and 15 and calculated
enrichment statistics for cell-specific features (i.e., cell-specific chromatin states for
ATAC-seq, and cell-specific expressed genes for RNA-seq data) for each cluster
relative to all trending features, and asked whether adding clusters to the k= 2
cluster case resulted in a gain of information demonstrated by cluster enrichment
patterns qualitatively different from the patterns observed in absence of the extra
clusters. In some cases, finding a cluster configuration satisfying this condition of
biological discrimination required applying hierarchical clustering to collapse
distinct k-means clusters with the same biological signal. For chromatin accessi-
bility, conservative application of these criteria led to the selection of k= 5 and k=
6 clusters for females and males, respectively, which were collapsed into three
clusters in both cases (one closing, two opening with aging), and k= 3 for peaks
trending in both sexes (one closing and one opening in both sexes, plus one
opening in females while closing in males). The same numbers of final clusters
were defined based on gene expression.

TF motif enrichment analyses. To further explore functional associations of these
clusters, we tested for enrichment of known and de novo TF motifs in each
chromatin accessibility cluster for female, male, and sex-pooled peak data, relative
to all trending clusters for the same set of peaks. We used the software HOMER54

to both detect de novo motifs and to test for enrichment of 1388 motifs obtained
from JASPAR CORE 2018 database58 and from Jolma et al.59 SELEX-derived
position weight matrices (PWMs), corresponding to 680 distinct TFs. We used
HOMER to assign a TF to each de novo motif found, based on sequence similarity
to the 1388 known motifs. From the pooled set of known and de novo motifs tested
for each cluster, we used Benjamini-Hochberg method on enrichment p-values to
estimate FDR, and applied a 5% FDR significance threshold to select for the final
set of enriched motifs. Since some motifs have similar consensus sequences and
PWMs, prior to visualization of these results we grouped motifs into “families”
defined as sets of motifs with nearly identical sequences, as determined by pairwise
comparison of all 1388 motif using MEME/TOMTOM60, which tests whether two
motif sequences are more different than expected by chance. Using stringent
0.001% q-value and 5 E-value cutoffs, we identified 429 motif families with
extremely similar consensus sequences, 319 of which were singletons (maximum
family size= 226 motifs).

Breakpoint analyses. We investigated systemic chronological signatures in tem-
poral peaks by testing, in each cluster, for the existence of “breakpoints,” i.e., short
age intervals characterized by significant differences in accessibility in the intervals
preceding and following the age interval. For each age t in the sampled age interval
from tmin to tmax, we tested for mean difference in accessibility between subjects
with ages in the intervals tmin-w vs. tmin+ w, where w represents a variable window
span parameter, and plotted the observed p-values (i.e., −log10 P, or loginvp) as a
function of age (t) to identify maxima that suggested the presence of discrete
breakpoints. These tests were carried out on normalized and model-adjusted
accessibility data corresponding to the ATAC-seq peaks associated to each sex-
specific and common cluster identified as trending by ARIMA as described above.
Since there were many more peaks than subjects for any given comparison, we used
PCA to reduce the dimensionality of each cluster to n= 3 PCs, and used MAN-
OVA on these three dimensions to compute p-values at each tested value of t. For
any given value of w, offset values for tmin and tmax were adjusted to match the age
of available samples in the study. For example, a window span of 5 years required a
tmin = 27 if the youngest available subject was 22 years old, and a tmax = 83 if the
oldest available subject was 90 years old. For a given value of w, results from tests
contrasting younger vs. older intervals would vary depending on sample size
volume and imbalance, with statistical power increasing with the size of the win-
dow span. To take advantage of this effect, we deployed a multi-scale algorithm
where we carried out tests using w values ranging from 10 to 20 years in order to
identify breakpoints that were maximally supported under multiple window spans.
Due to sample sparsity and variation, however, tests carried out under varying
values of w may be unevenly affected by edge effects and influencing outlier points,
which may result in strong significance of a comparison because of the presence of
outliers and the partial overlap of a sampled interval with a breakpoint, limiting the
ability of the method to precisely discover where such breakpoints may lie. To limit
these effects and increase the robustness of the tests, we smoothed the loginvp
distributions by fitting LOESS regressions to each comparison (i.e., each set of
tests with the same w value) under a range of smoothing bandwidth parameters
(i.e., bw = 0.25, 0.30, …, 0.70, 0.75). We combined the resulting 11 p-values at
every sampled age using the Fisher’s method, reapplied LOESS smoothing to the
resulting distribution, and used numerical differentiation to determine whether
each age was predicted to be minimum or a maximum. Finally, we marked every
maximum as a significant breakpoint candidate if it satisfied both a parametric
criterion, i.e. significance of the Fisher method-combined p-values (χ2 test), and a
heuristic criterion, namely whether the distance between this local maximum and
the nearest minimum equaled or exceeded 25% of the value of the global max-
imum. The procedure described above results in a smoothed loginvp distribution
for each w value, each comprising a series of points including maxima and minima,
such that slightly different maxima can be estimated for different w values. Finally,
we used Gaussian mixture modeling on the distribution of these maxima, as
implemented in R-Mclust package, to group loginvp maxima obtained from dif-
ferent window spans into cohesive breakpoint intervals, whose medians and ranges
we report herein for each cluster. Since breakpoints are independently calculated
for each cluster, observed overlaps are likely the result of aging-related events with
a genome-wide impact.

