
ARTICLE

The anticipation of events in time
Matthias Grabenhorst1,3*, Georgios Michalareas1,3, Laurence T. Maloney2 & David Poeppel1,2

Humans anticipate events signaled by sensory cues. It is commonly assumed that two

uncertainty parameters modulate the brain's capacity to predict: the hazard rate (HR) of

event probability and the uncertainty in time estimation which increases with elapsed time.

We investigate both assumptions by presenting event probability density functions (PDFs) in

each of three sensory modalities. We show that perceptual systems use the reciprocal PDF

and not the HR to model event probability density. We also demonstrate that temporal

uncertainty does not necessarily grow with elapsed time but can also diminish, depending on

the event PDF. Previous research identified neuronal activity related to event probability in

multiple levels of the cortical hierarchy (sensory (V4), association (LIP), motor and other areas)

proposing the HR as an elementary neuronal computation. Our results—consistent across

vision, audition, and somatosensation—suggest that the neurobiological implementation of

event anticipation is based on a different, simpler and more stable computation than HR: the

reciprocal PDF of events in time.
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Successful perceptual anticipation at the second scale allows
organisms to prepare responses before events occur
(Fig. 1a). At one extreme, prediction of events may fail

entirely: events arrive unexpectedly. At the other, sensory infor-
mation serves only to confirm what was effectively already known
based on accurate prediction, for example in the context of
complete stimulus regularity. In between these extremes, infor-
mation about the likely time of arrival of an event can be sum-
marized as a probability density function (PDF) f(t) across time.
For the brain, the estimation of event occurrence is influenced by
two main sources of uncertainty: the actual probability distribu-
tion of events and the brain’s inherent uncertainty in estimating
elapsed time1,2. In previous work, ranging from single-cell
recordings3–7 to non-invasive electrophysiology8,9 and neuro-
imaging10–12, two compelling hypotheses were advanced for the
computations involved in the neural representation of both
sources of uncertainty. The two hypotheses are not mutually
exclusive and we will examine both.

On Hypothesis A the brain models the probability distribution
of event occurrence by computing the hazard rate (HR)3–10,12–14,
an intuitively pleasing and conceptually straightforward model of
anticipation. The HR h(t) is defined as the probability density of
an event at any point in time t, given that it has not occurred
before15: hðtÞ ¼ f ðtÞ

1�FðtÞ where FðtÞ ¼ R t�1 f ðuÞdu is the cumula-
tive distribution function (CDF), the probability that the event
has occurred at or before time t. Although the HR appears to
represent precisely the information needed in temporal antici-
pation, one should be cautious in asserting its validity based on
this conjecture alone16. One significant challenge for Hypothesis
A is that the computation of HR, which requires integration of
event probability over time, is relatively complex as well as
numerically unstable15,17. Technically, the HR is the PDF divided
by the survival function 1−F(t)15. Alternatively, the HR can also
be interpreted as the PDF multiplied by 1

1�FðtÞ, rendering the
reciprocal survival function a time-varying scaling factor for
the PDF. This suggests that the fundamental variable for HR is

the PDF. Therefore, although the HR and the PDF are typically
thought of as separate representations of probability density, each
may possibly be important in the brain’s effort to model event
probability.

Hypothesis A further posits an inverse relationship between
reaction time (RT) and event expectation: the RT to an event is
linearly anti-correlated with HR5,9,12 or, put differently, linearly
correlated with the mirrored HR (reflected around a constant
value).

On Hypothesis B the brain’s uncertainty in estimating elapsed
time increases monotonically with time, which is often referred to
as the “scalar property” of time estimation18,19. At the beha-
vioral5,6,12,14 and neural levels3,5–7,12,20, this uncertainty is typi-
cally modeled as a Gaussian function whose standard deviation
increases linearly with elapsed time. The rate of this linear
increase is determined by the Weber fraction of time estima-
tion19. This linearly increasing blurring is termed here temporal
blurring. Critically, temporal blurring ignores potential effects of
environmental temporal statistics on time estimation, raising the
question whether the brain’s estimation of time is influenced
directly by event probability.

We emphasize that the two hypotheses, A and B, are not
independent. The probability distribution itself is blurred because
of the uncertainty in elapsed time estimation, which in turn leads
to a blurred hazard rate. Consequently, it should be noted that
hypotheses A and B are not tested here against each other but
rather are evaluated as model components in temporal anticipa-
tion which we investigate at the behavioral level21.

The combination of hypotheses A and B leads to the mapping
rule, relating the brain’s temporal-probabilistic input to its RT
output (Fig. 1b). Guided by Hypotheses A and B, we tested sev-
eral such mapping rules by constructing explanatory variables for
modeling RT to probabilistically distributed events (Fig. 1c).
These variables were derived from either of two basic parameters,
namely the HR (Hypothesis A) or the PDF itself. The PDF was
selected as an alternative to the HR as it is a fundamental para-
meter of event probability in time. In a first transformation, each
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Fig. 1 Hypotheses and models of event anticipation. a Event anticipation facilitates fast responses to stochastic sensory events. b A mapping rule
generates a prediction of reaction time (RT) based on the probability density function (PDF) of events. Mapping rule constituents include a representation
of event probability, a transformation function between event probability and RTs, and a model of uncertainty of time estimation. c Overview of variables
for temporal anticipation derived from mapping rules. The canonical hazard rate (HR) model is based on three assumptions: (1) the brain employs the HR
to anticipate events in time. (2) Time estimation contains uncertainty that scales linearly with elapsed time (temporal blurring). (3) RT to events and the
HR are linearly anti-correlated (mirror). The three assumptions are investigated using additional, PDF-based variables incorporating probabilistic blurring
and a non-linear, reciprocal relationship between RT and model (see Methods).
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basic parameter was subjected to one of two different types of
blurring, reflecting uncertainty in the estimation of elapsed time.
In the first type, temporal blurring (Hypothesis B), the variance of
the Gaussian uncertainty kernel increases linearly with elapsed
time. In the second type, termed probabilistic blurring, the var-
iance of the kernel depends on the probability distribution of
events across time (see Methods). The original, non-blurred,
parameters were also tested in comparison to the blurred ones.
Given the inverse relationship between reaction times and HR
(Hypothesis A), in a second transformation all variables resulting
from transformation one, were subjected to one of two types of
inversion: either a linear transformation (“mirror”) which cor-
responds to mirroring a variable around its mean (Hypothesis A),
or a simple non-linear transformation, the reciprocal of a variable
(see Methods). This reciprocal relationship between RT and event
probability implicates a non-linear downweighting of low prob-
ability events (resulting in relatively longer RTs) relative to an
upweighting of high probability events (leading to relatively
shorter RTs), which we hypothesize may reflect a more economic
deployment of attention in time, benefitting the anticipation of
event occurrence. Another aspect making the reciprocal PDF be a
more plausible candidate for learning probabilities is its close
resemblance to “suprisal” from Shannon’s information theory.
“Surprisal” is defined as the Shannon information of an outcome,
because it represents the amount of surprise when the outcome
has been observed22. Shannon information is defined as the
logarithm of the reciprocal of outcome probability, log2ð 1

pðxÞÞ bits,
where p(x) is the probability of the outcome x. The reciprocal
PDF of an event is closely related and can actually be transformed
into the outcome probability p(x).

