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A STAT3-based gene signature stratifies glioma
patients for targeted therapy
Melanie Si Yan Tan 1,2,11, Edwin Sandanaraj 1,2,3,11, Yuk Kien Chong1, See Wee Lim1,

Lynnette Wei Hsien Koh1,2, Wai Hoe Ng4,5, Nguan Soon Tan 2,6,7, Patrick Tan5,8, Beng Ti Ang3,4,5,9,12 &

Carol Tang1,5,10,12

Intratumoral heterogeneity is a hallmark of glioblastoma (GBM) tumors, thought to nega-

tively influence therapeutic outcome. Previous studies showed that mesenchymal tumors

have a worse outcome than the proneural subtype. Here we focus on STAT3 as its activation

precedes the proneural-mesenchymal transition. We first establish a STAT3 gene signature

that stratifies GBM patients into STAT3-high and -low cohorts. STAT3 inhibitor treatment

selectively mitigates STAT3-high cell viability and tumorigenicity in orthotopic mouse xeno-

graft models. We show the mechanism underlying resistance in STAT3-low cells by com-

bining STAT3 signature analysis with kinome screen data on STAT3 inhibitor-treated cells.

This allows us to draw connections between kinases affected by STAT3 inhibitors, their

associated transcription factors and target genes. We demonstrate that dual inhibition of IGF-

1R and STAT3 sensitizes STAT3-low cells and improves survival in mice. Our study under-

scores the importance of serially profiling tumors so as to accurately target individuals who

may demonstrate molecular subtype switching.
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Patients with glioblastoma (GBM) frequently survive no
>15 months despite surgical intervention with chemother-
apy and radiation1. Tumor recurrence and the development

of resistance toward standard-of-care treatment regimens are key
reasons for the poor outcome and have been attributed to the
cellular and molecular heterogeneity of tumor tissue2–5. Over the
past decade, several large, publicly funded efforts demonstrated
that gene expression drives brain tumor disease progression and
clinical outcome3. Primary adult GBM tumors that are pre-
dominantly isocitrate dehydrogenase 1—wild type (IDH-WT) are
subdivided into three glioma-intrinsic (GI) transcriptomic sub-
types (proneural, classical, and mesenchymal) after separating out
microglial- and stromal cell-type contribution4. The revised
World Health Organization (WHO) classification scheme for
brain tumors incorporates these molecular markers to influence
treatment decision1. These efforts highlight the necessity to pre-
scribe treatment regimens based on a stratified population.

We focused on signal transducers and activators of transcrip-
tion (STAT3) where its activation has been demonstrated to effect
a transition in molecular subtype to the aggressive mesenchymal
profile6. The proneural–mesenchymal transition (PMT) process
has been associated with recurrent tumors and, more recently,
chemotherapeutic and radiation resistance, thought to arise from
the selection of transitional glioma-initiating cell clones harboring
gain in PMT transcriptomic patterns6. Thus targeting the
STAT3 signaling axis is pivotal in disease management.

The interleukin 6/Janus kinase/STAT3 (IL-6/JAK/STAT3)
pathway is involved in the pathogenesis of many human malig-
nancies. Increased IL-6 levels are also found in conditions asso-
ciated with inflammation, such as rheumatoid arthritis and
inflammatory bowel disease and increasingly in hematological
disorders and solid tumors, such as GBM7. In cancer, increased
IL-6 levels result in hyperactivation of JAK/STAT3 signaling,
typically associated with poorer prognosis8–11. In most myelo-
proliferative cancers, the genes encoding JAK enzymes, particu-
larly JAK2, frequently contain gain-of-function mutations12.
However, no such mutations can be detected in GBM tumors,
thus implicating other mechanisms of STAT3 activation. STAT3
has also been shown to regulate the self-renewal potential of
glioma cells, suggesting that its inhibition would lead to a more
curative and sustained outcome13,14. Over the past decade, much
effort has been spent at evaluating JAK inhibitors predominantly
in chronic inflammation and hematological disorders, with its
application in solid tumors largely unexplored. Tofacitinib,
Ruxolitinib, and pacritinib are the most advanced drugs in pre-
clinical development. Furthermore, oncology-based clinical trials
of STAT3 inhibitors have yet to take into consideration the
implications arising from The Cancer Genome Atlas (TCGA)
findings and whether the development of subsequent patient
stratification methods would lead to significant improvement in
prognostic outcomes. We are therefore interested in assessing
JAK/STAT3-inhibitory agents in GBM tumors, with an ultimate
goal in identification of potential responders and non-responders.

TCGA efforts identified molecular subtypes driven by key
signaling pathways3. In the evaluation of upstream kinases that
lead to active STAT3 signaling, the human epidermal growth
factor receptor (EGFR), a member of the ErbB/HER family of
receptor tyrosine kinases (RTKs); the family of IL-6–type (IL-6)
cytokine receptors that form complexes with gp130 and JAKs;
and several G-protein-coupled receptors have been described in
previous literature15. Multiple growth factors (e.g., EGF, trans-
forming growth factor-α (TGFα), platelet-derived growth factor,
and colony-stimulating factor 1) and cytokines (e.g., insulin-like
growth factor 1 (IGF-1), IL-6, leukemia inhibitory factor, cardi-
otrophin-1, ciliary neurotrophic factor, IL-10, IL-11, and
Oncostatin-M) have been shown to activate STAT3. Elevated

levels of STAT3-activating ligands, such as IGF-1, TGFα, or IL-6,
have also been detected in the serum and/or the tumor micro-
environment of patients with various malignancies. In the case of
IGF-1 receptor (IGF-1R) where several small-molecule candidates
are under evaluation in pharmaceutical pipelines, the down-
stream cell-intrinsic activation of STAT3 remains unclear in
GBM tumors.

We first combine gene candidates inversely implicated in the
STAT3 response pathway in patient-derived GBM cells in the
presence of STAT3 knockdown (KD), with candidates regulated
in similar direction across the STAT3 axis in large, public clinical
databases. This strategy allows us to prioritize clinically relevant
gene candidates in an otherwise statistically underpowered cell
line collection, as with all such studies. We then systematically
rank the STAT3 signaling axis, as defined by a gene signature,
with key patient characteristics and clinical indicators16,17. This
allows us to predict patient cohorts most likely to benefit from a
STAT3 inhibition therapeutic approach. Furthermore, by ana-
lyzing the upregulated genes in the other non-responder cohort,
we select key kinases for which inhibitory small molecules are
currently evaluated in clinical trials. To substantiate our bioin-
formatical analyses, we prioritize clinically relevant (and bio-
chemically active) kinases using a novel computational pipeline to
set the threshold for a kinome screen conducted on STAT3-
perturbed GBM cells. We successfully identify IGF-1R in an as yet
undescribed STAT3-IGF-1 forward feedback loop. Our study
provides preclinical evidence for the implementation of anti-
STAT3 therapy in selected patient cohorts, while defining a
method to sensitize non-responders.

Results
STAT3 functionally tuned gene signature. Brain tumor gene
expression drives disease progression and patient survival out-
come4, suggesting that druggable pathways may be revealed
through genomic and transcriptomic profiles. STAT3 represents
the final molecular switch that is activated prior to the PMT
process that typifies highly aggressive and recurrent GBMs6. We
hypothesize that the STAT3 pathway stratifies patients for their
likely response to STAT3 inhibition therapy. As any signaling
pathway is better represented by a set of genes than a single
candidate, we established a transcriptomic signature reflecting the
STAT3 pathway activation status (Supplementary Data 1). We
prioritized genes that contribute functionally to the STAT3
pathway and correlate with prognostic outcome. STAT3 co-
expressed genes from the Rembrandt patient database (Fig. 1a,
middle panel) that displayed inverse expression upon STAT3 KD
in patient-derived GBM-propagating cells (GPCs; Fig. 1a, left
panel) were identified to form the STAT3 “functionally tuned”
gene signature (Fig. 1a, right panel)18. The latter approach
ensures that only genes downstream and modulated by the
STAT3 pathway would be selected. We verified STAT3 protein
expression upon lentiviral-mediated KD in three GPCs and
observed significant mitigation of viability, sphere-forming fre-
quency, and sphere size (Supplementary Fig. 1a–l). We estab-
lished a positive enrichment of the JAK/STAT signaling pathway
in our functionally tuned gene signature, and defined it as
STAT3-high, while an inverse correlation defined the STAT3-low
gene signature (Supplementary Fig. 1m; Supplementary Data 2).
We then tested the robustness of our STAT3 composite signature
in two clinical databases, Gravendeel and TCGA (Gravendeel,
Fig. 1b–f; TCGA, Supplementary Fig. 2a, b)3,19. Accordingly,
contingency analyses accounting for TCGA GI molecular sub-
types and the WHO classification scheme including molecular
and clinical indicators, demonstrate that STAT3-high defines a
patient cohort enriched in the mesenchymal and classical
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molecular subtypes, typifying highly aggressive and recurrent
gliomas (Supplementary Table 1a). These tumors also demon-
strated a significant enrichment of 1p/19q non-co-deletion and
IDH-WT status. STAT3-low tumors, in contrast, comprise mostly
of low-grade gliomas (LGGs), and the proneural molecular sub-
type with enrichment of 1p/19q co-deletion and IDH-Mut
(mutant) status, representing tumors of better prognosis and

