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Enabling long-lived organic room temperature
phosphorescence in polymers by subunit
interlocking
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Wei Yao1, Zhongfu An 1 & Wei Huang1,3,4

Long-lived room temperature phosphorescence (LRTP) is an attractive optical phenomenon

in organic electronics and photonics. Despite the rapid advance, it is still a formidable

challenge to explore a universal approach to obtain LRTP in amorphous polymers. Based on

the traditional polyethylene derivatives, we herein present a facile and concise chemical

strategy to achieve ultralong phosphorescence in polymers by ionic bonding cross-linking.

Impressively, a record LRTP lifetime of up to 2.1 s in amorphous polymers under ambient

conditions is set up. Moreover, multicolor long-lived phosphorescent emission can be pro-

cured by tuning the excitation wavelength in single-component polymer materials. These

results outline a fundamental principle for the construction of polymer materials with LRTP,

endowing traditional polymers with fresh features for potential applications.
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Persistent luminescence is an attracting optical phenomenon
that can last for seconds, minutes, even hours after the
cease of irradiation1,2, which has aroused extensive atten-

tion due to its broad applications ranging from displays and
optical storage to sensors and bioimaging1,3–6. Recently, a clear
trend is emerging, shifting the emphasis from inorganic coun-
terparts to organic luminescent materials with ultralong
phosphorescence5,7,8, due to their superiorities, such as electro-
conductivity, diverse molecular architechtures, good biocompat-
ibilities, and low cost, although there still exists a great challenge
of suppressing non-radiative transition and enhancing inter-
system crossing for organic phosphorescence under ambient
conditions. A set of feasible approaches, such as crystallization
engineering8,9, doping in rigid matrixes10–13, H-aggregation5, the
construction of metal organic frameworks14, the formation of
carbon dots15 and so forth15–26, were proposed to obtain ultra-
long phosphorescence at room temperature. However, these
phosphors were mainly limited to crystalline system or doped
composites, which greatly hindered their practical applications
due to the stringent requirement of the formation of crystalline
state and poor processability for small organic compounds, or
inevitable phase separation in host-guest systems10,27. Consider-
ing the intriguing features of polymers in the field of flexible
electronics28–31, such as flexible, lightweight, good processability,
and stretchability, it is necessary to investigate long-lived phos-
phorescence based on polymers under ambient conditions (in air
and at room temperature), which have great potential in flexible
lighting and displays. Much effort has been devoted to develop
polymers with long-lived phosphorescence, there is still an
overwhelming barrier to provide a concise strategy to rationally
manipulate polymers with long-lived phosphorescence under
ambient conditions because of the intense non-radiative transi-
tion of triplet excitons from building block motions (Fig. 1).

Several successful examples for polymers with LRTP mainly
depended on hydrogen bonding to restrict the motions of the
chromophores26,27. Compared with the hydrogen bond, ionic
bonding possesses the unique characteristics of strong interactions,
directionless, nonsaturation32,33. Generally, ionic cross-linking are
widely used for bridging building units to obtain superior physical
properties in supramolecular chemistry. For instance, the ionic
bonding was chosen to construct hydrogels or self-healing materials
due to its strong ionic bonding interactions to maintain the shape of
the gels and recover original shape from the stretched state34.
Moreover, for supramolecular polymers, building blocks can be
connected through electrostatic interactions of ionic bonds to create
a coiled chain or ordered filament35,36. Inspired by the strong cross-
linking interactions from ionic bonding in material science, we
propose that the introduction of ionic bonding in polymers may
obtain LRTP via suppressing non-radiative transition process from
the motions of chromophores. As shown in Fig. 1, there exists
intensive triplet exciton depletion in traditional polymers under
ambient conditions on account of the motions of chromophores,
thus resulting in no phosphorescence emission. After cross-linked
by the ionic bonding, the chromophores can be fixed with covalent
bonding of vinyl backbone, effectively stabilizing triplet excitons for
LRTP in polymers through the suppression of non-radiative tran-
sitions. The LRTP lifetime can reach 2.1 s. Unexpectedly, excitation
dependent colorful long-lived phosphorescence is obtained.
Our approach provides a general design principle to generate long-
lived phosphorescence in amorphous polymers under ambient
conditions.