Analyses of 500FG and MI data. We obtained publicly available ELISA data
measuring serum protein levels by the 500 Human Functional Genomics (500FG)
consortium11. We only retained individuals who are matching our cohort in terms
of the age span, which resulted in data from 267 individuals. These individuals are
grouped together using the age brackets defined in our study: Young 22–40 years
old, middle-aged: 41–64 years old, older: 65 years old. We compared data from (1)
men and women at all age brackets; (2) young men to old men; and (3) young
women to old women using Wilcoxon Rank Sum non-parametric test (two sided).
Note that flow cytometry data from this same cohort was not publicly available;
hence cannot be included into the analyses. Similarly, publicly available flow
cytometry data from Milieu Intérieur Consortium12 cohort was obtained. We used
data that is already processed by this study and just used individuals whose ages are
matching our cohort, which resulted in data from 892 individuals. We built linear
models using R (lm function) to quantify the association between each flow
cytometry measurement to age group (young, middle-aged, older), sex (F, M) and
their interaction (age*sex). Significant associations with age (at FDR 5%) and with
sex (at FDR 10%) are plotted in Figs. S7D-E. No significant associations were
detected with the interaction of sex and age at FDR 10%.

R Shiny application. The R Shiny package61 was used to create a webpage for the
interactive visualization of the data from this study. Plots were generated using
ggplot262, using graph esthetics used throughout the manuscript figures. Statistics
for box plots were calculated using the wilcox.test function in R and presented
without correction for the multiple (n= 5) comparisons (two sided). Statistics for
scatterplots were calculated by fitting a linear model with the lm function in R
using the formula (measurement ~ age:sex+ sex). For ATAC-seq data, only the
peak closest to the gene TSS was considered.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.
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Data availability
The data generated as part of this study is controlled access. A subset of the ATAC-seq
and RNA-seq samples used in these analyses was made public through EGA (Id:
EGAS00001002605). All PBMC ATAC-seq and RNA-seq samples used in this study can
be found at dbGaP (Id: phs001934.v1.p1). The source data underlying Figs. 1c, 2a–c, e,
3a–d, 4a–e, 5a, b, d, and 6a–c and Supplementary Figs. 1c, g, 2b–e, 4a, c, d, g, 5a–c, 6a, b,
7a–c, 8a–c are provided as a Source Data file.

Code availability
The code is available at (https://github.com/UcarLab/SexDimorphismNatureCommunications).
The R Shiny app is publicly shared at (https://immune-aging.jax.org/). Code for the R Shiny
app is available at https://github.com/TheJacksonLaboratory/Ucar_Aging_Shiny.

Received: 13 August 2019; Accepted: 3 January 2020;

References
1. Castelo-Branco, C. & Soveral, I. The immune system and aging: a review.

Gynecol. Endocrinol. 30, 16–22 (2014).
2. Peters, M. J. et al. The transcriptional landscape of age in human peripheral

blood. Nat. Commun. 6, 8570 (2015).
3. Jones, M. J., Goodman, S. J. & Kobor, M. S. DNA methylation and healthy

human aging. Aging Cell 14, 924–932 (2015).
4. Moskowitz, D. M. et al. Epigenomics of human CD8 T cell differentiation and

aging. Sci. Immunol. 2, eaag0192 (2017).
5. Ucar, D. et al. The chromatin accessibility signature of human immune aging

stems from CD8(+) T cells. J. Exp. Med. 214, 3123–3144 (2017).
6. Giefing‐Kröll, C., Berger, P., Lepperdinger, G. & Grubeck‐Loebenstein, B. How

sex and age affect immune responses, susceptibility to infections, and response
to vaccination. Aging Cell 14, 309–321 (2015).