responsiveness to current chemotherapy (Fig. 1b, and additional
clinical database TCGA, Supplementary Fig. 2a)20. Figure 1c
demonstrates patient survival stratification based on our “func-
tionally tuned” STAT3 gene signature. STAT3-high defines poor
prognosis patients, while STAT3-low patients survived sig-
nificantly longer (logrank p value < 2 × 10−16) (additional clinical
database, TCGA; Supplementary Fig. 2b). Further univariate and
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Fig. 1 NNI-STAT3 functionally tuned gene signature stratifies patient survival independent of current clinical indicators. a STAT3 co-expressed genes from
Rembrandt patient database (middle panel) that displayed inverse expression upon STAT3 knockdown (KD) (left panel) were identified to form the NNI-
STAT3 functionally tuned gene signature (right panel). b In Gravendeel clinical database, STAT3-high patient all glioma cohort was enriched in
mesenchymal and classical molecular subtypes, with predominantly isocitrate dehydrogenase 1 (IDH)-wild-type status. STAT3-low tumors, in contrast,
comprised mostly low-grade gliomas (LGGs), IDH-mutant (1p/19q co-deleted and non-co-deleted), and proneural molecular subtypes. c NNI-STAT3
signature stratified all glioma patient survival in Gravendeel clinical database. An enrichment of STAT3 pathway activation defined the poor prognosis
patients (STAT3-high, 8.04 months), while patients of STAT3-low survived significantly longer (57.48 months). d A combination of NNI-STAT3 gene
signature, World Health Organization status, Karnofsky (Karn) score, and age presented the best statistical model to account for the variability in patient
survival, using the Bayesian Information Criterion (BIC) method. e NNI-STAT3 signature performed better than the existing Alvarez STAT3 signature for
glioma patient prognosis. f The relative odds of correlation between STAT3 signature and IDH mutation is 2.42 in a diagnostic metrics test. Patients with a
negative signature score (STAT3-high) are 2.42 times more likely to be IDH-wild-type than those with a positive signature score (STAT3-low). g STAT3-
high GBM patient cohort was enriched in mesenchymal and classical molecular subtypes. STAT3-low tumors, in contrast, comprised mostly the proneural
molecular subtype. h NNI-STAT3 signature stratified glioblastoma patient survival. An enrichment of STAT3 pathway activation defined the poor prognosis
patients (STAT3-high, 7.1 months) while patients of STAT3-low survived significantly longer (12.4 months)
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multivariate analyses suggested that the STAT3 signature func-
tions as an independent predictor and is not confounded by
current molecular and clinical indicators (Supplementary
Table 1b). We demonstrate using the Bayesian Information Cri-
terion (BIC) method that a combination of STAT3, the WHO
classification system that incorporates the IDH and 1p/19q co-
deletion status, and Karnofsky score (measures patient’s func-
tional status) presented the best statistical model accounting for
patient survival (Fig. 1d). In such plots, a reduction in the BIC
score by an absolute value of 10 fulfills the industry standard for
advancing a therapeutic strategy into clinical trial21. In addition,
our STAT3 signature outperformed the existing Alvarez STAT3
gene signature previously established to be a pan-solid, tumor-
specific profile for glioma patient prognosis (Fig. 1e)22. The
relative odds of correlation between STAT3 signature and IDH
mutation is 2.42 in a diagnostic metrics test. Patients with a
negative signature score (STAT3-high) are 2.42 times more likely
to be IDH-WT than those with a positive signature score
(STAT3-low, IDH-Mut) (Fig. 1f).

As GBM patients portend the poorest prognosis over a decade,
with little improvement even with the best standard-of-care drug
temozolomide (TMZ), we extended our analyses to exclusively
GBM tumors in both Gravendeel and TCGA databases (Fig. 1g, h
and Supplementary Fig. 2c, d). Similar prognostic association was
observed in GBM patients for STAT3-high and -low subtypes
(Gravendeel, logrank p value= 0.002, Fig. 1h; TCGA, logrank
p value= 0.009; Supplementary Fig. 2d). STAT3-high signifi-
cantly enriched for the mesenchymal and classical subtypes, with
predominantly IDH-WT and 1p/19q non-co-deletion status
(Gravendeel, Fig. 1g; TCGA, Supplementary Fig. 2c; Supplemen-
tary Table 1b). Taken together, our data suggest that the STAT3
pathway contributes to the molecular heterogeneity of GBM
tumors.

STAT3-high group shows improved response to STAT3 inhi-
bitors. We stratified our GPCs based on our STAT3 gene sig-
nature and observed a consistent expression of increased
phospho-STAT3 (pSTAT3) in the STAT3-high group (NNI-21,
-24, -12), in contrast to the STAT3-low cells (NNI-11, -20 and
-23) (Fig. 2a and Supplementary Fig. 3). STAT3-high tumor cells
demonstrated significantly lower half maximal inhibitory con-
centrations (IC50) upon treatment with STAT3 inhibitors, com-
pared to STAT3-low cells (Fig. 2b–d and Supplementary
Fig. 3c–e). AZD1480, Stattic, and WP1066 represent JAK/STAT
inhibitors commonly used; in particular, AZD1480 has been
shown to exhibit specific activity against Jak2 kinase, mitigating
tumor cell proliferation in a variety of solid tumors23. STAT3-
high cells also showed reduced cell viability and gliomasphere-
forming ability when compared to STAT3-low cell lines
(Fig. 2e–j). Furthermore, using a recovery assay that allows
treated cells to recover in the absence of the drug to ascertain
prolonged and irreversible inhibition, STAT3-high cells showed
significant mitigation of viability, self-renewal, and invasive
potential (Fig. 2k–m). In contrast, STAT3-low cells were mini-
mally inhibited by the STAT3 inhibitors and instead developed
resistance. Finally, utilizing the orthotopic patient-derived xeno-
graft (PDX) mouse model, mice implanted with AZD1480-
treated NNI-24 (STAT3-high) cells demonstrated better survival
in a dose-dependent manner (Fig. 2n and Supplementary Table 2,
Kaplan–Meier statistics). Compared to NNI-20 (STAT3-low)
mice, NNI-24 mice demonstrated an approximate 2.5-fold
increased median survival difference between matched dimethyl
sulfoxide (DMSO) solvent control and AZD1480-treated groups
(Fig. 2o and Supplementary Table 2). All GPCs and PDX tumors
were sequenced and defined as IDH-WT (Supplementary Fig. 3f,

g). These findings support the application of our STAT3 gene
signature to stratify and identify patient cohorts most likely to
receive treatment benefit from STAT3 inhibition therapy, while
further cautioning against the use of such inhibitors in STAT3-
low patients due to the development of resistance mechanisms.

