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Benchmarking an 11-qubit quantum computer
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The field of quantum computing has grown from concept to demonstration devices over the

past 20 years. Universal quantum computing offers efficiency in approaching problems of

scientific and commercial interest, such as factoring large numbers, searching databases,

simulating intractable models from quantum physics, and optimizing complex cost functions.

Here, we present an 11-qubit fully-connected, programmable quantum computer in a trapped

ion system composed of 13 171Yb+ ions. We demonstrate average single-qubit gate fidelities

of 99.5%, average two-qubit-gate fidelities of 97.5%, and SPAM errors of 0.7%. To illustrate

the capabilities of this universal platform and provide a basis for comparison with similarly-

sized devices, we compile the Bernstein-Vazirani and Hidden Shift algorithms into our native

gates and execute them on the hardware with average success rates of 78% and 35%,

respectively. These algorithms serve as excellent benchmarks for any type of quantum

hardware, and show that our system outperforms all other currently available hardware.
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Small universal quantum computers that can execute text-
book quantum circuits exist in both academic1–5 and
industrial6–10 settings. With a range of 2–72 qubits and

sufficient fidelity for only tens of entangling gates, these devices
and the underlying qubit implementations can be difficult to
compare. Even within the trapped ion platform, there is large
diversity in atomic species, system architectures, and gate
implementations. Trapped ion systems with one to two qubits
have shown single-qubit gate fidelities of 99.9999%11 with
microwave-based operations and better than 99.99% fidelity with
laser-based operations12,13, state preparation and measurement
(SPAM) error below 10�411,14, and two-qubit gates with fidelities
exceeding 99.9%12,13. Algorithms have been executed on up to
seven trapped-ion qubits15 and, while not optimized for universal
quantum computing, quantum simulators with more than 50 ions
have modeled fundamental quantum systems including Ising
chains16 and quantum magnetism17.

Benchmarking across implementations needs to be both uni-
versal across platforms and agnostic to the differences in the
underlying hardware. In traditional computing, the performance
of computers is measured by executing a set of benchmark pro-
blems representing various use-case scenarios, to provide users
with an estimate of how the computers would perform in their
specific applications. Canonical quantum algorithms demonstrate
unambiguous advantage of quantum computers over classical
computation, and provide verifiable outcomes to assess successful
execution of the algorithm. Therefore, they can serve as ideal
candidate problems for benchmarking the performance of any
quantum computers. These benchmark algorithms exercise the
full hardware/software stack. A hardware-specific compiler breaks
down algorithms into the target hardware’s native gate set,
optimizing for qubit connectivity, gate times, and coherence18 to
enhance the system’s performance. After execution on the
hardware, the measurements can be directly compared with the
expected output state to determine the accuracy of the device.
This accuracy can then be compared with other devices that have
compiled and run the same algorithm19.

We benchmark two algorithms on an IonQ-trapped ion
quantum computer, shown schematically in Fig. 1. Our qubit
register is comprised of a chain of trapped 171Yb+ ions, spatially
confined near a microfabricated surface electrode trap20,

separating this work from similar implementations in more
macroscopic traps3,18. By using a microfabricated trap, the
underlying hardware of this quantum computer is more exten-
sible than a traditional macroscopic trap. This is due in large part
to the highly reproducible nature of microfabricated devices. In
addition to this advantage, microfabricated surface traps have
many more control electrodes, which allows for the fine control of
the trapping potential. This becomes practically very important
when trying to maintain equal spacing confinement in long
chains of ions. To the best of our knowledge the largest similar
algorithm implementation using a surface electrode trap was
limited to three qubits21; for this work, we loaded 13 ions, the
middle 11 of which were used as qubits. The two end ions allowed
for a more uniform spacing of the central 11 ions. However, on
this same apparatus we have successfully loaded over 150 ions
and have done selective single qubit rotations on subsets of chains
of up to 79 qubits. The choice to use 11 qubits was informed by
the number of gates required for full oracle implementations, our
underlying gate fidelities, and the time required to run all of the
oracles.

