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Computing by modulating spontaneous cortical
activity patterns as a mechanism of active
visual processing
Guozhang Chen1,2 & Pulin Gong 1,2*

Cortical populations produce complex spatiotemporal activity spontaneously without sensory

inputs. However, the fundamental computational roles of such spontaneous activity remain

unclear. Here, we propose a new neural computation mechanism for understanding how

spontaneous activity is actively involved in cortical processing: Computing by Modulating

Spontaneous Activity (CMSA). Using biophysically plausible circuit models, we demonstrate

that spontaneous activity patterns with dynamical properties, as found in empirical obser-

vations, are modulated or redistributed by external stimuli to give rise to neural responses.

We find that this CMSA mechanism of generating neural responses provides profound

computational advantages, such as actively speeding up cortical processing. We further

reveal that the CMSA mechanism provides a unifying explanation for many experimental

findings at both the single-neuron and circuit levels, and that CMSA in response to natural

stimuli such as face images is the underlying neurophysiological mechanism of perceptual

“bubbles” as found in psychophysical studies.
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Spontaneous neural activity in the absence of stimuli or task
performance is widespread in the cortex1–4. Understanding
the spatiotemporal organization properties and functional

roles of such spontaneous activity is of long-standing interest in
systems and computational neuroscience1–10. Experimental stu-
dies with different recording techniques from fMRI BOLD and
optical imaging to electrical recordings have increasingly
demonstrated that spontaneous intrinsic neural activity is not
independent random noise, but is correlated between related
neurons5, cortical columns6,7 and within widely distributed
neuroanatomical systems8,9. These correlated spontaneous
activities give rise to spatially co-activated patterns that have been
found at the mesoscopic10 and the whole-brain scales11, and
exhibit wave-like propagation properties12,13.

Such spontaneous activity patterns do not disappear in the
presence of stimuli or during task performance. Instead, they
continue to regulate responses of cortical neurons to sensory
inputs. Imaging studies at the whole-brain level have shown that
coherent fluctuations of spontaneous activity can account for
BOLD response variability and fluctuations in human behavior14.
At the level of individual neurons, intracellular recordings have
shown that spontaneous fluctuations of membrane potentials are
related to the trial-by-trial variability of firing rates and response
latencies of individual neurons responding to external inputs5.
These empirical observations indicate that spontaneous activity
plays an important role in cortical function. However, the fun-
damental questions regarding the dynamical nature and the cir-
cuit mechanisms underlying the functional role of spontaneous
activity remain unclear.

To address these questions, here we propose a novel neural
computational mechanism based on dynamical modulation pro-
cesses of spontaneous activity patterns by external stimuli, which
we term Computing by Modulating Spontaneous Activity
(CMSA). Our CMSA mechanism can account for why and how
spontaneous activity is related to stimuli-evoked neural responses
as found at different neural levels in visual cortex2,5,10 and ulti-
mately to visual perception15. We find that the effect of this
computational mechanism is maximal when cortical circuits are
in the critical transition of activity states; coherent activity pat-
terns with critical dynamics can quantitatively explain dynamical
properties of spontaneous activity in neural circuits, including the
co-activation10 and wave-like propagation properties16, and the
spatial structure of neural correlations7. Our CMSA mechanism
thus reveals the importance of criticality in brain function17,18

from a novel perspective. We elucidate the CMSA mechanism
using biophysically-based cortical circuit models of spiking neu-
rons and further validate it in firing rate models. These results
suggest that the CMSA might be a general computational
mechanism of cortical circuits.

Results
Critical pattern dynamics of spontaneous activity. We consider
a spatially extended, conductance-based spiking circuit model
with excitatory and inhibitory neurons that captures the known
anatomy and physiology of cortical circuit (see Methods section).
It incorporates distance-dependent synaptic connectivity19,20, and
correlated excitatory and inhibitory synaptic inputs that fluctuate
together, as found in intracellular recordings21. In the absence of
stimuli, the network exhibits multiple co-activated patterns with
complex propagating dynamics as shown in Fig. 1a. In this study,
we explore the dynamical regime of these patterns, i.e., propa-
gating patterns with critical dynamics, to demonstrate that they
provide a mechanistic account of a great variety of dynamical
properties of spontaneous coherent activity1,2,7,10. Further, we
reveal a new computational mechanism of these critical activity

patterns underlying cortical processing, thus accounting for the
fundamental relationships between spontaneous activity and
evoked responses2,5.

In this critical regime, the spatially extended network exhibits
crescent-shaped waves that move rapidly, and localized, patchy
patterns that slowly wander around (Fig. 1a, Supplementary
Movie 1); the initial sites and subsequent trajectories of these
patterns are seemingly random. If the network is shifted away from
this regime by either increasing or decreasing the excitatory
coupling strength, the network exhibits regular propagating waves
or local patchy patterns within which spikes have randomly
wandering motion, respectively; this dynamical regime is thus in the
critical transition between these two distinct ordered and disordered
activity states (Supplementary Fig. 1, Supplementary Movies 2 and
3). The propagation of the local patterns gives rise to the
spatiotemporally contiguous clusters resembling cascades found
over many cortical regions in mice22. A cascade is initiated from at
least one spike; the location of its initiation is seemingly random. In
our model, there are multiple, coexisting cascades. In most cases, a
cascade terminates due to interactions with other cascades; for
instance, the interaction between cascade 1 and 2 results in the
termination of cascade 1 (Fig. 1b). As in ref. 22, we track these
cascades (Fig. 1b) and analyze their size and duration distribution to
quantify their critical dynamics (see Methods section). Via
maximum likelihood methods23, these distributions can be fitted
as power-law functions with exponents of τ ¼ 1:59± 0:02 (Fig. 1c)
and α ¼ 2:25 ± 0:01 (Fig. 1d), respectively. Both power-law fittings
apply only for values greater than 2, estimated by the Kolmogorov-
Smirnov test (KS, see Methods section). We further compare log-
likelihood ratios between these fitted power-law distributions and
other distributions including normal, log-normal, gamma and
exponential distributions and find that all the log-likelihood ratios
are sufficiently positive for both the size and the duration, indicating
that most likely the distributions follow power laws (p < 10�15,
Vuong test). The exponent τ of the power-law size distributions in
our model is close to the theoretical value of τ ¼ 1:5, and is within
the range as found in experimental studies22; the value of α is close
to the theoretical value α ¼ 2 and within the range found
experimentally18. However, if the network is shifted away from
the critical transition regime, power laws cease to be the best fitted
distributions for both the size and duration distributions (Supple-
mentary Fig. 2), as quantified by the KS test23.

Furthermore, we calculate the dynamic range (see Methods
section), which is the range of stimulus intensities that can be
processed by a neural network24,25, and find that the range is
maximized in the transition regime (Supplementary Fig. 3),
indicating the presence of critical dynamics24–26. In addition, it is
interesting to note that the transition from the state of the multiple
activity patterns with seemingly random propagation to the state
with directed propagation is highly analogous to the critical
transition underlying the emergence of coherent collection motion
in other complex systems, such as flocks of birds27, swarms of
bacteria28, and interacting motile colloids29. As in these studies, we
introduce propagating velocity fluctuations of activity patterns and
calculate the correlation length of these fluctuations (Supplementary
Fig. 4a, see Methods section); the correlation length is maximal near
the transition regime of our model (Supplementary Fig. 4b). In the
transition regime, we further calculate the correlation lengths in our
network with different sizes; we find that such spatial correlation
lengths do not have a constant value, but scale with the linear size of
the network (Supplementary Fig. 4c), which is a signature of
criticality27. These results thus suggest that the activity patterns near
the transition regime exhibit critical dynamics.