IGFBP2 causes chemoresistance in STAT3-low glioma cells. As
important as identifying potential responders, we explored
mechanisms underlying resistance in the STAT3-low group, so
that therapeutic options may be defined to sensitize these indi-
viduals to chemotherapy. We first evaluated our STAT3 func-
tionally tuned gene signature and prioritized those candidates
most highly variable between STAT3-high and STAT3-low
groups. Since upregulated genes better serve as therapeutic tar-
gets, we focused on candidates that exhibited a dose-dependent
increase in STAT3-low cells after treatment with AZD1480
(Fig. 3a). These same candidates were then verified to display an
inverse pattern (i.e., dose-dependent reduction) in the STAT3-
high cells subjected to similar treatment, for the reason that this
candidate list should exhibit differential expression between the
two stratified GPC groups (Supplementary Data 3). Similar
results were obtained with Stattic and WP1066 treatment, thus
supporting the specificity of targeting the STAT3 signaling axis
(Supplementary Fig. 4a, b). Six genes were identified, namely,
insulin-like growth factor binding protein 2 (IGFBP2), neural
precursor cell expressed, developmentally downregulated 9
(NEDD9), synaptosomal-associated protein 23 (SNAP23), gua-
nosine diphosphate (GDP)-mannose pyrophosphorylase A
(GMPPA), E26 transformation-specific containing gene (ELK3,
ETS domain containing protein), and kelch domain containing
8A (KLHDC8A). By surveying literature, we prioritized IGFBP2
as it is one of the six similar genes that sequester intracellular
IGF-1 and for which clinical trials are currently in progress to
evaluate anti-IGF-1R inhibitors in a variety of solid tumors. Since
kinases represent dominant therapeutic targets in major phar-
maceutical pipelines, we established the approach of using bio-
logical evidence to substantiate our computational predictions, by
measuring phosphorylation levels of 144 kinases in STAT3-sig-
nature-stratified GPCs using the PamChip kinome screen. We
developed a novel computational pipeline on kinome assay data
by integrating phospho-chemical interactions with functional
genomics data through kinase-substrate databases (Supplemen-
tary Fig. 4c). Briefly, the phosphorylation dynamics of kinase
substrates were measured as quantitative readouts. These peptide
readouts were mapped with relevant kinases using protein data-
bases such as Kinexus, PhosphoSite, Reactome, and human
protein reference databases24–26. We calculated the quantitative
summary of kinase activity using a rank-based clustering method
as described in the “Methods” section. Subsequently, the differ-
ential kinase regulation upon AZD1480 treatment was estimated
using the linear regression model27. Our approach confirms IGF-
1R as a top-ranking tyrosine kinase uniquely and biochemically
elevated in STAT3-low tumors upon treatment with AZD1480
(Fig. 3b and Supplementary Table 3). Treatment of GPCs with
AZD1480 demonstrated an increase in pSTAT3 and IGFBP2
expression in the nuclear fraction of STAT3-low but not of
STAT3-high cells, consistent with IGFBP2 as a target of STAT3
transcription factor (Fig. 3c). We verified a dose-dependent
increase of secreted IGFBP2 and IGF-1 protein in NNI-20 cells
treated with AZD1480 (STAT3-low GPC) (Fig. 3d). Furthermore,
we observed a significant increase of IGFBP2 and IGF-1R pro-
teins in STAT3-low cells (NNI-20, -23) upon AZD1480 treat-
ment, compared to STAT3-high cells (NNI-21, -24) (Fig. 3e). Our
data here provide a basis to exploring the IGF-1R pathway in
STAT3-low cells.
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Inhibition of STAT3 and IGF-1R sensitizes STAT3-low cells.
We first attenuated IGF-1R signaling pathway by targeting its
effector, IGFBP2, using lentiviral-mediated short hairpin RNA
(shRNA) KD (NNI-20, Fig. 4a–c; NNI-23, Supplementary
Fig. 5a–c). KD of IGFBP2, resulting in IGFBP2 protein reduction,
significantly sensitized STAT3-low cells to STAT3 inhibitor

treatment, demonstrated by decreased viability and clonogenic
potential. More importantly, IGFBP2 KD in STAT3-low cells
sensitized them to AZD1480 and mitigated their viability and
self-renewal capacity. This suggests that dual targeting of STAT3
and the IGF-1R/IGFBP2 signaling axis presents a viable ther-
apeutic strategy to abolish resistance in STAT3-low GPCs.
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To effectively target the STAT3/IGFBP2/IGF-1/IGF-1R feed-
forward mechanism in the STAT3-low GPCs, we conducted dual
inhibition of both STAT3 and IGF-1R pathways using AZD1480
and Linsitinib, an experimental drug candidate targeting IGF-1R
used in various malignancies. This strategy demonstrated
synergistic effect in two STAT3-low cells in vitro and in vivo
(NNI-20, Fig. 4d–h; NNI-23, Supplementary Fig. 5d–f). We
observed a significant dose-dependent reduction of cell viability
and self-renewal upon single agent treatment alone (approxi-
mately 55% viability) but greatly improved synergistic outcome in
the presence of both AZD1480 and Linsitinib (up to approxi-
mately 10% viability). We subsequently generated orthotopic
xenografts to evaluate tumorigenicity using these same pretreated
GPC lines where, as expected, dual inhibition of STAT3 and IGF-
1R conferred the greatest survival benefit and extended tumor
latency in the STAT3-low group of mice (Fig. 4g, h). Protein
expression of pSTAT3, total STAT3, IGFBP2, and IGF-1R were
verified in these xenografted tissues (Fig. 4i, j and Supplementary
Fig. 5g–l). We propose that, in STAT3-low cells, phosphorylated
STAT3 activates IGFBP2 transcription, which increases the
production of IGF-1. This in turn triggers the activation of the
IGF-1R pathway, contributing to an as yet undescribed feed-
forward mechanism (Supplementary Fig. 6). These results suggest
a potential therapeutic strategy utilizing a dual inhibitor approach
to sensitize the STAT3-low GBM patient subgroup.

AZD1480 and/or Linsitinib synergize with TMZ. To assess the
efficacy of our proposed therapeutic strategies in either STAT3-
high or -low patient cohorts, we first treated both STAT3-strati-
fied GBM cells with DMSO solvent, 0.5 μM AZD1480 with/
without TMZ at 20–200 μM range (Fig. 5a). These in vitro TMZ
concentrations are routinely used in literature28–30. We observed
significant dose-dependent mitigation of GBM cell viability in the
presence of AZD1480 and 50–200 μM TMZ. In contrast, STAT3-
low GBM cells demonstrated a marginal, <20% decrease in via-
bility (albeit significant) with AZD1480 and 20–200 μM TMZ.
We evaluated the combination index (CI) plot where increased
synergism with TMZ correlated with CI values of <1 (Fig. 5b).
The CI values were calculated using the CompuSyn software for
evaluation of drug combinations31,32.

Next, we assessed the fraction affected (i.e., reduced viability)
in STAT3-low cells after treatment with AZD1480, Linsitinib, or
both (Fig. 5c). Similarly, our CI plot showed increasing synergism
with TMZ, as denoted by the decreasing CI value (Fig. 5e). We
also carried out similar AZD1480 and TMZ treatment in STAT3-
low cells with IGFBP2 KD for definitive mechanistic implication
(Fig. 5d). The rationale arose from our earlier data showing that
STAT3 activation leads to IGFBP2 gene transcription, which in
turn stimulates the production of IGF cytokine (Supplementary

Fig. 6). Our CI plot demonstrated synergism with TMZ at
50–200 μM range (Fig. 5f).

Collectively, our in vitro data provide strong evidence for both
STAT3 inhibition and dual STAT3/IGF-1R inhibition in STAT3-
high and -low GBM cells, respectively, and synergize with TMZ,
thus suggesting the advancement of both therapeutic approaches
in a clinical setting.