7. Klein, S. L. & Flanagan, K. L. Sex differences in immune responses. Nat. Rev.
Immunol. 16, 626 (2016).

8. Abdullah, M. et al. Gender effect on in vitro lymphocyte subset levels of
healthy individuals. Cell. Immunol. 272, 214–219 (2012).

9. Fan, H. et al. Gender differences of B cell signature in healthy subjects underlie
disparities in incidence and course of SLE related to estrogen. J. Immunol. Res.
2014, 814598 (2014).

10. Schmiedel, B. J. et al. Impact of genetic polymorphisms on human immune
cell gene expression. Cell 175, 1701–1715.e1716 (2018).

11. Bakker, O. B. et al. Integration of multi-omics data and deep phenotyping
enables prediction of cytokine responses. Nat. Immunol. 19, 776 (2018).

12. Piasecka, B. et al. Distinctive roles of age, sex, and genetics in shaping
transcriptional variation of human immune responses to microbial challenges.
Proc. Natl Acad. Sci. USA 115, E488–E497 (2018).

13. Chaussabel, D. et al. A modular analysis framework for blood genomics
studies: application to systemic lupus erythematosus. Immunity 29, 150–164
(2008).

14. Goronzy, J. J. & Weyand, C. M. Understanding immunosenescence to
improve responses to vaccines. Nat. Immunol. 14, 428–436 (2013).

15. Kleiveland, C. R. In: (eds Verhoeckx, K., Cotter, P., López-Expósito, I.,
Kleiveland, C., Lea, T., Mackie, A., Requena, T., Swiatecka, D. & Wichers,
H.) The Impact of Food Bioactives on Health (eds). (Springer, Cham, 2015).

16. Patin, E. et al. Natural variation in the parameters of innate immune cells is
preferentially driven by genetic factors. Nat. Immunol. 19, 302 (2018).

17. Olson, N. C. et al. Decreased naive and increased memory CD4(+) T cells are
associated with subclinical atherosclerosis: the multi-ethnic study of
atherosclerosis. PLoS ONE 8, e71498 (2013).

18. Clave, E. et al. Human thymopoiesis is influenced by a common genetic
variant within the TCRA-TCRD locus. Sci. Transl. Med. 10, eaao2966 (2018).

19. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor
package for differential expression analysis of digital gene expression data.
Bioinformatics 26, 139–140 (2010).

20. Kundaje, A. et al. Integrative analysis of 111 reference human epigenomes.
Nature 518, 317 (2015).

21. Feser, J. & Tyler, J. Chromatin structure as a mediator of aging. FEBS Lett.
585, 2041–2048 (2011).

22. Chaussabel, D. & Baldwin, N. Democratizing systems immunology with
modular transcriptional repertoire analyses. Nat. Rev. Immunol. 14, 271
(2014).

23. Hidalgo, L., Einecke, G., Allanach, K. & Halloran, P. The transcriptome
of human cytotoxic T cells: similarities and disparities among allostimulated
CD4+ CTL, CD8+ CTL and NK cells. Am. J. Transplant. 8, 627–636
(2008).

24. Wang, S. et al. S100A8/A9 in Inflammation. Front. Immunol. 9, 1298 (2018).

25. Brockwell, P. J., Davis, R. A. & Calder, M. V. Introduction to Time Series and
Forecasting. (Springer, 2002).

26. Wöhner, M. et al. Molecular functions of the transcription factors E2A and
E2-2 in controlling germinal center B cell and plasma cell development. J. Exp.
Med. 213, 1201–1221 (2016).

27. Kijima, M. et al. Dendritic cell-mediated NK cell activation is controlled by
Jagged2–Notch interaction. Proc. Natl Acad. Sci. USA 105, 7010–7015 (2008).

28. Johnson, J. L. et al. Lineage-determining transcription factor TCF-1 initiates
the epigenetic identity of T cells. Immunity 48, 243–257. e210 (2018).

