
ARTICLE

Synergetic iridium and amine catalysis enables
asymmetric [4+2] cycloadditions of vinyl
aminoalcohols with carbonyls
Mao-Mao Zhang1, Ya-Ni Wang1, Bao-Cheng Wang1, Xiao-Wang Chen1, Liang-Qiu Lu1,2 & Wen-Jing Xiao1,3

Catalytic asymmetric cycloadditions via transition-metal-containing dipolar intermediates are

a powerful tool for synthesizing chiral heterocycles. However, within the field of palladium

catalysis, compared with the well-developed normal electron-demand cycloadditions with

electrophilic dipolarophiles, a general strategy for inverse electron-demand ones with

nucleophilic dipolarophiles remains elusive, due to the inherent linear selectivity in the key

palladium-catalyzed intermolecular allylations. Herein, based on the switched regioselectivity

of iridium-catalyzed allylations, we achieved two asymmetric [4+2] cycloadditions of vinyl

aminoalcohols with aldehydes and β,γ-unsaturated ketones through synergetic iridium and

amine catalysis. The activation of vinyl aminoalcohols by iridium catalysts and carbonyls by

amine catalysts provide a foundation for the subsequent asymmetric [4+2] cycloadditions of

the resulting iridium-containing 1,4-dipoles and (di)enamine dipolarophiles. The former

provides a straightforward route to a diverse set of enantio-enriched hydroquinolines bearing

chiral quaternary stereocenters, and the later represent an enantio- and diastereodivergent

synthesis of chiral hydroquinolines.
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Heterocycles are privileged motifs in fields ranging from
pharmaceutical chemistry and agrochemistry to materials
chemistry and life sciences. The development of efficient

synthetic methods for preparing heterocyclic compounds has
been a major focus of the synthetic community1,2. Among the
continuing and productive efforts, catalytic asymmetric cycload-
ditions via transition metal (TM)-containing dipolar inter-
mediates have been determined to be powerful tools for this
purpose3–5. Within this realm of palladium catalysis, although
many impressive advancements have been made regarding
cycloadditions of Pd-containing dipolar intermediates with elec-
trophilic dipolarophiles (Fig. 1a, path a: normal electron-demand
cycloadditions)6–12, the inherent linear selectivity of Pd-catalyzed
intermolecular allylic alkylation (AA) reactions renders the
development of a general strategy for the coupling of such
intermediates with nucleophilic dipolarophiles a formidable
task (Fig. 1a, path b: inverse electron-demand cycloaddition)13,14.
In the few known examples, some additional interaction (i.e.,
electrostatic interactions or hydrogen bonding interactions)
between the Pd-containing dipole and nucleophilic dipolarophile
was required to induce branched selectivity in the Pd-catalyzed
intermolecular AA processes15–19. For this reason, the exploita-
tion of alternative catalyst systems is required to develop general
dipolar cycloadditions and efficiently utilize the synthetic
potential of TM catalysis in the synthesis of heterocycles.

Based on the pioneering works of Takeuchi20,21 and Helm-
chen22, as well as the substantial contribution from Helmchen23,
Hartwig24, Carreira25, You26 and many other excellent scien-
tists27–29, iridium-catalyzed AA reactions show excellent bran-
ched selectivity, which distinguishes them from Pd-catalyzed
processes30. Recent studies have indicated that iridium catalysis is
compatible with many other catalysis modes (i.e., phase cata-
lysis31, amine catalysis32–34, Lewis base catalysis35, Brønsted acid
catalysis36, and Lewis acid catalysis37–40), significantly expanding
the scope of Ir-catalyzed asymmetric allylic alkylation (AAA)
reactions41. Inspired by these impressive achievements, we
question whether a synergetic catalysis strategy involving iridium
catalysis can be adopted to resolve the remaining problem
associated with Pd-catalyzed inverse electron-demand cycload-
ditions. More interestingly, readily available vinyl aminoalcohols
can be directly utilized as coupling partners in TM-catalyzed

cycloadditions using Ir-containing dipoles (Fig. 1b), avoiding the
use of vinyl-substituted strained rings and carbonates like those
required in Pd-catalyzed cycloaddition (Fig. 1a). Here, through
the combination of iridium and amine catalysis, we accomplished
the [4+2] cycloadditions of vinyl aminoalcohols with

aldehydes and β,γ-unsaturated ketones. Optically active qui-
nolinones and tetrahydroquinolines were produced in good yields
and with high diastereoselectivity and enantioselectivity.