In a “set-go” paradigm (Fig. 2a), participants were asked to
respond as fast as possible to the ‘go’ cue. To examine modality-
specific and modality-independent aspects of event anticipation,
the stimuli were presented separately in three sensory modalities
(vision, audition, and somatosensation). The ‘go’ time (i.e.
between ‘set’ and ‘go’) was sampled from one of two different
probability distributions, an exponential (PDExp) and its “flipped”
version (PDFlip). These two ‘go’ time PDFs (Fig. 2b, black lines)
were selected because they are symmetric to each other, while,
critically, their HRs are not (Fig. 2c, black lines). This feature
allowed for differential investigation of PDF and HR as models of
RT. For each distribution, 12 mapping rules were employed;
consequently 12 explanatory variables were derived to model RT
as a function of ‘go’ time. (Fig. 1c).

Results
Hazard-rate-based models of RT. In all, 24 subjects generated
~3500 RTs each. In all three modalities, the RTs were strongly
modulated by the ‘go’ time probability distributions. Specifically,
the two symmetric PDFs presented, PDExp and PDFlip, lead to
nearly symmetric patterns of RT. All explanatory variables were
derived from the HR and PDF of each of the presented ‘go’ time
distributions. First, we fitted the RT data with a linear model of
the commonly proposed variable “temporally-blurred, mirrored
HR”. This popular model failed to fit the data adequately. In the
PDExp condition (Fig. 3a), the explanatory variable captured the
behavior of the RT data mostly in the latter half of ‘go’ times. In
the early part of the distribution, there were significant deviations
between data and explanatory variable, reflected in low R2 values
of the fitted models.

In the PDFlip condition (Fig. 3b), the deviation of the
explanatory variable from the observed RTs was striking in all
modalities, suggesting that Hypotheses A and B do not hold as
canonical rules across different probability distributions. The
results indicate that the mirrored HR is not employed by the

brain to model event probability across time. We next tested
whether the inverse relation between RT and HR can be better
captured by a simple non-linear transformation. To do this, we
replaced the mirrored transformation with the reciprocal, in
which the HR is inverted by division instead of being linearly
mirrored. This variable, the “temporally-blurred, reciprocal HR”,
significantly improved the fit to RT in the PDFlip condition in all
modalities (Fig. 3d). However, in the PDExp condition we
observed no improvement but rather a deterioration in the fit
(Fig. 3c). Thus, the HR is an unlikely transformation to model
event probability across time.

PDF-based models of RT. We next turned to models based on a
more fundamental, ‘core’ probability parameter, the PDF itself.
Similar to HR, we first examined the variable “temporally-blur-
red, mirrored PDF”. Although the shape of the explanatory
variable captured trends in the data, the fit to RT was poor,
especially in the PDExp condition (Supplementary Fig. 3c). We
then examined the non-linear, reciprocal transformation by using
the “temporally-blurred, reciprocal PDF” as an explanatory
variable (Fig. 4a, b).

The fit to the data was significantly improved, as shown by the
similar behavior of model and data across ‘go’ time, confirmed by
the high R2 values. Evidently, the reciprocal transformation of the
PDF provided a much better fit than the mirror transformation as
well as both transformations of the HR. In the PDFlip condition in
all modalities, we observed that the explanatory variable settles to
a plateau of values quite early, at a ‘go’ time of around 1 s, while
the actual data continue to have a negative slope (Fig. 4b, gray
shading). Additionally, in the early range of ‘go’ times (e.g.
0.5–0.9 s) the explanatory variable decreases with a steeper slope
than the data. These systematic differences between model and
data were introduced by the temporal blurring. Therefore, in the
early range of ‘go’ times the Gaussian kernel has a small variance
and causes only little blurring, less than the data suggest. In the
late range of ‘go’ times, the Gaussian kernel has a large variance,
leading to stronger blurring of the explanatory variable, much
more than the data suggest.

Event probability modulates elapsed time estimation. These
observations lead us to question the concept of monotonically
increasing uncertainty that scales with elapsed time itself. Instead,
we hypothesize that uncertainty in elapsed time estimation is
modulated by temporal probability. This results in a blurring
kernel with large variance in the early, less probable range of ‘go’
times in the PDFlip condition and in a blurring kernel with small
variance in the late, more probable range of ‘go’ times. We applied
this probabilistic blurring to the reciprocal PDF and fitted this
variable to RT. This simple operation drastically improved the fit
in the PDFlip condition (Fig. 4d). In the PDExp condition (Fig. 4c),
the fit was almost identical to the temporal blurring case (Fig. 4a).
This is expected, as in both blurring cases the variance of the
Gaussian kernel monotonically increased with the magnitude of
‘go’ times. To quantify differences in model fit between temporally
and probabilistically blurred variables, we divided the range of ‘go’
times into four equal-sized bins. Within each bin, the sum of
squared residuals was calculated for the “temporally-” and
“probabilistically-blurred, reciprocal PDF”. In the PDExp condition
(Fig. 4e) the quotient is relatively close to 1 in all bins, indicating
residuals of similar magnitude across the two models and thus a
similar goodness-of-fit. In the PDFlip condition (Fig. 4f) the quo-
tient is generally larger, and always higher than 1, which shows
that the probabilistically blurred model yielded smaller residuals in
all bins and in all modalities. Clearly, probabilistic blurring
represented the uncertainty in elapsed time estimation better than
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the commonly employed temporal blurring. For comparison and
completeness, three more variables, the “probabilistically-blurred,
mirrored HR”, the “probabilistically-blurred, reciprocal HR” and
the “probabilistically-blurred, mirrored PDF” were also investi-
gated (Supplementary Figs. 1–3). None of these variables provided
a better fit than the variable “probabilistically-blurred, reciprocal
PDF”. We conclude that, in all three modalities, the probabil-
istically-blurred, reciprocal PDF—but not the HR—is the most
adequate model for mapping the brain’s temporal-probabilistic
input onto its output, i.e. reaction times.

