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Metabolic profiling of cancer cells reveals genome-
wide crosstalk between transcriptional regulators
and metabolism
Karin Ortmayr 1, Sébastien Dubuis1 & Mattia Zampieri 1

Transcriptional reprogramming of cellular metabolism is a hallmark of cancer. However,

systematic approaches to study the role of transcriptional regulators (TRs) in mediating

cancer metabolic rewiring are missing. Here, we chart a genome-scale map of TR-metabolite

associations in human cells using a combined computational-experimental framework for

large-scale metabolic profiling of adherent cell lines. By integrating intracellular metabolic

profiles of 54 cancer cell lines with transcriptomic and proteomic data, we unraveled a large

space of associations between TRs and metabolic pathways. We found a global regulatory

signature coordinating glucose- and one-carbon metabolism, suggesting that regulation of

carbon metabolism in cancer may be more diverse and flexible than previously appreciated.

Here, we demonstrate how this TR-metabolite map can serve as a resource to predict TRs

potentially responsible for metabolic transformation in patient-derived tumor samples,

opening new opportunities in understanding disease etiology, selecting therapeutic treat-

ments and in designing modulators of cancer-related TRs.
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Transcriptional regulators (TRs) are at the interface between
the cell’s ability to sense and respond to external stimuli or
changes in internal cell-state1. In cancer as well as other

human diseases2, alterations in the activity of TRs, such as
transcription factors, chromatin modifiers or transcription factor
co-regulators, can remodel the cellular signaling landscape and
trigger metabolic reprogramming3 to meet the requirements for
fast cell proliferation and cell transformation4,5. However, evi-
dence linking alterations of cancer metabolism to TR dysfunction
is often based on molecular profiling technologies, like tran-
scriptomics and chromatin modification profiling6 or the iden-
tification of TR-binding sites upstream of metabolic enzymes3,
that don’t report on the functional consequences of detected
interactions. Mass spectrometry-based metabolomics approaches
are powerful tools for the direct profiling of cell metabolism and
to uncover mechanisms of transcriptional (in)activation of
metabolic pathways7,8. Nevertheless, because of limitations
imposed by commonly used workflows, such as coverage, scal-
ability, and comparability between molecular profiles of largely
diverse cell types, simultaneously quantifying the activity of TRs
and metabolic pathways at genome- and large-scale remains a
major challenge. Here, we develop a unique experimental work-
flow for the parallel profiling of the relative abundance of more
than 2000 putatively annotated metabolites in morphologically
diverse adherent mammalian cells. This approach overcomes
several of the major limitations in generating large-scale com-
parative metabolic profiles across cell lines from different tissue
types or in different conditions, and was applied here to profile 54
adherent cell lines from the NCI-60 panel9.

To understand the interplay between transcriptional regulation
and emerging metabolic phenotypes, we generated a genome-
scale map of TR-metabolite associations. To this end, we imple-
mented a robust and scalable computational framework that
integrates metabolomics profiles with previously published tran-
scriptomics10 and proteomics11 datasets to resolve the flow of
signaling information across multiple regulatory layers in the cell.
This computational framework enables (i) systematically explor-
ing the regulation of metabolic pathways, (ii) reverse-engineering
TR activity from in vivo metabolome profiles and (iii) predicting
post-translational regulatory interactions between metabolites
and TRs. Beyond contributing to the understanding of genome-
wide associations between changes in TR activities and rewiring
of metabolism in cancer, we demonstrate how genome-scale TR-
metabolite associations can introduce a new paradigm in the
analysis of patient-derived metabolic profiles and the develop-
ment of alternative therapeutic strategies to counteract upstream
reprogramming of cellular metabolism.

Results
Large-scale metabolic profiling of cancer cells. Tumor cells, in
spite of similar genetic background or tissue of origin, can exhibit
profoundly diverse transcriptional and metabolic phenotypes12,13.
Exploiting the naturally occurring variability across a large set of
diverse cancer cell lines could reveal the interplay between
aberrant tumor metabolism and gene expression. However, in
spite of significant advancements in the rapid generation of high-
resolution spectral profiles of cellular samples14,15, the accurate
comparative profiling of intracellular metabolites across hetero-
geneous cell line panels is still a major challenge. Two are the
major bottlenecks for in vitro large-scale cell metabolic profiling:
(i) limited throughput of classical techniques16 featuring large
cultivation formats, time-consuming and laborious extraction/
measuring protocols, and (ii) lack of accurate and rapid nor-
malization procedures to make metabolic profiles of morpholo-
gically diverse cell types comparable. This last step is often

implemented by the additional quantification of total protein
abundance and is based on the assumption that protein content
scales with cell volumes, even across largely diverse cell types or
conditions17 (Supplementary Figs 1, 2). To overcome these lim-
itations, we present an innovative and robust workflow enabling
large-scale metabolic profiling in adherent mammalian cells
alongside with a scalable computational framework to normalize
and compare molecular signatures across cell types with large
differences in morphology and size (Supplementary Fig. 1–2). In
contrast to classical metabolomics techniques16, we use a 96-well
plate cultivation format, rapid in situ metabolite extraction,
automated time-lapse microscopy and flow-injection time-of-
flight mass spectrometry14 (FIA-TOFMS) for high-throughput
profiling of cell extract samples (Fig. 1a).