Results
Design plan. Hydroquinolines are a class of important aza-
heterocycles that are ubiquitous in natural alkaloids and func-
tional molecules (i.e., pharmaceuticals, agrochemicals, and chiral
ligands)42–44. Among existing methods for synthesizing chiral
hydroquinolines, catalytic asymmetric [4+2] cycloadditions stand
out as one of the most streamlined approaches45–49. As part of
our ongoing studies on the synthesis of heterocycles via TM-
catalyzed cycloadditions15,50–55, in this work, we plan to develop
reaction methodologies that utilize readily available reagents and
feature good selectivity and high synthetic efficiency. A detailed
description of a possible mechanism is outlined in Fig. 2. We
envision that two catalytic cycles could act in concert to realize
this cycloaddition via the following steps: (1) the Ir catalyst reacts
with vinyl aminoalcohol 1a to form Ir-containing dipole int.
I56,57; (2) the amine catalyst condenses with the aldehyde to
generate enamine species II; (3) these two transient species, I and
II, react with each other to produce int. III, which can be further
converted to hemiacetal 4 through an intramolecular cyclization
(III→ IV) and acid-promoted hydrolysis process (IV→ 4).
Based on this mechanism, a diverse set of hydroquinolines can be
generated in a facile manner by in situ conversion of the OH
group to a variety of other functional groups (4→ 3/5). While
attractive in theory, the construction of contiguous stereocenters
and chiral all-carbon quaternary stereocenters58–62, as well as the
compatibility between the catalysts, substrates, and additives are
challenges that must be addressed.

Condition optimization. First, we investigated the Ir/amine-
catalyzed cycloaddition/oxidation sequence using vinyl ami-
noalcohol 1a and aldehyde 2a. The use of 4 mol% of chiral Ir
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catalyst (2 mol% of [Ir(cod)Cl]2 and 8 mol% of Carreira ligand
L1) and 20 mol% of amine catalyst A1, together with 0.5 eq. of
CCl3CO2H and 1.0 eq. of H2O as additives, gave hemiaminal 4aa
as a white solid in 92% yield; 4aa can be further oxidized to
desired hydroquinone 3aa by PCC in 67% yield with 99% ee
and >19:1 dr. The absolute configuration of product 3aa was
determined by comparing the chiral HPLC spectra with a pre-
vious literature55. To circumvent the isolation of intermediate
4aa, we adopted an improved procedure that simply combined
these two processes in one pot. To our delight, quinolinone
product 3aa was successfully generated with good reaction effi-
ciency and excellent enantiocontrol under the standard condi-
tions (Table 1, entry 1: 64% yield, >99% ee and >19:1 dr). We
then found that the protecting group on the nitrogen atom of the
vinyl aminoalcohol had a substantial effect on the reaction
selectivity. For example, when Boc-protected substrate 1a′ was
used instead of 1a, we only identified the byproduct from the
allylation of CCl3CO2H (Table 1, entry 2). It is worthy to note
that, we have proven that the Ts group on product 3aa could
be facilely removed by treatment with Mg powder in methanol
(See Supplementary Procedure K). When vinyl aminoalcohol 1a′′
was tested, there was almost no conversion of starting materials
(Table 1, entry 3). Furthermore, the effects of the acid and water
as additives were investigated (Table 1, entries 4–7). CCl3CO2H
provided superior chemo- and enantioselectivities, and the
addition of 1 eq. of water increased the reaction efficiency.
Considering that the amine catalyst may play a key role in this
reaction, various amine catalysts were examined. As shown in
Table 1, a bulkier amine, α,α-dimethyl benzylamine (Table 1,

entry 8, A2), gave only 22% yield, albeit with >19:1 dr and >99%
ee. In addition, when chiral amine catalysts (R)-A3 and (S)-A3
were applied, we did not observe stereodivergent products, but
the different amines did result in different reaction efficiencies
(Table 1 entries 9 and 10).