Results
Photophysical properties of the PSSNa polymer. To validate our
hypothesis, we selected a poly(styrene sulfonic acid) sodium

(PSSNa) (Mw= 80,000) as an ionic polymer model (Fig. 2a). In
PSSNa polymer, aromatic phenyls acted as the chromophore,
meanwhile sulfonate sodium substituents as locks were used to
restrict the chromophore motions. Under the irradiation at a 365
nm UV lamp, PSSNa polymer showed sky-blue emission with a
photoluminescence quantum yield (PLQY) of 5.3% in solid state
at room temperature. At 77 K, it increased to 10.8% (Supple-
mentary Table 1). After the removal of excitation source, yellow
ultralong phosphorescence was observed by naked eyes, which
lasted for several seconds under ambient conditions (Fig. 2a and
Supplementary Movie 1). This phenomenon was distinctly dif-
ferent from the traditional polymer, polystyrene (PS), which
revealed only fluorescence excited by 280 nm with a short lifetime
of 4.82 ns (Supplementary Fig. 14 and Table 2), and no phos-
phorescence signal was detected under ambient conditions. These
results suggested that the ionic cross-linking of sulfonate sodium
substituents played a critical role in ultralong phosphorescence in
the PSSNa polymer. Unexpectedly, with variation of excitation
wavelength, the persistent luminescence showed an obvious
redshift with main peaks changing from 540 to 560 nm (Sup-
plementary Table 3), as shown in Fig. 2b and Supplementary
Figure 16. To the best of knowledge, the excitation dependent
persistent luminescence was rarely investigated in polymer sys-
tem. Time-resolved emission spectra of dry PSSNa polymer
excited at 325 nm further revealed stability of LRTP over time
(Fig. 2c). With the delay of time, the profiles of phosphorescence
spectra kept stable. As shown in Fig. 2d, it was found that the
lifetimes of emission bands at 540 and 560 nm were up to 894 and
463 ms, indicating the LRTP nature. We speculated that the dif-
ferent lifetimes of phosphorescence emission may be ascribed to
different excited states from different aggregations between
chromophores. In a further set of experiments, we investigated
the influence of temperature on long-lived phosphorescence.
Remarkably, the range of color variation was extended from blue
to orange at 77 K (Supplementary Fig. 16), corresponding phos-
phorescence peaks red-shifted from 441 to 568 nm (Fig. 2e).
From Fig. 2f, it was found that the phosphorescence intensity
gradually decreased with temperature increasing. Unexpectedly,
phosphorescence signals could still be detected when PSSNa
polymer was heated up to 443 K (Fig. 2f), owing to strong ionic
bonding interactions. It was noted that no phosphorescence can
remain at such a high temperature in the previously reported
organic systems.

Influence of different ions on LRTP. In a further set of
experiments, we investigated the influence of different ions on
ultralong organic phosphorescence in polymers. After replaced
with different cations (Li+, K+, Rb+, NH4

+) (Fig. 3a), we found
that the profiles of both steady-state PL and phosphorescence
spectra of ionic polymers were similar with emission peaks at
around 397 and 550 nm (Fig. 3b, Supplementary Fig. 18 and
Tables 2, 4), respectively. Similar to PSSNa polymer in the solid
state, blue fluorescence and yellow ultralong phosphorescence
could be observed for these ion modified polymers by naked eyes
under 365 nm lamp on and off, except for PSSNH4 (Fig. 3c and
Supplementary Movie 2). As shown in Fig. 3d, with ionic radius
increasing, the LRTP lifetimes gradually decreased from 1308 to
57 ms, possibly ascribing to quenching effect by heavy atoms or
more intensive non-radiative transitions by weaker interactions
between benzenesulfonates. Therefore, the LRTP was too weak to
be observed for PSSNH4 polymer.