We next illustrate that the model in the critical regime can
capture key neural dynamics at different neural levels. At the
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individual-neuron level, there are dynamical transitions between
low-activity and high-activity states, corresponding to the
fluctuations of firing rates (Fig. 1e, Supplementary Fig. 5). As
shown in Fig. 1e, these transitions appear to coexist with variable
spike timing of individual neurons, which is a characteristic
feature of a doubly stochastic process, as found in
experiments30,31. To quantify such fluctuations of neural firing

activity, we calculate the Fano factor of spike count as a function
of the time window Δt, and find that Fano factor increases as Δt
increases (Fig. 1f), as found in ref. 32. At the circuit level, these
patterns generate coherent activity with a spatial structure as
found in large-scale neural recordings1,7,10. To illustrate this, we
first use the spike-triggered average of Vm (STA-Vm) of a seed
neuron (see Methods section), and find multiple patches that are
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Fig. 1 The spatially extended, conductance-based spiking neural network generates co-activated patterns with critical dynamics. a The snapshot of
spontaneous activity shows co-activated patterns in our circuit model (250 ´ 250 neurons). The magenta dots represent spikes at this moment, illustrating
that the fraction of individual neurons participating in a wave is low (2±0:4%, mean± s.d., s.d. represents standard deviation). As these localized activity
patterns move in a complex way, all areas of the circuit would be visited by them. b An illustrative example of three cascades (dots represent spikes and
the color encodes time). For each time step, connected components of spikes are clustered within a radius rS. A cascade is defined as a set of clustered
spike objects whose center of mass changes by less than rT between successive time (T2 � T1 ¼ 1ms). The interaction between cascade 1 and 2 destroys
cascade 1. c Distribution of cascade sizes follows a power-law function, PðSÞ � S�τ . Inset: the complementary cumulative distribution function PðS � sÞ of
the same data also follows a power-law function. d Same as in c but for cascade durations, PðDÞ � D�α. e Top: raster plot shows the spike times of a sub-
population of randomly selected 70 excitatory neurons in 3 s. Bottom: single-neuron spike count of a randomly chosen neuron (250ms bin, sliding over in
10-ms step). f Fano factor of spontaneous activity as a function of time window Δt during the spontaneous activity and after stimulation. g Spike-triggered
averaged (STA) membrane potential (Vm) during 2 s shows multiple correlated patterns. The black circle labels the seed neuron. Source data are provided
as a Source Data file
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highly correlated to the spikes of the seed neuron (Fig. 1g); these
patches have variable shapes, as measured in cat visual cortex10.
However, in the non-critical regime, the STA-Vm patterns are
quite regular (Supplementary Fig. 6a, b). The same seed with
different initial conditions produces the similar spatial structure
of STA-Vm pattern in the critical regime (Supplementary Fig. 6c,
d). We measure the distance between neighboring patches in Fig.
2 of ref. 10, which is around 0.79 mm. As one grid unit in our
model is considered to be 6:1 ´ 10�3 mm (see Methods section),
the average distance between neighboring patches in our STA-Vm
is 0.61 ± 0.09 mm, comparable to that measured in ref. 10.

To further quantify such coherent patterns, we calculate the
seed-based correlation map of firing rates (see Methods section)7.
As shown in Fig. 2a, the correlation map shows a modular
organization with patches of positively correlated activity
separated by patches of negatively correlated activity; these
correlated patchy patterns are notably anisotropic with variable
size and shape (Fig. 2a), similar to the spatial structure of
correlated spontaneous activity recently observed in ferret visual
cortex7. To further demonstrate such similarity, as in ref. 7, we
calculate the rate of change of correlation patterns (see Methods
section) as the seed point is moved smoothly across the circuit.
Figure 2a shows the correlation patterns when the seed point is
moved a small distance across three neighboring points (i.e., Seed
point 1, 2, and 3); the correlation patterns for seed point 2 and 3
are very similar to each other, so the rate of change is small
(�0.02, Fig. 2a, b). However, from seed point 1 to 2, the rate
change is much greater (�0.47), as the corresponding correlation
patterns based on these two seed points are quite different
(Fig. 2a, b). Because of such a sudden change of correlation
patterns occurring over a small distance, this phenomenon was
referred to as spontaneous fracture7. As in ref. 7, moving the seed
point across the 2D circuit reveals that such spontaneous
fractures are organized along some stripes (Fig. 2c). Note that
the spatial layout of such fracture stripes is anisotropic, and the
lengths of fragmented individual stripes are variable. Similar
characteristics of these fracture stripes have been found in ferret
visual cortex7 (see their Fig. 3).

This anisotropy of such correlation patterns has been
explained by heterogeneous local connections in firing rate
network models7. However, in our model with homogeneous
connections (see Methods section), heterogeneous pattern
dynamics give rise to this anisotropy. To illustrate this, we
introduce an order parameter Φ based on the collective motion
of propagating patterns (Eq. 7, see Methods section). Figure 2d
shows that as ΔWE (see Methods section) increases, Φ changes
from small values (~0.21) quantifying the random motion of
the patchy patterns to the value of 1, indicating the directed
regular propagation of the crescent waves; in the critical regime,
Φ changes rapidly as ΔWE varies. Ramping up and down the
parameter ΔWE with different ensembles of initial conditions
generates the same curve of Φ versus ΔWE, thus ruling out the
possibility of the presence of bistability in our model. As ΔWE
increases, the order parameter jϕj based on the circular
symmetry of the pattern shape (Eq. 6, see Methods section)
increases and it changes rapidly in the critical regime. This
shows that the shapes of the local activity patterns change from
a circular to a crescent shape, indicating the existence of
symmetry breaking. Such symmetry breaking produces the
heterogeneous propagating dynamics in the critical regime,
namely that patchy patterns slowly wander around and
crescent-shape waves move rapidly (Fig. 1a, Supplementary
Movie 1). This situation of heterogeneous dynamics emerging
from homogeneous systems due to symmetry breaking is
analogous to symmetry breaking-induced heterogeneous

dynamics in other homogeneous physical systems33. To
quantify such heterogeneous dynamics of the activity patterns,
we use the index H based on the variability of their propagating
speed (Eq. 8, see Methods section) and find that it is maximal in
the critical regime (Fig. 2d), indicating the presence of the
greatest heterogeneous dynamics.

We next illustrate that the heterogeneous propagating
dynamics give rise to the irregular shapes of the correlation
map and its fracture structure. Due to the slow movement
property of the patchy patterns, the neurons in the areas covered
by these patterns have higher firing rates than those outside.
However, because the crescent-shaped wave pattern propagates
rapidly, it leaves each location quickly and causes only a fraction
of neurons in the location to fire, thus generating relatively lower
firing rates. In addition, we find that neurons with high firing
rates in the areas covered by the patchy patterns are more
correlated with each other than neurons outside, suggesting that
the boundaries of the patchy patterns tend to have higher fracture
strengths; as shown in Fig. 2e, this is indeed the case. Because of
the irregular spatial organization of the patchy patterns
intermingling with the crescent-shaped waves (Fig. 1a), the
fractural strips that have high fracture strengths are spatially
anisotropic, as shown in Fig. 2c,e. However, if the network state is
shifted away from the critical regime, both the correlation
patterns and the shape of fracture exhibit unrealistic, regular
spatial structures (Fig. 2f-i), not consistent with experimental
observations.

In summary, we have related propagating wave patterns to
criticality and demonstrated that such critical activity patterns are
the dynamical mechanism underlying the emergent, modular
correlation patterns which exhibit spatial heterogeneity.

Modulation processes of spontaneous activity by stimuli. We
next characterize how these spontaneous propagating patterns
with critical dynamics are modulated by external stimuli to give
rise to stimulus-related neural responses, and reveal the dyna-
mical nature of such modulation processes. To this end, we use
natural stimuli such as faces (see Methods section) because they
contain rich features34 which are necessary for elucidating the
functional importance of co-activated activity patterns and for
relating them to the classical psychophysical observations of
perceptual bubbles in face recognition tasks15.