Substrate scope. Having established the optimal conditions, we
started to explore the generality of the vinyl aminoalcohol sub-
strate. As summarized in Table 2, a wide range of vinyl ami-
noalcohols with electron-donating and electron-withdrawing
groups, such as Me, F, and CF3, at the 5-position of the phenyl
ring can readily react with aldehyde 2a to afford the desired
dihydro-quinolinone products in moderate yields over two steps
with high diastereo- and enantioselectivities (Table 2, entries 1–4,
3aa–3da: 59–66% yields, 6:1→ 19:1 dr and 94–99% ee). Further-
more, substrates with different substitution patterns, for example,
4-MeO, 4-Cl, and 6-F, were compatible with this asymmetric
cycloaddition. The corresponding cycloadducts were achieved in
satisfactory reaction efficiencies and stereoselectivities (Table 2,
entries 5–7, 3ea–3ga: 61–73% yields, 12:1→19:1 dr and 98–99%
ee). An allyl alcohol bearing a naphthyl moiety was also suitable
for this reaction, and it was converted to product 3ha in 63%
yield, 12:1 dr and 98% ee (Table 2, entry 8).

Subsequently, we explored an array of α-disubstituted
aldehydes in this Ir- and amine-catalyzed cycloaddition/oxidation
procedure. As summarized in Fig. 3, the introduction of various
groups at the para- or meta-positions of the 2-phenylpropanal
was well tolerated in this reaction, and corresponding products
3ab–3ai were obtained in good yields (55%−75% yields) and with
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Table 1 Optimization of the reaction conditions for the [4+2] cycloaddition of vinyl aminoalcohols and aldehydesa

Entry Variation from the standard conditions Yield (%)b ee (%′)c

1 none 64 99
2 replace 1a with 1a′ 0 /
3 replace 1a with 1a′′ 0 /
4 replace CCl3CO2H with CF3CO2H 63 82
5 replace CCl3CO2H with (PhO)2PO2H 58 98
6 replace CCl3CO2H with PhCO2H 0 /
7 no H2O 56 99
8 replace A1 with A2 22 95
9 replace A1 with (R)-A3 62 93
10 replace A1 with (S)-A3 26 94

Ts p-toluene sulfonyl, Boc t-butyloxycarbonyl, PCC pyridinium chlorochromate, Am amine catalyst
aStandard conditions: 1a (0.25 mmol), 2a (0.5 mmol), [Ir(cod)Cl]2 (2 mol%), (R)-L1 (8 mol%), amine A1 (20mol%), CCl3CO2H (0.5 eq.) and H2O (1.0 eq.) in 1,2-dichloroethane (0.5 mL) for 48 h at
room temperature; then, PCC (5.0 eq.), silica gel (100mg) and CH2Cl2 (5 mL) were added, and the mixture was stirred at 40 °C for 10 h
bIsolated yield
cDetermined by chiral HPLC analysis; dr > 19:1

Table 2 Synthesis of Dihydroquinolinones form Various Vinyl Aminoalcoholsa

Entry 1: R1 3 Yield (%)b drc ee (%)c

1 1a: H 3aa 64 >19:1 99
2 1b: 5-Me 3ba 59 16:1 96
3 1c: 5-F 3ca 59 8:1 94
4 1d: 5-CF3 3da 66 6:1 98
5 1e: 4-MeO 3ea 61 19:1 99
6 1f: 4-Cl 3fa 60 12:1 99
7 1g: 6-F 3ga 73 >19:1 99
8 63 12:1 98

