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Measuring the shape of the biodiversity-disease
relationship across systems reveals new
findings and key gaps
Fletcher W. Halliday1* & Jason R. Rohr2

Diverse host communities commonly inhibit the spread of parasites at small scales. However,

the generality of this effect remains controversial. Here, we present the analysis of 205

biodiversity–disease relationships on 67 parasite species to test whether biodiversity–disease

relationships are generally nonlinear, moderated by spatial scale, and sensitive to under-

representation in the literature. Our analysis of the published literature reveals that

biodiversity–disease relationships are generally hump-shaped (i.e., nonlinear) and biodi-

versity generally inhibits disease at local scales, but this effect weakens as spatial scale

increases. Spatial scale is, however, related to study design and parasite type, highlighting the

need for additional multiscale research. Few studies are unrepresentative of communities at

low diversity, but missing data at low diversity from field studies could result in under-

reporting of amplification effects. Experiments appear to underrepresent high-diversity

communities, which could result in underreporting of dilution effects. Despite context

dependence, biodiversity loss at local scales appears to increase disease, suggesting that at

local scales, biodiversity loss could negatively impact human and wildlife populations.
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Understanding whether there is a general relationship
between biodiversity and disease risk is critical for pro-
jecting and reducing the impacts of future disease out-

breaks1–4. If increasing biodiversity generally reduces disease, a
phenomenon coined the dilution effect, then biodiversity loss
could have negative consequences for human and wildlife
populations1,5. However, if biodiversity–disease relationships are
idiosyncratic or context dependent, then biodiversity loss could
have no effect on, or, in the case of an amplification effect, even
reduce the risk of disease to wildlife and humans6,7. Such context
dependence in the biodiversity–disease relationship has become a
major concern among disease ecologists3,4,8. Consequently,
numerous empirical studies and reviews of biodiversity–disease
relationships have sought to define the specific conditions under
which dilution or amplification are likely to take place9–14,15. Yet
despite these studies, the degree of context dependence in
biodiversity–disease relationships remains unknown. Thus, the
value of biodiversity as a buffer against disease risk has been
called into question8,16,17.

Context dependence in the biodiversity–disease relationship
can arise when the shape of the biodiversity–disease relationship
is nonlinear. By definition, parasites require hosts for food and
habitat. Thus, all else being equal, an increase in host biodiversity
from zero hosts must initially increase the risk of disease18,19.
However, if parasites are selected to infect the most abundant and
widespread hosts or there are trade-offs between defending
against parasites and host growth, reproduction, and dispersal,
then communities might assemble in a manner where the first
species added to communities are generally competent, disease-

amplifying hosts and later additions might be rarer, diluting
hosts10. If so, the initial increase in disease risk when moving
from zero hosts to a few might reverse at higher diversity levels
(Fig. 1a), and the skew of the biodiversity–disease relationship
might affect the predominance of amplification or dilution. When
biodiversity–disease relationships are left-skewed or asymptotic,
amplification effects should predominate, because most increases
in biodiversity will be associated with increased parasite abun-
dance18 (Fig. 1a). Alternatively, when biodiversity–disease rela-
tionships are right-skewed, dilution should predominate18

(Fig. 1b). Nevertheless, understanding the shape of nonlinear
biodiversity–disease relationships remains a major research
gap8,10,19,20.

Where communities fall on nonlinear biodiversity–disease
curves is also important. If changes in biodiversity all occur to the
right or left of the peak of unimodal diversity-disease curves, then
dilution or amplification, respectively, will be most common,
regardless of the direction of the skew of that relationship
(Fig. 1b). This might create biases for both observational and
manipulative studies. Observational studies might not capture
low host diversity levels if they are rare in nature, which could
lead researchers to spuriously conclude that there is a linear
dilution effect, even though amplification might occur at non-
sampled low levels of host diversity8,20 (Fig. 1b). In contrast,
manipulative studies might include mostly low levels of biodi-
versity because of the logistical challenges of collecting sufficient
numbers of many host species for an experiment; this could
potentially bias results towards amplification. Because the mini-
mum diversity in any system is bounded at zero, the former bias

Monotonic
asymptotic

(amplification)

Non-monotonic
right-skewed

(dilution)

a

b

Dilution

P
ar

as
ite

 a
bu

nd
an

ce

Host diversity

Host diversity

P
ar

as
ite

 a
bu

nd
an

ce

A
m

pl
ifi

ca
tio

n

Non-monotonic
left-skewed

(amplification)

Fig. 1 Hypothetical relationships between biodiversity and disease risk. a A non-monotonic right-skewed distribution suggests that dilution might occur
more frequently, but less intensely than amplification because the relationship is moderately negative over a greater portion of the biodiversity gradient
than it is strongly positive. A non-monotonic left-skewed distribution suggests that amplification might occur more frequently but less intensely than
dilution, because the relationship is moderately positive over a greater portion of the biodiversity gradient than it is strongly negative. A monotonic and
asymptotic distribution suggests that amplification becomes increasingly moderate with biodiversity. b In addition to the shape of biodiversity–disease
relationships, the location on the curve where biodiversity levels are observed will also affect the likelihood and intensity of dilution and amplification. For
example, in a right-skewed biodiversity–disease relationship, collecting measurements at biodiversity beyond the peak of parasite abundance could lead
researchers to conclude that there is was a linear dilution effect, whereas measurements before the peak of parasite abundance would lead researchers to
conclude that there was a linear amplification effect
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can be easily detected by simply quantifying the minimum
diversity level in observational studies. However, because max-
imum diversity is unbounded and underreported, the latter bias
of experimental studies might be more difficult to assess.

Context dependence in the biodiversity–disease relationship
may also arise when the direction of the biodiversity–disease
relationship depends on the spatial scale of observation2,8,21.
Local processes influence the abundance of species at relatively
small spatial scales, whereas regional processes influence the
distributions of species across large spatial extents22. Relying on
this well-characterized ecological phenomenon, it has been pro-
posed that biodiversity–disease relationships should be strongest
at local scales, where biotic interactions are most likely to occur,
and should weaken or could even reverse at larger scales, where
individual studies encompass a greater diversity of habitat types
and abiotic factors like climate may cause the distributions of
hosts and parasites to covary10,23. In other words, at small spatial
scales, increasing biodiversity might cause a reduction in parasite
abundance, resulting in an observed dilution effect, whereas
at larger spatial scales, regional processes might cause host bio-
diversity and disease risk to positively covary, offsetting the
dilution effect or even resulting in an apparent amplification
effect. Moreover, whether hosts can dilute disease might be more
observable at small scales where encounter reduction can occur,
whereas the amplifying effect of hosts might only be observable at
larger temporal and spatial scales24. Even though theory indicates
that spatial scale can moderate biodiversity–disease relationships,
and biodiversity–disease studies have occurred from global to
local scales25–27, few studies have been conducted across multiple
spatial scales. Thus, the degree to which biodiversity–disease
relationships are moderated by spatial scale remains largely
untested (but see ref.24).