29. Whiting, C. C. et al. Large-scale and comprehensive immune profiling and
functional analysis of normal human aging. PLoS ONE 10, e0133627 (2015).

30. Fulop, T. et al. Immunosenescence and inflamm-aging as two sides of the
same coin: friends or foes? Front. Immunol. 8, 1960 (2018).

31. Hannum, G. et al. Genome-wide methylation profiles reveal quantitative views
of human aging rates. Mol. Cell 49, 359–367 (2013).

32. Coleman, P., Finch, C. & Joseph, J. The need for multiple time points in aging
studies. Neurobiol. Aging 11, 1–2 (1990).

33. World Health Organization. World Health Statistics 2016: Monitoring Health for
the SDGs Sustainable Development Goals. (World Health Organization, 2016).

34. Hirokawa, K. et al. Slower immune system aging in women versus men in the
Japanese population. Immun. Ageing 10, 19 (2013).

35. De Cecco, M. et al. L1 drives IFN in senescent cells and promotes age-
associated inflammation. Nature 566, 73 (2019).

36. Horvath, S. DNA methylation age of human tissues and cell types. Genome
Biol. 14, 3156 (2013).

37. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J.
Transposition of native chromatin for multimodal regulatory analysis and
personal epigenomics. Nat. Methods 10, 1213 (2013).

38. Field, A. E. et al. DNA methylation clocks in aging: categories, causes, and
consequences. Mol. cell 71, 882–895 (2018).

39. Kuchel, G. A. Inclusion of older adults in research: ensuring relevance,
feasibility, and rigor. J. Am. Geriatrics Soc. 67, 203–204 (2019).

40. Robertson, D. & Williams, G. H. Clinical and Translational Science: Principles
of Human Research. (Academic Press, 2009).

41. Hardy, S. E., Kang, Y., Studenski, S. A. & Degenholtz, H. B. Ability to walk 1/4
mile predicts subsequent disability, mortality, and health care costs. J. Gen.
Intern. Med. 26, 130–135 (2011).

42. Podsiadlo, D. & Richardson, S. The timed “Up & Go”: a test of basic functional
mobility for frail elderly persons. J. Am. Geriatrics Soc. 39, 142–148 (1991).

43. Rockwood, K., Awalt, E., Carver, D. & MacKnight, C. Feasibility and
measurement properties of the functional reach and the timed up and go tests
in the Canadian study of health and aging. J. Gerontol. Ser. A, Biol. Sci. Med.
Sci. 55, M70–M73 (2000).

44. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J.
Transposition of native chromatin for fast and sensitive epigenomic profiling
of open chromatin, DNA-binding proteins and nucleosome position. Nat.
Methods 10, 1213–1218 (2013).

45. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for
Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

46. Li, H. & Durbin, R. Fast and accurate short read alignment with
Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

47. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9,
R137 (2008).

48. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for
comparing genomic features. Bioinformatics 26, 841–842 (2010).

49. Robinson, M. D. & Oshlack, A. A scaling normalization method for
differential expression analysis of RNA-seq data. Genome Biol. 11, R25 (2010).

50. Ewing, B., Hillier, L., Wendl, M. C. & Green, P. Base-calling of automated
sequencer traces usingPhred. I. Accuracy assessment. Genome Res. 8, 175–185
(1998).

51. Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq
data with or without a reference genome. BMC Bioinforma. 12, 1 (2011).

52. Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The sva
package for removing batch effects and other unwanted variation in high-
throughput experiments. Bioinformatics 28, 882–883 (2012).

53. Qu, K. et al. Individuality and variation of personal regulomes in primary
human T cells. Cell Syst. 1, 51–61 (2015).

54. Heinz, S. et al. Simple combinations of lineage-determining transcription
factors prime cis-regulatory elements required for macrophage and B cell
identities. Mol. Cell 38, 576–589 (2010).

55. Beekman, R. et al. The reference epigenome and regulatory chromatin
landscape of chronic lymphocytic leukemia. Nat. Med. 24, 868 (2018).

56. Kelder, T. et al. WikiPathways: building research communities on biological
pathways. Nucleic Acids Res. 40, D1301–D1307 (2012).

57. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene
expression data analysis. Genome Biol. 19, 15 (2018).