aStandard conditions as indicated in entry 1 of Table 1
bIsolated yield
cDetermined by chiral HPLC analysis
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high stereoselectivities (up to >19:1 dr and 96→ 99% ee).
Moreover, aldehydes with naphthalene and other polycyclic
systems can be converted to corresponding dihydro-quinolinones
3aj–3am in good yields and excellent enantioselectivities (56–75%
yields and up to >99% ee). Notably, an indole-derived substrate
was also well tolerated in this reaction and provided a good
result (3am, 56% yield, >19:1 dr and >99% ee). In addition, cyclic
aldehydes with various ring sizes (i.e., five- or six-membered
rings) could readily participate in this reaction (3an, 64%
yield, >99% ee; 3ao, 74% yield, >99% ee). A dialkyl-substituted
acetaldehyde, 2-methyl-3-phenylpropanal, could also be reacted
under these conditions to give the desired product 3ap in a good
yield and with an excellent enantioselectivity. A linear aldehyde,
n-butanal, was also proven suitable for this transformation,
affording dihydroquinolinone product 3ar in 31% yield, >99% ee
and >20:1 dr (See Supplementary Procedure M).

Demonstrations of synthetic utility. To illustrate the versatility
of this cycloaddition, we explored various derivatizations of the
hemiaminal intermediate. As highlighted in Fig. 4, taking key
hemiaminal 4aq (>99% ee and 5:1 dr), which was generated
from the asymmetric cycloaddition of vinyl aminoalcohol 1a
and isobutyraldehyde 2q, as an example, treatment with various
organic reagents in one-pot reactions indeed provided a diverse set
of functionalized hydroquinolines in generally high yields
and excellent enantioselectivities. Except in the oxidation with

PCC, the OH group of hemiaminal 4aq could be removed by
treating the compound with Et3SiH and Et2O·BF3 in DCM, giving
tetrahydroquinoline 5b in 87% yield and >99% ee. Similarly,
replacement of the hydroxyl group with other organosilicon
reagents could deliver 2-allyl-, 2-CN- and 2-N3-substituted tetra-
hydroquinolines 5c–5e in 84–91% yields and >99% ee, albeit with
modest dr values. In addition, the OH group can be successfully
converted to ether or sulfide moieties in good yields and excellent
enantioselectivities (5f, 77% yield, 5:1 dr and >99% ee; 5g, 76%
yield, >19:1 dr and >99% ee. The high diastereoselectivity of
product 5g may be result of the steric effect (See Supplementary
Procedures I and J), and its absolute configuration was established
through the X-ray diffraction analysis (CCDC 1821791)63.

Stereodivergent [4+2] cycloadditions. In addition to activating
the α-position of the aldehyde via an enamine mechanism64, amine
catalysis can also be used to efficiently activate the
γ-position of the β,γ-unsaturated ketone through the formation
of an dienamine species65–69. Based on this information and
our above impressive results, we further probed the asymmetric
[4+ 2] cycloadditions of vinyl aminoalcohols with β,γ-unsaturated
ketones by merging iridium catalysis with dienamine catalysis. With
the cycloaddition of vinyl aminoalcohol 1a and ketone 6 as model
substrates, a simple optimization of the reaction parameters
including chiral amine catalyst, solvent, and acid defined the opti-
mal reaction conditions (See Supplementary Table 3 for the details
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of condition optimization). To our delight, unlike the cycloaddition
of vinyl aminoalcohols 1 with aldehyde 2, which provides a pair of
diastereomers, by reasonably using Carreira’s chiral phosphor-
amidite ligands, (R)-L1 or (S)-L1, and Luo’s primary amine catalyst
(S)-A470, this reaction can provide both members of either of two
pairs of diastereomers in good yields and with excellent enantio-
and diastereoselectivities (Fig. 5, (R,R)-7a, 84% yield, >99% ee and
>19:1 dr; (R,S)-7a, 81% yield, >99% ee and >19:1 dr). Worthy to
note that, other two stereoisomers of 7a have been synthesized by
using the enantiomer of Luo’s catalyst (S)-A4, too (See Supple-
mentary Table 3 for details). The absolute configuration of product
(R, S)-7a were established by analyzing its derivative through the X-
ray diffraction analysis (CCDC 1869868, See Supplementary Note 1
for details)25. Encouraged by these results, experiments to pre-
liminarily examine the scope of vinyl aminoalcohols for this ste-
reodivergent cycloaddition were performed. As highlighted in Fig. 4,
moderate to good yields together with high levels of enantio- and
diastereocontrol were generally observed for both pairs of diaster-
eomers. In a word, this is an interesting but challenging work that
high diastereo- and enantioselectivities have been simultaneously
accomplished in a stereodivergent manner, demonstrating the
power and potential of synergetic catalysis strategies in the field of
TM-catalyzed dipolar cycloaddition.