To provide further support of our in vitro data, we focused on
demonstrating that STAT3 inhibitors can selectively target
STAT3-high GBM tumors. The premise of our approach lies in
TCGA studies showing that transcriptomic expression drives
GBM disease progression and prognostic outcome3,4. We tapped
into a recent article where drug and disease signature integration
identifies synergistic combinations in GBM33. This study utilized
the Library of Integrated Network-Based Cellular Signatures
(LINCS) database where several commercial cancer cell lines were
treated with Food and Drug Administration-approved and
experimental small molecule drugs, and the transcriptomic
profile of each treated cell line was acquired. Primary GBM cells
were similarly treated with these drugs including TMZ with
radiation for the purpose that synergistic interactions could be
assessed with the standard-of-care treatment regimen for GBM
patients. The authors further mapped the association of
transcriptomic patterns to prognostic information in TCGA,
thus identifying clinically relevant drug combinations capable of
reversing the disease transcriptomic profile. In our specific
scenario, the disease pattern is defined by our STAT3 functionally
tuned gene signature for which we previously demonstrated
phenotypic effects and prognostic association (Figs. 1 and 2 and
Supplementary Fig. 3a, b). Thus, using an orthogonal plot, we
identified drugs that demonstrated low concordance with TMZ
and high discordance with the STAT3-high tumor phenotype
(Fig. 5g). This indicates that the drug acts in a synergistic manner
with TMZ and is capable of reversing the disease transcriptomic
profile. Interestingly, Ruxolitinib, a Jak2 inhibitor, and AZD1480
emerged in the top ranked drugs (Supplementary Table 4). These
drugs thus have the potential to reverse the STAT3-high disease
profile and support their use in targeting the PMT process that
typifies highly aggressive and recurrent tumors.

Profiling recurrent tumors prior to treatment administration.
Conventional methods to detect STAT3 pathway activation are by
immunohistochemistry where pSTAT3-specific antibodies are
used on frozen or paraffin-embedded tumor sections. We provide
data that our STAT3 functionally tuned gene signature outper-
forms pSTAT3 status alone. We showed that pSTAT3 staining in
our NNI patient tumors was inadequate to stratify the STAT3-
high and -low patient groups, for which we previously demon-
strated significant correlation with IC50 values (Fig. 2b–d and
Fig. 6a). Briefly, comparing various methods of H-score,

Fig. 2 NNI patient-derived glioblastoma (GBM) cells stratified by their STAT3 status show variable response to signal transducers and activators of
transcription 3 (STAT3) inhibitors. a Immunoblot analysis of patient GPCs. STAT3-high cell lines showed elevated phospho-STAT3, compared to STAT3-
low cell lines. b–d Patient GBM cells were treated with b AZD1480, c Stattic, and d WP1066, and their IC50 values were determined (results are mean of
triplicate experiments). Consistent with bioinformatical prediction, STAT3-high cell lines showed sensitivity to STAT3 inhibitors as demonstrated by lower
IC50 values. STAT3-high and -low cell lines were validated by e–g cell viability and h–j clonogenic capacity after treatment with STAT3 inhibitors. STAT3-
low cells demonstrated greater viability and gliomasphere-forming capability after treatment with e, h AZD1480, f, i Stattic, and g, j WP1066. Conversely,
STAT3-high lines displayed greater sensitivity to STAT3 inhibitors, resulting in reduced cell viability and gliomasphere-forming capability. k–m Recovery
assay after 5-day AZD1480 treatment, and the k viability and l clonogenic capacity of STAT3-high GPCs were significantly mitigated. In contrast, STAT3-
low GPCs developed resistance and m demonstrated greater ability to invade. *p < 0.05; **p < 0.01; ***p < 0.001; STAT3-high versus STAT3-low. For
statistical analysis, two-sided Student’s t test was used. Error bars represent standard deviation of the mean. All results are mean of triplicate experiments.
n Orthotopic tumors established from STAT3-high, AZD1480-pretreated cells resulted in mice with prolonged survival. STAT3-high (47 days) patient-
derived xenograft demonstrated greater median survival difference of ~2.5-fold for AZD1480 arm compared to o NNI-20 (19 days) animal groups. *p <
0.05; ***p < 0.001 versus dimethyl sulfoxide. For statistical analysis, logrank test was used
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Fig. 3 Mechanistic gene candidates identified by NNI-STAT3 gene signature. a Winnowed gene list across patient tumors identified candidates uniquely
upregulated in STAT3-high tumors. A dose-dependent differential gene expression after signal transducers and activators of transcription 3 (STAT3)
inhibitor AZD1480 treatment distinguished cooperative genes responsible in the STAT3-resistant profile. Results are mean of triplicate experiments.
b Graphical illustration of responsive and resistant protein tyrosine kinase candidates in STAT3-high and -low cell lines treated with AZD1480 using
computational workflow described in Supplementary Fig. 4c. c Treatment of cells with STAT3 inhibitor (AZD1480) demonstrated an increase in pSTAT3
and insulin-like growth factor binding protein 2 (IGFBP2) expression levels in the nuclear fraction of STAT3-low cells but not in STAT3-high. d Fold change
differences in secreted proteins demonstrated increased IGFBP2 and insulin-like growth factor 1 receptor (IGF-1R) in resistant cells post-treatment with
STAT3 inhibitor. Results are mean of triplicate experiments. e STAT3-high glioblastoma (GBM) cells displayed modest reduction in IGF-1R and IGFBP2
expression levels. In contrast, IGF-1R and IGFBP2 protein expression in STAT3-low cells increased dose-dependently upon AZD1480 treatment, albeit IGF-
1R was marginally insignificant. Fold change differences in protein expression of IGFBP2 and IGF-1R were compared between STAT3-high and -low GBM
cells. *p < 0.05; **p < 0.01; STAT3-high versus STAT3-low. For statistical analysis, two-sided Student’s t test was used. Error bars represent standard
deviation of the mean
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IC50 values, and our gene signature score (Nearest Template
Prediction (NTP) score), we showed that there was no significant
correlation of H-score to either the NTP score or IC50 values
(Fig. 6b, c and Supplementary Fig. 7). However, when we com-
pared the IC50 values to the NTP score, we derived a significant
negative correlation (Fig. 6d), suggesting that the STAT3 func-
tionally tuned gene signature is able to accurately profile sensitive
and resistant patient cohorts.

To assess the utility of STAT3 inhibitors in recurrent patient
tumors, a likely clinical scenario where individuals may be
prescribed novel agents, and when PMT characterizes aggressive
recurrence, we evaluated TCGA glioma-intrinsic subtypes (GISs)
with STAT3 status as defined by the STAT3 gene signature4. Our
previous data showed that STAT3-high enriched for almost equal
patient numbers of mesenchymal and classical subtypes in either
of glioma or GBM cohort (Gravendeel, Fig. 1b, g; TCGA,
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Supplementary Fig. 2a, c). We demonstrate that the mesenchymal
patient cohort predominantly maintains its STAT3-high profile
(86%), whereas the STAT3-low group underwent subtype
switching to STAT3-high (100%) (Supplementary Fig. 8a).
However, this pattern was not clearly marked in the non-
mesenchymal cohort (classical, typifies gain-of-function EGFR
mutations, and proneural). Specifically, classical STAT3-high
patients had an equal chance to undergo subtype switching to
STAT3-low. Although these results strongly support that
mesenchymal patient groups can potentially benefit from STAT3
inhibition therapy, they also indicate that the dual inhibition
strategy would most likely benefit patients who had undergone
STAT3 inhibition therapy at first diagnosis but gained the
resistant STAT3-low profile upon recurrence.

A molecularly well-annotated brain tumor resource to enable
preclinical studies is of paramount importance. Our collection
comprises GBM tumor tissue that compares with tumors
acquired by TCGA (Supplementary Fig. 8b–f). We show that
our xenograft tumors recapitulate the molecular subtypes of their
patients’ original tumors and are clustered with TCGA’s
proneural, classical, and mesenchymal groups. Furthermore,
these tumors demonstrate similar enrichment of neural cell
lineages previously associated with tumor-initiating and propa-
gating capacity2,5,34. The tumor purity score of our resource is
62%, comparable with 59% of the TCGA collection (Supplemen-
tary Fig. 8g–i).

Discussion
The utility of STAT3 inhibitors has largely been confined to
myeloproliferative disorders, in part due to their poor
blood–brain barrier (BBB) penetration. In polycythemia vera, the
STAT3 pathway correlates with poorer prognosis and is con-
stitutively active due to the presence of the JAK2 V617F muta-
tion12. However, no such mutation exists in GBM tumors,
although STAT3 has been implicated in the proliferation and self-
renewal of GBM stem-like cells13,14. We have also observed that
increased STAT3-wild-type expression correlates with poor
prognostic outcome. This suggests that other mechanisms of
STAT3 pathway activation remains, and current STAT3 inhibitor
molecules with efficient BBB penetration capability may find
utility in GBM treatment. To add to the complexity of solid
tumors, several studies have suggested the presence of molecular
heterogeneity3. This may account for the frequently observed
inter-patient variability to treatment response. Indeed, the
mesenchymal profile has been associated with the poorest

prognosis, while the proneural subtype typifies the more sensitive
and treatable cohort4. Currently, routine pathological diagnosis
uses morphological features to define the grades of tumor tissue.
We now know that such histological approaches are woefully
inadequate to influence treatment decisions. Precision oncology
applies these concepts of molecular markers and stratification to
determine targeted therapeutic strategies.