Figure 3a–c show that after stimulus onset, most spontaneous
patterns do not disappear; instead, they interact with external
stimuli such that their shapes and propagating paths are
modulated. Specifically, a patchy pattern is gradually shifted or
redistributed to an area with higher external current Ii;j (Eq. 1)
such as the eyes, denoted as regions of interests (RoIs). During
this process, the pattern remains spatially localized, but its shape
is changed from a bubble-like to a crescent shape, indicating the
existence of symmetry breaking. Subsequently, it is trapped in the
RoI, and its shape is restored to a circle (Fig. 3d left), indicating a
symmetry restoration process. This modulation process is further
illustrated in the snapshots of activity patterns at different time
moments after stimulus onset (Supplementary Fig. 7a and
Supplementary Movie 1). Figure 3d (right) and Supplementary
Fig. 7b show a similar modulation process for a crescent-shaped
wave; if it is close or moves toward an RoI, it is shifted to the RoI
and then trapped around this RoI, with its shape changed to a
circle as well. These patterns modulated or redistributed by
external inputs thus underlie stimulus-related responses; we term
this dynamical mechanism of modulating spontaneous activity
patterns for producing neural responses as Computing by
Modulating Spontaneous Activity (CMSA). We find that in our

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12918-8

4 NATURE COMMUNICATIONS |         (2019) 10:4915 | https://doi.org/10.1038/s41467-019-12918-8 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Pattern 1

Pattern 2

Pattern 3

25
0 

gr
id

 p
oi

nt
s

a

g h i

b

c f

d

e

25
0 

gr
id

 p
oi

nt
s

25
0 

gr
id

 p
oi

nt
s

81
 g

rid
 p

oi
nt

s

25
0 

gr
id

 p
oi

nt
s

25
0 

gr
id

 p
oi

nt
s

25
0 

gr
id

 p
oi

nt
s

25
0 

gr
id

 p
oi

nt
s

25
0 

gr
id

 p
oi

nt
s

–0.5 0.50

Correlation

–0.5 0.50

Correlation

0 0.40.2

Fracture strength

0 0.10.05

Fracture strength

0 0.5

Fracture strength

–0.5 0.50

Correlation

0 0.10.05

Fracture strength

C
or

re
la

tio
n

–1 0
–0.1 0.10

ΔWE (μS)

� ⎮�
⎮

0.1

0.12

0.14

0.16

0.18

0.2

0.2

0.4

0.6
I II

C

0.8

0 35H

1

0

0

1

2

In
 (

fir
in

g 
ra

te
) 

(H
z) 3

0.1

0.2

0.3

Fr
ac

tu
re

 s
tr

en
gt

h 0.4

0.5

0 10

Fracture

20

0 10

Distance (grid point)

20

–0.5

0

0.5

1

Seed point 1
Seed point 2
Seed point 3
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model, 80.05 ± 14.56% (mean ± s.d.) of stimulus-related
responses are due to the modulation process; this is largely
consistent with the empirical observation that in the primary
visual cortex of cats and mice, 60–80% of the neural responses to
stimuli are due to spontaneous activity other than feedforward
inputs arising from LGN1,34,35. Note that the CMSA mechanism

of stimulus-related responses is not restricted to our particular
choice of spiking neural circuit models and natural stimuli;
CMSA in firing rate models with propagating activity patterns is
similarly responsible for stimulus-related responses (see Supple-
mentary Note 1, Supplementary Figs. 16 and 17).

The critical dynamics of the spontaneous coherent activity
patterns are essential for implementing the CMSA mechanism. To
illustrate this, we introduce a modulation index η based on the local
order parameter (Eq. 16, see Methods section), by considering the
changes of the patterns’ shapes during the modulation process
(Fig. 3a–d). If the excitatory coupling strength is increased to shift
the state of the circuit away from criticality, our circuit model yields
multiple patchy patterns whose positions and shapes cannot be
modulated by the input if they are far from the RoIs (i.e., they can
only be modulated if they are close to the RoIs), so the order
parameter-based modulation index is smaller than that of the
critical state. With decreased excitation, the regularly moving waves
are not modulated by the stimuli. Indeed, by systematically varying
the default excitatory coupling strength, we find that the
modulation index is maximal in the critical transition point
(Fig. 3e). Furthermore, the firing-rate-based modulation index (ξ,
see Methods section) also demonstrates that the modulation effect is
maximal in the critical transition regime (Fig. 3f).

We now demonstrate that the CMSA-based neural responses
have smaller variability than spontaneous activity. We first
calculate the mean-matched Fano Factor of spike count (see
Methods section) after stimulus onset for each neuron in the local
area around RoIs, and find that the decline of Fano Factor has an
M-shaped structure (Supplementary Fig. 8a), as found in the
middle temporal (MT) area of monkeys36. We then calculate the
average Fano Factor of all neurons after the stimulus onset; as
shown in Supplementary Fig. 8b, there is a decline in the Fano
Factor values, as observed in experiments30. This quenching of
neural variability in our model is mainly due to the modulated
pattern dynamics after stimulus onset. During spontaneous
activity, the movements of the slow patchy patterns and the fast
wave patterns lead to dynamical transitions between low and high
activity states and the resultant firing rate fluctuations. However,
once the patterns are modulated to the RoIs, they are trapped
(Fig. 3c, Supplementary Fig. 7), thus neurons in the RoIs fire with
higher rates without the fluctuating transitions to the low activity
state as during the spontaneous activity, consequently resulting in
the decline of neural variability.

In addition, our CMSA mechanism can account for slight
modulations of temporal and spatial correlations of neural
activity. As shown in Fig. 4a, b, both spatial and temporal
correlations of evoked activity have similar spatial structures to
the spontaneous activity and are comparable to those found in the
visual cortex of awake ferrets2. We further calculate 2D Pearson
correlations between the frames of membrane potential before
and after stimulus onset1; the decay time constant (�20 ms) of
the two halves of the correlation curves as shown in Fig. 4c are
similar, consistent with that of �18 ms found in the visual cortex
of awake ferrets2. These results thus indicate that external inputs
only slightly modulate spontaneous neural correlations.

The CMSA mechanism speeds up cortical processing. We next
illustrate the consequence of the CMSA mechanism for neural
processing by decoding analysis (see population decoding analysis
in see Methods section)37. A classifier is used to assess the
information about the stimuli encoded in the neural activity
under two conditions: the CMSA and the control cases by ran-
domly shuffling membrane potentials (see Methods section). The
decoding analysis demonstrates that face-stimulus identities are
encoded well in both conditions, reaching high accuracy (>90%)
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after a few hundred milliseconds (Fig. 5a). However, we find the
decoding accuracy increases significantly faster in the CMSA case
than in the control case (p ¼ 1:5 ´ 10�3, lower-tail t-test, Fig. 5a
inset); their mean decoding latencies are 165.9 ms and 216.4 ms
across 250 independent trials, respectively. This result thus
indicates that the CMSA mechanism can speed up processing
external inputs. It is interesting to note that co-activation prop-
erty of spontaneous patterns means that they can be modulated
simultaneously by the stimuli, as shown in Fig. 3a–c, indicating
that the modulation process occurs in a fundamentally distributed
and parallel way. The parallel modulation thus would contribute
to the acceleration effect of the CMSA mechanism. To test this,
we randomly reshuffle the membrane potentials over neurons in
real-time in some selected regions of the network to decrease the
number of spontaneous coherent activity patterns in the network,
and implement the decoding analysis. As shown in Fig. 5b, for
fewer patterns, the decoding latency increases. More patterns
cause more interactions of co-activated patterns such as collisions
which provide more opportunities for spontaneous patterns to be
trapped by stimuli.

To further demonstrate the speeding-up effect of the CMSA
mechanism, we calculate the decoding latency by systematically
varying the default excitatory coupling strength; as shown in
Supplementary Fig. 9a, the latency is shortest in the critical
regime. In addition, we calculate the decoding accuracy at 100 ms
after the stimulus onset with varying excitatory coupling strength,
and find that the accuracy is the highest in the critical regime
(Supplementary Fig. 9b).