Control analyses. The above results were further validated by two
control experiments and various control analyses. These included
split-data analyses and single-subject analyses (Supplementary

Note 1, Supplementary Figs. 4–12), a control experiment without
catch trials (Supplementary Note 2, Supplementary Fig. 13), and a
control experiment using a Gaussian ‘go’ time distribution
(Supplementary Note 3, Supplementary Fig. 14).

Modality-specific processes at short ‘go’ times. All three dis-
tributions (exponential, flipped exponential, and Gaussian, for the
latter see Supplementary Fig. 14) show that there is an upward
bend in RT curves at short ‘go’ times in vision and somato-
sensation. This effect is absent in the case of audition, in which
the models fit the RT curves even at short ‘go’ times. Note that
neither the HR-based, nor the PDF-based models contain a
parameter for modality-specificity. Given the differences across
sensory modalities, a dedicated model component is needed to
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account for modality-specificity. To quantify these effects, we
used the auditory condition as a reference and subtracted the
auditory RT from visual and somatosensory RT. The difference
curves show that the highest ΔRT values occur at the shortest ‘go’
times and thereafter ΔRT monotonically decreases with ‘go’ time
(Fig. 5a). This pattern was observed in all conditions, regardless of
distribution. This confirmed the hypothesis that the processing of
events at shorter ‘go’ times differs between audition and vision/
somatosensation. The process leading to the observed ΔRT
curves, appears to be captured well by a simple exponential
function of ‘go’ time (Eq. (19), Fig. 5a black fit curves). Adding
this fitted exponential model to the PDF-based model from the
auditory condition drastically improved the model fit in vision
and somatosensation (Fig. 5b). The hypothesized exponential
process may be related to differences in time estimation between
audition and the other modalities, as audition has been suggested
to process events faster23 and more precisely24–26. Alternatively,
the modality-specificity in RT might result from differences in the
processing of probability over time.

Modality-specific and modality-independent components of
RT. The striking similarities in processing temporal-probabilistic
structures across sensory modalities suggest shared neural pro-
cesses, while the differences, e.g. in processing speed, likely reflect
modality-specificity. The RT distributions are the result of the
superposition of such neural mechanisms. Accordingly, we
characterize the RT distributions based on the hypothesis of
separate, additive contributions to the mapping of an event PDF
onto the corresponding RT. One contribution presumably is
modality-specific, reflecting more peripheral processing stages,
including latencies in sensory signal transduction and feed-

forward information processing27–34. The other contribution is
hypothesized to reflect modality-independent processes asso-
ciated more with the processing of the ‘go’ time PDF itself. QQ-
plots revealed overall similarities in RT distribution across PDExp

and PDFlip conditions, but also heavier right tails in the PDFlip

condition in all three modalities (Fig. 6a).
We next investigated these distributional differences. Partici-

pants’ RTs exhibited two characteristic patterns, one modality-
specific, the other modality-independent. In the modality-specific
pattern, median RT was faster in the auditory condition than in
both visual (−42.4 ± 26.6 ms, mean ± standard deviation, SD,
P= 8.2 × 10−7; Tukey’s honestly significant difference test) and
somatosensory conditions (−54.8 ± 33.7 ms, mean ± SD, P=
1.1 × 10−9; Tukey) (Fig. 6b). In RT variance, a different
modality-specific pattern emerged. Interquartile range (IQRRT)
was smaller in vision (−21.3 ± 26.4 ms, mean ± SD, P= 0.00026;
Tukey) and audition (−14.6 ± 26.2 ms, mean ± SD, P= 0.0198;
Tukey) compared to somatosensation (Fig. 6c). In the modality-
independent pattern, the change in ‘go’ time PDF had no effect
on median RT (Fig. 6b). However, IQRRT was significantly larger
in the PDFlip condition as compared to PDExp (Fig. 6c). The
magnitude of the difference in IQRRT between probabilistic
conditions did not differ between sensory modalities (F(2,22)=
0.04, P= 0.96, one-way ANOVA (for analysis of variance and
planned contrasts on median RT and IQRRT see Tables S1–S4).

In Fig. 4a differences between auditory RT, on one side, and
visual and somatosensory on the other, are evident at shorter ‘go’
times. In the visual and somatosensory cases there are character-
istic upward bends that are not seen in the auditory modality. To
investigate whether these differences in RT curves between
modalities drive the above results on median RT and IQRRT, the
respective analyses were performed again on RT from a subset of
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‘go’ times (0.5667 s to 1.4 s), thus eliminating the potentially
confounding differences in RT curves. The analyses yielded highly
similar results to the ones above (Supplementary Fig. 16).

To identify how the systematic differences in RT distribution
(Fig. 6a) relate to the observed modality-specific and modality-
independent patterns, we modeled the RT distributions with an
exponential-Gaussian PDF. This two-process model is the
convolution of an exponential PDF (parameter τ) and a Gaussian
PDF (parameters μ and σ) (Fig. 6d). It states that the generation
of RT depends on a sum of peripheral Gaussian processes and a
central decision process that is hypothesized to be exponen-
tial15,35. The model provides an excellent fit to the data in all
conditions, both at the group level (Fig. 6e) and at the single-
subject level (Supplementary Fig. 15). Both Gaussian parameters
were sensitive to changes in sensory modality but were insensitive
to changes in the ‘go’ time PDF (Fig. 6f, h), in line with the
model’s implicit claim of peripheral Gaussian processes. In
contrast, the exponential parameter τ was sensitive to the ‘go’ time

PDF (Fig. 6g), having larger values in the PDflip condition as
compared to PDExp. This pattern of τ closely mirrors the behavior
of IQRRT (Fig. 6c) (See Supplementary Tables 1–4 for analysis of
variance and planned contrasts on μ, σ, and τ). We found that
Gaussian μ captured the behavior of median RT in all three
modalities (Supplementary Fig. 17a, b). Likewise, and also
independent of modality, τ captured IQRRT (Supplementary
Fig. 17c, d). Taken together, these findings suggest that only the
process(es) reflected in the exponential parameter τ use
information on the ‘go’ time PDF. Taken together, our findings
on the influence of the ‘go’ time PDF on the RT distribution
support (i) the broader hypothesis of peripheral and central
processes involved in event anticipation as well as (ii) the specific
claim of an exponential process shared by all three modalities.

Discussion
We investigated how the brain infers probability as a function of
time based on sensory input, by analyzing RT to temporally
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distributed events. In audition, vision, and somatosensation,
subjects evidently extracted and used the probabilistic informa-
tion encoded in the trial structure to predict event onsets, as
shown by their distinct patterns of RT modulation. Previous work
has proposed the hazard rate as a model of probability over time
used by the brain to anticipate events and plan responses. We
demonstrate that it is not the HR but the PDF—a simpler and
more stable variable—which better captures the data.