Discussion
Overall, we have successfully developed two enantioselective
[4+2] cycloadditions of vinyl aminoalcohols with carbonyls,

namely, aldehydes and β,γ-unsaturated ketones, through syner-
getic iridium and amine catalysis. The cycloaddition with alde-
hydes provides a diverse set of hydroquinolines bearing chiral
quaternary stereocenters with a high level of enantiocontrol. The
reaction with β,γ-unsaturated ketones allows the enantio- and
diastereodivergent synthesis of hydroquinoline products using
reasonable chiral iridium catalysts and chiral amine catalysts.
Obviously, the formation of Ir-containing dipoles from vinyl
aminoalcohols and chiral iridium catalysts and (di)enamine
dipolarophiles from carbonyls and amine catalysts provides a
foundation for subsequent asymmetric [4+2] dipolar cycloaddi-
tions. As demonstrated in this work, the application of synergetic
catalysis makes transition metal-catalyzed cycloadditions more
practical and powerful for the synthesis of chiral heterocycles.

Methods
Preparation of product 3. In a dried Schlenk tube under N2, [Ir(cod)Cl]2 (0.005
mmol, 3.35 mg) and chiral ligand (R)-L1 (0.02 mmol, 10.15 mg) were mixed in 0.5
mL DCE and stirred at ambient temperature for 20min under argon atmosphere.
Then allylic alcohol 1 (0.25 mmol, 1.0 eq), aldehyde 2 (0.5 mmol, 2.0 eq),
Cl3CCOOH (0.125 mmol, 20.4 mg), amine A1 (0.05 mmol, 9.2 mg, 8.7 μL), 4.5 μL
H2O (1.0 eq.) were added to the mixture successively. The reaction mixture was
stirred at ambient temperature until substrate 1 disappeared on TLC. Then the
mixture was diluted with 5 mL DCM, PCC (275mg, 5.0 eq.) and 100mg silica gel
were added to the mixture. The mixture was stirred at 40 oC for 12 h and the final
product was achieved by flash column chromatography.

Preparation of product 7. In a dried Schlenk tube under N2, [Ir(cod)Cl]2 (0.005
mmol, 3.35 mg) and chiral ligand (R)-L or (S)-L1 (0.02 mmol, 10.15 mg) were
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mixed in 0.3 mL DCE and stirred at ambient temperature for 20 min under argon
atmosphere. Then allylic alcohol 1 (0.25 mmol, 1.0 eq), ketone 2 (0.5 mmol, 2.0 eq)
and chiral amine catalyst (S)-A4 (0.05 mmol, 16.1 mg) were added to the mixture
successively. After 8 h, the other 3.0 eq. ketone 2 was added in portions. Stirring at
50 oC for 48 h. The residue was directly purified by flash silica gel chromatography
to afford the title compound.

Data availability
The authors declare that the data supporting the findings of this study are available
within the article and Supplementary Information file, or from the corresponding author
upon reasonable request. The X-ray crystallographic coordinates for structures reported
in this study have been deposited at the Cambridge Crystallographic Data Centre
(CCDC), under deposition numbers CCDC 1821791 and CCDC 1869868. These data can
be obtained free of charge from The Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/data_request/cif.
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