Specifically, we optimized each step, from cultivation and
extraction to MS analysis, to be compatible with parallel 96-well
processing. Different cell lines are seeded in triplicates at low cell
density in 96-well microtiter plates, and are grown to confluence
within 5 days (37 °C, 5% CO2). Growth is continuously
monitored by automated acquisition of bright-field microscopy
images, and replicate 96-well plates are sampled for metabolome
analysis every 24 h. To facilitate sampling, increase the through-
put and reduce the risk of sample processing artifacts, we collect
metabolomics samples directly in the 96-well cultivation plate
without prior cell detachment (Supplementary Fig. 1). Finally, cell
extracts are analyzed by FIA-TOFMS14, allowing rapid full-
spectral acquisition within less than one minute per sample.

Normalization of large-scale non-targeted metabolomics
profiles is a fundamental aspect of data analysis, which becomes
particularly challenging when comparing mammalian cell lines
with large differences in cell size. Our approach consists of two
main steps. First, we quantified relative metabolite abundance
per cell using a multiple linear regression scheme. To this end,
we quantified cell numbers in each sample directly from
automated analysis of bright-field microscopy images (see
Supplementary Note and Supplementary Fig. 1), and for each
cell line, related extracted cell number to ion intensity (Fig. 1b).
By combining MS profiles throughout cell growth (Supplemen-
tary Fig. 1), we decoupled cell line-specific metabolic signatures
from differences in extracted cell numbers. This procedure
enables selecting only annotated ions exhibiting a linear
dependency between measured intensities and extracted cell
number (Fig. 1b), that are hence amenable to accurate relative
quantification. Moreover, by integrating MS readouts at multi-
ple cell densities and time points, the resulting estimates of
relative metabolite abundances are invariant to cultivation time
and cell densities, enabling the direct comparison between
different cell lines and conditions18. In the second step, a subset
of metabolites identified to report on cell volume, mostly
intermediates of fatty acid metabolism, were used to correct for
differences in total volume of sampled cultures (see Methods
section and Supplementary Fig. 2).

Linking gene expression profiles to metabolic diversity. Here,
we used our framework to profile the intracellular metabolomes
of 54 adherent cell lines from eight different tissue types in the
NCI-60 cancer cell line panel. For 2181 putatively annotated ions
exhibiting a significant linear dependency between extracted cell
number and ion intensities (linear regression p-value ≤ 3.4e−7,
Bonferroni-adjusted threshold), we report Z-score normalized
relative abundances fitted over approximately 15 individual
measurements per cell line (Fig. 1b and Supplementary Data 1).
This new data set illustrates the technological advances of our
methodology over previous metabolomics approaches and similar
comparative resources (Supplementary Fig. 3), in that it enables
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higher throughput, sensitivity, coverage and systematic removal
of biases associated to differences in cell size.

Pairwise similarity analysis of cell line metabolome profiles
(Fig. 1c) reveals widespread heterogeneity in the metabolome of
cell lines even from the same tissue type. We found only 70
metabolites whose intracellular levels exhibited a significant
dependency (ANOVA, q-value ≤ 0.05) on cell-line tissue (Fig. 1d,
Supplementary Fig. 4, Supplementary Data 1). In few cases, these
patterns highlighted expected tissue-specific functions, such as for
elevated levels of a derivative of vitamin D3 in melanoma cells
(Fig. 1d), while other metabolites were ubiquitously present
among cell lines but in different levels depending on the tissue
of origin. While previously published transcriptome10 and
proteome11 profiles for 53 of the herein profiled cell lines
revealed a stronger molecular signature of the tissue of origin

(Fig. 1e), heterogeneity in metabolome profiles across cell lines
from the same tissue type is consistent with large differences in
doubling times (Fig. 1f, Supplementary Fig. 4, Supplementary
Data 1), previous data on exchange rates of nutrients and
metabolic byproducts13,19 (Fig. 1e) and metabolic differences
across mouse tissues20 (Supplementary Fig. 3).