The CMSA underlies the variability in neural responses.
Intracellular recordings have shown that neural response varia-
bility is attributable largely to coherent fluctuations in sponta-
neous activity in cat striate cortex5. Specifically, the trial-by-trial
fluctuations of spontaneous membrane potential (Vm) are sig-
nificantly correlated to those of the rate and latency of action
potentials during epochs after the stimulus onset5. We now
demonstrate that this fundamental relationship between sponta-
neous activity and evoked neural responses can be reproduced in
the critical regime of our model, and the CMSA mechanism
provides an explanation for this relationship.
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We randomly sample neurons in the areas with the modulated
patterns and calculate their average Vm before and after stimulus
onset within a time interval of T ms (2–120 ms, mean value: 8
ms), which is the duration of the modulation process, that is, the
time interval from the stimulus onset to the time when the
spontaneous pattern is trapped (Fig. 3a–c). We sample 52
neurons to match the number of neurons sampled in ref. 5, but
sampling different numbers of neurons yield similar results. As
shown in Fig. 6a, the adjacent epochs of spontaneous and evoked

Vm are significantly correlated (r ¼ 0:59 ± 0:11, mean ± s.d.;
76.67% neurons). In addition, on each trial, we calculate the
latency of the first spike and the number of spikes occurring in
the first 2T ms after stimulus onset and compare these values
with the mean Vm occurring during the T ms period preceding
stimulus onset. An example of this analysis from a typical trial is
shown in Fig. 6b, c; the number of spikes of each sampled neuron
and its spiking latency shows considerable variability, ranging
from 0 to 37 spikes, and 0.8 ms to 105.8 ms, respectively. The
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number of spikes increases and the latency of the first spike
decreases in proportion to the Vm preceding stimulus onset
(Fig. 6b, c), with the mean values of the correlation coefficients of
0:55 ± 0:11 and �0:49 ± 0:12, respectively. These correlation
values are quantitatively comparable to those reported in cat
visual cortex5, namely, the values of 0:56 ± 0:15 and �0:61 ± 0:18
for the spiking number and latency to Vm correlations,
respectively. Also, by shuffling spontaneous Vm among neurons,
we find that the shuffled activity is not correlated to the evoked
Vm, spike number and spike latency (correlation: 0:01 ± 0:02,
Supplementary Fig. 10), indicating the variability of neural
responses is indeed correlated to the underlying fluctuations of
spontaneous activity. However, if the network is shifted away
from the critical transition (Supplementary Fig. 1b, c), there are
lower correlations between spontaneous Vm and neural responses
evoked by stimuli (Supplementary Fig. 11), suggesting that the
propagating patterns with criticality are essential not only for
accounting for the key spatiotemporal properties of coherent
activity but also for understanding their functional mechanism.

We next illustrate that the modulation process of spontaneous
activity patterns provides a mechanistic explanation for the
relationship between the spontaneous Vm and evoked activity. It
is apparent that a localized moving pattern, which includes
multiple spiking neurons, provides a source of synaptic inputs to
neurons in the area that it approaches, resulting in depolarization
of their membrane potentials due to the recurrent synaptic
interactions (see Methods section). Because such synaptic
interactions are distance-dependent, the magnitudes of depolar-
ization depend on the distance between the activity pattern and
the neurons; namely, shorter distances lead to greater depolariza-
tion of the spontaneous Vm activity. The time interval for the
pattern to reach the trapped point should be positively related to
the distance as well. To verify this, we track the spontaneous
activity patterns until they are trapped by the modulation process
and calculate how these spontaneous patterns are related to the
depolarization magnitude of Vm of a test neuron. Figure 6d shows
that indeed, the spontaneous Vm of the test neuron increases as
the pattern moves closer to it, resulting in shorter spike latency.
Arranging the latency and spike count of the test neuron with
respect to spontaneous Vm (Fig. 6e), we find the relationships
between these spiking properties and Vm are similar statistical
results (Fig. 6b, c). Therefore, the pattern dynamics in the
modulation process contribute to the significant correlations
between spontaneous activity and evoked responses, as shown in
Fig. 6a–c. The noisy features of the scattered points in Fig. 6a–c
arise from differences in the number of spikes within different
moving patterns and the complex trajectories of these patterns,
which often do not approach a neuron head-on but move within
its proximity. In addition, approximately 23% of neurons do not
have such significant correlations between spontaneous and
evoked activity; it is interesting to note that in ref. 5, a similar
proportion of sampled neurons did not show such correlations. In
our model, this happens mainly because �80% but not all of the

stimulus-related responses arise from the modulation process in
our model.

To further quantify the trial-to-trial variability of evoked
responses, we calculate the response time for an ongoing activity
pattern to be modulated to the RoIs after the stimulus onset. The
response time has great variability, as evidenced by the power-law
tail of its distribution (Fig. 6f). Such variable neural responses
occur because different trials have different configurations of
spontaneous correlated patterns and these patterns propagate in a
seemingly random way with different trajectories and distances to
the RoIs.

Analysis of the CMSA process. To gain further theoretical
insights into how the CMSA mechanism underlies variable neural
responses, we develop a simple yet effective stochastic model that
captures the key dynamical properties of the modulation process.
Due to the random, complex motion of each pattern, we
approximate it as a random walker in the stochastic model. The
pixel intensity values of DoG-filtered face images (see Methods
section) near the RoIs (such as eyes) decay as the distance to the
RoIs center increases (Fig. 6g). Such a structure of inputs would
result in the case that the closer the neuron is to the center, the
more it is depolarized. If a wave pattern propagates into such a
depolarization gradient, the amplitude of excitatory inputs to the
pattern would be gradually increased (Eq. 1); this means that the
walker in the stochastic model receives a pulling force shifting it
to the center of the region, and this force increases as the pattern
moves towards the center. To model a random walker with such a
force, we use the stochastic model of a random walker moving in
a logarithmic potential38 (see Supplementary Note 2).

By analytically solving this stochastic model, we find that the
time interval for the walker to be shifted to the center of the
potential well is very variable; the interval depends on the
distance between the initial position and the center of the well,
and the distribution is a power-law function (Fig. 6h), consistent
with our results of the spiking neural circuit (Fig. 6f). Here it is
interesting to note that such a power-law distribution of reaction
time has been found in perceptual and cognitive functions39; this
consistency suggests that the power-law neural response time
from CMSA might be the neurophysiological mechanism under-
lying these behavioral observations39. The theoretical model,
which captures the key dynamical properties of propagating
patterns, further elucidates the modulation process is essential for
understanding the variability of neural responses.

The CMSA mechanism explains perceptual psychophysics. In
psychophysics studies, it has been found that a small number of
localized patches of a complex visual stimulus such as a face
would reveal enough information for recognizing the face; these
patterns are thus referred to as perceptual bubbles15. The per-
ceptual bubbles found in psychophysical experiments of face
recognition tasks cover eyes, nose and mouth (Supplementary

Fig. 6 CMSA explains the relations between spontaneous and evoked activities and response variability. a Scatter plot of the mean Vm of the evoked
response over a period of T (2–120ms, mean value: 8 ms) after the stimulus onset versus its preceding spontaneous mean Vm over T immediately before
the stimulus onset. T is the duration of the modulation process, that is, the time interval from the stimulus onset to the time when the spontaneous pattern
is trapped. b Scatter plot of the number of spikes occurring in the first 2T of the response and the mean spontaneous Vm in the T preceding the stimulus
onset. c Scatter plot of latency to the first spike and the spontaneous Vm. d Spontaneous Vm and latency of neurons depend on the distance between the
ongoing pattern and the test neuron. These curves are smoothed by Gaussian-weighted moving average over each window. e Latency and number of
spikes of the test neuron versus spontaneous Vm. The curves are also smoothed as in d. f The distribution of response times in simulations. The tail of the
distribution of response time can be fitted as a power-law function (dashed line, exponent: −2.5). g The pixel intensity of face stimuli (filtered by DoG)
decays as the distance from the RoIs increases. The shaded area represent 3 s.d.; the line averages over an ensemble of 16 face images. h The distribution
of response times in the stochastic model. Source data are provided as a Source Data file
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Fig. 12). We now show that the face-evoked neural response
patterns due to the CMSA mechanism are highly correlated to
perceptual bubbles, thus suggesting a neurophysiological
mechanism underlying the psychophysical observation of per-
ceptual bubbles.

As in ref. 15, to generate a configuration of bubble representa-
tions of a face, we use an ideal observer that is exposed to the face
punctuated with bubble masks. The bubbles generated by the
ideal observer provide a benchmark of the information available
in the stimulus set (i.e., faces) for the task at hand, and is similar
to those used by human observations (see Methods section). The
bubbles selected by the ideal observer are shown in Fig. 7a; they
expose the regions that have the highest local variance over all
faces, which are the most distinguishable parts for face identities
and cover the eyes, nose, mouth, and the outline of a face
(Fig. 7b). In our circuit model, the regions covered by trapped
localized patterns after the modulation processes (Fig. 3c) are
similar to these perceptual bubbles.