To explore the influence of ions with different charges on
URTP, we synthesized a set of polymer phosphors with Mg2+,
Ca2+, Al3+, and Gd3+ ions, namely, PSSMg, PSSCa, PSSAl, and
PSSGd, respectively. Impressively, all polymer phosphors showed
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Fig. 1 Schematic illustration for ultralong room temperature phosphorescence in polymers. After chromophores interlocked by ions, the typical polymers
were endowed with LRTP properties through restricting motions of chromophores under ambient conditions
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Fig. 2 Photophysical properties of dry PSSNa polymer in solid state. a Molecular structure of PSSNa polymer. Right: Photographs of PSSNa solids taken
under a 365 nm lamp on and off. b Excitation-phosphorescence emission mapping of PSSNa polymer under ambient conditions. c Time-resolved emission
spectra of PSSNa polymer excited by 325 nm. d The lifetime profiles of PSSNa polymer monitoring at 540 nm excited by 300 nm and 560 nm excited by
365 nm under ambient conditions, respectively. e Excitation dependent phosphorescence spectra of PSSNa polymer at 77 K. Insets show photographs
taken after PSSNa polymer excited by 300, 330, 360, 390, 420, and 450 nm at 77 K. f Phosphorescence spectra of PSSNa polymer at various temperatures
from 293 to 443 K. Insets show photographs from top to bottom taken after PSSNa polymer excited by 365 nm at 293, 348, 373, 418, and 443 K
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bright ultralong phosphorescence after the excitation source (a
365 nm UV lamp) was switched off (Supplementary Fig. 19 and
20). As shown in Supplementary Fig. 21–23, PSSMg, PSSCa, and
PSSGd polymers showed yellow ultralong phosphorescence with
lifetimes of 1152, 845, and 315 ms, respectively. For PSSAl
polymer, it showed green ultralong phosphorescence with a
lifetime of 765 ms (Supplementary Fig. 21 and 23). Compared
with PSSNa phosphor, both PSSMg and PSSAl polymer
phosphors showed longer phosphorescence lifetimes, which
might be ascribed to stronger ionic bonding interactions for high
charged ion. Impressively, the LRTP lifetimes decreased from
PSSMg (1152 ms) to PSSCa (845 ms) and from PSSAl (765 ms) to
PSSGd (315 ms), which stressed the fact that the LRTP lifetimes
will decrease with ionic radius increasing. Taken together, we
speculated that the large ionic radius is harmful to the prolonging
of LRTP lifetime, whereas the high ion charge state is beneficial.
Therefore, the LRTP lifetime can be managed by balancing the
ionic radius and charge state.

Proposed mechanism for long-lived phosphorescence. To gain
deeper insight into the underlying mechanism for ultralong
phosphorescence in ionic polymers, a set of control experiments
were conducted. As shown in Fig. 4a, the lifetimes of ultralong
phosphorescence gradually decreased when PSSNa film was
exposed to wet air (humidity: 55%) from 0 to 3 h. It was found
that the crystalline degree decreased after the PSSNa film was
exposed in air for 3 h, demonstrating the moisture can partially
destroy the ionic bonding to tune the LRTP lifetime37. Compared
with the moisture, oxygen had slight effect on phosphorescence
lifetimes owing to barrier of the dense aggregation and slow
diffusion of oxygen in dense film, leading to a little decrease in the
phosphorescence intensity and lifetime at t= 0 h (Supplementary
Figs. 24–26). In a word, ionic bonding plays a significant role in
generating ultralong phosphorescence. Moreover, from Supple-
mentary Table 5, it easily found that the non-radiative decay rates
were at least one order of magnitude higher than radiative decay
rates, indicating the non-radiative decay rates played a dominant
role in manipulating LRTP in ionic polymer phosphors. The

suppression of non-radiative transitions for LRTP was also con-
firmed by the energy gap law with PSSNa phosphor as a
model38,39 (Supplementary Fig. 25). Notably, compared with PSS
polymer without ion substitution, the non-radiative decay rates
for most ionic polymer phosphors were smaller, which further
proved that the ions played a vital role in suppressing non-
radiative transitions for LRTP.

To further probe the origin of excitation-dependent long-lived
phosphorescence, we first investigated the excitation spectra of
PSSNa. By monitoring different phosphorescence emission bands,
the excitation spectra showed obvious redshift at both room
temperature and 77 K (Fig. 4b and Supplementary Fig. 17),
indicating there existed different aggregates in charge of colorful
phosphorescent emission. The existence of different aggregates
was further experimentally confirmed by concentration-
dependent phosphorescence on a model monomer (4-vinylben-
zenesulfonic acid sodium) at 77 K (Supplementary Fig. S30). With
the monomer concentration increasing, phosphorescent emission
bands were gradually redshifted from 450 to 555 nm owing to
forming different ground state aggregates at different molecular
concentration (Supplementary Fig. 30). From Grazing-incidence
wide-angle X-ray scattering (GI-WAXS) patterns (Fig. 4c) and the
corresponding scattering profiles in the in-plane and out-of-plane
directions (Supplementary Fig. 32), we found that there existed
three peaks, corresponding to three types of chromophore
arrangements in dry PSSNa film. The first peak at low q (0.41
Å−1) was attributed to inter-polymer chain packing (15.7 Å), and
the other two peaks at higher q= 1.22 and 1.87 Å−1 corre-
sponded to d-spacing of 5.19 and 3.34 Å, which were attributed to
sodium benzenesulfonate triad spacing along one polymer
chain40. These results were consistent with optimized stacking
of the chromophores in polymer chains calculated by density
functional theory (DFT) (Fig. 4d, e). Taken together, we
speculated that the long-lived phosphorescence in polymers was
stemmed from the stabilization of triplet excitons by the
aggregation of adjacent benzene units with short distances at
around 3.34 Å at room temperature. The variation of long-lived
phosphorescence might be ascribed to the different aggregates of
adjacent benzene units, like the Model n in Fig. 4f. Owing to the
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restriction of molecular motions at 77 K, the multiple channels of
phosphorescence emission as shown by the Model 1 to Model n
were unlocked (Supplementary Fig. 33), thus leading to the
excitation dependent colorful ultralong phosphorescence.