We found that RT was sensitive to changes in event probability
density. Notably, the observed RT modulation in the PDExp

condition indicates that subjects inferred temporal-probabilistic
information from exponentially distributed events. This is
remarkable because it is commonly assumed that an exponential
distribution renders temporal prediction impossible7,36, arguably
due to its flat HR in the case of no catch trials.

We first modeled the RTs using various explanatory variables
based on linear and non-linear transformations of the HR. None
of these variables adequately captured RT patterns across the
different ‘go’ time distributions. Therefore, the HR is not a likely
parameter the brain uses to relate an event PDF to its corre-
sponding RT. Instead, we demonstrate that a non-linear trans-
formation of the PDF, the reciprocal, better captures the RT
behavior across different PDFs in three sensory modalities.

The models based on the reciprocal PDF clearly provided the
better fits to RT in all conditions as compared to the reciprocal
HR. Interestingly, the reciprocal HR is just the reciprocal PDF
multiplied by the survival function, as 1

HR ¼ 1� CDFð Þ ´ 1
PDF. In

this equation the survival function appears as a time-varying
scaling factor of the reciprocal PDF. Following this revealing
result that the PDF, and not the HR, is the most likely parameter
modeled by the brain, and given that HR ¼ 1

survival function ´PDF, it
follows that the brain did not employ the scaling factor (1/
survival function) in order to scale the PDF. Instead the scaling

appeared to be better approximated by a fixed value, uniform for
the entire range of ‘go’ times. Nonetheless, it seems possible that
in contexts other than simple event anticipation, the brain might
use the survival function as a scaling factor for event probability
density in which case the HR may be an appropriate parameter of
probability in time.

We note that in a reward-based context, the HR has been
shown to adequately describe temporal expectation4–7,10 in a
100% rewarded condition, but not when uncertainty of reward is
introduced36,37. In the experiments we performed here, no
reward was delivered. Therefore, the fact that the PDF, but not
the HR, provided the best model of RT might be related to the
absence of reward. Although it is clearly beyond the scope of our
study to identify how reward modulates anticipation (which
includes estimation of event probability and of elapsed time, see
below), a simple, intuitive hypothesis can be formulated. If the
brain employed a scaling factor for the PDF, which in our case is
uniform across time, then under reward conditions this scaling
factor could approximate 1

survival function, and the resulting para-
meter encoded would be the HR, as HR ¼ 1

survival function ´PDF.
The survival function is defined as 1—CDF, where the CDF
captures the cumulative probability that an event should have
happened up to and including the current time instance. The
computation of this accumulated probability is cognitively
demanding and would likely be facilitated by motivating effects of
expected reward. This simple hypothesis could describe a basic
mechanism by which the brain incorporates reward into event
anticipation (Supplementary Fig. 18a). It suggests a possibility
how the PDF-based model we describe here could link to the HR-
based models in the reward literature.

Commonly, HR-based models of RT incorporate the concept
of temporal blurring3,5,6,12 which assumes that the uncertainty in
elapsed time estimation increases linearly with time19: longer
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intervals carry higher uncertainty in their estimation than shorter
intervals. This implies that the brain’s capacity to react fast and
accurately to longer timespans is limited compared to shorter
timespans, irrespective of the accuracy of the brain’s estimate of
event probability in time. In other words, the error in time esti-
mation ultimately constrains the brain’s benefit from temporal-
probabilistic inference. By modeling RT, we found that
probabilistically-blurred models fitted the data better than the
temporally-blurred ones. In particular, the RTs at the most
probable, longer ‘go’ times in the PDFlip condition were much
better captured by the probabilistically-blurred model compared
to the temporally-blurred one (Fig. 4b, d). This finding challenges
the common assumption that the brain models elapsed time with
uncertainty that increases with time per se2. Instead it seems that
uncertainty in time estimation also scales with probability. We
suggest that by modeling its environment’s temporal-probabilistic
structure, the brain can overcome what has been considered a
built-in limitation: the uncertainty in time estimation.

In addition to event probability in time and uncertainty in time
estimation, a third source of uncertainty can be quantified in
event anticipation: the uncertainty of event occurrence. Suppose a
‘go’ cue will certainly have occurred by the end of a trial. In this
case there is no uncertainty of event occurrence towards the right
extremum of the ‘go’ timespan. In contrast, ‘go’ cue occurrence
may remain uncertain when in a percentage of trials no event
occurs (catch trials). The HR has been proposed in both contexts,
without catch trials5–8,10,12 and with catch trials4,9, as an
important model of probability in time. Notably, in a setting with
catch trials, certainty of event occurrence is reflected by the CDF
asymptotically approaching 1. This leads to a steep increase of the
HR’s slope towards the end of the ‘go’ time period, irrespective of
probability density (Supplementary Fig. 18b)—the exponential
PDF being a rare exception to this. Commonly, this CDF-based
up-weighting of ‘go’ time probability is argued to reflect antici-
pation, which conforms with intuition as it maximizes event
probability towards the right extremum of a timespan when the
event will inevitably occur. However, as a result of the CDF
approaching 1, the HR’s slope becomes very steep and its values
approach infinity. Since there is a lower bound to reaction time,
this behavior towards the end of a timespan challenges the con-
cept of the HR as a model of RT. Although the commonly
employed temporal blurring remedies this problem somewhat by
reducing HR values as time increases, the conceptual issue of an
ever-increasing variable remains.

Another general problem of the HR concerns its instability in
calculation in both contexts with and without catch trials. The HR
is difficult to estimate from empirical data because technically, it
requires several steps: computation of PDF, integration of PDF to
arrive at CDF, transformation of CDF to arrive at the survival
function, division of PDF by survival function. Even small errors
in the representation of PDF or its CDF will lead to large,
unpredictable errors in HR which could have considerable con-
sequences for an organism relying on the HR as its model of
temporal probability. The term 1/PDF, on the other hand, can be
interpreted as “one-in-many”—a simpler and more stable com-
putation. For example, if the probability of an event is 0.02, the
brain might interpret it as “1/0.02”, i.e. “one-in-fifty”. This
interpretation links the 1/PDF model closely to surprisal as

defined in Shannon’s information theory, log2
1
p

� �
bits, where p is

the probability of an event. This suggests that the brain might be
computing a simplified version of surprisal. It should also be
noted that in some of the previous work on the topic, the
observed relation between RT and HR might also have been well
captured by the PDF, as both HR and PDF can be monotonically
in- or decreasing.