To directly compare the trapped patterns in our spiking model
and the perceptual bubbles selected by the ideal observer, we use

the similar number of trapped patterns and bubbles, and convert
each trapped pattern to a 2D Gaussian shape (Fig. 7c, see
Methods section). We then calculate the 2D correlation between
the average converted map of evoked patterns across trials
(Fig. 7d) and the 2D perceptual bubble pattern selected by the
ideal observer (Fig. 7a), and find that they are highly correlated
(0.65); their trial-by-trial correlations are variable but have a large
mean value (0.67 ± 0.11, mean ± s.d., Fig. 7e). Furthermore, we
find such correlations due to the CMSA mechanism are maximal
in the critical regime (Supplementary Fig. 13).

The effect of noise on the CMSA mechanism. We have mainly
focused on studying how the CMSA intrinsically emerges in the
circuit models with constant inputs. However, the key properties
of CMSA, such as the critical pattern dynamics and the mod-
ulation process in response to inputs are robust to external noisy
perturbations. To illustrate this, we add different types of noise
including white, pink noises and random Poisson spikes to our
model (see Methods section) and then do the same analyses as
done above for the deterministic model. We find that for rela-
tively small noise intensity values (σ < 0:02 μS) for white noise,
although the activity patterns appear to be noisier, their critical
dynamics can persist (Supplementary Fig. 14a–c); as does the
modulation index (Supplementary Fig. 14d). Thus the char-
acteristic features of the CMSA mechanism are robust to modest
randomness of external perturbations. From the noise intensity
values of 0.02 to 0.06, there is a rapid transition to the regime of
localized, patchy patterns; beyond noise intensity 0.06, there are
only patchy patterns without long-range propagation (Supple-
mentary Fig. 14e, f). The modulation effect thus recedes as the
noise intensity increases. These results suggest that noise per-
turbations tend to make the moving dynamics more spatially
constrained; we observe a similar trend for the model with pink
noise. We also added Poisson spikes on every neuron with sparse
firing rate f , and find that the CMSA persist for f < 2Hz (Sup-
plementary Fig. 14g, h).

Discussion
In this study, we have established a novel neural computational
mechanism (CMSA) to understand how cortical circuits process
sensory inputs. The CMSA mechanism exploits rich spatio-
temporal dynamics of spontaneous activity to actively speed up
the processing of external inputs, rather than directly responding
to inputs as in conventional neural computation models such as
attractor neural networks40,41 and Gabor filter-based models
widely used for understanding sensory responses34,42 and for
predicting psychophysical performance42,43. As we have
demonstrated, the CMSA mechanism provides a unified account
of a wide range of key properties of spontaneous coherent activity
patterns2,7,10, input-related responses2,5 and their fundamental
relations2 found in experimental studies; these properties would
otherwise remain unexplained in existing models of cortical
processing32,41,44,45. The CMSA mechanism makes new predic-
tions of cortical processing and suggests that it might be a general
computational property of cortical circuits.

In our CMSA model, the effect of modulation from external
inputs on ongoing coherent patterns is maximal when these
patterns possess critical dynamics. As we have demonstrated,
spontaneous coherent patterns with criticality capture two key
properties of ongoing activity patterns, i.e., their co-activated10

and propagation properties12. Co-activated, coherent activity
patterns, as detected by the spike-triggered average analysis1 and
a seed-based cross-correlation analysis8,9,11, have been widely
observed at both the neural circuit and the whole-brain levels; our
findings are consistent with these previous reports, but go beyond
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them by revealing the functional impact of the co-activation
property. That is, these co-activated patterns can be modulated by
natural inputs in response to their multiple salient features in a
fundamentally distributed and parallel manner. Such a distributed
functional mechanism of co-activated patterns is better illustrated
by using natural stimuli, thus supporting the argument that the
use of natural stimuli is vital for uncovering the computational
principles of the cortex34.

These coherent patterns have the propagation property, a
cortical activity mode that has been widely observed across a
diverse range of cortical areas12,13. As we have demonstrated,
these propagating patterns exhibit critical dynamics characterized
by their size and duration distributions, the maximal dynamic
range, and the correlation length of pattern velocity fluctuations
that scales linearly with the size of the network. Our results thus
relate wave patterns with criticality, beyond previous studies that
have mainly focused on stable waves46,47 (but see ref. 48 for a
study of metastable waves). This unique angle of studying neural
criticality is analogous to decomposing avalanches into propa-
gating waves to reveal the spatiotemporal nature of self-
organizing criticality in complex physical systems49. Recent stu-
dies have been increasingly proposing that criticality of cortical
dynamics could not be a quiescent-to-active phase transition as
usually assumed in theoretical approaches50, but rather being
close to the transition between different cortical states (i.e.,
asynchronous and synchronous/coherent states)51–55. Particu-
larly, it is interesting to note that in these studies, the existence of
propagating activity patterns in their circuit models with spatially
extended connectivity like ours has been clearly demonstrated in
a critical regime (see Fig. 2 of refs. 52–54,55). Given that spatially
extended, distance-dependence coupling has been widely
observed over the multiple scales of neural systems20,56, it would
be important to further study spatiotemporal organization of
critical brain dynamics from the perspective of propagating
activity patterns using the methods introduced in this study, such
as the method based on correlation lengths of pattern velocity
fluctuations.

Propagating patterns with heterogeneous dynamics (i.e., loca-
lized activity patterns with different shapes and different propa-
gation speeds) emerge in the critical transition regime of our
circuit model due to symmetry breaking as characterized by the
order parameters. As we have illustrated, heterogeneous pattern
dynamics can account for patchy coherent structures with het-
erogeneous spatial profiles, as found in ref. 7. These patterns thus
provide a dynamical mechanism, different from the hetero-
geneous connectivity mechanism proposed in ref. 7, for explain-
ing how spatially heterogeneous correlated activity can emerge
even from homogeneous neural circuits. However, connectivity
heterogeneity as used in ref. 7 may stretch the critical region of
these correlated patterns by the mechanism of the Griffiths
phase57, thus giving rise to such patterns in a fundamentally
robust way.

In order to test propagating patterns with criticality as pre-
dicted in our study, it would be relevant to use the same methods
as in our modeling study to analyze their statistical scaling
property in large scale recording with high spatial and temporal
resolutions. Spatiotemporally contiguous clusters of active pixels
in awake brains of mice have been found to have the same power-
law distributions22 as in our modeling study; it would be inter-
esting to test whether the spatially and temporally contiguous
features of these clusters are due to the propagation of wave
patterns across the cortex as predicted in our modeling study.
Furthermore, through detailed comparisons between neurophy-
siological data and our model, we have demonstrated that the
CMSA modulation effect is maximal when the spontaneous
activity patterns possess criticality and that critical pattern

dynamics are essential for active cortical processing. Our study
thus contributes to a growing line of research on the functional
importance of critical neural dynamics17,18 from a novel
perspective.

Our CMSA model uncovers the mechanistic relations between
neural responses during spontaneous activity and sensory sti-
mulation. In our model, spontaneous propagating patterns move
in a seemingly random way and would then be modulated by
external sensory inputs; such a modulation process does not
destroy these patterns, but re-shapes and re-distributes their
moving paths and positions. Therefore, most (�80%) of the
input-related spikes are due to this dynamical process rather than
being directly evoked by external inputs, consistent with neuro-
physiological observations5. As we have demonstrated, co-acti-
vated, patchy patterns modulated by faces have the bubble-like
shapes with the similar spatial structure as the perceptual bubbles
used in face recognition tasks15. The CMSA mechanism thus
relates neural activity patterns to behavioral observations, indi-
cating that neurophysiological and psychophysical attributes of
brain function can be understood from a single theoretical
framework.