Results
Gate implementation and characterization. The ions are laser-
cooled close to their motional ground state using a combination
of Doppler and resolved sideband cooling. We encode quantum
information into the hyperfine sublevels, 0j i � F ¼ 0;mF ¼ 0j i
and 1j i � F ¼ 1;mF ¼ 0j i of the 2S1=2 ground state. At the
beginning of each computation, each qubit is initialized to 0j i via
optical pumping with high accuracy. After qubit operations
(described below), we read out the state of all of the qubits
simultaneously by directing laser light resonant with the
2S1=2 F ¼ 1j i to 2P1=2 transition, imaging each ion onto an inde-
pendent detector and thresholding the photon counts to deter-
mine if each qubit was in the 1j i (spin up) or 0j i (spin down)
state. Thresholding is done by taking a histogram of the collected
photons and discriminating between collecting on average zero
photons for the 0j i state and 10 photons on average for the 1j i
state. Thresholding is a sufficient discriminating function in our
system because our detectors are highly isolated from one another
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Fig. 1 Schematic of the hardware. A linear chain of ions is trapped near a surface electrode trap (trap is not shown). Lasers at 369 and 935 nm (not shown)
illuminate all of the ions during cooling, initialization, and detection. Each ion’s fluorescence is imaged through a 0.6 numeric aperture lens (detection
optics) and directed onto individual photomultiplier tube channels. Two linearly polarized counterpropagating 355 nm Raman beams are aligned to each
qubit-ion, a globally addressing beam that couples to all of the qubits (red) and an individual addressing beam that is focused onto each ion (blue).
Acousto-optic modulators (AOMs) modulate the frequency and amplitude of each of these beams to generate single-qubit rotations and XX-gates
between arbitrary pairs of qubit ions.
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resulting in detection crosstalk between adjacent ions below a part
in 104.

A two-photon Raman transition drives single-qubit and two-
qubit coherent operations by applying a pair of counter-
propagating beams from a mode-locked pulsed 355 nm laser22.
One of these beams globally addresses all of the ions
simultaneously, while the other beam addresses any of the ions
individually (Fig. 1). The individually addressing beams pass
through a multi-channel acousto-optic modulator (AOM), which
allows for the simultaneous modulation of the phase, frequency,
and amplitude of each beam. To perform a single-qubit gate, we
tune the frequency difference between Raman beams to
resonantly drive a spin–flip transition ( 1j i $ 0j i). In order to
perform a two-qubit gate, we off-resonantly drive motional
sideband transitions to generate an XX-interaction23. Both the
global and individual beams are directed over the trap surface
perpendicular to the axis of the ion chain to excite one principal
axis of motion transverse to the chain axis. Individual addressing
allows us to perform single-qubit and two-qubit gates on any
targeted qubits.

Native two-qubit entangling XX-gates are achieved by driving a
spin-dependent force23. Using an amplitude-modulated (AM)
pulse on any selected pair of qubits, we address multiple
transverse motional modes of the ion chain to mediate a
spin–spin Ising interaction between qubits24. To achieve high
fidelity, the amplitude modulation is calculated to simultaneously
decouple all motional modes from the spin at the end of the gate
operation. Additionally, these pulse shapes are designed to
provide robustness against frequency drift of motional modes
and suppress residual off-resonant carrier excitation during the
XX-gate24–27. This gate, in conjunction with single-qubit
rotations, forms a universal gate set for performing circuit model
quantum computation. Since the XX-gates are mediated by the
collective motion of the ion chain, we have all-to-all connectivity
between qubits, allowing two-qubit gates to be executed between
any qubit pair (Fig. 2a).