In addition to the influence of event probability, basic timing
mechanisms may be central to the anticipatory processes inves-
tigated here. The estimation of elapsed time is highly relevant in
common interval timing tasks which involve time estimation,
production and reproduction18 and also in the simple RT task
presented here. This invites brief discussion of the potential
underlying mechanisms. A popular hypothesis proposes two
dissociable circuits underlying interval timing, a more “auto-
matic” system that involves the cerebellum and may be used more
in the short sub-second range, and another, cognitively controlled
system, incorporating the basal ganglia, and related cortical
structures that may be involved in processing timespans in the
seconds range18,38. Our behavioral design does not permit dif-
ferentiation between neural mechanisms. Still, the differences
observed between sensory modalities at shorter ‘go’ times point
towards a related differentiation between components of timing
processes: some that are of a more peripheral—arguably “auto-
matic”—nature, and others that are of a more central—eventually
more cognitively controlled—nature.

It has been suggested that temporal discrimination is more
precise in audition than in vision24,39–41 and somatosensa-
tion25,42. Therefore, we used audition as a reference condition,
and modeled the across-modality ΔRT curves with an exponential
function of ‘go’ time. These exponential models of ΔRT were
added as a component to the PDF-based model which drastically
improved the fit, accounting for the modality-specificities. This
modeling procedure relies on the use of audition as a reference
modality, which naturally raises further questions: is audition
itself free of modality-specific effects? Which components of
timing are indeed modality-specific and which components are
modality-general43? These important aspects cannot conclusively
be addressed by this experiment. Nonetheless, although we can-
not further specify the processes underlying the exponential
model component, we hypothesize that the exponential function
of ‘go’ time reflects differences between modalities in funda-
mental timing processes in the sub-second range. A substantial
body of previous work proposed that in interval discrimination
for timespans above 0.2 s (up to 1 s)38 and in a variety of timing
tasks between 0.1 and 1.5 s44, the Weber fraction for time esti-
mation is close to constant. Such evidence from interval dis-
crimination suggests that the modality-specific RT modulation at
short ‘go’ times we observed may be unrelated to elapsed time
estimation itself. Instead, the impact of event probability on time
estimation appears to be a likely source of modality-specific RT
modulation. Given that a large literature on the processing of
probability in time investigates the relationship between sensory
input and behavioral output, we emphasize the importance of the
contingencies of sensory input modalities for any potential
inferences made.

To further investigate the influence of sensory input modality
on processes involved in temporal-probabilistic inference, we
analyzed the RT distributions. We observed modality-specific
differences in average RT that are in agreement with existing
findings covering a wide range of simple RT and go/no-go
tasks15,23. Here they are seen in the context of event anticipation.

The RT distributions could be decomposed into the sum of a
modality-independent PDF which was exponential and a second,
modality-dependent PDF which was Gaussian. The Gaussian
parameter μ corresponded to the modality-specific offsets in
average RT. The Gaussian parameter σ displayed a different
modality-specific pattern. Neither Gaussian parameters μ nor σ
were affected by changes in the event PDF of the input. In con-
trast, the exponential parameter τ was sensitive to the event PDF.
τ also captured the difference in RT variance between the two
probability distributions in all three sensory modalities. In the
long tradition of the ex-Gaussian model of RT the exponential
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part has been interpreted as a central and the Gaussian part as a
peripheral process15,35 but also the opposite assignment has been
made15,45,46. Our purely behavioral study cannot conclusively
answer whether the exponential process reflects central, modality-
independent computations or whether it reflects more peripheral
computations in the neural substrate of each sensory modality.
Nonetheless, our behavioral findings suggest that all three sensory
modalities share a similar exponential process—which in turn
makes specific predictions for what neural activity patterns
should be sought on recordings from the relevant sensory and
supra-sensory regions.

In sum, we expect that our findings will aid efforts in the
understanding of the neural mechanisms involved in predictive
processes. The results demonstrate that irrespective of sensory
input modality, the brain models its environment's temporal-
probabilistic structure using a non-linear transformation of the
PDF, but not the hazard rate.

Methods
Ethical approval. The experiments were approved by the Ethics Council of the
Max-Planck Society. Written informed consent was given by all participants before
the experiment.

Subjects. In all, 24 human subjects (13 female), aged 19–33, participated in the
auditory, visual, and somatosensory experiments. Of these, 18 subjects (13 female),
aged 19–33 participated in the Gaussian control experiment (Supplementary
Fig. 14) and 12 other subjects (9 female), aged 20–33 participated in the experiment
without catch trials (Supplementary Fig. 13). All were right-handed and had
normal or corrected-to-normal vision and reported no hearing impairment and no
history of neurological disorder. Participants were naive to the purpose of the
experiment. They received €10 per hour for participating.

Task and procedure. In auditory, visual, and somatosensory conditions, subjects
performed a simple ‘set’ - ‘go’ task in which a ‘set’ cue was followed by a ‘go’ cue.
The timespan between the onset of both cues, termed the ‘go’ time, was a random
variable that was drawn from a specific probability distribution. Subjects were
asked to foveate a central black fixation dot and respond as fast as possible to the
onset of the ‘go’ cue with a button press on a response device using the right index
finger. After a button press, a small black circle appeared for 0.2 s around the
central fixation dot indicating the end of the trial. In some trials, no ‘go’ cue
appeared (‘catch trials’), in which case participants were instructed to not press the
button. In these catch trials, a small black circle appeared 1.9 s after ‘set’ cue onset,
indicating again the end of the trial. The experiment consisted of two separate
sessions taking place at the same time of the day on two consecutive days. A single
session consisted of four blocks per sensory modality (vision, hearing, touch) and
lasted ~2.5 h. Per block, 165 trials were presented (including 15 ‘catch trials’),
resulting in 1980 trials per session for each subject (3980 trials for two sessions),
and a total of 95,040 trials for all subjects. A short training block was run before the
first block of each sensory modality on both days to familiarize subjects with the
task. During all experimental blocks, subjects wore headphones and positioned
their heads on a forehead-and-chin rest (Head Support Tower, SR Research Ltd.) at
a fixed distance of 60 cm relative to the computer monitor. Each subject’s dominant
eye, as determined by Miles test47 was tracked at a sampling frequency of 1,000 Hz
(Eyelink DM-890, SR Research Ltd.). Subjects were asked to restrict eye blinking to
the timespan after a button press, i.e. during the ITI. Trials in which visual fixation
was not maintained within a radius of 2.5° visual angle around the central fixation
point for more than 300 ms during the ‘go’ time were automatically discarded for
data analysis. All stimuli were generated using MatLab (The MathWorks, Natick
MA, USA) and the Psychophysics Toolbox48 on a Fujitsu Celsius M730 computer
running Windows 7 (64 bit). The experiment took place in a dimly lit,
soundproof booth.