By developing and analyzing the stochastic model that captures
the key features of spontaneous activity patterns, we have further
illustrated the dynamical nature of the CMSA. Particularly, our
theoretical analysis along with simulations of the full spiking
neural circuits shows how and why the latency and rates of
evoked spikes are related to spontaneous membrane potentials, as
observed in intracellular recordings5. Aside from accounting for
these empirical observations, our CMSA model predicts that
fluctuations of neural response latency across trials should be
scale-invariant, as evidenced by its power-law distribution. It is
interesting to note that such a scale invariance of reaction time
fluctuations has been found in a variety of perceptual and cog-
nitive tasks39; this consistency leads us to predict that the scale
invariance of neural responses originated from modulating the
spontaneous activity patterns with criticality might be the neu-
rophysiological mechanism underlying the behavioral scale-
invariant fluctuations39

This CMSA mechanism has been mainly demonstrated in
our study by bottom-up inputs, but the same dynamical
mechanism may underlie the effect of top-down inputs as well.
Indeed, it has been found that top-down inputs such as
expectation and attention modulate spontaneous ongoing
activity37,58; it thus is of great relevance to ask whether such
modulation processes belong to the same active CMSA
mechanism as we have revealed in the present study. As has
been proposed in previous studies, spontaneous activity con-
tains prior information of natural environments59. In light of
this proposal, the complex moving dynamics of spontaneous
activity patterns may implement an efficient sampling of such
prior information, similar to random diffusion-based sampling
in the classical Markov Chain Monte Carlo methods60. Our
CMSA neural computation mechanism, therefore, has the
potential to merge probabilistic and dynamical views of cortical
processing, providing a framework for understanding how the
cortex integrates endogenous priors, top-down attention and
sensory inputs to actively produce perception.

Methods
A spatially-extended spiking neural circuit. We consider a 2D network of N ´N
coupled, conductance-based exponential integrate-and-fire neurons consisting of
75% excitatory and 25% inhibitory neurons; a similar model has been used to
model variable neural dynamics61 and the change of cortical states due to external
stimuli62. Both excitatory and inhibitory neurons are evenly spaced, and the spa-
cing between inhibitory neurons is twice the spacing between excitatory neurons.
We denote the membrane potential of a neuron at integer coordinates ði; jÞ at time
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t as V i;jðtÞ, with its dynamics given by the following:

C
d
dt

V i;jðtÞ ¼ �gL½V i;jðtÞ � VL� þ gLΔT exp
V i;jðtÞ � VT

ΔT

� �

� gEi;jðtÞ½V i;jðtÞ � VE� � gIi;jðtÞ½V i;jðtÞ � V I� þ Ii;j;

ð1Þ

where the capacitance is C ¼ 1 nF, the leaky conductance is gL ¼ 0:05 μS, and the
exponential nonlinearity parameters are ΔT ¼ 6:5625 mV and VT ¼ �60:6250 mV63.
The reversal potentials are VL ¼ �70 mV, VE ¼ 0 mV, and V I ¼ �80 mV for the
leak, excitatory, and inhibitory conductances, respectively64. Ii;j is the external input;
when Ii;j ¼ 0 nA, the network exhibits spontaneous activity. The external inputs such
as face images are specified below. If the membrane potential of a neuron reaches the
threshold, −40mV, a spike is generated and the voltage is reset to the resting potential
−70mV for a refractory period τref ¼ 5 ms. The synaptic conductances are as follows:

gλi;jðtÞ ¼ Fλ þ
X
ði0 j0 Þ

Kλ
ij;i0 j0

X
l

Gλðt � Tl
i0 j0 Þ; ð2Þ

where superscript λ ¼ E; I represents excitatory and inhibitory neurons, respectively,
and Tl

i0 j0 is the time of the l-th spike emitted by the afferent neuron located at ði0; j0Þ.
The inputs are FE ¼ 0:01 μS and FI ¼ 0:01 μS. To consider the effects of noise on
network dynamics, we add different types of noise including Gaussian white noise,
pink noise and random Poisson spikes. For Gaussian noise, we add a noise term to FE,
i.e., FE ¼ 0:01 þ σξðtÞ μS, where ξðtÞ is the noise drawn from the standard normal
distribution and σ is the intensity. Similarly, we add pink noise on FE. For Poisson
spikes, we add random spikes to every neuron with a firing rate f . The time course of
the postsynaptic conductance is given by

GλðtÞ ¼ expðt=τλdÞ � expðt=τλr Þ
τλd � τλr

; ð3Þ

with rise times τEr ¼ 0:3 ms and τIr ¼ 0:3 ms, and decay times τEd ¼ 2 ms and
τId ¼ 3 ms. The coupling strength between any two neurons located at ði; jÞ and ði0; j0Þ
is

Kλ
ij;i0 j0 ¼

WE � exp �d2ij;i0 j0=σE
� �

if λ ¼ E;

WI if λ ¼ I;

(
ð4Þ

where dij;i0 j0 is the Euclidean distance between neurons located at ði; jÞ and ði0; j0Þ on a
square lattice with periodic boundary conditions. Connections in this model are
constrained to jdij;i0 j0 j⩽Dλ , DE ¼ 45 grid points, DI ¼ 45 grid points. This coupling
range is biologically plausible as within this range; there are around 6300 synaptic
connections per neuron, approximately equivalent to the average number of synapses
in the visual cortex, 6000 synapses per neuron65. As Dλ increases, the number of
patterns and firing rate decreases, and the distance between neighboring patterns
increases (Supplementary Fig. 15). Empirical evidence has been accumulating to show
that neural connectivity decays with distance; for instance, it was found that the
coupling strength is an exponential function of distance56; and it was reported that the
connection probability of neurons is a Gaussian function of distance20. Because ana-
tomic evidence suggests that inhibitory connections to pyramidal neurons are non-
specific66, in Eq. 4, we use a homogeneous inhibitory coupling strength WI with all
inhibitory neurons connected within the coupling range. We use inhibitory coupling
valueWI ¼ 0:0578 μS and excitatory coupling valueWE ¼ 0:2235 μS with a spatial
scale σE ¼ 18 grid points. The excitatory coupling value is also shifted to demonstrate
different states of the model, that is, WE ¼ 0:2235 þ ΔWE.

As the neuron density is around 26516 mm−2 in cat primary visual cortex layer
2/367 and the number of neurons in our model is 62500, the model contains
approximately the same number of neurons as a 2.36 mm2 square patch of the
primary visual cortex. Therefore, the distance between two neighboring neurons
(one grid unit) in our circuit model is around 6.1 × 10−3 mm. In this study, we
mainly use our model to account for why and how spontaneous activity is
fundamentally related to stimulus-related response as found in visual cortex2,5,10

and ultimately to visual perception15. Because propagating activity patterns have
been widely observed12,13 and because of the canonical nature of neural circuits
across different brain areas68, the mechanism of computing by modulating
spontaneous activity (CMSA) may be applicable for understanding cortical
processing in other cortical areas as well.

In this study, we mainly focus on the network with the size of 250 ´ 250
(N ¼ 250); however, different sizes such as N ¼ 150, 200, and 300 are used to
reveal the scaling behavior of the correlation length of pattern velocity fluctuations
(Supplementary Fig. 4d–f). A random number generator produces random values
for the initial membrane potentials from the resting (−75.625 mV) to the threshold
potentials (−40 mV). Each trial excludes the first 1.5 s of transient time.
Simulations use the Euler method with the time step of dt ¼ 0:1 ms, using custom
software written in C++.

External inputs. To illustrate the computational mechanism of spontaneous
activity, we find that it is necessary to use natural stimuli. In this study, we use face
images, which are commonly used in psychophysical studies15,69. These images are
processed with the Difference-of-Gaussian (DoG) filter (s.d. 1 and 2)70,71, which
simulates the center-surround organization of the receptive field of retinal ganglion

neurons that generated the feed-forward visual signal to V172,73. The face image
data set has 16 grayscale face images with neutral expression, normalized hairstyle,
global orientation and lighting69. After the DoG filter, the images are resized to
make their number of pixels equal the number of grid points in the network. All
pixel values of the filtered image are normalized by their mean value and then
multiplied by a scale parameter S (S ¼ 0:5 nA, unless stated otherwise). These
scaled pixel values correspond to the external inputs (i.e., Ii;j in Eq. 1) to the spiking
network. After 2 s of spontaneous activity, the stimulus in input continuous until
the simulation finishes; Ii;j ¼ Hðt � tonsetÞ �Mi;j , where Hð�Þ is the Heaviside
function, t is the time, tonset ¼ 2 s is the stimulus onset, andMi;j is the value of pixel
ði; jÞ of the scaled, resized and DoG filtered image.