How can such large phenotypic and metabolic diversity emerge
under the same environmental condition? We hypothesized that
differential regulation of gene expression could subserve meta-
bolic heterogeneity. To test our hypothesis, we correlated mRNA
levels of metabolic enzymes with metabolite abundances, and
related enzyme-metabolite correlation to their proximity in the
metabolic network. We used a genome-scale stoichiometric
model of human metabolism21 to derive the distance between
each enzyme-metabolite pair as the minimum number of
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Fig. 1 Comparative metabolome profiling in 54 adherent cancer cell lines. a Schematic overview of the combined workflow for high-throughput
metabolome profiling in adherent cell lines. Multiple cell lines are cultivated in parallel to collect cell extracts for MS-based metabolome profiling
(Supplementary Fig. 1). A new software tool for the segmentation of bright-field microscopy images (Supplementary Note) allows automated cell number
quantification. b Raw MS data for adenosine triphosphate (ATP) in three different cell lines before cell volume correction. Slopes (α) and standard errors
from the linear fitting of ion intensity and cell number are reported, together with the p-value significance. Background intensities were obtained from
measurements of cell-free extraction solvent. c Pairwise similarity (Spearman correlation) of metabolome profiles among 53 cell lines from the NCI-60
panel. Circle size on the diagonale is proportional to cell line doubling times (f). d Examples for metabolites exhibiting a significantly (ANOVA q-value≤
0.05, corrected for multiple tests) tissue-dependent abundance (Supplementary Fig. 4, Supplementary Data 1). Boxplot of Z-score normalized metabolite
levels are grouped by the cell line tissue of origin. Box edges correspond to 25th and 75th percentiles, whiskers include extreme data points, and outliers
are shown as red plus signs. e Signatures of tissue type in intracellular metabolome profiles compared to transcriptome10, proteome11, drug sensitivity31,
growth rate and the uptake- and secretion rates of 140 metabolites (CORE profiles13). Receiver operating characteristic curve analysis quantifies the
likelihood of cell lines from the same tissue type to feature similar molecular profiles. f Cell line doubling times (mean ± standard deviation), grouped by
tissue. Doubling times were determined from continuous monitoring of cell confluence in 96-well plates. g Correlations between metabolite levels and
gene expression in relation to their distance in the stoichiometric network of human metabolism21. The black line represents the average pairwise enzyme-
metabolite distance (y-axis) at different levels of correlation between metabolite abundance and enzyme gene expression (x-axis). The blue line represents
the average enzyme-metabolite distance in 10.000 randomized networks. Dot color reflects significance (q-value from permutation test) of enzyme-
metabolite proximity in the stoichiometric network as compared to the randomized networks
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reactions separating the two in the network. We found that
enzyme gene expression tends to more strongly correlate with
levels of proximal metabolites (Fig. 1g), reflecting a direct
dependency between enzyme- and related metabolite levels22,23.
By expanding the search for correlation between gene expression-
and metabolite levels beyond enzyme-encoding genes, we
observed that the two principal components of metabolic variance
explaining 38% of total variance (Supplementary Fig. 4) most
strongly correlated (Spearman |R| > 0.37) with transcripts in
signal transduction pathways regulating cell proliferation, adapta-
tion, cell adhesion and migration (e.g., HIF-1, PI3K-Akt, AMPK,
Supplementary Fig. 4). Altogether, these results suggest that
phenotypic heterogeneity observed in vitro can emerge as a result
of different transcriptional regulatory programs, and that
metabolite abundances can be used as intermediate functional
readouts linking gene expression profiles to different strategies in
allocating metabolic resources for energy generation and growth.

Systematic inference of TR-metabolite associations. To study
the flow of signaling information between transcriptome and
metabolome, we sought to quantify the functional interplay
between metabolic phenotypes and different transcriptional
programs mediated by the activity of transcriptional regulators
(TRs). Here, we use the term TR formally for any regulator
capable of modulating gene expression, including transcription
factors, chromatin remodelers, and co-regulators, i.e., adopting
the inclusion criteria from a curated repository of gene regulatory
network links24 (TRRUST database). TRs can directly regulate
metabolic fluxes by modulating enzyme abundance, i.e. changing
maximum flux capacity, or by indirectly affecting substrate
availability of proximal metabolic reactions, which can in turn
result in local changes of fluxes25,26. The activated form of a
transcriptional regulator, rather than its expression/protein level,
regulates gene promoters, and a TR’s activity is imprinted in the
expression levels of its target genes. Hence, because TR activity is
governed by complex post-transcriptional and post-translational
mechanisms, monitoring TR gene expression or protein levels is
an inadequate proxy of their activity27,28 (Supplementary Fig. 5).
Because, methodologies to directly measure promoter activity,
such as GFP or luciferase constructs, are limited in scalability, we
used network component analysis (NCA)29 to derive a relative
estimate of TR activity for each cell line directly from the com-
bined expression levels of TR-gene targets. By quantifying TR
activities from transcriptomic profiles and a network model of
transcriptional regulation, NCA enables simultaneously compar-
ing the activity of TRs across different cell lines on a genome-
scale level.

Hence, by integrating previously published transcript abun-
dance data10 for 53 cell lines with a genome-scale network of
literature-curated TR-target gene interactions (TRRUST data-
base24), we derived a relative estimate of TR activity for 728
transcriptional regulators (Fig. 2a, Supplementary Fig. 5). To
account for potentially confounding effects of different growth
rates and the incompleteness of the TR-regulatory network,
we introduced an artificial TR that, by virtually targeting all
genes, simulates pleiotropic effects of growth on gene expression,
and used a bootstrapping approach to sample different
combinations of TR regulatory interactions. Within an unknown
scaling factor, TR activities are hence robustly derived as the
median across more than 400 estimates per TR (Supplementary
Fig. 5, Supplementary Data 2).