We perform randomized benchmarking28 to characterize the
single-qubit operations on each ion of the 11-qubit chain. We apply
a randomly chosen sequence of π=2 gates with length L about the X
and Y axes. In between each of these π=2 gates, we either add a π
rotation about the X, Y , or Z-axis, or an identity operation (leaving
the qubit idle for the duration of a gate). A final π=2 gate is chosen
such that the final state is in the Z computational basis (i.e. 0j i or
1j i). We measure the overlap between the measured and expected
output states across 500 iterations for at least 24 sequences for each
L 2 f2; 4; 6; 8; 10; 12g. The fidelity of our single-qubit π=2 gate is
then determined by fitting the resulting overlap as a function of
sequence length to a power law, BpL þ 1

2. Here, the base p is the gate
fidelity and the intercept Bþ 1

2 is the SPAM fidelity, equivalent to
measuring the ion after a single π rotation when it is in either state
0j i or 1j i. For a chain of 11 qubits, we measure an average single-
qubit fidelity of 99.5% (Fig. 2b) and an average SPAM fidelity
of 99.3%.

To quantify the performance of our two-qubit gates and estimate
their fidelity, we measure the state fidelity of the Bell state
1ffiffi
2

p ð 00j i þ eiϕ 11j iÞ prepared using a single XX-gate by performing

partial tomography of the state12,13. The diagonal terms of the two-
qubit density matrix are extracted by measuring the populations in
the even parity states. The populations are measured when the
overall AM pulse height for the XX-gate is tuned to achieve
maximal entanglement such that the even-parity two-qubit states,
P00 and P11, are equal (P00 ¼ P11). The off-diagonal elements are
obtained from the amplitude Φ of a parity oscillation, where the
parity is given by P00 þ P11 � P01 � P10 (P01 and P10 are the
populations of the odd parity two-qubit states). The fidelity can

then be calculated as F ¼ 1
2(P00 þ P11 þΦ)13. We use maximum-

likelihood estimation on experimentally observed data to extract the
parameters of the fidelity expression13. We have performed this
analysis for all 55 pairs of qubits in the 11-qubit chain (Fig. 2c) and
measure an average fidelity of 97.5% with a minimum and
maximum fidelity of 95.1þ0:5

�0:7% and 98.9þ0:1
�0:3%, respectively. The

uncertainty here is determined by a statistical confidence interval on
the maximum-likelihood estimation. The reported fidelity repre-
sents a lower bound of the Bell state creation as we do not correct
for SPAM errors on the two-qubit states or errors in single-qubit
rotations used to observe the parity oscillations of the Bell state,
which on average are 0.7% and 0.5% respectively.

Bernstein–Vazirani (BV). To benchmark our system, we imple-
ment two well-known algorithms: the BV and Hidden Shift (HS).
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Fig. 2 Fidelity of native gates. For each qubit pair, we perform an XX-gate
and measure the joint populations of the qubit pair as a function of an
analysis pulse phase angle. The fidelity of two-qubit gates are plotted as a
color scale in the illustration of our all-to-all connectivity in a. For each
qubit, we perform randomized benchmarking to determine the fidelity of
the single-qubit gates shown in b, which are plotted as the color scale of the
nodes in a. We use maximum-likelihood estimation to extract fidelities
from the parity and joint-population measurement shown in c. The average
two-qubit raw fidelity is 97.5% and all two-qubit gates perform in the range
[95.1%, 98.9%]. The distribution of these fidelities are depicted in the
histograms above the color bars shown in b, c. The fidelity of all single-qubit
gates are enumerated in Supplementary Table 1 and all two-qubit pairs are
enumerated in Supplementary Table 2 of the extended data.
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Both of these algorithms have previously been run on trapped-
ion3,18,21 and superconducting4,18,19 systems of up to five qubits.
By comparing the results of this algorithm to the ideal result, we
obtain a direct measure of the system performance, which
accounts for our native gates, connectivity, coherence times, gate
duration, and all other isolated metrics of system performance.
These results can be used as part of a suite of algorithms to
compare our hardware with other systems. The qubit number in
these results is higher than any comparable published BV or HS
results using a programmable quantum computer3,4,18,19,21.