By quantifying the shape and direction of 205 published
biodiversity–disease relationships, this study aims to test three
contingencies to biodiversity–disease relationships. Specifically,
we test whether previously published biodiversity–disease rela-
tionships are generally (a) nonlinear, (b) moderated by spatial
scale, and (c) sensitive to underrepresentation in the literature of
extremely low and high diversity. Our results indicate that,
among published data, biodiversity–disease relationships are
generally nonlinear, that dilution most commonly occurs at small
(i.e., local) scales and amplification most commonly occurs at
large (i.e., regional) scales, that few studies are unrepresentative of
communities at low diversity, but that missing data at low
diversity in field studies could potentially result in the under-
reporting of amplification effects, and that experimental studies
might be unrepresentative of communities at the highest diversity
levels, which could potentially result in underreporting of dilution
effects.

Results and discussion
Nonlinearity in the biodiversity–disease relationship. First, we
tested whether the published relationship between biodiversity
and disease was linear or nonlinear by comparing intercept-only,
linear, second-order, and third-order polynomial regression
models for all biodiversity–disease relationships, selecting the best-
fitting model using Akaike's information criterion (AIC) (Sup-
plementary Data 1). Importantly, these models were only based on
the data presented in each study and thus did not constrain the
biodiversity–disease relationship to the origin (see ‘Do missing
data at low and high-diversity bias studies to report dilution
effects?’ section below). Out of the 205 studies that included more
than three levels of biodiversity, 67% were best fit by a linear,
second-order, or third-order polynomial model (i.e., exhibited a
relationship between biodiversity and disease). Of these studies,

biodiversity–disease relationships were most commonly nonlinear,
as predicted. More specifically, 61% exhibited nonlinear relation-
ships (either second- or third-order polynomial), whereas 6%
exhibited a linear, positive biodiversity–disease relationship (e.g.,
linear amplification effect), and 33% exhibited a linear, negative
biodiversity–disease relationship (e.g., linear dilution effect).
Whether the best-fitting model was linear, nonlinear, or intercept-
only did not depend on the number of unique values of host
diversity in a study (Supplementary Data 1). These effects were
also qualitatively similar using two goodness-of-fit statistics: the
adjusted R2 (80% of studies were best fit by a linear, second-order,
or third-order polynomial model; of these, 71% exhibited non-
linear relationships, either second- or third-order polynomial
functions) and the more conservative, Bayesian information cri-
terion (BIC) for model selection (49% were best fit by a linear,
second-order, or third-order polynomial model; of these, 53%
exhibited nonlinear relationships; Supplementary Note 1; Sup-
plementary Data 1).

Although comparing regression models identified many
nonlinear biodiversity–disease relationships, this approach is
constrained by the functional form of each regression model. In
other words, we are only able to detect nonlinear relationships
where those relationships were best fit by second- or third-order
polynomials. To relax this constraint, we used Spearman rank
correlation tests (not constrained to pass through the origin),
which make no assumption about the underlying distribution of
the data nor the linearity of the relationship between variables,
and are therefore not constrained by the functional form of the
biodiversity–disease relationship. We quantified whether each
biodiversity–disease relationship was monotonic and positive
(disease increases, but may level off, as diversity increases),
monotonic and negative (disease decreases but may level off as
diversity increases), or non-monotonic (disease increases with
diversity at low levels, but eventually decreases at high enough
diversity; Fig. 1a). The estimated Spearman rank correlation
coefficient (ρ) approaches one for monotonic, positive relation-
ships, and approaches negative one for monotonic, negative
relationships. We therefore used ρ to define monotonic
amplification (ρ > 0, Spearman p < 0.05), monotonic dilution
(ρ < 0, Spearman p < 0.05), and non-significant or non-
monotonic relationships (Spearman p > 0.05). Consistent with
the previous analysis, 10% of the 205 relationships exhibited
monotonic amplification effects, 35% exhibited monotonic
dilution effects, and 55% exhibited non-significant or non-
monotonic relationships.

Given that nonlinear and non-monotonic biodiversity–disease
relationships are most common and that amplification effects
might predominate when these relationships are left-skewed or
asymptotic, whereas dilution might predominate when they
are right-skewed18, we next assessed the skew of each
biodiversity–disease relationship. To do so, we fit a smoothing
spline to each published biodiversity–disease relationship, that
was not constrained to pass through the origin, and then
calculated Pearson’s skewness from the shape of the estimated
curve, excluding studies where there was no relationship (i.e.,
where the slope of the curve was not significantly different from
zero; n= 29), because Pearson’s skewness cannot be estimated
from a curve with a slope of zero. As expected, Pearson’s
skewness and Spearman rank correlation were in agreement when
studies exhibited monotonic biodiversity–disease relationships.
Specifically, studies exhibiting monotonic dilution effects were
significantly right-skewed (t test p < 0.001), and studies exhibiting
monotonic amplification effects were significantly left-skewed (t
test p < 0.001; Fig. 2). Studies exhibiting non-significant or non-
monotonic relationships based on Spearman rank correlation
were not significantly skewed (t test p= 0.80), indicating that
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non-monotonic biodiversity–disease relationships, were on aver-
age, equally likely to show amplification or dilution. These results
were qualitatively similar for the analysis comparing intercept-
only, linear, second-order, and third-order polynomial regression
models (Supplementary Figures 1, 2).

These results support the hypothesis that the shape of
biodiversity–disease relationships might be nonlinear8,18. Thus,
where an individual system falls along a biodiversity gradient
might influence whether that system experiences amplification or
dilution. Similarly, predicting how disturbances will alter disease
may depend on where individual systems fall along a biodiversity
gradient.

Effects of spatial scale. Second, we tested whether the shape and
direction of the biodiversity–disease relationship was moderated
by spatial scale. Spatial scale can be decomposed into spatial
grain, which represents the area over which a single replicate
measure of biodiversity and disease are collected, and spatial
extent, which represents the total area over which a study is
conducted, including all measures of biodiversity and disease for a
given study28. Although spatial scale can be quantified in absolute
terms (e.g., km2), comparing spatial scale among studies can be
problematic, particularly if spatial scale is confounded with host
biomass. For example, a study of bacteria could be carried out in a
test-tube or in an ocean, but a study of whales could never be
conducted in a test-tube. We expected this missing-cells design to
be more problematic for studies of small spatial grain, which
might include a single population of a small-bodied host organ-
ism, than for studies of small spatial extents, which must always
include multiple replicate host communities, by design. We
therefore report the results of unstandardized spatial extent,
noting that the results were qualitatively similar for spatial extent
standardized by host biomass and for spatial grain standardized
by host biomass (Supplementary Note 2).