To clarify the formation of triplet states for long-lived
emission, we studied the dynamics of triplet generation by the
transient absorption (TA) experiments on the PSSNa polymer
film (Supplementary Fig. 34). As shown in the nanosecond
(ns)-resolved TA data, excited-state absorption (ESA) features
are observed ranged from 360 to 700 nm (Supplementary
Fig. 34a). A spectral transfer to a long persistent ESA
component centered at 440 nm is observed with a characteristic
lifetime of ~ 6 ns. The new generated excited state can be safely
assigned to the triplet excited state considering its long lifetime
of over 100 μs. Moreover, we studied the excitation-density-
dependence of triplet generation and found that the kinetics
was nearly insensitive to the pump power (Supplementary
Fig. 34b, c), which suggests that the triplet states are formed
from an ISC process rather than the bimolecular recombination
following exciton dissociation. We further confirm the assign-
ment by the global fitting algorithm to analyze the broadband
TA signal recorded at different pump fluences, and find out that
the lifetimes of spectral transfer are independent of pump
fluence (Supplementary Fig. 34d–34f). The existence of triplet
states in PSSNa phosphors was experimentally confirmed by
photodegradation of anthracene-9,10-diyl-bis-methylmalonate
(ADMA), a chemical tracker of singlet oxygen (Supplementary
Fig. 35).

Universality confirmation of the ionic interlocking for LRTP.
To test the universality of our approach, we introduced the ionic
bonding cross-linking into nonaromatic polymers, then designed
a set of the ionic polymers, namely PAANa, PMANa, and PSSNa-
co-PMANa (Fig. 5a). With chromophore variations, the LRTP
emission colors were successfully tuned from yellow to blue
(Fig. 5b). Like PSSNa polymer, these ionic polymers also showed
excitation-dependent ultralong phosphorescence under ambient
conditions (Fig. 5c and Supplementary Figs. 36–40). The blue
LRTP band showed a record lifetime of 1496 ms monitoring the
emission band at 450 nm excited by 254 nm. Unexpectedly, the
lifetime of LRTP emission band at 480 nm was up to 2139 ms
(Fig. 5d). To the best of our knowledge, it is the longest lifetime of
organic phosphorescence in polymer luminogens (Supplementary
Fig. 41). Carboxylate (-COO-) acted as the chromophore was
restricted by ionic bonding, thus contributing to ultralong
phosphorescence of PAANa polymer. PMANa polymer con-
taining carboxylate (-COO-) and sodium ion also demonstrated
ultralong phosphorescence excited by 310 nm with lifetime of
378 ms (Fig. 5b). Besides, ionic copolymer PMANa-co-PSSNa
polymer in the solid state can emit yellow-green ultralong
phosphorescence, which can be observed by naked eye for several
seconds (Fig. 5b), with the lifetime of 385 ms monitoring at the
peak at 500 nm. Time-resolved emission spectra of PMANa-co-
PSSNa films exhibited that the peaks of phosphorescence spectra
shifted from 500 to 530 nm (Fig. 5e) with the time delayed.
Therefore, ionic bonding cross-linking can be also suitable to
ionic copolymers with LRTP nature.
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Discussion
In summary, we have developed a facile and concise chemical
strategy to achieve long-lived organic phosphorescence among
traditional amorphous polymers. With an intense intermolecular
subunit interlocking by cations in polymers, a record LRTP life-
time of up to 2.1 s was obtained under ambient conditions.
Besides, the long-lived phosphorescent emission can be con-
trollably tuned by manipulation of excitation wavelength. More
importantly, the universality of our approach was also proved in
non-aromatic polymers. Taken experimental and theoretical
studies together, we proposed that the cross-linking between
chromophores with ionic bonding played a critical role in sup-
pressing non-radiative transitions for LRTP enhancement. This
finding not only expands the scope of metal-free organics with
LRTP nature, but also paves a way to study ultralong phos-
phorescent materials for potential application in polymer-based
flexible electronics.