Tracking and characterizing propagating patterns. The spatiotemporal activity
of our spatially extended network exhibits propagating wave patterns with complex
dynamics. One of the salient features of these wave patterns is that they are
localized, meaning that neurons that are firing in a certain interval are adjacent,
and individual patterns are separated from each other. Based on this separation, we
use an automatic method to identify these localized patterns as in our previous
work61. We first choose a time window of duration 5 ms to detect enough spikes
that are adjacent to each other, and we then use a flood-fill algorithm to classify
groups of adjacent neurons as one pattern74. Two kinds of patterns emerge from
our network model, patchy patterns and crescent-shaped waves (Fig. 1a). A sig-
nificant difference between them is that the center of the former contains random
firing activity, which results in gaps (i.e., holes) between firing neurons, whereas the
latter does not. This property can be quantified by the Euler characteristic, which is
the difference between the number of connected regions and the number of their
holes74. For the crescent-shaped waves, the Euler characteristic is 1, and for the
patchy patterns, it is <1. After identifying these propagating wave patterns auto-
matically, we characterize their collective dynamics by calculating the center-of-
mass (COM) position ðIMðtÞ; JMðtÞÞ of each pattern:

IMðtÞ ¼ 1
Mf

XMf

L¼1

iLMðtÞ; JMðtÞ ¼
1
Mf

XMf

L¼1

jLMðtÞ; ð5Þ

where iLMðtÞ and jLMðtÞ are the i and j positions of the L-th neuron that is firing at
time t in the M-th pattern, andMf is the total number of firing neurons within this
pattern.

To quantify the circular symmetry of the propagating patterns, we introduce the
local order parameter jϕj; for pattern j, ϕj is defined as

ϕj ¼
1
N j

XN j

k¼1

eiθ
k
j ; ð6Þ

where N j is the number of spikes in pattern j, i ¼ ffiffiffiffiffiffi�1
p

, and θkj is the azimuth of
the k-th spiking neuron within pattern j with respect to a fixed axis and the center
of mass of pattern j. It enables us to quantify how activated elements of an
individual pattern are organized around its center of mass. jϕj is small if all
elements are roughly uniformly distributed around the center, whereas large jϕj
indicates that activated elements are concentrated at a certain azimuth. Thus,
crescent-shaped waves have larger jϕj than patchy patterns.

We also introduce another order parameter Φ for characterizing the collective
motion of these patterns13.

Φ ¼ k PN
i¼1 ~vi kPN

i¼1 k ~vi k
; ð7Þ

where N is the number of patterns, ~vi is the velocity of pattern i. Φ ranges from
zero to one, with Φ ¼ 1 when velocity vectors align to one direction, reflecting
directed coherent motion of propagating activity patterns across the neural
network; if Φ is close to zero, it means that the motions of patterns are disordered,
and that the velocities of the individual patterns point in random directions and
average close to zero13.

To quantify the heterogeneity of pattern dynamics, we introduce an index

H ¼ 1
T

Xt¼T

t¼1

1
Nt

Xi¼Nt

i¼1

½νiðtÞ � μðtÞ�2; ð8Þ

where νiðtÞ is the speed of activity pattern i at time t, μðtÞ is the mean of pattern
speeds at time t, Nt is the number of patterns at time t, and T is the total time.

Cascade detection. The propagation of the local patterns gives rise to multiple
spatiotemporally contiguous clusters resembling those found in ref. 22. We detect
these contiguous clusters based on their spatiotemporal contiguity, with each of
them being referred to as a cascade. Specifically, for each time step, connected
components of spikes are clustered as an object within a radius rS, and a cascade is
defined as a set of objects whose center of mass changes by less than rT between
successive time (1 ms resolution) (Fig. 1b). A cascade is quantified by two quan-
tities: (i) size, i.e., the number of spikes within a cascade; (ii) duration, i.e., the
number of successive time steps a cascade is active. In this study, we set rS ¼ 1 grid
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points, and rT ¼ 5 grid points; the results are not sensitive to these values. These
cascades are spatially localized.

Power-law fitting. Using maximum likelihood methods23, we fit power laws to the
cascade distributions. The fitting function for the distribution of cascade size (S)

and duration (D) is f ðXÞ ¼ X�βðPxmax
x¼ xmin

x�βÞ�1
, where f is the probability density

function of X, xmax is the largest observed value of X (no higher cutoff) and X
represents the fitted variable (S or D). The lower bound xmin and the exponent β
are fitting parameters. xmin is fit in the interval of ½1; xmax�. 1 is the minimum
observed size and duration. For each possible choice of xmin, we estimate the
exponent via the maximum likelihood method and the Kolmogorov–Smirnov (KS)
test. We then select as our estimate of xmin (usually xmin< 3), the value that gives
the minimum KS statistic over all values of xmin. With the fixed xmin, we then get
the exponent giving minimum KS statistic. After finding the best-fit power law, we
further assess the goodness-of-fit via log-likelihood ratio, and Vuong test.

Dynamic range. The dynamic range is the range of stimulus intensities that can be
processed by a network, and is often maximized near the criticality of a non-
equilibrium phase transition24,25. After measuring responses (i.e., averaged firing
rate, R) to a range of stimulus intensities (S 2 ½2�3; 210� nA, defined in External
inputs section), we use the response curve, RðSÞ, to compute the dynamic range,

Δ ¼ 10 log10
Smax

Smin

� �
; ð9Þ

where Smax and Smin are the stimulus intensity leading to 90% and 10% of the range
of R, respectively (Supplementary Fig. 3, left).

Correlation length of velocity fluctuations of activity patterns. For each activity
pattern, we can obtain its velocity based on Eq. 5. We next define a correlation
function of the fluctuations of pattern velocities

CðrÞ ¼ 1
c0

P
i;j ~ui � ~ujδðr � ri;jÞP

i;j δðr � ri;jÞ
; ð10Þ

where ~ui ¼ ~vi � 1
N

PN
k¼1~vk , δðr � ri;jÞ is a Dirac δ-function selecting pairs of pat-

terns at mutual distance r, and c0 is a normalization factor27. A large value of CðrÞ
indicates that the fluctuations are nearly parallel and thus strongly correlated.
Conversely, when the fluctuations are antiparallel, and therefore anticorrelated, the
correlation function has a negative value. In the state with regular waves only, all
propagating waves have the same velocity (completely parallel), so CðrÞ ¼ 0. To
increase the number pairs with the same r, we round the distance to the nearest
tens digit, for example, r ¼ 12:59 ! 10; otherwise, it is hard to get a meaningful
average and normalize the correlation function. This correlation function CðrÞ,
therefore, measures to what extent the velocity fluctuations are correlated (parallel).
The function changes sign at r ¼ ξ, which gives a good estimate of the average size
of the correlated domains, and ξ is defined as the correlation length (Supple-
mentary Fig. 4a), as in ref. 27.

Illustration of spatiotemporal coherent structures. To show the spatiotemporal
co-activated patterns of spontaneous activity, we calculate the spike-triggered
average (STA) of the smoothed membrane potential, given by

STA ¼ 1
nsp

XT
i¼1

BðiÞFðiÞ; ð11Þ

where BðiÞ is a binary function of a randomly picked neuron’s spiking activity (if
this neuron fires at time step i, BðiÞ ¼ 1, otherwise BðiÞ ¼ 0), and
nsp ¼

PT
i¼1BðiÞ, the total number of spikes of this neuron. FðiÞ is the smoothed Vm

frames, given by

FðiÞ ¼ ½VmðiÞ � VmðiÞ� � G; ð12Þ
where VmðiÞ is the membrane potential of all neurons at time step i, the bar
represents the mean across all neurons, � is the convolution operation with peri-
odic boundary conditions, and G is the Gaussian filter (s.d.: 25).