The BV algorithm is an oracle problem in which the user tries
to determine an unknown bit string c of size N , implemented by a
specific oracle. The algorithm takes a binary input string x and
performs a controlled inversion of an ancillary bit or qubit based
on the bit-wise product of the input and the unknown bit string c
modulo two, f ðxÞ ¼ c � x ðmod 2Þ29. For a quantum BV imple-
mentation (example shown in Fig. 3a), a single quantum query is
sufficient to determine the bit string c30. This is a linear
improvement over the best classical algorithm, which requires N
queries. The BV algorithm was developed to help separate a class
of problems that can be solved in polynomial time on a quantum
computer with bounded errors, bounded-error quantum poly-
nomial (BQP), from its classical counterpart. For an algorithm to
belong to BQP, it must succeed with probability at least 2/3 on all
possible inputs after only a polynomial number of repetitions.
This implies that the single-shot success probability must exceed
1/2 for all inputs, which allows reaching the 2/3 threshold by
classical majority vote on multiple repetitions. This way, the 2/3
threshold success for the algorithm to be above the BQP theshold
may be met with a polynomial number of queries29.

We compile the BV algorithm into our native gate set,
comprised of single-qubit rotations and two-qubit XX-gates.

Optimization during compilation reduces the number of needed
gates compared to naively translating the textbook circuit from
CNOT gates into rotations and XX-gates. The compilation
exploits the full connectivity of our qubits, since we do not need
SWAP operations. The implementation of BV requires a single-
qubit ancilla and a register of N qubits. There are 2N possible bit
strings, therefore for our 10-qubit register there are 1024 possible
oracle implementations. We measured each implementation 500
times, conditioned upon on the measured ancilla state, and plot
the output distribution in Fig. 3b. Each oracle implementation
has, depending on the unknown bit string c, between 0 and 10
two-qubit gates between the ancilla and the qubit register,
corresponding to the number of ones in the binary representation
of the unknown bit string. The process matrix that maps the
encoded oracle to the measured output state is nearly diagonal,
resulting in a highly peaked distribution at the encoded oracle.
For our system, the average overlap between output state and
unknown bit string is 78% (Fig. 3c), where 87.8% of oracle
implementations achieve the 2/3 success criteria defined by BQP.
Conditioning the output on the ancilla state results in a 5.1
percentage point increase in the raw success probability of
73–78% and an 14.5 percentage point increase in the fraction of
oracle implementations above the BQP threshold from 73.3% to
87.8%. The average overlap in Fig. 3c decreases with the number
of two-qubit gates needed in the oracle. The off-diagonal
components of the process matrix show errors since these should
all have zero population. In Fig. 3b, the dominant error is single-
qubit bit-flips from 1j i to 0j i during the measurement process,
which appear as faint diagonals in the lower left quadrant of the
figure. However, even for the oracle implementation where we
have the lowest success probability, the next-most-probable state
is still four times less likely than the correct string.
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Fig. 3 Bernstein–Vazirani (BV) algorithm. a Shows a textbook implementation of the BV algorithm with hidden bit string 1010101010. b Shows the full
output distribution for all 1024 oracle implementations calculated from 500 iterations of each oracle after conditioning on the ancilla. c Shows the
probability (inset plot) of detecting the encoded hidden bit string for all 1024 oracle implementations, as a function of the number of ones in the binary
representation of the unknown bit string, which is equivalent to the number of two-qubit gates (n), which is maximally 10 in the case of this algorithm. The
boxplots highlight the minimum, first quartile, median, third quartile, and maximum of the data. Note that there is only one oracle implementation for n= 0,
10, which explains the lower observed variances for these points. In contrast, there are many more oracles that consist of five two-qubit gates, where each
included gate has slightly different fidelity. This leads to increased variance across the full set of five two-qubit gate oracle implementations. The shaded
area spans the expected fidelity (excluding crosstalk errors) F n