In the published literature, spatial extent tended to be
correlated with the metrics used to estimate diversity and disease
as well as several characteristics of individual study systems,
potentially obscuring the effect of spatial scale on the shape of the
biodiversity–disease relationship (Fig. 3). Specifically,
biodiversity–disease relationships at the largest spatial extents
were dominated by observational studies of human diseases
(Fig. 3c, Fig. 3f). These results highlight a pressing need for
comprehensive studies of biodiversity and disease conducted
across spatial scales. Despite the lack of measurements across all
endpoints and spatial scales, host richness and parasite prevalence
were reported across more than five orders of magnitude in
spatial extent, allowing studies to be compared across systems
(Fig. 3a, Fig. 3b). However, the following results should still be

interpreted with caution, as extreme values of spatial extent may
be confounded with other characteristics of study systems.

Spearman’s ρ, which measures the monotonicity and direction
of association between biodiversity and disease, was positively
associated with spatial extent (Type III ANOVA p= 0.002;
marginal R2= 0.16; Fig. 4a), with monotonic dilution effects most
commonly occurring at small to intermediate spatial scales and
monotonic amplification effects most commonly occurring at the
largest spatial scale. Incorporating the shape of non-monotonic
relationships did not alter this result; Pearson’s skewness was
significantly associated with spatial extent (Type III ANOVA p <
0.001; marginal R2= 0.15; Fig. 4b), with right-skewed relation-
ships (indicating more dilution) occurring at small to inter-
mediate spatial scales and left-skewed relationships (indicating
more amplification) occurring at large spatial scales. This effect
was not moderated by how host diversity and disease were
measured (Supplementary Table 1).

Right-skewed and negative-monotonic relationships generally
occurred within an ecosystem, at spatial extents < 100 km2

(roughly the size of a small city), whereas left-skewed and
positive-monotonic relationships generally occurred across eco-
systems, in studies occupying > 1,000,000 km2 (roughly the size of
France and Spain combined). However, the analysis of spatial
grain did not indicate significant amplification at any spatial scale
(Supplementary Note 2), and so results regarding amplification at
large scales should be interpreted with caution. We did find
significant amplification at the largest spatial extents, indicating
that the overall disease burden in one ecosystem can be higher
than another because its native biodiversity is higher, but if this
ecosystem has its biodiversity lowered, disease could still worsen.

This dependence of biodiversity–disease relationships on spatial
scale may be an indicator of a more general mechanism of disease
amplification. Notably, comparison of biodiversity–disease rela-
tionships within an ecosystem often include many of the same
host species, e.g.,29, whereas comparisons of biodiversity across
ecosystems tend to include distinct sets of host species, e.g.,30.
Thus, measuring the degree to which host–species turnover (β
diversity) drives biodiversity–disease relationships could help
clarify why amplification was more commonly observed at large
spatial extents, and could possibly help predict when amplification
will be more common, in general.

These results reveal an association between the shape of
published biodiversity–disease relationships and the spatial scale
of observations, supporting the hypothesis that biodiversity–disease
relationships are scale-dependent2,10. Importantly, however, not
every small-scale study exhibited dilution, nor did every large-scale
study exhibit amplification. As an example, at small spatial scales,
biodiversity can amplify disease via a sampling effect if species are
added randomly with respect to host competence and transmission

Monotonic amplification
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Right skewed
No skew

Non-monotonic

Monotonic dilution

–2 0

Shape of the biodiversity disease relationship (Pearson’s skewness)

2 4

Fig. 2 Results of the analysis comparing Spearman rank correlation to Pearson’s skewness. Points are model-estimated means and error bars are 95%
confidence intervals. The colored points show the distribution of the raw data. Left-skewed relationships (Pearson’s skewness < 0.25) are shown in red,
right-skewed relationships (Pearson’s skewness > 0.25) are shown in blue, and non-skewed relationships are shown in gray. Spearman rank correlation
was strongly associated with Pearson’s skewness: monotonic amplification effects (ρ > 0, Spearman p < 0.05) tended to be left-skewed, monotonic dilution
effects (ρ < 0, Spearman p < 0.05) were right skewed, and non-monotonic relationships were not significantly skewed. Source data are provided as a
Source Data file
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is frequency-dependent9, and in a global survey of island nations,
leptospirosis incidence strongly declined with increasing mammal
species richness31.

We performed a sensitivity analysis to test whether the
observed spatial moderation of biodiversity–disease relationships
depended on any of the three studies that were conducted at the
largest spatial scale (Supplementary Note 2). One study, a global
survey of human disease burden30, strongly influenced the results
of our analysis. Omitting this study from the analysis of spatial
scale did not qualitatively change the significant effect of spatial
extent on the skewness of the biodiversity–disease relationship
(Type III ANOVA p= 0.006), but did eliminate the significant
effect of spatial extent on the monotonicity and direction of the
relationship (Type III ANOVA p= 0.27). Importantly, despite
the sensitivity of these analyses to studies at the largest spatial
scale, the effect of spatial scale on the shape and direction of the
biodiversity–disease relationship showed a similar trend even
when we excluded all three influential data sets at the largest
spatial scale from our analysis. Specifically, after omitting the
three studies conducted at the largest spatial extent, we still
detected significantly monotonic negative and right-skewed
biodiversity relationships only at spatial extents below < 100
km2 (roughly the size of a small city).

At a given spatial scale, ecological factors including
characteristics of host and parasite species can influence
whether dilution or amplification are observed32–34. Accounting
for characteristics of host species, genotypes, or life-history

stages that are driving biodiversity–disease relationships both
within and across spatial scales will therefore be critical for
future studies aimed at developing a more mechanistic under-
standing of biodiversity–disease relationships across scales. We
tested whether several ecological factors could explain variation
in the effect of spatial scale on the shape of biodiversity–disease
relationships. Specifically, we tested whether the effect of spatial
scale on biodiversity–disease relationships differed between (i)
parasites that infect humans vs. wildlife, (ii) macro- vs.
microparasites, (iii) parasites with complex vs. direct lifecycles,
and (iv) observational vs. manipulative studies. We found no
evidence that the effect of spatial scale on biodiversity–disease
relationships was moderated by any of these factors (Table 1).
Thus, the effect of spatial scale on biodiversity–disease relation-
ships was generally robust across all ecological contexts
examined.