To generate an empirical network of associations between TRs
and metabolites, we systematically correlated the activity of 728
TRs with relative levels of individual metabolites across cell lines
(Fig. 2a, Supplementary Data 3, Supplementary Fig. 5). First, we

investigated whether metabolites correlating with TR activity
locate in the proximity of TR-enzyme targets. To this end, we
estimated the distance of each TR to metabolites by taking the
minimum distance between known24 TR enzyme-targets and
metabolites in the metabolic network. We found that metabolites
exhibiting the strongest correlations with TR activity (|Spearman
correlation| > 0.45) are in the significant (q-value <= 0.05,
permutation test) vicinity of TR-enzyme targets (Supplementary
Fig. 5). Such local dependencies support our hypothesis that
metabolite levels can be used as an intermediate readout to study
the functional interplay between regulation of gene expression
and cell metabolism.

To test the extent to which our conclusions hold true beyond
the specific TR-regulatory network and cell lines tested here, we
expanded the TR-gene target network to include any enzyme
whose transcript levels correlate with TR activity, i.e. enzymes
directly or indirectly regulated by a TR. To that end, we applied
NCA to resolve TR activity across an independent large
compendium of transcriptome data, monitoring gene expression
in a panel of 1037 human cancer cell lines30 (Cancer Cell Line
Encyclopedia), and identified enzyme levels that correlate with
individual TR activity profiles (|Spearman correlation| > 0.5,
Supplementary Data 6). We call the resulting association network
an augmented TR-gene network. By repeating the analysis of TR-
metabolite distance using the augmented TR-gene network, we
found an even stronger vicinity between TRs and correlating
metabolites (Fig. 2b). Hence, the analysis of this independent
panel of cancer cell line expression data not only reinforces our
previous results, but it also suggests that the TR-metabolite
association network derived from the NCI-60 tumor cell lines can
be generalized to a largely diverse panel of cell lines. Our results
demonstrate that while models of TR-target genes are far from
complete, even relatively few known gene targets can be sufficient
to estimate TR activities. Remarkably, while in human cells most
of the known TR binding sites map to genes in signaling- and
disease-related pathways, our TR-metabolite network unraveled
a complementary large space of associations involving inter-
mediates in central metabolic pathways (Fig. 2c).

Mapping TR activity to metabolic phenotypes. Here, we asked
whether coordinated changes in TR activity and metabolite
abundances indirectly inform on changes in proximal metabolic
fluxes12 (see Supplementary Fig. 6 and Supplementary Discus-
sion). As a proof of concept, we measured rates of glucose uptake
and lactate secretion in each cell line as a proxy for glycolytic flux.
As previously observed13,22, glucose consumption strongly cor-
related with lactate secretion, and on average approximately 70%
of the incoming glucose carbon is secreted into lactate (Fig. 2d
and Supplementary Fig. 3). Next, we related intracellular meta-
bolite abundances to measured fluxes by estimating the average
correlation with glucose and lactate exchange rates (Fig. 2e).
Indeed, metabolites that strongly correlate with glycolytic flux
(Spearman R > 0.5) were enriched for intermediates of proximal
glycolytic pathways, oxidative phosphorylation and HIF-1
signaling pathway (Fig. 2f), including metabolites such as gly-
ceraldehyde 3-phosphate, acetyl-CoA and ATP (Fig. 2e). Sur-
prisingly, metabolites that anti-correlated with glucose uptake, i.e.
that are increased with low glycolytic flux, were significantly
(hypergeometric test, q-value ≤ 0.001) enriched for one-carbon
metabolism (Fig. 2f), hinting at a direct functional dependency
between one-carbon metabolism and glycolytic flux. To test this
prediction, we correlated glucose consumption and lactate
secretion with the susceptibility to 430 drugs with known
mechanisms of action31. Consistent with the hypothesized func-
tional dependency between glucose and one-carbon metabolism,
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we found that among all drug classes, the strongest correlation
with glycolytic flux was observed with cell line sensitivities to
antifolate drugs and inhibitors of dihydrofolate reductase (DHFR)
—i.e., cell lines with lower glucose uptake are more sensitive to
inhibitors of folate biosynthesis (Fig. 2g).

Next, we sought to use our TR-metabolite network to find TRs
associated with glycolytic flux, that potentially coordinate glucose
and one-carbon metabolism. To this end, we searched for TRs
that correlate with metabolites reporting on glycolytic flux by
calculating the sum of the dot product between TR-metabolite-
and metabolite-glycolytic flux correlation vectors, normalized
by the absolute sum of TR-metabolite correlation coefficients
(Fig. 2h). Notably, TRs with the highest scores were enriched
(permutation test, q-value ≤ 0.05) for enzyme targets in