Methods
Reagents and materials. PSSNa ((poly(sodium 4-styrenesulfonate)) (average Mw

= 80,000) solution was purchased from Shanghai macklin Biochemical Co., Ltd.
PMANa-co-PSSNa powder (Poly(maleic acid-co-4-styrenesulfonic acid) sodium
salt)) (the mole ratio of PSSNa and PMANa is 1:1, average Mw= 20,000) was
purchased from Sigma-Aldrich Co. Ltd. They purified by a dialysis bag (mwco
3500). PAA (polyacrylic acid) (Mw= 40,000 ~ 60,000) powder and PMA (poly-
maleic acid) 50% in water were purchased from Shanghai macklin Biochemical Co.,
Ltd. Lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium
hydroxide, ammonium hydroxide, magnesium hydroxide, aluminum hydroxide,
gadolinium oxide, calcium oxide, and PSS (polystyrene sulfonic acid) (Mw=
75,000) solution used in the experiments were purchased from commercial sources
without further purification.

Measurements. Nuclear magnetic resonance (1H NMR) spectra were obtained on
a Bruker Ultra Shield Plus 400MHz spectrometer. Chemical shift was relative to
tetramethylsilane (TMS) as the internal standard. UV-visible absorption spectra
were obtained using Shimadzu UV-1750. Steady-state fluorescence/phosphores-
cence spectra and excitation spectra were measured using Hitachi F-4600. The
lifetime and time-resolved emission spectra were obtained on Edinburgh FLSP920
fluorescence spectrophotometer equipped with a xenon arc lamp (Xe900), a
nanosecond hydrogen flash-lamp (nF920), a microsecond flash-lamp (μF900),
respectively. The luminescent photos and videos were taken by a Cannon EOS
700D camera at room temperature. Scanning electron microscope (SEM) images
and energy-dispersive X-ray spectroscopy (EDS) mapping were collected by
scanning electron microscope (JSM-7800F). GIWAXS measurements were con-
ducted using the SAXS/WAXS beamline of the Australian Synchotron. The poly-
mer films were spin-coated using the same preparation method as for the device
active layer on the substrates of cleaned silicon wafers. Samples were analyzed
using an X-ray energy of 11 keV and incident angles ranging from Ω= 0.02 to 0.35
in 0.005 increments, which allowed signal optimization near the critical angle of the
polymer film, but below the critical angle of the substrate. Data from GIWAXS
experiments were analyzed using a customized version of NIKA 2D based in
IgorPro software. FI-IR spectra were collected by NICOLET iS50 FT-IR. Absorp-
tion spectra of ADMA were obtained by PE Lambda 950. X-ray crystallography
was achieved using a Bruker SMART APEX-II CCD diffractometer with graphite
monochromated Mo-Kα radiation.

Transient absorption spectroscopy. For ns-resolved TA measurement, we
employ a pump laser of a frequency-tripled sub-nanosecond laser (Picolo AOT
MOPA, InnoLas) at 355 nm (pulse duration ~ 0.8 ns). The probe beam is a
broadband supercontinuum light source generated by focusing a small portion
of the femtosecond Ti:Sapphire laser beam (Libra, Coherent Inc.) onto a 5-mm-
thick CaF2 plate. The lasers are synchronized to the probe pulse with a
desired delay by an electronic delay generator (SRS DG645, Stanford
Research System). The TA signal is then analyzed by a silicon CCD (S11071,
Hamamatsu) mounted on a monochromator (Acton 2358, Princeton Instru-
ment) at 1 kHz enabled by a custom-built control board from Entwicklungs-
buero Stresing.
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Computational details. Several test segments from PSSNa polymer, including
monomer, dimer, trimer, and hexamer, were constructed to probe the possible
polymer configurations. The M062X functional has been proposed to rationally
describe the weak intermolecular interactions (van der Waals and π–π coupling)41,
and then was employed to optimize the ground-state structures of these chosen
segments together with 6-31G(d) basis set, except for hexamer with 3-21G basis set.
The excitation energies and natural transition orbitals for the singlet and triplet
states of monomer were then evaluated by TD-DFT method. All the calculations
were performed using Gaussian 09 program42. At the same level, the spin–orbit
couplings between singlet ant triplet states were performed using PySOC code43.

Data availability
The data that support the findings of this study are available from the corresponding
authors upon reasonable request.
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