Despite the generally robust effect of spatial scale on the shape
of biodiversity–disease relationships, we still encourage caution in
interpreting these results, as there was multicollinearity in these
analyses. Specifically, observational studies and studies of human
pathogens both tended to occur at larger spatial scales than
manipulative studies and studies of wildlife pathogens (Fig. 3).
This collinearity highlights an important limitation in the study
of biodiversity–disease relationships: our understanding of the
relationship between biodiversity and disease is limited by
research priorities, approaches, and study systems, which can
vary among individual research groups2,10. Consequently, we
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cannot rule out the possibility that these results could change if
future studies filled these research gaps, allowing tests of these

context dependencies to be less collinear. Furthermore, the scale
associated with data used does not necessarily mean that this is
the scale of the transmission cycle, and ignoring the spatial scale
of transmission can lead to spurious conclusions. For example,
depending on the scale of transmission, study scale can determine
whether wildlife loss protects against or promotes tick-borne
disease24. It is therefore possible that some studies conducted at
small spatial scales did not capture the entire parasite transmis-
sion cycle compared with studies conducted at larger spatial
scales. Ideally, an analysis of spatial scale would therefore include
transmission scale as a standardizing variable. However, because
the scale of transmission is unreported or unknown for most
pathogens, we instead used host biomass, because transmission
often scales with host biomass35,36. Our results were robust to
standardization by host biomass (Supplementary Figure 3).

Underrepresentation in the literature. Finally, we tested the
hypothesis that underrepresentation in the literature of extreme
environmental scenarios with either high or low biodiversity
communities in experimental and observational studies might
bias studies to more commonly report amplification and dilution
effects, respectively. Experimental studies had a lower mean
maximum diversity level than observational studies (experimental
mean ± sd: 25 ± 10, observational mean ± sd: 48 ± 74). Thus, it
appears that experimental studies are under representing com-
munities at the highest diversity, which could bias experimental
studies towards amplification effects. This result could emerge
from two key differences between experiments and observational
studies. First, experimentally manipulating many species is
logistically challenging at high richness, potentially biasing
experimental studies to include fewer total species than obser-
vational studies of equivalent size. Second, the number of species
in an area is highly sensitive to the area surveyed37, and obser-
vational studies were, on average, four orders of magnitude larger
than manipulative experiments (Supplementary Figure 4).
Focusing on studies of comparable extent (1–10 km2) eliminated
the difference in mean maximum diversity between experiments
(29 ± 10) and observational studies (22.0 ± 10), supporting this
second mechanism.

We also examined the lowest diversity levels to assess whether
there was underrepresentation in the literature of environmental
scenarios with low diversity. Experimental studies had lower
mean minimum diversity than observational studies (experi-
mental mean ± sd: 1.2 ± 0.7; observational mean ± sd: 4.9 ± 8.0),
which could bias observational studies towards dilution effects.
However, 82% of the 205 studies included a measurement of
effective species richness of two or lower. Consequently, as
effective species richness represents the effective number of
species in a community (which is bounded at zero), most studies
(n= 168) were not missing substantial data at low host diversity.
This result indicates that the potential for underrepresentation in
the literature at extremely low diversity to bias the estimated
relationship between biodiversity and disease is quite low.

Even though most studies were not under representative of
communities at low host diversity, we still performed an
additional test of the hypothesis that underrepresentation in the
literature might bias studies to more commonly report dilution
effects. Here, we again quantified the skew of each
biodiversity–disease relationship, this time constraining each
curve to pass through the origin, because if there are no hosts
there cannot be any parasites. Constraining each curve to pass
through the origin should reduce the estimated skew in all
studies, particularly studies that found monotonic dilution effects.
As predicted, constraining the curves to the origin significantly
changed the shape of the average biodiversity–disease relationship

Table 1 Models of ecological factors moderating the effect of
spatial scale on biodiversity–disease relationships

DF F value p value

Spearman correlation coefficient
Spatial extent 32.9 1.206 0.28
Human 39.5 0.116 0.74
Route 39.2 1.719 0.19
Macroparasite 29.0 1.055 0.31
Manipulative 38.4 0.262 0.61
Spatial extent × human 34.4 0.073 0.79
Spatial extent × route 38.2 0.269 0.61
Spatial extent × macroparasite 30.5 0.576 0.45
Spatial extent × manipulative 33.9 0.000 0.99
Pearson’s skewness
Spatial extent 6.9 0.177 0.69
Human 47.4 0.100 0.75
Route 39.2 0.489 0.48
Macroparasite 9.4 0.140 0.71
Manipulative 12.7 0.004 0.94
Spatial extent × human 26.7 0.076 0.78
Spatial extent × route 52.6 0.374 0.54
Spatial extent × macroparasite 18.4 0.285 0.59
Spatial extent × manipulative 5.6 0.001 0.97

Type III analysis of variance table with Satterthwaite’s method
DF, denominator degrees of freedom
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Fig. 4 Results of the analyses relating spatial scale to the shape of the
biodiversity–disease relationship. Points represent each published
biodiversity–disease relationship, colored by their estimated shape (red=
monotonic amplification in a and left-skewed in b; blue=monotonic
dilution in a and right-skewed in b; gray= non-significant or non-monotonic
in a non-skewed in b). Solid lines indicate the estimated fit of a multilevel
random effects model, and gray ribbons indicate the 95% confidence
intervals. Spatial scale moderates the relationship between biodiversity and
disease: a Spearman rank correlation between biodiversity and disease was
positively associated with spatial extent, and b Pearson’s skewness was
negatively associated with spatial extent. Source data are provided as a
Source Data file
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(t test p < 0.001), reducing the estimated frequency of dilution
effects and increasing the estimated frequency of amplification
effects (Fig. 5). This result indicates that underrepresentation of
communities at low host diversity may bias some studies to
underreport amplification effects. However, even though con-
straining curves to fit through the origin shifted the estimated
skew of most studies, on average, the constrained curves were not
significantly left-skewed (t test p= 0.55; Supplementary Figure 5).
Furthermore, spatial scale still significantly moderated the sign of
the constrained curves, with dilution more common at small
scales and amplification more common at large scales (Type III
ANOVA p < 0.001; Supplementary Figure 4), and this effect was
still robust to ecological characteristics of individual study
systems (Supplementary Table 2).

These results indicate that scale-dependence of published
biodiversity–disease relationships is robust to underrepresenta-
tion of communities at low diversity levels. The robustness of this
scale-dependence may be a product of the underlying shape of
biodiversity–disease relationships. Studies that found monotonic
amplification effects were unlikely to be altered by missing data at
low diversity (Fig. 1a). Conversely, studies that found monotonic
dilution had higher potential to be altered by missing data at low
diversity. However, 66 of the 72 studies showing monotonic
dilution effects included an effective species richness of two or
lower. Thus, regardless of the shape of the relationship between
the origin and the point of peak parasite abundance, the area in
which amplification could occur was generally quite small. We
therefore conclude that although the biodiversity–disease rela-
tionship can take on many forms, and its form may depend on a
nonlinearity that is driven by parasite extinction at low host
diversity, such nonlinearities are unlikely to alter a general and
common phenomenon: dilution effects are most commonly
observed at local scales and the effect weakens and may even
reverse as spatial scale increases.