ubiquinone biosynthesis, insulin signaling, TCA cycle and
glycolysis/gluconeogenesis (Fig. 2i). Several of the top 10
predicted TRs (Fig. 2h) are associated to the regulation of key
steps in glycolysis, such as the regulatory factor X3 (RFX3)
regulating the glucokinase gene32, the nuclear factor erythroid 2-
related factor 1 (NFE2L1) and its interacting partner MAFG,
involved in the regulation of oxidative stress response and diverse
glycolytic genes33. Interestingly, we also found TRs important for
the survival and proliferation of cancer cells under nutrient
limitation or stress, such as the activating transcription factor 5
(ATF5)34 and the SNF2-related CPB activator protein (SRCAP),
a direct regulator of phosphoenolpyruvate carboxykinase 2
(PCK2)35, a gluconeogenic enzyme essential to maintain cell
proliferation under limited glucose conditions in cancer cells36.
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Consistent with our previous observation of a dependency
between glycolytic flux and intermediates in one-carbon meta-
bolism, SRCAP activity levels across the 1037 CCLE cancer cell
lines strongly correlate (R ≥ 0.5) with the expression of three
genes (Supplementary Data 2): MTHFD2, a mitochondrial
enzymes in folate metabolism, asparagine synthetase (ASNS)
and ATF4, an upstream regulator of serine biosynthesis and
mitochondrial folate enzyme transcription, involved in the
response to amino acids starvation (Supplementary Fig. 6).

It is tempting to speculate that cancer cell line diversity in
glucose uptake and lactate secretion observed in vitro potentially
reflects regulatory programs acquired during an earlier adaptation
to in vivo nutrient availability and stresses. Altogether, these
findings independently support the functional relevance of our
TR-metabolite association network in resolving the interplay
between transcriptional regulation and metabolic phenotype.
Notably, the inferred associations between metabolic intermedi-
ates and TRs are complementary to the information derived from
TR-gene regulatory networks. While the latter report on the
regulatory capability of TRs to change enzyme abundance,
coordinated changes between TR activity and metabolite levels
can reveal the functional implications of these regulatory events.

Predicting functional roles of TRs in metabolism. Because
correlation does not imply causation, we cannot resolve whether
changes in metabolite levels are responsible for changes in TR
activity or vice-versa. However, often only few metabolic inter-
mediates of metabolic pathways, typically the end product37, can
allosterically regulate TRs. Hence, multiple proximal metabolic
intermediates correlating with an individual TR’s activity can
reveal the functional impact of TRs on overall pathway activity.
By analyzing TR-metabolite associations on pathway-level,
we can hence predict the functional roles of individual TRs in
potentially regulating distinct metabolic pathways. For 677 TRs,
we discovered a significant enrichment (hypergeometric test,
q-value ≤ 0.05) of TR-associated metabolites in at least one KEGG
pathway (Fig. 3a, Supplementary Fig. 6, Supplementary Data 4),
including 145 cancer-related TRs38 (as defined by the COSMIC
cancer gene census). In this analysis, metabolic pathways with
the highest number of associated TRs were arachidonic and
fatty acid metabolism, followed by arginine and proline meta-
bolism and the degradation of branched-chain amino acids
(Supplementary Fig. 6). These predicted interactions potentially
reflect a large space of yet unexplored regulatory interactions that
can mediate the adaptation to varied micro-environmental con-
ditions and fast proliferation under diverse nutrient availability
(see Supplementary Discussion).

Even in cases where the roles of TR-target genes have been
extensively characterized, the herein-proposed TR-metabolite
associations can help refining the condition-specific functional
role of TRs in metabolism. For example, hypoxia-inducible factor
1 alpha (HIF-1A)39 is reported to act on regulatory elements
upstream of nearly 50 enzymes in several central metabolic
pathways (Fig. 3a). However, among KEGG pathways with
known HIF-1A target genes, we found a significant enrichment of
metabolic intermediates almost confined to TCA cycle (hyper-
geometric test, q-value < 0.05), suggesting that changes in HIF-1A
activity alone are sufficient to affect TCA cycle. In order to
validate this association, we monitored dynamic intracellular
metabolic changes upon HIF-1A mRNA degradation (i.e., siRNA
knockdown) in IGROV1 ovarian cancer cells, exhibiting an
average basal level of HIF-1A activity (Supplementary Fig. 5).
While the earliest time-points are dominated by minor and
fluctuating metabolic changes, likely reflecting a general response
to siRNA transfection, strong metabolic changes gradually

emerged 68 h post-transfection, and were most pronounced at
111 h after HIF-1A silencing (Fig. 3b, Supplementary Data 3).
The most prominent metabolic changes (Fig. 3c) involve the
accumulation of metabolites in the oxidative branch of TCA cycle
(Fig. 3d), including citrate, oxalosuccinate, and N-acetyl gluta-
mate, a downstream product of 2-oxoglutarate. The increase in
abundance of TCA cycle intermediates upon HIF-1A knockdown
is consistent with the previously reported regulatory role of HIF-
1A as a repressor of oxidative metabolism40 via induction of
pyruvate dehydrogenase kinase (PDK), and is in agreement with
the enrichment analysis of functional associations in our TR-
metabolite association network (Fig. 3a). Moreover, out of 728
TRs in the TR-metabolite association network, HIF-1A was
recovered within the top 2% of TRs with the strongest
associations to metabolites affected by HIF-1A knockdown
(Fig. 3e and Supplementary Fig. 7).