We hypothesize that most signaling pathways, such as the IL-6/
STAT3 axis, could be represented by a set of genes defining key
regulatory modules. The premise of our hypothesis rests in being
able to map these modules in clinical databases comprising
molecular information and indicators used by the physician35,36.
Such a strategy facilitates the quantitative analysis of multi-
dimensional data represented as molecular information, magnetic
resonance imaging scans, and clinical indicators used to assess the
patient’s disease and functional status. We previously demon-
strated the utility of such a strategy in determining tumor cell
resistance and invasiveness37–41. In this study, we identified
STAT3-high to describe a cohort of both glioma and GBM
patients who had poorer prognosis. This subgroup comprised of
genes previously implicated in ATP-binding cassette (ABC) drug
transporters, RTK signaling, and tumor cell invasiveness. Our
method to winnow down the gene list associated with STAT3
combined functional validation with co-expressed genes in clin-
ical databases. This reduced our scope to only clinically relevant
genes with phenotypic changes in STAT3-perturbed primary
GBM cells and PDX mouse models. Our STAT3 signature is not
confounded by current clinical and molecular classification,
thereby emphasizing the molecular heterogeneity contributed by
this mechanistic pathway. While we showed significant extended
survival after implanting AZD1480-pretreated STAT3-high GBM
cells in immunocompromised mice, we also identified the top
ranking causative mechanism responsible for conferring
increased resistance after STAT3 inhibition therapy in STAT3-
low patients and validated its biochemical activity using a kinome
screen. GBM tumor cell resistance to targeted therapy is often
attributed to the compensatory activation of RTKs42–44. Studies
have described the frequent activation of insulin receptor (InsR)
and IGF-1R in GBM specimens and PDX cells at conferring
resistance to EGFR inhibitors43–45, both frequently activated but
rarely amplified or mutated in GBM according to TCGA (<2%)46.
IGFBP2 is the second most abundant IGF-binding protein (after
IGFBP3), functions as a carrier for IGF-1 and likely promotes
tumor progression through IGF-1R pathway47. In gliomas,
IGFBP2 is also often overexpressed48; moreover, increased

Fig. 4 Sensitization of chemoresistant STAT3-low glioma cells by IGFBP2 knockdown (KD) and dual drug inhibition. a Depletion of mechanistic gene IGFBP2.
Compared to the non-targeting control (NTC), shIGFBP2 clones displayed increased sensitivity to AZD1480, observed by b decreased viability and
c reduced gliomasphere-forming frequency in STAT3-low cell line, NNI-20 (additional cell line NNI-23 provided in Supplementary Fig. 5a–c). **p < 0.01;
***p < 0.001; KD versus NTC. For statistical analysis, two-sided Student’s t test was used. Error bars represent standard deviation of the mean. d–f Using a
dual drug treatment strategy (AZD1480 against signal transducers and activators of transcription 3 (STAT3), and Linsitinib against insulin-like growth
factor 1 receptor (IGF-1R)), NNI-20 demonstrated a reduction of IGF-1R and pSTAT3 as observed in d immunoblot analysis, e viability, and f gliomasphere-
forming frequency assays. Additional cell line, NNI-23, is provided in Supplementary Fig. 5d–f. **p < 0.01; ***p < 0.001; treatment groups versus dimethyl
sulfoxide (DMSO) control. ##p < 0.01; ###p < 0.001; dual inhibitors versus individual inhibitor (AZD1480 or Linsitinib). The combination index value for the
combined drugs 1 μM AZD1480 and 0.5 μM Linsitinib is 0.2092, calculated using CompuSyn. g NNI-24 STAT3-high xenograft model established from
AZD1480-pretreated glioblastoma (GBM) cells displayed prolonged survival, while h NNI-20 STAT3-low xenograft model received marginal, albeit
significant (for AZD1480 only) survival benefit with single agent alone. In contrast, dual treatment targeting both STAT3 and IGF-1R significantly prolonged
survival and extended tumor latency of STAT3-low patient-derived xenograft (PDX) mice. *p < 0.05; **p < 0.01; ***p < 0.001; treatment group versus
DMSO; ##p < 0.01; ###p < 0.001 dual inhibitors versus single inhibitor (logrank test). Censored points are indicated by the black tick mark, where mice
death was not attributed to tumor formation. Immunoblot analysis of PDX tumors demonstrated that mice implanted with i NNI-24 (STAT3-high) treated
with AZD1480, demonstrated a reduction in pSTAT3 expression, while j NNI-20 (STAT3-low) showed a stark increase in IGF-1R expression. This supports
that dual inhibition of STAT3 and IGF-1R serves as a possible therapeutic strategy for STAT3-low GBM patients. Bar chart indicates quantified average fold
change from immunoblots of two mice per treatment. This was limited by retrieval of sizeable tumors from dual treatment animal arm. Duplicate data are
shown in Supplementary Fig. 5k–l
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expression of IGFBP2 has been implicated in reduced survival
and resistance to chemotherapy49. Therefore, our data support
that the InsR/IGF-1R pathway may possibly be activated through
an autocrine mechanism in a subgroup of GBM tumors. A novel
pipeline for analysis of the kinome screen data was implemented
in this study, which involved assigning a “biological threshold” to
the otherwise voluminous data typical of such screens. The suc-
cessful application of this method was subsequently confirmed

in vitro and in mouse models implanted with Linsitinib-
pretreated cells, a drug targeting IGF-1R. We thus propose a
model where STAT3 activation results in binding to nuclear
IGFBP2, with resultant secretion of IGF-1 cytokine that con-
tributes in a novel feed-forward loop leading to IGF-1R activa-
tion. We envisage that this autocrine mechanism can contribute
in part to STAT3 activation, since both AZD1480 and Linsitinib
dual targeting conferred a significant mitigation of tumor cell
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growth and proliferation. As proof-of-concept, we treated
STAT3-low (NNI-20, -23) and STAT3-high (NNI-21, -24) GBM
cells with NT157, a selective inhibitor of insulin receptor sub-
strate (IRS-1/2) that has the potential to inhibit both IGF-1R and
STAT3 signaling pathways in cancer and stromal cells of the

tumor microenvironment50. We observed significant reduction of
viability and self-renewal of STAT3-low cells, at levels comparable
to dual inhibition using AZD1480 and Linsitinib (Supplementary
Fig. 9a–c). In contrast, STAT3-high cells treated with NT157
demonstrated marginal difference from AZD1480 treatment