Together, these results indicate that the scale-dependence of
biodiversity–disease relationships might be robust to under-
representation of communities at low diversity levels and to
ecological characteristics of individual studies. However, we are
unable to test whether underrepresentation of communities at
high diversity might bias experimental studies to more commonly
observe amplification. This bias of experimental studies is difficult
to assess because the maximum biodiversity in a host community
is unbounded and underreported, and in most systems, the
distribution of natural levels of host diversity is unreported.
Furthermore, there is still considerable debate surrounding the
scale, location, and context of biodiversity loss38. Thus, the
applied significance of missing biodiversity data in experimental
studies remains unresolved.

The results of this analysis are limited by the availability of
previously published data, which may be biased to report
significant effects (i.e., a “file-drawer problem”) or to select
systems to study that are likely to show dilution (i.e., to show
“system selection bias”)2,39. However, a previous study conducted
in 2015 found no evidence of a file-drawer problem for parasites
of humans40. Furthermore, by re-analyzing previously published
data, our study is somewhat less sensitive to the file-drawer
problem than typical meta-analyses, which rely on previously
published statistical tests. Nevertheless, we cannot rule out the
possibility for an overabundance of studies finding significant
dilution or amplification relative to the frequency of dilution or
amplification in nature.

A major limitation to this analysis and a major research gap in
the study of biodiversity–disease relationships is the lack of
empirical studies conducted across spatial scales and ecological
conditions using the same methodologies. Specifically, although
we found a significant, positive relationship between spatial
extent and the direction of the biodiversity–disease relationship,
the spatial extent of a study tended to be non-independent of
study design and parasite type. Furthermore, our models only
estimated significant amplification when the spatial extent of a
study was >1,000,000 km2, and only three studies have measured
biodiversity–disease relationships at this scale, one of which
contributed nearly every estimate of amplification and used a
unique and human-specific disease metric (DALYs, Fig. 3)30. Our
analysis indicates that the effect of spatial scale on the shape of
the biodiversity–disease relationship is robust to the omission of
this study. However, even though the relationship between spatial
extent and the shape of biodiversity–disease relationships was
generally robust in our analysis, we cannot rule out the possibility
that additional multiscale studies, particularly at the largest spatial
extents, could change these results. Consequently, the existing
literature may be insufficient to predict how biodiversity loss at
the largest spatial scales (e.g., via mass extinctions) will alter
disease risk. We are hopeful that as large-scale replicated studies,
such as the Nutrient Network41 and National Environmental
Observatory Network42, become more widespread, the quality of
data at the largest spatial scales will improve.

Understanding how biodiversity alters infectious diseases
remains a critical frontier in disease ecology10,11,43 as human
activities continue to alter global biodiversity44,45, and disease
outbreaks continue to increase46–48. This study provides
quantitative evidence that, among published studies, the relation-
ship between biodiversity and disease is nonlinear and scale-
dependent. This general pattern indicates that biodiversity loss
could exacerbate disease outbreaks at the scales in which humans
are most likely to encounter disease, and highlights important

Unconstrained
skew

Constrained
skew

Average change
in skew

–2

Left skewed Right skewed

Pearson’s skewness

0 2 4

Fig. 5 Results of constraining biodiversity–disease relationships to pass through the origin. The top two rows show Pearson’s skewness for unconstrained
curves, and curves that were constrained to pass through the origin, with each study connected by a solid line. Left-skewed relationships (Pearson’s
skewness < 0.25) are shown in red, right-skewed relationships (Pearson’s skewness > 0.25) are shown in blue, and non-skewed relationships are shown in
gray. The bottom row shows the model-estimated effect of constraining the curves to pass through the origin, with the point indicating the model-
estimated mean, and error bars showing the 95% confidence interval. On average, constraining curves to pass through the origin results in a more left-
skewed relationship between biodiversity and disease. Source data are provided as a Source Data file
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scales in which biodiversity conservation might be most useful for
minimizing and mitigating these consequences.

Methods
Data compilation. This study aimed to analyze the shape of every published
relationship between host diversity and the abundance of parasites. We updated the
list of studies from Civitello et al.3 to include studies published between 2014 and
2018, by repeating their original search criteria. Specifically, we searched the Web
of Science for several combinations of search terms: parasite, pathogen, diversity,
richness, evenness, dilution effect, and amplification effect (the final search was
conducted in June 2018). We identified additional papers by searching the litera-
ture cited sections of these articles and by searching Web of Science for all papers
citing Civitello et al.3, including those critical of the dilution effect hypothesis. We
included observational and experimental studies in lab and field environments.

Selection criteria and data collection. We only included studies that measured
parasite abundance or prevalence at more than two host diversity levels. We
included studies that reported infection prevalence, mean parasite load, density of
infected vectors, or percent diseased tissue, because these quantities are the most
relevant metrics of disease risk for microparasites, macroparasites, vector-borne
parasites, and plant parasites, respectively3. We did not standardize parasite
abundance, as standardization would not alter the estimated shape of the
biodiversity–disease relationship, and we therefore did not compare parasite
abundance among studies. Host biodiversity was reported as species richness,
Simpson’s diversity index (J), or Shannon’s diversity index (H). We standardized
across these measures to facilitate comparisons across studies by transforming
diversity into the effective number of species, following Jost49. This transformation
puts species richness, Simpson’s diversity index, and Shannon’s diversity index on
the same arithmetic scale, but does not change the underlying data that were used
to calculate each metric. In experiments, estimated diversity included all taxa added
by the experimenters, whereas the diversity estimate in observational studies was
limited to a focal taxonomic or functional group of host species, defined in the
primary study (e.g., herbaceous plants, trees, birds, or small mammals).