Auditory stimuli. Two white noise bursts (50 ms duration, 8 ms cosine ramp, onset
and offset) served as ‘set’ and ‘go’ cues. They were presented at 60 dB SPL above
hearing threshold at 1 kHz, as determined by pure tone audiometry according to
ISO 8253. All auditory stimuli were output by a high-quality interface (RME
Fireface UCX) and delivered diotically using electrodynamic headphones (Beyer-
dynamic DT 770 PRO) driven by a headphone amp (Lake People GT-109). The
sound pressure level was calibrated to 75 dB(A) individually for each transducer
while using a temporal weighting suited for impulsive stimuli (/τ= 35 ms). To this
end we used an IEC 603184 artificial ear simulator (model G.R.A.S. 43AG) with
according pinnae and a IEC 60942 class 1 sound level calibrator (Larson
Davis CAL200) and an IEC 942 class 1 pistonphone with barometric correction as
calibration source (G.R.A.S. Type 42AA).

Visual stimuli. The visual ‘set’ cue (duration 50 ms) consisted of two checkerboard
patterns which were presented simultaneously. One was positioned in an upper
quadrant, the other in the lower quadrant on the opposite side. The ‘go’ cue
consisted of two checkerboard patterns the same location but the with black-white
pattern reversed. Each checkerboard subtended 6.6 × 6.6 degrees of visual angle and
consisted of 7 × 7 black and white squares, each subtending 0.9 × 0.9 degrees of
visual angle. The center of each checkerboard was positioned at a horizontal dis-
tance of 12.6 degrees of visual angle and at a vertical distance of 7.1° from the
center of a central, black fixation dot. The site of presentation alternated between
the left and right side on a trial-by-trial basis. Visual stimuli were presented on a
BenQ XL2420-B monitor (resolution 1920 × 1080, refresh rate 60 Hz) which was
set to a gray background.

Somatosensory stimuli. Two short electric pulses (duration 200 µs) were pre-
sented as ‘set’ and ‘go’ cues using a constant current stimulator (Digitimer DS7A).
Each subject’s perceptual threshold was determined by increasing stimulus inten-
sity (mean current) until the subject first reported a sensation and then decreasing
it until it was no longer perceived. The perceptual threshold was recorded as the
lowest ascending stimulus intensity at which the subject reported sensation. For
the experimental task, the electric current was set to a higher intensity (mean
current= 7.9 ± 3.9 mA) that the subject judged comfortable, yet easily perceptible.

Temporal probabilities. The ‘go’ time was a random variable drawn from one of
two probability distributions (Fig. 2b) that was fixed throughout two consecutive
blocks of trials. The distributions were chosen by parametrically searching the
family of Weibull distributions for cases that would fulfill the two following criteria:

1. The one distribution should be the left-right flipped version of the other so
that this symmetry in PDFs would help to identify the effect of elapsed time
itself on the modulation of RTs by the probability distributions.

2. The two distributions should have HRs with opposite slopes, in order to
investigate the modulation of RTs by HR.

A parametric search identified a Weibull distribution with parameters k= 1 and
l= 0.33:

f tð Þ ¼ k
l

t
l

� �k�1

e�
t
lð Þk ð1Þ

The identified shape value k= 1 reduces the Weibull to an exponential distribution:

f tð Þ ¼ 1
l
e�

t
lð Þ ð2Þ

The x-axis of both distributions was discretized with the step size of the monitor
refresh rate. This is based on the assumption that this level of discretization is not
perceivable in the context of the ‘set’ - ‘go’ design, rendering the distributions
continuous to the brain. The y-axis was also discretized as the PDF described
number of trials at each discrete ‘go’ time point. Both distributions were delayed by
0.4 s giving a range of ‘go’ times from 0.4 to 1.4 s. To minimize sequential effects,
the ‘go’ times were randomized with the constraint that no more than two
consecutive trials had the same ‘go’ time. The intertrial interval (ITI, range 1.4 to
2.4 s) was randomly drawn from a uniform distribution. During each session in
auditory, visual, and somatosensory conditions half of the blocks followed the
exponential distribution (PDExp), the other half followed its flipped counterpart
(PDFlip). The probabilistic structure changed after two blocks without notification.
To control for order effects, the conditions (sensory modalities and probability
distributions) were organized in a Latin square design, based on which modality
and distribution were shuffled across subjects and days.

Exponential-Gaussian model. To quantitatively investigate the distributional
properties of RT between conditions, we used the exponential-Gaussian distribu-
tion as a well-established parametric two-process model of RT15,35,45,49.

f t; μ; σ; τð Þ ¼ 1
2τ

e
1
2τ 2μþσ2

τ �2tð Þerfc 2μþ σ2

τ � tffiffiffi
2

p
σ

 !
ð3Þ

where erfc is the complementary error function defined as

erfc xð Þ ¼ 2ffiffiffi
π

p
Z 1

x
e�t2 dt ð4Þ

The parameters μ and σ are the mean and standard deviation respectively of the
Gaussian constituent of the ex-Gaussian distribution. Parameter τ is the exponent
of the exponential constituent distribution.

The best-fitting Ex-Gaussian parameters were obtained for each subject in each
condition using a least-squares fitting algorithm. We observed no systematic
difference in adj. R2 between conditions (Supplementary Fig. 15b). Therefore the
ex-Gaussian proved to be a well-fitting model of RT in all conditions.

Temporally blurred (‘subjective’) PDFs. The PDFs were blurred by a temporal
uncertainty kernel that scales with elapsed time from a reference time point. More
intuitively, the longer the elapsed interval to be estimated, the bigger the uncer-
tainty about its length. In recent work it has been hypothesized that this
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uncertainty kernel has a Gaussian shape and its standard deviation increases lin-
early with time as σ ¼ φ � t, where t is the elapsed time and φ is the scale factor by
which the standard deviation σ of the Gaussian uncertainty kernel increases5. This
intuitively implies that the ratio of the standard deviation of temporal uncertainty
to the elapsed time is constant and for this reason the variable φ has been termed a
Weber fraction of the estimation of elapsed time5.

Each of the employed distributions is characterized by the following three
functions:

pðtgoÞ : Probability Density Function of Reaction Time as a function of 0go0 time tgo

cðtgoÞ : Cumulative Density Function of Reaction Time as a function of 0go0 time tgo

¼ R tgo0 p uð Þdu

hðtgoÞ : Hazard Rate of Reaction Times as a function of 0go0 time tgo ¼
pðtgoÞ

1� cðtgoÞ
ð6Þ

Each of the PDFs were blurred with a Gaussian kernel with variance increasing
with time. The equations for the corresponding subjective functions are:

pSðtgoÞ ¼
1

φtgo
ffiffiffiffiffi
2π

p
Z 1

�1
p τð Þ � e� τ�tgoð Þ2= 2φ2 t2goð Þdτ ð7Þ

cSðtgoÞ ¼
Z tgo

0
pS uð Þdu ð8Þ

hSðtgoÞ ¼
pSðtgoÞ

1� cSðtgoÞ
ð9Þ

From Eq. (7) it is evident that for a given ‘go’ time tgo the PDF is convolved with a
Gaussian kernel centered at tgo.