Fig. 5 Chemosensitization of patient-derived glioblastoma propagating cells (GPCs) with standard-of-care temozolomide treatment. Patient cell lines were
treated with increasing doses of temozolomide. a The addition of signal transducers and activators of transcription 3 (STAT3) inhibitor AZD1480 to
temozolomide treatment demonstrated enhanced chemosensitivity as observed in tumor cell viability. Consistent with bioinformatics prediction, STAT3-
high cell lines (NNI-21 and NNI-24) displayed enhanced chemosensitivity to AZD1480 treatment with temozolomide, when compared to STAT3-low cell
lines (NNI-20 and NNI-23). *p < 0.05; **p < 0.01; ***p < 0.001 compared to absence of temozolomide. b Combination index (CI)-fraction affected (Fa,
indicating fraction of cell viability affected) plots of glioblastoma (GBM) cell lines treated with increasing doses of temozolomide in the presence of 0.5 μM
AZD1480. STAT3-high cell lines (NNI-21 and NNI-24) displayed a synergistic, cytotoxic effect (CI < 1) with larger Fa, while STAT3-low cell lines (NNI-20
and NNI-23) showed marginally reduced Fa values. c–f Chemosensitization of STAT3-low cell lines (NNI-20 and NNI-23) was observed with temozolomide
as demonstrated in the c, d viability and e, f CI plot with e dual treatment (AZD1480 and Linsitinib) or f upon mechanistic gene IGFBP2 knockdown in
combination with 0.5 μM AZD1480. ***p < 0.001 shIGFBP2 compared to non-targeting control (NTC). In the CI plots, dashed line at CI= 1 indicates an
additive effect between two compounds; values above and below indicate antagonism or synergism, respectively. Error bars represent standard deviation of
the mean. For statistical analysis, two-sided Student’s t test was used. g Ranking of LINCS compounds (N= 1679) based on their concordance with
temozolomide consensus signature. Compounds with a high x axis value have a signature concordant with temozolomide, and compounds with a high
y axis value have a signature discordant with the STAT3-high GBM disease signature. STAT3 inhibitors, Ruxolitinib and AZD1480, demonstrated low
concordance with temozolomide (0.011 and 0, respectively) and high discordance with the STAT3-high GBM disease signature (1 and 0.3125, respectively).
List of top ranked synergistic compounds able to reverse the STAT3-high GBM disease signature is provided in Supplementary Table 4
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Fig. 6 NNI-STAT3 transcriptomic signature better identifies responsive patient cohort. a Immunohistochemical (IHC) staining of NNI patient tumors with
phospho-signal transducers and activators of transcription 3 (phospho-STAT3). Representative images are shown, scale bar denotes 50 μm. Based on IHC
staining, glioblastoma patient tumors (N= 18) were not accurately stratified by their STAT3 status. b–d Using three different analyses, there was no
significant correlation of b H-score versus Nearest Template Prediction (NTP) score derived from NNI-STAT3 signature or c H-score versus IC50, while
d significant negative correlation was only established when IC50 was plotted against the NTP score. ***p < 0.001. This indicates that our STAT3 composite
signature accurately identifies the responsive cohort. Magenta dots represent STAT3-high values, and green dots represent STAT3-low values. For
statistical analysis, Pearson correlation coefficient was used
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alone (Supplementary Fig. 9d, e), suggesting that IGF-1R target-
ing constitutes no additional benefit in this subgroup. Impor-
tantly, we provided evidence that AZD1480 (in STAT3-high GBM
cells) and AZD1480/Linsitinib (in STAT3-low GBM cells)
synergized with TMZ to mitigate in vitro tumor cell viability.
Using transcriptomic information gleaned from clinical and small
molecule-treated cell databases, we further identified Ruxolitinib
and AZD1480 among the top ranked small molecules capable of
reversing the STAT3-high disease transcriptomic profile. While
IGF-1R inhibition induces responses as monotherapy in sarcomas
and with chemotherapy or targeted agents in common cancers,
negative Phase 2/3 trials in unselected patients prompted the
cessation of several pharma-led programs51. We believe that, with
TCGA studies in various cancers, intertumor and intratumor
molecular heterogeneity could conceivably play an essential role
in patient stratification. Our study suggests the application of
IGF-1R and STAT3 inhibition, in combination with TMZ, in
STAT3-low GBM tumors.

In both databases using only the GBM cohort, the STAT3
functionally tuned gene signature stratified survival and sig-
nificantly enriched for the IDH-WT (wild-type) status, suggesting
that the latter could act as a clinical molecular indicator for
administering STAT3 inhibition therapy (Supplementary
Table 1). This would be meaningful as the routine inclusion of the
IDH1/2 status is now incorporated into the revised 2016 WHO
classification system. We further noted that the IDH-WT cohort
consisted of approximately one third of STAT3-low patients in
both Gravendeel and TCGA databases (Supplementary Table 1a,
contingency table). In this group, wrongful administration of
STAT3 inhibitors without prior stratification would lead to the
development of resistance, as indicated by our data. Thus we
believe that, even though the IDH-WT status is predominantly
enriched in the STAT3-high group, the application of the STAT3
composite signature to molecularly subtype the patients remains
crucial in the decision to implement STAT3 or STAT3/IGF-1R
inhibition therapy in the STAT3-high and -low cohorts,
respectively.

We considered the likely scenario of tumor recurrence, typical
of the disease’s highly infiltrative nature. Our analysis included
profiling GBM tumors at first diagnosis and at recurrence, with
the finding that mesenchymal STAT3-high tumors largely
maintained their molecular profile. In contrast, non-
mesenchymal (classical, proneural) tumors underwent mole-
cular switching upon recurrence. In particular, classical tumors at
first diagnosis (64%) switched subtypes at recurrence (STAT3-
high, 57%; STAT3-low, 43%). This finding has three implications.
First, it is imperative that serial molecular profiling be carried out
on tumors at all stages to provide a clear decision to the use of
STAT3 inhibitory molecules. The failure to stratify patients can
potentially result in an unfavorable outcome caused by increased
resistance in the STAT3-low cohort. Second, as STAT3 is the key
switch effecting PMT, its early implementation when the tumor is
STAT3-high and non-mesenchymal could possibly mitigate its
subtype switching. Lastly, we suggest that other mechanisms
beside EGFR activation can contribute to STAT3 signaling.
Recent work by Bonni and colleagues suggested that EGFRvIII-
GBM tumors are constitutively active for STAT3, through co-
receptor binding of EGFR and OSM52. They further postulated
that EGFR-wild-type GBM tumors require EGF and OSM cyto-
kines, beside co-receptor binding, to maintain active
STAT3 signaling. The classical subtype of GBM tumors is
represented by EGFR gain-of-function mutations, such as
EGFRvIII3. Our earlier observation of subtype switching in clas-
sical tumors that were originally STAT3-high thus suggests that
additional mechanisms can contribute to STAT3 activation and
that combinational therapies may be prescribed. Collectively, our

effort identifies potential drug agents applicable to both STAT3-
high and -low patient cohorts.

Methods
Materials and cell lines. GBM tumor specimens from the National Neuroscience
Institute (NNI) were obtained with informed consent and de-identified in accor-
dance with the SingHealth Centralised Institutional Review Board A, and GPC
culture methods are described below37–39,53. All experiments were conducted with
low-passage GPCs for which we previously demonstrated maintenance of pheno-
typic, transcriptomic, and karyotypic features similar to the primary tumor53.
Briefly, tumors were processed according to Gritti et al. with slight modifications54.
Cells were seeded at a density of 2500 cells/cm2 in chemically defined serum-free
selection growth medium consisting of basic fibroblast growth factor (20 ng/ml;
Peprotech Inc., Rocky Hill, NJ), EGF (20 ng/ml; Peprotech Inc.), heparin (5 μg/ml;
Sigma-Aldrich, St. Louis, MO), and serum-free supplement (B27; 1×; Gibco, Grand
Island, NY) in a 3:1 mix of Dulbecco’s modified Eagle’s medium (Sigma-Aldrich)
and Ham’s F-12 Nutrient Mixture (F12; Gibco). The cultures were incubated at
37 °C in a water-saturated atmosphere containing 5% CO2 and 95% air. To
maintain the undifferentiated state of neurosphere cultures, growth factors were
replenished every 2 days. Successful neurosphere cultures (1–4 weeks) were
expanded by mechanical trituration using a flame-drawn glass Pasteur pipette, and
cells were reseeded at 100,000 cells/ml in fresh medium.

Small molecule inhibitors and lentiviral vectors. Small molecule inhibitor
AZD1480 was obtained from SelleckChem and used at concentrations of 0.1, 0.5, 1,
or 2 μM. Other STAT3 and IGF-1R small molecule inhibitors were obtained from
SelleckChem and used at their respective IC50 concentration. TMZ was obtained
from Sigma-Aldrich and used at concentrations of 20, 50, 100, and 200 μM.
Human lentiviral shRNA clones targeting STAT3 and IGFBP2 in pLKO.1 backbone
were from GE Life Science (TRCN0000020840, TRCN0000020842,
TRCN0000020843, RHS4080, TRCN0000011033, and TRCN0000006574). Lenti-
viral shRNA vectors were co-transfected using the Lenti-X HTX Packaging System
(Clontech, CA, USA) into HEK293T cells according to the manufacturer’s
instruction. Viral titer of supernatant collected was determined using Lenti-X™ p24
Rapid Titer Kit (Clontech) according to the manufacturer’s instructions. IGF-1R C-
terminal-deleted overexpression vectors were constructed using pCDH-CMV-
MCS-EF1- GFP+ Puro vector (System Biosciences). The amplified product was
digested with XbaI and NotI and ligated into pCDH vector. Lentiviral particles
were generated as described above.