We extracted data from text and tables manually and from figures using
WebPlotDigitizer version 4.150, and recorded other data relating to the biology or
methodology of each study. For all studies, we recorded parasite and host taxa, type
of parasite (infecting only wildlife or also infecting humans), focal host species,
associated species (i.e., additional species whose presence may dilute or amplify
parasite abundance, operationally defined as ‘potential diluters’), the diversity (e.g.,
richness) in the treatments (or in the field survey), parasite functional group
(macroparasite vs. microparasite), parasite lifecycle (complex vs. direct), and study
design (manipulative vs. observational). Spatial extent was quantified as the area
(expressed in square kilometers) over which all biodiversity estimates were
compared in a given study. This measurement is distinct from spatial grain, which
was quantified as the size of an individual host community. Thus, if there were
multiple small plots within a large region, the extent of the study would be
quantified as large, whereas grain of the study would be quantified as small. Studies
rarely provided an exact value for spatial extent. Because a value for spatial extent
was rarely provided, and spatial extents varied by six orders of magnitude, we
estimated the extent of each survey to the nearest order of magnitude rather than
attempting to assign a specific spatial extent for each study. For example, we
assigned studies a value of 0.1 if the extent was <1 km2, and a value of 1 if the
extent was >1 km2, but <10 km2, etc. When a study included more than one grain
size (i.e., when spatial grain varied among communities in a study), we used the
average grain size as our estimate for that study.

Assessing the shape of the biodiversity–disease relationship. To standardize
our assessment of biodiversity–disease relationships among studies, we analyzed
the shape of each biodiversity–disease relationship independently using standar-
dized methodology, and then compared the shapes analytically. Specifically, we first
quantified whether each biodiversity–disease relationship was linear or nonlinear
by comparing a series of regression models using the lm, AIC, and BIC functions in
R version 3.5.251 (see the Results and Discussion subsection ‘Nonlinearity in the
biodiversity–disease relationship’ and Supplementary Note 1). Four studies inclu-
ded fewer than five host diversity levels and were therefore not tested using a third-
order polynomial. Next, we quantified the monotonicity and direction of each
biodiversity–disease relationship using Spearman rank correlations (see the Results
and Discussion subsection ‘Nonlinearity in the biodiversity–disease relationship’).
In brief, the Spearman rank correlation coefficient Rho (ρ) and its associated p
value were used to define monotonic amplification (ρ > 0, Spearman p < 0.05),
monotonic dilution (ρ < 0, Spearman p < 0.05), and non-significant or non-
monotonic relationships (Spearman p > 0.05). We then assessed the skew of each
biodiversity–disease relationship using R package cobs52 to fit an unconstrained
spline to the biodiversity–disease relationship, limited to a maximum of four knots
to prevent overfitting. This approach to fitting an unconstrained curve makes no
assumptions about the underlying shape of the relationship between biodiversity
and disease. We transformed the predicted curve into a frequency distribution,
assigning any negative value (occurring in 19 regressions) to zero, and then cal-
culated Pearson’s skewness. A right-skewed relationship (Pearson skewness > 0.25)

indicates that most of the data falls in the area where dilution is observed, while a
left-skewed relationship (Pearson skewness <−0.25) indicates the possibility for
measured or unmeasured amplification effects. To assess whether missing data at
low diversity could bias the estimated shape of the biodiversity–disease relation-
ship, we constrained curves to pass through the origin and again calculated the
skewness of each curve. Specifically, to fit qualitatively constrained quantile (CQ)
smoothing splines53, we added a value at the origin for each data set, corresponding
to a situation in which there is no host diversity, generated a constraint matrix to
force the line through the origin, and then fit the curve, limiting the maximum
number of knots in the curve to three to prevent overfitting.

We omitted studies with fewer than four unique measures of host diversity for
Spearman rank correlations and unconstrained splines and fewer than three unique
measures of host diversity for CQ splines. Twenty-nine of the unconstrained
splines (n= 205) and 39 of the CQ splines (n= 217) showed no relationship
between biodiversity and disease (e.g., a fit with a slope of zero), resulting in no
estimate of Pearson’s skewness. This resulted in 205 estimates of ρ, 176 estimates of
skew from unconstrained splines, and 178 estimates of skew from CQ splines.

Data analysis. All analyses were carried out in R version 3.5.251. We constructed
multilevel random effects models using the lmer function in R packages lme454 and
lmerTest55. We accounted for nonindependence arising from multiple measures
from the same observational units in the same year by including such non-
independent surveys as random intercepts in each model. We also included
parasite species as a random intercept in each model, though in some models,
parasite species explained no residual variance leading to a computational singu-
larity, and was therefore omitted from the model.

Using the model described above, we first tested whether studies exhibiting no
relationship, linear amplification, linear dilution, a unimodal relationship or a
third-order polynomial relationship predicted Spearman rank correlation (n= 205)
and Pearson’s skewness (n= 176), by performing pairwise comparisons of the
model-estimated fixed effects using R package lsmeans56. We next verified that
studies exhibiting monotonic dilution, monotonic amplification, and non-
monotonic relationships (categorized using the Spearman rank correlation)
predicted Pearson’s skewness (n= 176), by again performing pairwise comparisons
of the model-estimated fixed effects. Next, we tested whether the Spearman rank
correlation coefficient between biodiversity and disease or Pearson’s skewness were
influenced by spatial extent by fitting two separate models, each with one response
(ρ, n= 205; or skew, n= 176) and one predictor (extent).

The effect of spatial extent on biodiversity–disease relationships may depend on
the size of the host organism. We therefore estimated host body size to the nearest
order of magnitude using TraitBank records from the Encyclopedia of Life,
standardized spatial extent by host biomass, and then tested whether spatial extent
still moderated biodiversity–disease relationships using the standardized estimates
of extent. The effect of spatial extent on biodiversity–disease relationships was
robust to standardization by host biomass (Supplementary Figure 3), and because
spatial extent is easier to interpret when unstandardized, we report the results of
unstandardized spatial extent.

The effect of spatial scale on biodiversity–disease relationships may also be
sensitive to the measure of spatial scale. We therefore repeated the analyses using
spatial grain, standardized by host biomass, in place of spatial extent. The effect of
spatial scale was robust to the metric used (Supplementary Note 2).

The effect of spatial scale on biodiversity–disease relationships may also be
sensitive to data at the largest spatial scales. We therefore repeated the analyses of
spatial extent and spatial grain with and without biodiversity–disease relationships
quantified in studies by Wood et al.30, Nguyen et al.57, and Derne et al.31

(Supplementary Note 2).
We then tested for context dependence in the spatial moderation of dilution

effects. To test for context dependence, we fit the same two models, but included a
two-way interaction between spatial extent and four binary factors that might
explain variation in the effects of scale on the biodiversity–disease relationship:
parasite functional group (macroparasite vs. microparasite), parasite lifecycle
(complex vs. direct), study design (manipulative vs. observational), and parasite
type (infects humans vs. infects only wildlife). To test whether the effect of spatial
scale on the shape of biodiversity–disease relationships was influenced by the type
of diversity metric (e.g., host richness, Shannon diversity, or Simpson’s diversity),
or disease metric (e.g., prevalence, severity), we fit the same models, but included a
two-way interaction between spatial scale and either the diversity metric or the
disease metric.