The distributions used in this work were not continuous but discrete. They were
only represented at the possible time points of stimulus presentation in either
auditory, visual or somatosensory conditions. The stimuli presentation instances
for PDExp and PDFlip ranged between [0.4 1.4] sec at steps of 2/60 s (every 2 frames
with frame rate 60 frames per second). The computation of the CDF from the
discrete PDF was performed using trapezoidal integration. The hazard rate was
computed from these discrete versions of a PDF and a CDF. The relatively small
sampling interval resulted in discrete CDFs and hazard rates closely approximating
the expected continuous versions of these functions from the analytical solutions
(Supplementary Fig. 19).

The shortest ‘go’ time is 0.4 s after ‘set’ cue onset. At this time point the
uncertainty kernel has standard deviation φ � 0:4. Similarly at the longest ‘go’ time
of 1.4 s this uncertainty has standard deviation φ � 1:4. In order to implement Eq. 7
for the computation of the subjective PDF, the definition of the PDF was extended
to the left and right of the actual stimulus presentation interval as:

ppaddedðtgoÞ ¼
0; ð0:4� 3 � φ � 0:4Þ � t < 0:4

pðtgoÞ; 0:4 � t � 1:4

0; 1:4> t � ð1:4þ 3 � φ � 1:4Þ

8><
>: ð10Þ

The extensions were equal to 3 standard deviations of the Gaussian uncertainty
function at the shortest and longest ‘go’ times. This 3-standard-deviation extension
was selected as it encapsulates the 99.7% of the Gaussian uncertainty. Then the
integral in Eq. (9) was computed between these new extrema [ 0:4� 3 � φ � 0:4ð Þ,
ð1:4þ 3 � φ � 1:4Þ] instead of the impractical interval of minus to plus infinity. The
selection of the value of φ was based on previous research44,50. With this value of φ
= 0.21 the temporal range of the extended PDF as defined in Eq. (10) becomes
[0.148 2.28] s which is also the range of integration in the computation of the
subjective PDF in Eq. (7).

The PDF of each distribution, p(tgo) was normalized so that its integral does not
amount to one but to 0.9091, which is the total probability that an event will occur
over the timespan covered by the distribution. The remaining 9.09% of trials (30
out of 330) are catch trials in which no ‘go’ cue was presented. Consequently the
maximum value of the resulting CDF c(tgo) is 0.9091. The catch trials introduced
some uncertainty about whether the event will occur at all. The function of the
catch trials in the context of modeling temporal-probabilistic structures is to
prevent the brain’s estimation of a PDF from being confounded by the expectation
of a conditional event, i.e. the mandatory occurrence of a ‘go’ cue at the end of a
given ‘go’ time range. It is easy to see from Eq. (6) that the introduction of catch
trials and the corresponding reduction of maximum CDF to a value significantly
smaller than one stabilizes the computation of the hazard rate at the right
extremum of the PDF, i.e. the part where the CDF would approach one in the
absence of catch trials. Here it has to be mentioned that although the maximum
CDF value is 0.9091, the denominator in the computation of the HR remain 1-c
(tgo) and not 0.9091–c(tgo). This is because this denominator represents the
probability that nothing has happened up to time point tgo. This term includes also
the probability that nothing has happened up to tgo because the current trial is a
catch trial. So this denominator could be alternatively defined as ccatch+ cmax−c
(tgo), where cmax is the maximum CDF value of the stimulus PDF, equal to 0.9091,

and ccatch is the probability that no ‘go’ cue appears at all, which is equal to 0.0909.
As these two terms sum to one, the denominator in the computation of the HR is
correctly stated as in Eq. (6).

Probabilistically blurred PDFs. In the definition of the subjective function in
Eq. (7), the PDF was convolved with a Gaussian function, which represented the
uncertainty in elapsed time estimation at a given time point. This uncertainty has
been hypothesized to increase linearly with time1, irrespective of the probability
density function of event occurrence. In addition to this, here an alternative
hypothesis was investigated in which the uncertainty in elapsed time estimation
depends on the probability density function of event occurrence. The hypothesis
states that ‘go’ times with high probability of event occurrence are associated with
low uncertainty in time estimation based on the rationale that the brain predicts
the onset of upcoming events of high probability more accurately. In contrast, ‘go’
times with low probability carry higher uncertainty, even if the time they span
is short.

This probabilistic blurring of elapsed time estimation was implemented in a
similar fashion to the temporal blurring described in Eq. (7). However the standard
deviation of the Gaussian kernel does not scale linearly with time as in the temporal
blurring case (σ ¼ φ � t), instead it scales according to the PDF of event occurrence.
In order to use realistic variance values in the blurring Gaussian kernel the
minimum and maximum values of the standard deviation were set accordingly to
the temporal blurring case as

σmin ¼ φ � tmin ¼ φ � 0:4 and σmax ¼ φ � tmax ¼ φ � 1:4 ð11Þ
The PDF under investigation was then scaled so that its minimum value is σmin

and its maximum value σmax.
If pmin and pmax are the minimum and maximum values respectively of the PDF

under investigation then the function used for computing the standard deviation of
the Gaussian kernel based on the PDF p(t)was defined as:

s tð Þ ¼ 1� p tð Þ � pminð Þ
ðpmax � pminÞ

� �
� σmax � σminð Þ þ σmin ð12Þ

From the first term inside the brackets it is obvious that when the probability p(t) is
low the standard deviation of the Gaussian kernel approaches σmax while when the
probability becomes big, s(t) approaches σmin.

Based on this function for determining the standard deviation of the blurring
Gaussian kernel the probabilistically blurred PDF pp(t)was computed as:

pp tgo
� �

¼ 1

sðtÞ ffiffiffiffiffi
2π

p
Z 1

�1
p τð Þ � e� τ�tgoð Þ2= 2sðtÞ2ð Þdτ ð13Þ

This equation describes that at a given time instance t, according to the PDF of
event occurrence, the Gaussian uncertainty on the estimation of elapsed time has
standard deviation s(t). The minimum and maximum values of standard deviation
σmin and σmax are set to φ � 0:4 and φ � 1:4, as already described earlier. In order to
compare this probabilistic blurring hypothesis directly to the initial temporal
blurring hypothesis, the value of φ was likewise set to 0.21.