Dose–response curves, viability, and invasion assays. Dose–response curves
and cell viability were assessed using alamarBlue® cell viability assay (Serotec,
Oxford, UK) 5 and 10 days post-treatment, respectively37–39,53. Dose–response
curves for each cell line were generated from a mean of triplicate experiments using
GraphPad Prism (GraphPad Software, Inc; USA) and IC50 values were computed
from 10-point titration curves ranging from 10−4 to 102 μM. For invasion assay,
50,000 cells were added to the upper compartment of the Corning® BioCoat™
Matrigel® invasion chamber (BD Biosciences, San Jose, CA) and 2% fetal calf
serum was supplemented into the lower compartment. Cells were incubated for
24 h and the lower surface was subsequently stained with 0.005% crystal violet
(Sigma-Aldrich). The number of cells from five random fields having migrated to
the bottom chamber was counted.

CI values. CI values based on Loewe’s additivity model were determined to assess
the nature of drug–drug interactions that can be additive (CI= 1), antagonistic
(CI > 1), or synergistic (CI < 1) and effect levels (fraction affected (Fa)). CI and Fa
values were calculated using the CompuSyn software (ComboSyn Inc., Paramus,
NJ), following the method by Chou et al.31,32.

Protein analysis. Cells were lysed in buffer containing 0.5% sodium deoxycholate,
1% NP-40 detergent, 0.1% sodium dodecyl sulfate (SDS), 0.15M NaCl, 10 mM
Tris-HCl pH7.4, and protease and phosphatase inhibitor cocktail tablets (Roche,
Indianapolis, IN). Approximately 25 µg of heat-denatured protein lysate were
resolved on 8% SDS polyacrylamide gel and electrotransferred onto polyvinylidene
difluoride membranes (Millipore). The following antibodies were used for protein
analysis: anti-pSTAT3 (Tyr705; 1:1000; CST, #9138), anti-STAT3 (1:1000; CST,
#9139), anti-IGFBP2 (1:1000; CST, #3922), anti-pIGF-1R (Tyr1135/1136; 1:1000;
CST, #3024), anti-IGF-1R (1:1000; Santa Cruz, #712), and anti-β-actin (1:10,000;
Sigma-Aldrich A5441). Anti-mouse or -rabbit (1:10,000; CST) IgG horseradish
peroxidase -linked secondary antibody was used. All antibodies were diluted in 5%
bovine serum albumin in 10 mM Tris-HCl pH 7.4, 100 mM NaCl, and 0.1%
Tween® 20 (Merck). Membranes were processed per standard procedures and
detected using the chemiluminescence detection kit SuperSignal West Pico or
Femto (Thermo Scientific) according to the manufacturer’s instructions. Protein
bands were visualized using SYNGENE G:Box, iChemiXT. Protein expression was
quantitated with the Quantity One® software (Bio-Rad Laboratories), normalized
against β-actin levels.
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Enzyme-linked immunosorbent assay. Cells were lysed in buffer containing 0.5%
sodium deoxycholate, 1% NP-40 detergent, 0.1% SDS, 0.15M NaCl, 10 mM Tris-
HCl pH7.4, and protease and phosphatase inhibitor cocktail tablets (Roche,
Indianapolis, IN). One μg of protein lysates was analyzed on enzyme-linked
immunosorbent assay kits as per the manufacturer’s protocol in triplicates.

IDH sequencing. Genomic DNA was extracted from cell lines and PDXs using the
DNeasy Blood & Tissue Kit (Qiagen, Hilden) in accordance with the manu-
facturer’s protocol. PCR amplifications was performed in a total volume of 25 μl
with 50 ng of sample (including no template control), using Pfu DNA Polymerase
(Promega) according to the manufacturer’s protocol. Cycle parameters were: initial
denaturation at 95 °C for 5 min, followed by 40 cycles of 95 °C for 30 s, 50 °C for
30 s, 72 °C for 90 s, and a final extension at 72 °C for 7 min. PCR products were
purified using Wizard® SV Gel and PCR Clean-up System (Promega, USA) and
sequenced using the BigDye® Terminator v3.1 Cycle Sequencing Kit (Applied
Biosystems, USA). Primers used are as follows:

IDH1 Forward 5′-AATGAGCTCTATATGCCATCACTG-3′;
IDH1 Reverse 5′-TTCATACCTTGCTTAATGGGTGT-3′;
IDH1 sequencing 5′-AATGAGCTCTATATGCCATCACTG-3′;
IDH2 Forward 5′-ATTCTGGTTGAAAGATGGCG-3′;
IDH2 Reverse 5′-CAGAAGAAAGGAAAGCCACG-3′;
IDH2 sequencing 5′-ATTCTGGTTGAAAGATGGCG-3′.

Immunohistochemistry. Tissue sections were stained with the following anti-
bodies: anti-pSTAT3 antibody (1:100, CST, #9145) and anti-IGF-1R antibody
(1:400, CST, #14534). For quantitative analysis, the percentage of stained tumor
cells and intensity of staining were evaluated under high-power fields (×400) on
tissue sections using optical microscopy. H-scores were then derived from both the
staining intensity (scale of 0–3) and the percentage of positive cells (0–100%),
generated a score ranging from 0 to 3. Briefly, the percentage of weakly stained cells
was multiplied by one plus moderately stained cells multiplied by two plus strongly
stained cells multiplied by three. At least five random fields were counted and
scoring was performed blinded to clinical data.

Quantitative real-time reverse transcription PCR. RNA was isolated using TRI
Reagent® (Sigma-Aldrich) and reverse transcribed into cDNA using the Super-
script® III First-Strand Synthesis System Kit (Life Technologies). Cycle parameters
were: 40 cycles of 95 °C for 10 s, 55 °C for 10 s, and 72 °C for 5 s. Real-time PCR
was performed on Roche LightCycler® 96 Instrument using FastStart Essential
DNA Green Master (Roche Life Science). Each real-time PCR was done in tripli-
cate, and the level of each gene’s expression was determined relative to hypox-
anthine phosphoribosyltransferase.

Gene-specific primers used are as follows:
STAT3 F-GGGAGAGATTGACCAGCAGT, R-CTGCACTCTCTTCCGGACAT;
ELK3 F-TCAAGACGGAGAAGCTGGAG, R-CCGAGATGAGAAGGGTGAGG;
BIRC2 F-CTCCAGCCTTTCTCCAAACC, R-AGTTACTGAGCTTCCCACCA;
FZD1 F- GCCCTCCTACCTCAACTACC, R-CAGCCGGACAAGAAGATGA;
SLF35F5 F-CTGTGGGGAAACTTACTGCA, R-CCAGTACAACGCCTCCAATG;
KLHDC8A F-CGGGTCTACTGCTCCCTG, R-TGTTGTACATCTCCACGACCT;
GMPPA F-TCACCCAGTTCCTAGAAGCC, R-CTGTTAGCCGTAGTGCCAAG;
SNAP23 F-AGGATGCAGGAATCAAGACCA, R-CTCCACCATCTCCCCAT

GTT;
NEDD9 F-AGCTCAGGACAAAAGGCTCT, R-GCAACAGCTCCCTTGACAAA;
DTX3L F- TCACAAGCAGAAACACCGTC; R-GTCACCACACACCTTCTCA;
CTNNA1 F-GCAGCCAAAAGACAACAGGA, R-TGTGAGGCATCGTCTGA

GG;
NAA38 F-GTCAAGCAGCAAGATGGAGG, R-GCGCATAGTCTTGTTGAGCA;
ITFG3 F-ACACCAACAGCAGCAACAATT, R-AATGAAAGAACTGGGTCT

GCC;
IGFBP2 F-GGCTTGGTTGGAAGACTGAT, R-CATTTTCAAAGGCCTCACGC

Animal studies. Mice were handled according to approved guidelines of the
Institutional Animal Care and Use Committee of the National Neuroscience
Institute, Singapore. Briefly, orthotopic intracranial implantations were carried out
using 6–8-week-old NOD-SCID gamma mice (NSG, NOD.Cg-Prkdcscid
II2rgtm1Wjl/SzJ, Jackson Laboratories) as described below37,40. Five hundred
thousand pretreated cells were injected into the following coordinates: antero-
posterior=+1 mm; medio-lateral=+2 mm; dorso-ventral=−2.5 mm. Mice were
euthanized by transcardiac perfusion with 4% paraformaldehyde upon presenta-
tion of neurological deficits. Kaplan–Meier survival curves were plotted to show
survival differences. A logrank test was adapted to estimate the survival difference
between the STAT3-high and STAT3-low patient group using Prism 5 (GraphPad
Software, San Diego, CA). Multivariate Cox Regression model was fitted to identify
the significant clinical covariates associated with survival. A p value of <0.05 was
defined as significant association of covariates for survival. The statistical sig-
nificance of correlation was evaluated using Spearman’s rank correlation test.