58. Khan, A. et al. JASPAR 2018: update of the open-access database of
transcription factor binding profiles and its web framework. Nucleic Acids Res.
46, D260–D266 (2017).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-14396-9

16 NATURE COMMUNICATIONS |          (2020) 11:751 | https://doi.org/10.1038/s41467-020-14396-9 | www.nature.com/naturecommunications

https://www.ebi.ac.uk/ega/studies/EGAS00001002605
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001934.v1.p1
https://github.com/UcarLab/SexDimorphismNatureCommunications
https://immune-aging.jax.org/
https://github.com/TheJacksonLaboratory/Ucar_Aging_Shiny
www.nature.com/naturecommunications


59. Jolma, A. et al. DNA-dependent formation of transcription factor pairs alters
their binding specificity. Nature 527, 384 (2015).

60. Bailey, T. L. et al. MEME SUITE: tools for motif discovery and searching.
Nucleic Acids Res. 37, W202–W208 (2009).

61. Chang, W., Cheng, J., Allaire, J., Xie, Y. & McPherson, J. Shiny: web
application framework for R. R package version 1, http://CRAN.R-project.org/
package=shiny (2017).

62. Wickham, H. ggplot2: Elegant Graphics For Data Analysis. (Springer, 2016).

Acknowledgements
We thank Taneli Helenius for aid in scientific writing, research staff in the UConn Center
on Aging for their help in recruitment and sample collection, JAX genomic technologies
for their help with generating the sequencing data, and JAX Research IT for the support
with building and maintaining the R Shiny application as well as with data upload to
dbGaP. We thank members of Ucar, Stitzel, Banchereau labs, Michael Stitzel, Karolina
Palucka, Virginia Pascual, Derya Unutmaz for critical feedback during the progress of the
study. We thank Yuqi Zhao and Magalie Collet for their help with dbGAP data upload.
This study was made possible by generous financial support of the National Institute of
General Medical Sciences (NIGMS) under award number GM124922 (to D.U.) and
National Institutes of Health (NIH) grants R01 AG052608, R01 AI142086, UH2
AG056925 (to J.B.). Opinions, interpretations, conclusions, and recommendations are
solely the responsibility of the authors and do not necessarily represent the official views
of the National Institutes of Health (NIH). G.A.K is supported by the Travelers Chair in
Geriatrics and Gerontology.

Author contributions
D.U., G.A.K., and J.B. designed the research. G.A.K. coordinated the clinical sample
collection. C.C., R.M., and R.R. performed the experiments. E.M. pre-processed the
sequencing data. E.M., D.U., D.J.M., D.N., and A.E. analyzed the data. E.M. and D.U.
wrote the paper. D.J.M. implemented the R Shiny application. All authors revised the
manuscript and helped with data interpretation.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-
020-14396-9.

Correspondence and requests for materials should be addressed to D.U.

Peer review information Nature Communications thanks Jorg Goronzy and Ansuman
Satpathy for their contributions to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2020

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-14396-9 ARTICLE

NATURE COMMUNICATIONS |          (2020) 11:751 | https://doi.org/10.1038/s41467-020-14396-9 | www.nature.com/naturecommunications 17

http://CRAN.R-project.org/package=shiny
http://CRAN.R-project.org/package=shiny
https://doi.org/10.1038/s41467-020-14396-9
https://doi.org/10.1038/s41467-020-14396-9
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Sexual-dimorphism in human immune system aging
	Results
	Profiling PBMCs of healthy adults
	Aging is the main driver of variation in PBMC ATAC-seq and RNA-seq data
	Aging-related changes in PBMC cell compositions
	Shared and sex-specific chromatin accessibility signatures of aging
	Correlated aging-related changes in transcriptomes and epigenomes
	Age-related changes in monocyte- and B cell-associated loci differ between sexes
	Chromatin accessibility and gene expression changes over adult lifespan
	PBMCs go through rapid epigenomic changes at two discrete periods during adult lifespan
	Shared temporal genomic patterns between men and women
	PBMCs of men and women diverge with age

	Discussion
	Methods
	Human subjects
	Ethics
	Flow cytometry data generation and analyses
	ATAC-seq library generation and processing
	RNA-seq library generation and processing
	Differential analysis
	Peak annotation and downstream analyses
	ATAC-seq and RNA-seq comparisons
	Inferring chronological aging trends
	Temporal peak/gene analyses
	TF motif enrichment analyses
	Breakpoint analyses
	Analyses of 500FG and MI data
	R Shiny application
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