We next tested whether underrepresentation in the literature of communities at
low and high diversity might bias studies to more commonly report amplification
and dilution effects. We quantified the maximum and minimum diversity level of
each study and compared whether the mean maximum and mean minimum
diversity level differed between experiments and observational studies. Because the
species-area relationship is nonlinear and sample area was highly variable across
studies, we compared minimum and maximum diversity across studies
qualitatively rather than quantitatively.

To quantitatively test whether missing data at low host diversity could bias
studies to more commonly report dilution effects, we tested whether constraining
the curves to pass through the origin altered the predicted skew. Specifically, we
calculated the difference in skew between constrained and unconstrained curves
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and then performed an intercept-only model on this value, where an estimate
significantly lower than zero would indicate that constraining the curve favored
amplification, and an estimate significantly higher than zero would indicate that
constraining the curve favored dilution. Finally, we analyzed whether spatial scale
moderated the shape of the biodiversity–disease relationship when curves were
constrained to pass through the origin. Here, we fit a model of Pearson’s skewness
and spatial extent and then performed the same test of context dependence on the
model that was performed before.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data supporting the results are archived on Figshare (https://doi.org/10.6084/m9.
figshare.9784226). The source data underlying Figs. 2–5 and Supplementary Figs. 1–16
are provided as a Source Data file.

Code availability
The code supporting the results are archived on Figshare (https://doi.org/10.6084/m9.
figshare.9784226).

Received: 3 April 2019; Accepted: 17 October 2019;

References
1. Keesing, F., Holt, R. D. & Ostfeld, R. S. Effects of species diversity on disease

risk. Ecol. Lett. 9, 485–498 (2006).
2. Wood, C. L. & Lafferty, K. D. Biodiversity and disease: a synthesis of ecological

perspectives on Lyme disease transmission. Trends Ecol. Evol. 28, 239–247
(2013).

3. Civitello, D. J. et al. Biodiversity inhibits parasites: broad evidence for the
dilution effect. Proc. Natl. Acad. Sci. 112, 8667–8671 (2015).

4. Ostfeld, R. S. & Keesing, F. Is biodiversity bad for your health? Ecosphere 8,
e01676 (2017).

5. Keesing, F. et al. Impacts of biodiversity on the emergence and transmission of
infectious diseases. Nature 468, 647–652 (2010).

6. Power, A. G. & Mitchell, C. E. Pathogen spillover in disease epidemics. Am.
Nat. 164, S79–S89 (2004).

7. Young, H., Griffin, R. H., Wood, C. L. & Nunn, C. L. Does habitat disturbance
increase infectious disease risk for primates? Ecol. Lett. 16, 656–663 (2013).

8. Kilpatrick, A. M., Salkeld, D. J., Titcomb, G. & Hahn, M. B. Conservation of
biodiversity as a strategy for improving human health and well-being. Philos.
Trans. R. Soc. B Biol. Sci. 372, 20160131 (2017).

9. Halliday, F. W., Heckman, R. W., Wilfahrt, P. A. & Mitchell, C. E. A
multivariate test of disease risk reveals conditions leading to disease
amplification. Proc. R. Soc. B Biol. Sci. 284, 20171340 (2017).

10. Johnson, P. T. J., Ostfeld, R. S. & Keesing, F. Frontiers in research on
biodiversity and disease. Ecol. Lett. 18, 1119–1133 (2015).

11. Young, H. S., Parker, I. M., Gilbert, G. S., Sofia Guerra, A. & Nunn, C. L.
Introduced species, disease ecology, and biodiversity–disease relationships.
Trends Ecol. Evol. 32, 41–54 (2017).

12. Halliday, F. W., Heckman, R. W., Wilfahrt, P. A. & Mitchell, C. E. Past is
prologue: host community assembly and the risk of infectious disease over
time. Ecol. Lett. 22, 138–148 (2019).

13. Venesky, M. D., Liu, X., Sauer, E. L. & Rohr, J. R. Linking manipulative
experiments to field data to test the dilution effect. J. Anim. Ecol. 83, 557–565
(2014).

14. Mihaljevic, J. R., Joseph, M. B., Orlofske, S. A., Paull, S. H. & Killilea, M. The
scaling of host density with richness affects the direction, shape, and
detectability of diversity-disease relationships. PLoS ONE 9, e97812 (2014).

15. Rohr, R. et al. Towards common ground in the biodiversity–disease debate.
Nat. Ecol. Evol. In press (2020).

16. Young, H. S. et al. Conservation, biodiversity and infectious disease: scientific
evidence and policy implications. Philos. Trans. R. Soc. B Biol. Sci. 372,
20160124 (2017).

17. Luis, A. D., Kuenzi, A. J. & Mills, J. N. Species diversity concurrently dilutes
and amplifies transmission in a zoonotic host–pathogen system through
competing mechanisms. Proc. Natl. Acad. Sci. USA 115, 7979–7984 (2018).

18. Wood, C. L. et al. Does biodiversity protect humans against infectious disease?
Reply. Ecology 97, 543–546 (2016).

19. Ostfeld, R. S. & Keesing, F. Biodiversity series: the function of biodiversity in
the ecology of vector-borne zoonotic diseases. Can. J. Zool. 78, 2061–2078
(2000).

20. Wood, C. L. et al. Does biodiversity protect against infectious disease? Ecology
95, 817–832 (2014).

21. Lafferty, K. D. & Wood, C. L. It’s a myth that protection against disease is a
strong and general service of biodiversity conservation: Response to Ostfeld
and Keesing. Trends Ecol. Evol. 28, 503–504 (2013).

22. Ricklefs, R. E. Community diversity: relative roles of local and regional
processes. Science 235, 167–171 (1987).

23. Cohen, J. M. et al. Spatial scale modulates the strength of ecological processes
driving disease distributions. Proc. Natl. Acad. Sci. USA 113, E3359–E3364
(2016).

24. Buck, J. C. & Perkins, S. E. Study scale determines whether wildlife loss
protects against or promotes tick-borne disease. Proc. R. Soc. B Biol. Sci. 285,
20180218 (2018).

25. Guernier, V., Hochberg, M. E. & Guégan, J.-F. Ecology drives the worldwide
distribution of human diseases. PLoS Biol. 2, e141 (2004).

26. Hechinger, R. F. & Lafferty, K. D. Host diversity begets parasite diversity: bird
final hosts and trematodes in snail intermediate hosts. Proc. R. Soc. B-Biol. Sci.
272, 1059–1066 (2005).

27. Randolph, S. E. & Dobson, A. D. M. Pangloss revisited: a critique of the
dilution effect and the biodiversity-buffers-disease paradigm. Parasitology 139,
847–863 (2012).