Hence, besides generating experimentally testable hypotheses
on condition-specific regulatory roles of TRs in metabolism
(Fig. 3a), the herein-established TR-metabolite association net-
work might serve as a guide to extract signatures of TR
deregulation directly from metabolome profiles. Such an
approach would be particularly attractive for the interpretation
of large collections of in vivo metabolome profiles acquired from
tissue samples in patient cohort studies. In the following, we
verify whether TR-metabolite associations inferred in vitro are
relevant also in an in vivo context, by testing the well-known role
of HIF-1A as a key oncodriver in clear-cell renal cell carcinoma.

Predicting TRs mediating in vivo metabolic reprogramming.
Here, we ask whether the map of TR-metabolite associations
found in vitro recapitulates metabolic rearrangements in an
in vivo setting. To this end, we searched for TRs potentially
responsible for metabolic differences between healthy and tumor
tissue by evaluating the dot product between the TR-metabolite
correlation matrix derived in vitro, and in vivo metabolite fold-
changes between normal and cancer tissues. We applied this
approach to analyze differences in metabolite abundances
between clear-cell renal cell carcinoma (ccRCC) and proximal
normal tissue samples in a cohort of 138 patients7 (Supplemen-
tary Data 3). Because this independent metabolomics data set
contains only a subset of metabolites (i.e., 134) detected in our
TR-metabolite association network, for each patient, we estimated
the significance of a TR in explaining the observed metabolic
changes using a permutation test, and ranked the 728 TRs
according to the median q-value across patients (Fig. 4a, Sup-
plementary Data 3).

Loss-of-function mutations in van Hippel Lindau factor (VHL)
gene are the most frequent and specific genetic event observed in
ccRCC41, entailing a hyper-activation of hypoxia-inducible
factors (HIF-1, HIF-2, and HIF-3)39,40. In agreement with the
genetic basis of ccRCC, we identified VHL and HIF-1A among
the top 1% of TRRUST-listed24 transcriptional regulators that
potentially mediate metabolic rearrangement in ccRCC (Fig. 4a).
Other top-ranking TRs include YY1 that has been shown to
interact with hypoxia-inducible factors42 (see also Supplementary
Discussion and Supplementary Fig. 7). These results indepen-
dently demonstrate the in vivo relevance of the previously
inferred in vitro map of TR-metabolite associations, and support
its potential clinical applicability to decipher metabolic rearran-
gements in tumor tissue samples.

To further illustrate the potential of TR-metabolite associations
in aiding the interpretation of tumor-specific metabolic changes,
we collected data from two additional studies monitoring tumor
metabolic reprogramming in cohorts of 10 and 21 patients with
colon12 and lung cancer43, respectively. In contrast to ccRCC,
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the most recurrent genetic events in colon and lung cancers are
mutations in p5344,45, similarly to many different tumor types.
Metabolome-based predictions suggest that deregulation of
TRs other than p53, such as NF-Y or Mllt10 (Fig. 4b, c and
Supplementary Discussion), more directly associates to metabolic
changes observed in lung and colon tissue samples. While
we don’t have direct experimental evidence, the predicted TRs
can function as effectors up- or downstream of p53, and unveil
key tumor-specific characteristics that can be exploited in a
therapeutic setting.

Consistent with this hypothesis, by analyzing the dependency
between TR activity and the sensitivity of NCI-60 tumor cell lines
to 130 FDA-approved drugs31, we found 392 TRs for which
activity significantly (linear regression p-value ≤ 2.67e−4,
Bonferroni-adjusted threshold) associates with at least one drug
sensitivity profile (Supplementary Data 4). To disentangle the
difference in drug sensitivity relating to variable TR activity from
those attributable to the tissue of origin, we used a multivariate
statistical approach that uncovers the potential association
between individual TRs and drug susceptibility. When testing
these associations between groups of TRs regulating similar

cellular processes and drugs with a shared mode of action (MoA),
we found expected and potentially new functional associations
(Fig. 4d). For example, cell lines differentially susceptible to
mTOR inhibitors that can induce cell cycle arrest46 exhibited
similar patterns in the activity of TRs involved in regulating cell
cycle progression (linear regression p-value ≤ 1e−4, Bonferroni-
adjusted threshold). Even stronger but less intuitive is the
predicted association between regulators of calcium homeostasis
and inhibitors of the MAPK signaling pathway (Fig. 4d). In the
more specific cases described above, our analysis of HIF-1A
and VHL activities across cell lines recapitulate the action of HIF-
1A inhibitor vorinostat47 and HIF-1A inducer imiquimod48

(Fig. 4e, f).
Overall, by analyzing cell line responses to largely diverse

drugs, we uncovered numerous TRs whose activity correlates with
drug sensitivity, providing independent experimental evidence
that diverse transcriptional programs can affect the survival and
drug tolerance of cancer cells. Hence, similarly to gene expression
signatures used clinically to guide treatment decisions49,
metabolome-based signatures of TR deregulation could open
new possibilities in aiding the selection of personalized
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therapeutic treatments. Taken together, in vitro associations
between TRs and metabolites not only allow predicting TR
regulatory functions in metabolism, but could also complement
genomic information and guide the analysis, molecular classifica-
tion and interpretation of metabolome profiles from large patient
cohorts.