2QF 2ð nþ1Þ
1Q F 10

SPAM (where F 2Q is the fidelity of two-qubit gates, F 1Q is the fidelity of single-
qubit gates, and F SPAM is the average SPAM fidelity) if all of our gates share the best measured fidelity or, alternatively, all share the worst fidelity. The
result of a shared average fidelity is plotted as a dashed line. The average probability of success is 78% with 899 out of the 1024 oracle implementations
exceeding the 2=3 BQP single-shot success threshold.
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Hidden shift. The HS algorithm consists of two N-bit to N-bit
function oracles f and g, which are the same up to a shift by a hidden
bit string s, such that gðxÞ ¼ f ðx þ sÞ. The goal is to determine the
HS s by querying the oracles. In our implementation31 of the HS
algorithm, the oracles are inner product or bent functions f ¼P

ix2i�1x2i and g ¼ f ðx þ sÞ, where x is the input and xi is the i-th
bit of x (an example is shown in (Fig. 4a). Classically it can be
shown that determining the shift s requires

ffiffiffiffiffiffi
2N

p
queries where N is

the length of the bit string s. On a quantum computer, in principle,
the shift can be read out in a single query31,32. In contrast to the BV
algorithm, the quantum implementation of the HS algorithm shows
an exponential reduction in the number of queries to the oracle
compared to a classical computer31.

As with the BV algorithm, we compile the HS algorithm into our
native gates. There are 2N available oracle implementations
corresponding to the 2N possible hidden bit strings s. We execute
all 1024 possible implementations on our 10-qubit register (Fig. 4b).
The correct output state is the state corresponding to the HS. The
average overlap between the output state and s was 35% (Fig. 4c),
and of the 1024 oracles, 1017 had most likely output states
corresponding to the shift. The success probability for HS is lower
and more uniform than that of BV because all of the oracles have
the same number of two-qubit gates (10) and many more single-
qubit gates (25–40). Every oracle implementation in HS has at least
as many gates as the most challenging BV oracle implementation
and therefore is more difficult. Given our average single-qubit and
two-qubit fidelities, we would not expect to surpass the BQP
threshold for the HS oracles. However, the successful determination
of the shift was achieved much more frequently than if we sampled
a classical distribution where the success probability would have
been 0.1%.

Discussion
In summary, although there are several superconducting quantum
computing platforms with large qubit number, IBM and Rigetti for
instance, we have constructed the most powerful programmable

quantum computer to date that has demonstrated algorithms with
success rates above the BQP threshold. We have used a trapped ion
quantum computer to perform the largest quantum implementa-
tions of the BV and HS algorithms. Using a 10-qubit register, we
implement all 1024 possible oracles for each algorithm. We exceed
the BQP threshold for 87.8% of the oracle implementations in the
BV algorithm, an application designed to define this complexity
class. Our worst-case oracle implementation, when taking into
account detection and preparation error, had a success probability of
50.2%. This implies that it would take <11,500 repetitions to reach
the BQP threshold on our worst case oracle. We also demonstrate
35% overlap between the measured and expected output states in
the implementation of the HS algorithm, which is a more
demanding application due to its higher gate count and exponential
speed up over its classical analog. The success of both algorithms is a
result of high-fidelity native gates and efficient gate compilation and
compression in the fully connected ion trap system. The demon-
stration of these two canonical algorithms is a starting point for
benchmarking any quantum computer. Computing real problems
on larger systems with more qubits will require even more gates in
the future with even higher quality, and similar standard algorithms
to those demonstrated here will likely play a crucial role in bench-
marking quantum computers in the future.

Data availability
The data presented in this manuscript are available from the corresponding author upon
reasonable request.
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