28. Wiens, J. A. Spatial scaling in ecology. Funct. Ecol. 3, 385 (1989).
29. Mitchell, C., Tilman, D. & Groth, J. Effects of grassland plant species diversity,

abundance, and composition on foliar fungal disease. Ecology 83, 1713–1726
(2002).

30. Wood, C. L., McInturff, A., Young, H. S., Kim, D. & Lafferty, K. D. Human
infectious disease burdens decrease with urbanization but not with
biodiversity. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160122 (2017).

31. Derne, B. T., Fearnley, E. J., Lau, C. L., Paynter, S. & Weinstein, P. Biodiversity
and leptospirosis risk: a case of pathogen regulation? Med. Hypotheses 77,
339–344 (2011).

32. Johnson, P. T. J., Preston, D. L., Hoverman, J. T. & Richgels, K. L. D.
Biodiversity decreases disease through predictable changes in host community
competence. Nature 494, 230–233 (2013).

33. Strauss, A. T., Civitello, D. J., Caceres, C. E. & Hall, S. R. Success, failure and
ambiguity of the dilution effect among competitors. Ecol. Lett. 18, 916–926
(2015).

34. Faust, C. L. et al. Null expectations for disease dynamics in shrinking habitat:
dilution or amplification? Philos. Trans. R. Soc. B Biol. Sci. 372, 20160173
(2017).

35. Han, B. A., Park, A. W., Jolles, A. E. & Altizer, S. Infectious disease
transmission and behavioural allometry in wild mammals. J. Anim. Ecol. 84,
637–646 (2015).

36. Bordes, F., Morand, S., Kelt, D. A. & Van Vuren, D. H. Home range and
parasite diversity in mammals. Am. Nat. 173, 467–474 (2009).

37. Gotelli, N. J. & Colwell, R. K. Quantifying biodiversity: procedures and pitfalls
in the measurement and comparison of species richness. Ecol. Lett. 4, 379–391
(2001).

38. Primack, R. B. et al. Biodiversity gains? The debate on changes in local- vs
global-scale species richness. Biol. Conserv. 219, A1–A3 (2018).

39. Salkeld, D. J., Padgett, K. A., Jones, J. H. & Antolin, M. F. Public health
perspective on patterns of biodiversity and zoonotic disease. Proc. Natl. Acad.
Sci. 112, E6261–E6261 (2015).

40. Civitello, D. J. et al. Reply to Salkeld et al.: diversity-disease patterns are robust
to study design, selection criteria, and publication bias. Proc. Natl. Acad. Sci.
112, E6262–E6262 (2015).

41. Borer, E. T. et al. Finding generality in ecology: a model for globally
distributed experiments. Methods Ecol. Evol. 5, 65–73 (2014).

42. Keller, M., Schimel, D. S., Hargrove, W. W. & Hoffman, F. M. A continental
strategy for the National Ecological Observatory Network. Front. Ecol.
Environ. 6, 282–284 (2008).

43. Keesing, F. & Ostfeld, R. S. Is biodiversity good for your health? Science 349,
235–236 (2015).

44. Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486,
59–67 (2012).

45. Dornelas, M. et al. Assemblage time series reveal biodiversity change but not
systematic loss. Science 344, 296–299 (2014).

46. Harvell, D., Aronson, R. & Baron, N. The rising tide of ocean diseases:
unsolved problems and research priorities. Front. Ecol. Environ. 2, 375–382
(2004).

47. Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451,
990–993 (2008).

48. Smith, K. F. et al. Global rise in human infectious disease outbreaks. J. R. Soc.
Interface 11, 20140950 (2014).

49. Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006).
50. Rohatgi, A. WebPlotDigitizer (2011).
51. R Core Team. R: a language and environment for statistical computing | GBIF.

ORG. (2015). https://doi.org/10.1007/978-3-540-74686-7.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13049-w ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:5032 | https://doi.org/10.1038/s41467-019-13049-w |www.nature.com/naturecommunications 9

https://doi.org/10.6084/m9.figshare.9784226
https://doi.org/10.6084/m9.figshare.9784226
https://doi.org/10.6084/m9.figshare.9784226
https://doi.org/10.6084/m9.figshare.9784226
https://doi.org/10.1007/978-3-540-74686-7
www.nature.com/naturecommunications
www.nature.com/naturecommunications


52. Ng, P. T. & Maechler, M. COBS – Constrained B-splines (Sparse matrix
based) (2017).

53. Ng, P. & Maechler, M. A fast and efficient implementation of qualitatively
constrained quantile smoothing splines. Stat. Model. 7, 315–328 (2007).

54. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects
models using lme4. J. Stat. Softw. 67, 1–48 (2014).

55. Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package:
tests in linear mixed effects models. J. Stat. Softw. 82, (2017).

56. Lenth, R. V. Least-Squares Means: the {R} package {lsmeans}. J. Stat. Softw. 69,
1–33 (2016).

57. Nguyen, D. et al. Fungal disease incidence along tree diversity gradients
depends on latitude in European forests. Ecol. Evol. 6, 2426–2438 (2016).

Acknowledgements
We are thankful to D. Civitello, R.W. Heckman, G. Legault, C.E. Mitchell, J. Umban-
howar, and members of the Rohr lab for helpful discussions on data analysis and
interpretation. C.E. Mitchell, R. Poulin, H. Young, and S. Zhou provided raw data from
published manuscripts. This research was supported by grants from the National Science
Foundation (EF-1241889), National Institutes of Health (R01GM109499,
R01TW010286), US Department of Agriculture (NRI 2006-01370, 2009-35102-0543),
and US Environmental Protection Agency (CAREER 83518801) to J.R. Rohr.

Author contributions
J.R.R. & F.W.H. designed the study. F.W.H. analyzed the data and wrote the first draft.
Both authors contributed substantially to revising the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
019-13049-w.

Correspondence and requests for materials should be addressed to F.W.H.

Peer review information Nature Communications thanks the anonymous reviewers for
their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2019

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13049-w

10 NATURE COMMUNICATIONS |         (2019) 10:5032 | https://doi.org/10.1038/s41467-019-13049-w |www.nature.com/naturecommunications

https://doi.org/10.1038/s41467-019-13049-w
https://doi.org/10.1038/s41467-019-13049-w
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Measuring the shape of the biodiversity-disease relationship across systems reveals new findings�and key gaps
	Results and discussion
	Nonlinearity in the biodiversity–nobreakdisease relationship
	Effects of spatial scale
	Underrepresentation in the literature

	Methods
	Data compilation
	Selection criteria and data collection
	Assessing the shape of the biodiversity–nobreakdisease relationship
	Data analysis
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