Statistical analysis. Data are expressed as means ± standard error of the mean
(SEM) of at least three independent experiments. Student’s t or Mann–Whitney U

test was used where appropriate. p ≤ 0.05 was accepted as statistically significant.
Survival analyses were performed using the Kaplan–Meier method, with the log-
rank test for comparison. IC50 values of STAT3 small molecule inhibitors were
calculated using nonlinear regression analyses based on dose–response curves. The
investigators were not blinded to allocation during experiments and outcome
assessment.

Microarray analysis. STAT3 knockdown GPCs were profiled on Affymetrix
GeneChip® Human Genome U133 Plus 2.0 Array using the 3’ IVT Express Kit.
The Gene Expression Omnibus (GEO) accession number for the microarray data is
GSE117905. Raw cel files were summarized with mas5 algorithm and log2-scaled
and gene expression dataset was created. All data pre-processing analysis was
carried out by R/Bioconductor packages. A linear model was regressed to assess the
differentially expressed genes between STAT3 KD and non-targeting control pro-
files (adjusted p value < 0.01) in NNI GPCs (N= 3) as described in R/limma
packages27. False discovery rate (FDR)-adjusted p value of <0.05 was considered as
statistically significantly perturbed genes upon STAT3 KD. A subset of differential
genes was extracted as STAT3 KD gene signature by applying a stringent criterion
of 2-log2 fold change between KD clones and the control profiles.

STAT3 functionally tuned gene signature. To identify the STAT3 functionally
tuned gene signature, we utilized the gene expression data from the Rembrandt
glioma patient database (N= 390). First, we built a correlation matrix for 44,950
probesets by estimating the pair-wise rank correlation coefficient for each probeset.
The STAT3 co-expressed module was defined by the probesets that had a coeffi-
cient value >0.3. Both positively and negatively correlated probesets were combined
as the STAT3 co-expressed genes in primary tumor samples. The gene list was
subsequently narrowed down by selecting only those candidates that showed
inverse expression upon STAT3 KD. We considered the intersection of genes upon
genetic KD of STAT3 and STAT3 co-regulated transcript modules as the STAT3
functionally tuned gene signature (N= 207). The list of genes comprising the
STAT3 functionally tuned gene signature is available as Supplementary Data 1.

Patient stratification. The evaluation of our STAT3 functionally tuned gene sig-
nature was performed on three glioma patient database resources: Gravendeel
(N= 276), TCGA all glioma patients (N= 672), and TCGA GBM microarray
cohort (N= 558)3,19,55. All Affymetrix microarray profiles were processed using
standard MAS5 scaling algorithm available in R/affy packages56. For TCGA
database, gene expression profiles and clinical data were downloaded using R/
TCGAbiolinks package57, and raw cel files for Gravendeel database were down-
loaded from GEO database (GSE16011). To evaluate the predictive ability of our
gene signature, all patient database was treated as an independent validation cohort
and was interrogated using the NTP method available in R/CMScaller package58,59.
The predicted classes for patient tumors with statistical significance (p value < 0.05
using 1000 permutation tests) were further evaluated for the prognostic association
for overall survival in both glioma or GBM patient cohorts.

Bioinformatics analysis. GIS signatures defining the three molecular subgroups
were interrogated using single-sample Gene Set Enrichment Analysis (GSEA) with
resampling classification strategy4,60. To understand the clinical association of 2016
WHO classification marker IDH1 status with STAT3 signature-stratified classes, we
employed the relative odds estimation61. The relative odds score was estimated
from the proportion of highest fifth distribution and lowest fifth distribution of
STAT3 signature score values for IDH1 phenotypes. BIC score was calculated for
each regression model for survival variability.

Gene Set Enrichment Analysis. GSEA was performed using the desktop GSEA
software (v.2.2.2) to identify the enrichment of STAT3 KD transcriptome data
against established molecular signatures available in public signature databases62.
We interrogated 186 KEGG pathway gene sets from the Molecular Signatures
Database with the complete transcriptome as our background in the enrichment
analysis. As our STAT3 KD transcriptome was generated on Affymetrix Gene-
Chip® Human Genome U133 Plus 2.0 Array using 3’ IVT Express Kit, we used
max_probe option to collapse the gene expression values of genes with multiple
probesets. The overrepresentation of ranked genes score was calculated using
weighted running sum statistic option (p= 2). The signal-to-noise ratio was
applied to rank the genes enriched with the background pathway gene sets using
1000 permutations. The statistical significance of gene ranking between non-target
and STAT3 KD clones was defined by the nominal p value <0.05. The GSEA ranked
list is available as Supplementary Data 2.

Computational analytical pipeline for kinome data. We measured the phos-
phorylation kinetics of 144 kinases in STAT3 signature-stratified GBM cells using
the PamChip technology. The computational pipeline is represented in the flow-
chart (Supplementary Fig. 4b). Briefly, we integrated phosphorylated peptide
measurements estimated from PamChip with STAT3 KD transcriptome using
published database resources24–26. We resolved the multiple peptide-substrate
complexity by estimating the pair-wise correlations for every peptide catalogued in
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kinase-peptide matrix. The quantitative mean of each peptide cluster was calcu-
lated by evaluating the ranks for the presence of large number of correlated pep-
tides having strong expression and dynamic variation across the experimental
conditions. We interrogated a linear differential model to estimate the statistical
significance between AZD1480- and DMSO-treated cells. A p value of <0.1 was
considered as statistically significant. We mapped the AZD1480-altered kinase
profiles with STAT3 KD transcriptomic profiles using two key gene-specific
databases63,64.

SynergySeq. We utilized the SynergySeq platform to identify compounds syner-
gistic with TMZ to reverse STAT3-high disease signature in GBM patients33. The
R/shiny package of SynergySeq platform along with drug perturbed signature
scores were downloaded from github (https://github.com/schurerlab/SynergySeq;
cloned on April 29, 2019). First, we interrogated TCGA GBM patients (N= 558) in
microarray database with our STAT3 functionally tuned gene signature using the
NTP method available in R/CMScaller package58,59. The predicted classes for
patient tumors with statistical significance (p value < 0.05 using 1000 permutation
tests) were further evaluated to identify the differential disease gene signature. A
disease signature of 6359 genes was identified to be differential between STAT3-
high versus STAT3-low GBM patients (FDR p value < 0.0001). This STAT3-high
GBM signature was interrogated as a disease signature, with TMZ as the reference
compound in the SynergySeq pipeline. The LINCS compounds that displayed high
disease discordance and low concordance with the reference compound were
determined as synergistic small molecule candidates capable of reversing the dis-
ease signature based on the Loewe additive model65. The current evaluation
included compounds from both the LINCS database and GBM-JQ1 study from the
SynergySeq project (N= 1679).

Data availability
Data supporting the findings of this work are available within the paper and
its Supplementary Information files. A reporting summary for this article is available as
a Supplementary Information file. The source data (excel file) containing the list of genes
comprising the STAT3 functionally tuned signature (Fig. 1a), Gene Set Enrichment
Analysis (GSEA) ranked gene list (Supplementary Fig. 1m), and winnowed list of genes
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