Systematic prediction of potential modulators of TR activity.
While we have shown that metabolic rearrangements in cancer
can be correlated to changes in TR activity, the origin of such
changes often remains elusive. Mutations in genes encoding
transcriptional regulators can be directly responsible for altered
TR functionality, and in some cases even explain disease etiol-
ogy50. However, the activation of new transcriptional programs
is often an indirect response to changes in the abundance of
internal effectors of cell signaling51,52. In silico models have
proven extremely powerful in finding new allosteric interactions
that can regulate enzyme activity53 and in testing their in vivo
functionality54, but little progress has been made in the systematic
mapping of effectors of TR activity. Here, we integrated three
layers of biological information—i.e., metabolome, proteome, and
transcriptome, to obtain first insights into how cells can activate

distinct transcriptional programs in response to changes in the
abundance of specific intracellular metabolites.

Analysis of phosphorylation interaction networks in yeast55 and
human56 revealed that TRs, as compared to enzymes, interact on
average with many more kinases (Kolmogorov–Smirnov test, p-
value ≤ 0.001, Fig. 5a, b), reflecting a key role of TRs as mediators
in phosphorylation signaling cascades and emphasizing the
importance of elucidating post-translational modulators of TR
activity. While the impact of phosphorylation has been system-
atically studied55,56, much less is known about the potential role of
metabolites in the allosteric regulation of TR activity. Despite the
increased interest in metabolites as signaling molecules and their
potential role in driving cellular transformation51, resolving the
influence of metabolites on TR activity has remained a daunting
task. Here, we established an in silico framework for generating
hypotheses on regulatory interactions between TRs, metabolites
and kinases (Fig. 5c). To that end, we used model-based fitting
analysis to integrate TR activity and metabolome profiles with
proteome data11 measuring the abundance of 100 TRs and 64
kinases/phosphatases across 53 cell lines. For each TR, we applied
non-linear regression analysis to determine whether variation in
TR activity could be modeled as a function of TR protein
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Fig. 4 Inferring TRs as mediators of in vivo metabolic changes. a–c Prediction results in three previously published data sets comprising metabolic profiles
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abundance and the activating or inhibiting action of individual
metabolites and/or kinases. In total, we tested 6,753,600 models,
and found 1888 interactions which significantly (FDR ≤ 0.1%)
improved the explained variance in the activity of 96 TRs out of
the 100 TRs for which protein abundance data was available11.
Consistent with the dominant role of phosphorylation in
modulating TR activity (Fig. 5a, b), we found that on average
TRs are predicted to interact with more kinases than metabolites
(Supplementary Fig. 8). However, most of the inferred regulatory
interactions (93%) involved the combined action of a kinase and a
metabolite, while only few metabolites or kinases could alone
significantly improve model-fitting (Fig. 5d, Supplementary
Data 5). This observation suggests that multiple coordinated
regulatory mechanisms possibly underlie the post-transcriptional
regulation of TR activity. Moreover, metabolites predicted to affect
TR activity are significantly enriched (hypergeometric test, p-value
3.1e−4, Supplementary Fig. 8) for key signaling molecules in the
cell known to allosterically regulate multiple enzymatic reactions,
such as glutathione, glutamate or ATP (Fig. 5e, f). Among the
most highly connected metabolites predicted by our model-based
fitting analysis is choline (118 interactions with 36 TRs), in
agreement with recent studies showing that altered choline levels
are a metabolic hallmark of malignant transformation57 (see
Supplementary Discussion).

Overall, our approach opens the door for a systematic
investigation of a previously largely unexplored58 interaction
space between transcriptional regulators and signaling effectors in
human cells. An extensive network of post-translational regula-
tory interactions has emerged in model organisms such as E.
coli26 or yeast55,59, and based on our findings we expect a similar
picture to hold true in human cells.

Discussion
In recent years, increasing efforts have been made to understand
the signals driving metabolic changes in cancer12. Transcriptional

regulation is at the basis of the decision-making process of a cell
and its ability to allocate resources necessary for cell transfor-
mation and proliferation. Genome sequencing and transcriptome
technologies have revealed an intricate network of TR-gene reg-
ulatory interactions in which mutations in TRs often associate to
disease states and aberrant metabolic phenotypes7,60. However, it
is important to emphasize that gene regulatory interactions
between enzymes and TRs per se are not sufficient to functionally
regulate the activity of metabolic pathways. Key to unambigu-
ously resolving regulatory circuits at the intersection with meta-
bolism are methods searching for coordinated behavior between
the different levels. To this end, we developed a combined
experimental and computational framework that overcomes
important limitations in large-scale metabolome screenings,
including (i) the limited throughput and laborious sample pre-
paration of classical metabolomics approaches in mammalian cell
cultures, (ii) the lack of scalable methods to adequately normalize
metabolomics data across morphologically diverse cell types, and
(iii) the need for systematic data integration strategies. The
herein-proposed workflow for large-scale metabolome profiling is
directly applicable to the study of dynamic metabolic responses to
external stimuli18, and can scale to larger cohorts that are now
within reach of other molecular profiling platforms61.