Finally, in order to implement the Gaussian blurring of Eq. (13) at the extrema
of ‘go’-times, the definition of the PDF was extended to the left and right of the
actual stimulus presentation interval by three standard deviations of the
corresponding smoothing Gaussian kernels, similarly to the temporally blurred
case described in Eq. (10), as:

ppaddedðtgoÞ ¼
0; ð0:4� 3 � sð0:4ÞÞ � t < 0:4

pðtgoÞ; 0:4 � t � 1:4

0; 1:4> t � ð1:4þ 3 � sð1:4ÞÞ

8><
>: ð14Þ

Notice that the extensions depend on the standard deviation function s(t), which
depends on the probability density function.

Selection of explanatory variables for modeling RT. The selection of explana-
tory variables for modeling RT was driven by an expected inverse relation of RT
with the PDF and HR of the ‘go’ times. This is based on the rationale that for high
relative values of PDF or HR, RT is expected to be small and vice versa. Previous
work demonstrated a negative correlation between the ‘subjective’ HR and RT in
the order of −0.35. As mentioned earlier, computation of the HR in the brain
would require three separate calculations: computation of PDF, its integration for
deriving the CDF, and their division for computing HR. The computation of the
PDF is the most basic and necessary step in the sequence outlined above and for
this reason it was considered here as an alternative factor that can directly affect
RT, even before the CDF and HR are computed.

Here two different functions with an inverse character were selected, a ‘mirror’
and a ‘reciprocal’ function. The ‘mirror’ function just reflects a function mirrored
around its mean. Here it is used to capture linear anti-correlations between RT and
the explanatory variables PDF and HR.

xmpðtgoÞ ¼ �ðpðtgoÞ � �pÞ þ �p ¼ �pðtgoÞ þ 2 � �p ð15Þ
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xmhðtgoÞ ¼ �ðhðtgoÞ � �hÞ þ �h ¼ �hðtgoÞ þ 2 � �h ¼ � pðtgoÞ
1� cðtgoÞ

þ 2 � �h ð16Þ

where
xmp: “mirror”of the PDF
xmh: “mirror”of the hazard rate of the PDF
�p: Mean PDF, �h : mean HR

xopðtgoÞ ¼
1

pðtgoÞ ð17Þ

xohðtgoÞ ¼
1

hðtgoÞ
¼ 1� cðtgoÞ

pðtgoÞ
¼ ð1� cðtgoÞÞ � xopðtgoÞ ð18Þ

where
xop: ‘reciprocal’ PDF
xoh: ‘reciprocal’ hazard rate of the PDF.
The ‘reciprocal’ function simply takes the reciprocal of a function, e.g. 1/PDF.

This is used to capture a non-linear anti-correlation.Similar variables are defined
for the temporally and probabilistically blurred PDF cases, namely xopt, xoht, xmpt,
xmht, for temporal blurring and xopp, xohp, xmpp, xmhp, where for probabilistic
blurring where the third letter in the subscript indicates the type of blurring. As it
can be seen from Eq. (18) for any given ‘go’ time tgo, the variable xoh(tgo) is a scaled
version of the variable xop(tgo). This scaling depends on the CDF and therefore it is
non-linear across ‘go’ times. The same holds for variablesc xmp(tgo) and xmh(tgo), as
can be seen in Eqs. (15) and (16). As the scaling between these pairs of variables is
non-linear (dependent on ð1� cðtgoÞÞand 1

1�cðtgoÞ respectively) it is also expected

that their relation to RT will not be linearly identical. This also justified their
treatment as different variables that are not independent but non-linearly related.

Modeling RT by ‘mirror’ and ‘reciprocal’ functions with a linear model. The
eight ‘blurred’explanatory variables xopt, xoht, xmpt, xmht, for temporal blurring and
xopp, xohp, xmpp, xmhp for probabilistic blurring, were constructed to investigate
their linear relation to RT. These variables were derived with φ ¼ 0:21 based on
previous research44,50.

Additionally, the four variables xop, xoh, xmp, and xmh derived directly from the
original PDF, CDF and HR, without any Gaussian blurring, were also fit to RT for
comparison. A linear model was built for each of these eight explanatory variables.
An Ordinary Least Squares (OLS) regression was employed for the computation of
the regression coefficients using the MatLab (The MathWorks, Natick MA, USA)
fit function. Any assumption about the distribution of the residuals of the models
was omitted, as we had no evidence that they should follow a Gaussian distribution.
Adjusted R2 was used as a measure of goodness-of-fit for comparing the different
models’ relation to RT.

Comparing temporal and probabilistic blurring. One of the expected differences
between the two blurring methodologies was located at the early and late extrema
of the ‘go’ time interval. This is because in the case of temporal blurring the
smoothing kernel has always much higher variance at the late extremum, as
compared to the early, independent of the PDF used and this should be expected to
result in greater smearing of RT curves towards the late extremum due to the
always greater uncertainty. This should not be the case in probabilistic blurring,
where the standard deviation of uncertainty in interval estimation depends on the
PDF used. So for example the uncertainty in the early extremum of the exponential
PDF should be very similar to that at the late extremum of the flipped-exponential
due to the PDF symmetry. This should also result in identical smearing of the RT
curves at these two different extrema for these two different PDFs.

In order to investigate if the explanatory variables based on temporally or
probabilistically blurred PDFs capture better the behavior of RT curves at different
parts of the ‘go’ time range, the ‘go’ time range was divided in 4 equally spaced bins
and the goodness-of-fit of all models for the different explanatory variables was
computed in each bin. The metric employed for comparing the goodness-of-fit of
these models was the sum of squared residuals in each bin.

For each distribution (PDExp and PDFlip), each modality (visual, auditory,
somatosensory), each of the 4 bins and each of the explanatory variables that was
derived based on the blurred PDF, the quotient of the RT model residuals of the
temporally blurred case over that of the probabilistically blurred case was
computed. This procedure indicated which blurring method provided the model
that fits the RT of a specific bin better.

Modeling of RT relative to auditory condition. The auditory condition was used
as a reference condition and auditory RTs were subtracted from visual RTs and
from somatosensory RTs in both PDExp and PDFlip conditions. The resulting
across-modality ΔRT curves were fitted with an exponential function of ‘go’ time:

f ðtgoÞ ¼ a eb tgo þ c ð19Þ
The condition-specific probability per ‘go’ time (PDExp or PDFlip) was used as

weights in the fitting algorithm (ordinary least-squares in MATLAB’s fit function,

Fig. 5a). Finally, a combined, additive model of RT was constructed based on the
reciprocal, probabilistically-blurred PDF fitted to the auditory RT and the
exponential model fitted to the across-modality ΔRT curves:

xoppcðtgoÞ ¼
1

ppðtgoÞ
þ a eb tgo þ c ð20Þ

Adjusted R2 was calculated to evaluate the goodness-of-fit of the combined,
additive model (Fig. 5b).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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