To characterize the spatial correlation of the activity patterns emerging in our
model, we calculate the correlation map Cðs; xÞ ¼ corrðf ðsÞ; f ðxÞÞ, where f ð¼ Þ is
the instantaneous firing rate of a neuron obtained by a 250 ms bin and sliding over
in 250-ms steps (Supplementary Fig. 5c), s is the seed neuron, x represents other
neurons, and corr represents Pearson correlation over 2 s7. By computing Cðs; xÞ
for all the other neurons x in the 2D network, a 2D correlation map with respect to
the seed neuron can be obtained. The fracture is defined as the rate by which the
correlation pattern changes when changing the seed point location over one grid
point7:

FðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FdxðsÞ2 þ FdyðsÞ2

q
; ð13Þ

where FdxðsÞ ðFdyðsÞÞ signifies the x ðyÞ-component of the rate of change of the
correlation pattern at seed point s. We approximate this rate of change by the
(second-order) correlation between two correlation patterns with the seed points at

adjacent pixels one grid point apart:

FdxðsÞ ¼ 1� CdxðsÞ; ð14Þ

CdxðsÞ ¼ corrxðCðs; xÞ;Cðsþ 1x ; xÞÞ; ð15Þ
where corrxð� � � Þ denotes the Pearson correlation coefficient calculated over all
locations x and 1x is one grid point in the x-direction.

Indices for quantifying the modulation processes. To quantify the modulation
processes of spontaneous activity patterns caused by eternal inputs, we introduce
two indices. The first one is based on the change of the geometrical property of
these propagating patterns before and after the stimulus onset; that is, during the
modulation processes, the shape of the localized patterns can change from a
crescent to a circle. We thus use the order parameter defined in Eq. 6 to introduce a
modulation index:

η ¼
�jϕj� �

spon � �jϕj� �
t1�t2

�jϕj� �
spon þ �jϕj� �

t1�t2

; ð16Þ

where jϕj is the averaged order parameter norm across all patterns, ¼h i denotes
averaging over time, and the bar represents averaging over patterns; t1 ¼ 25 ms,
and t2 ¼ 75 ms (0 ms is set as the stimulus onset). These specific values of t1 and t2
are chosen because crescent-shape wave patterns normally change to patchy pat-
terns from t1 to t2. The same bin size of 50 ms is used to average the order
parameter of spontaneous activity patterns. Another modulation index is based on
the averaged population firing rate, defined as

ζ ¼ Fspon � Fevok

Fspon þ Fevok
; ð17Þ

where Fspon and Fevok are the averaged firing rates of all neurons 250 ms before and
after the stimulus onset, respectively; the results are not sensitive to the bin size as
long as it is larger than 120 ms (modulation time).

Mean-matched Fano factor. The Fano factor (FF) measures the trial-to-trial
variability of the spike count nrðt � Δt

2 ; t þ Δt
2 Þ; t � Δt

2 and t þ Δt
2 indicate the start

and end points, respectively, of the time window of size Δt over which the spikes
are counted. Δt ¼ 250 ms, and the calculation slides over in 10-ms steps unless
stated otherwise. The FF of a neuron at r ¼ ði; jÞ is then:

FFrðtÞ ¼
var½nrðt � Δt

2 ; t þ Δt
2 Þ�

�nrðt � Δt
2 ; t þ Δt

2 Þ
; ð18Þ

where �nrðt � Δt
2 ; t þ Δt

2 Þ and var½nrðt � Δt
2 ; t þ Δt

2 Þ� are the mean and variance,
respectively, of the spike count across repeated trials with random initial condi-
tions. Note that the FF of a homogeneous (with a constant rate of events) Poisson
process is 1, whereas that of a periodic process is 0. As in ref. 30, we use mean-
matching to calculate the FF; this ensures that a declining FF is not trivially related
to rising rates (e.g., due to an increase in the size of the denominator in Eq. 18). The
mean-matching method finds a common distribution of firing rates across all time
steps, and ignores data points that do not fit this distribution30. To calculate this
common distribution, we organize firing rates into histogram bins, which we
choose to be of width 10 Hz.

Bubbles and comparison with evoked patterns. In psychophysical studies15, it
has been found that a face mask punctured by sparse, randomly located Gaussian
windows called perceptual bubbles reveal enough information to correctly recog-
nize faces. As in ref. 15, we use an ideal observer to identify these perceptual
bubbles. It has three major steps (Supplementary Fig. 12). First, a square plane is
randomly punctured by 2D-Gaussian windows. These Gaussian windows have a
fixed standard deviation, DE which is the neural coupling range in our spiking
circuit model. The number of these bubbles, 15 ± 2, is approximately the same as
the number of evoked patterns in our circuit model. Such a punctured plane is a
mask. Second, every mask is put on 16 processed face images by multiplying the
mask and a processed face image element-wise. Third, we calculate the mean 2D
Pearson correlation of all pairs of masked face images; for instance, 16 face images
have 120 pairs. The process is repeated 106 times to generate 106 masks and
compare the mean 2D correlations. The mask that has a minimum mean corre-
lation is denoted the best bubble mask because it reveals the areas with the highest
local variances that contain more information15. To compare the best bubble mask
with evoked patterns, we convert the evoked activity patterns to 2D Gaussian
located at the pattern centers of mass with s:d: ¼ DE (Fig. 7c), referred to as a 2D
converted map. In the converting process, activity patterns outside the face are
removed because they are not directly relevant to face-image-evoked responses.
The similarity between the 2D converted maps and the best bubble mask is
quantified by the 2D Pearson correlation.

Population decoding analysis. The acceleration of response by spontaneous
activity is assessed through a decoding analysis37. A multi-class classifier is used to
assess the information about the stimuli encoded in the neural activity under two
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conditions: the CMSA and the control cases. In the CMSA case, stimuli are added
after 2 s of spontaneous activity; in the control cases, the spontaneous membrane
potentials are randomly shuffled among neurons prior to stimulus onset. The input
data are constructed from the summed peristimulus time histogram (PSTH) of 100
neurons (in each bin, the spike count is the sum of 100 neurons). The same number
of trials across stimuli and the conditions are used. The 100 neurons are randomly
sampled from the neurons exposed by the best bubbles selected by the ideal
observer (eyes, mouth, etc), namely, the sampled neurons really carry the infor-
mation of stimuli. The summed PSTH is collected in the bin of 200 ms and slid
over in 50-ms steps. The PSTH of all 16 face-image stimuli in each condition is
split into training and test sets for cross-validation (leave-one-out). From the
training set, we then create bootstrapped sub-training sets Lb , for b ¼ 1; � � � ;B,
where B ¼ 10, by sampling with replacement from L (the fraction of unique
examples in Lb is 1� 1

e, where e ¼ 2:71828 � � �)75. Templates are created for each
stimulus, condition, and time bin in each sub-training set Lb by averaging the spike
counts among all trials in each bin. Summed spike counts for each test trial are
classified according to the smallest Euclidean distance from the templates across B
bootstrapped sub-training sets in each bin, obtaining B different votes for each bin.
Decoding accuracy in a given bin is defined as the fraction of correctly classified
test trials in that bin.

The significance of decoding accuracy is established via a permutation test:
1000 shuffled datasets are created by randomly permuting stimulus labels among
trials, and a shuffled distribution of 1000 decoding accuracies is obtained. In each
bin, decoding accuracy of the original dataset is deemed significant if it exceeds the
upper boundary, α0:05, of the 95% confidence interval of the shuffled accuracy
distribution in that bin (this includes a Bonferroni correction for multiple bins, so
that α0:05 ¼ 1� 0:05=Nb, with Nb the number of the number of bins). Decoding
latency is estimated as the earliest bin with significant decoding accuracy.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All data are available from the corresponding authors upon request. The source data
underlying Figs. 1c, d, f, 2b, d, 3f, g, 4–6, and 7e and Supplementary Figs. 2, 3, 4a–c, 8, 9,
11, 13e, 14b–e, and 15 are provided as a Source Data file.

Code availability
Custom C++ code is available at https://github.com/BrainDynamicsUSYD/SpikeNet.
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