By combining cross-sectional omics data from diverse tumor
cell lines, we constructed a global network model across three
layers of biological information: the transcriptome, the proteome,
and the metabolome, exploiting the naturally occurring pheno-
typic diversity in an in vitro cell line system. By analyzing the
coordinated changes in baseline transcriptome, proteome and
metabolome with the aid of a gene regulatory network and
model-based fitting analysis, we investigated the bi-directional
exchange of signaling information between TRs and metabolic
pathways. For many TRs, we predict potentially new regulatory
associations with central metabolic pathways, suggesting a large
space of transcriptional solutions by which cells can fulfill the
anabolic and catabolic requirements for rapid proliferation and
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Fig. 5 Modeling TR activity using an ensemble of non-linear models. a, b Probability density function (pdf) of the number of kinases reported to interact
with TRs (red) and metabolic enzymes (blue) in yeast55 (a) and human56 (b). P-values report on the significance of the difference between TRs and
enzyme pdfs (Kolmogorov–Smirnov test). c Schematic overview of the computational framework. Three layers of biological information are integrated
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adaptation to nutrient limitations. The correlation between gly-
colytic flux and activity of TRs involved in the response to
nutrient limitation and stress hints at the ability of cancer cells
to sidetrack transcriptional programs activated by nutrient scar-
city or stresses to potentially fulfill carbon demand for fast pro-
liferation. Moreover, we observed a global coordination between
glucose and one-carbon metabolism, which revealed a selective
sensitivity to antifolate drugs in cell lines with low glucose uptake
and might serve as a diagnostic marker for cancer cells that are
more likely to respond to folate synthesis inhibitors.

Because measuring intracellular fluxes is still a major challenge,
and these measurements are typically limited to central metabolic
pathways, our metabolome profiling technique offers an alter-
native tool to probe metabolic regulation at a genome-scale and
high-throughput in cancer cells. In light of the central regulatory
role of TRs in cellular organization, targeting transcriptional
regulators is an extremely attractive way to counteract global
gene expression changes that underlie cancer survival and
development62,63. Endogenous metabolites capable of modulating
TR activity could become invaluable chemical scaffolds to design
new therapeutic molecules targeting oncogenic TRs, with the
potential to overcome difficulties related to targeting kinase-
mediated signaling cascades63. Altogether, our work also suggests
that, while clearly far from typical in vivo conditions, in vitro cell
line systems represent an invaluable discovery tool to investigate
metabolic regulatory mechanisms that can still generalize to
in vivo conditions and clinical settings. The experimental and
computational framework proposed in this study is applicable to
other systems or diseases, providing us with an unprecedented
tool to investigate the origin of metabolic dysregulation in human
diseases.

Methods
Cell cultivation. The NCI-60 cancer cell lines were obtained from the National
Cancer Institute (NCI, Bethesda, MD, USA). The full panel consists of 60 cell lines,
54 of which grow adherently and were used in this study. Of note, cell line MDA-N
had previously been excluded from the panel, but was replaced by the NCI recently
by MDA-MB-468 cells. After thawing, the 54 adherent cell lines were expanded in
cell culture flasks (Nunc T75, Thermo Scientific) at 37 °C and 5% CO2 in RPMI-
1640 (Biological Industries, cat.no. 01-101-1A) supplemented with 5% fetal bovine
serum (FBS, Sigma Aldrich, F6178), 2 mM L-glutamine (Gibco, cat.no. 25030024),
2 g/L D-glucose (Sigma Aldrich, cat.no. G8644), and 100 U/mL penicillin/strep-
tomycin (P/S, Gibco, cat.no. 15140122). After two passages, the cells were trans-
ferred to fresh medium where FBS was replaced by dialyzed FBS (dFBS, Sigma
Aldrich, cat.no. F0392) with a reduced content of low molecular weight com-
pounds, to improve the accuracy of metabolite quantification. Twenty cell lines
were exemplarily tested and confirmed mycoplasma-free: SF268, IGROV1,
UACC62, HCC2998, DU145, NCI-ADRRESS, OVCAR3, SNB19, SKMEL18, NCI-
H23, SF539, HOP62, UACC157, NCI-H322M, NCI-H522, OVCAR4, EKVX,
UO31, CAKI-1, MDAMB231.

Cells were maintained in medium with dFBS throughout all experiments. The
starting cell density for metabolomics experiments in 96-well plates (Nunc cat.no.
167008, Thermo Scientific) was determined for each cell line. To this end, cells
were plated in triplicates at eight different starting cell densities and incubated at
37 °C and 5% CO2 for 3 days. On the third day, the medium was changed in all
wells by aspirating the spent medium using a multichannel aspirator, washing once
with phosphate-buffered saline solution (PBS, pH 7.4, 37 °C, Gibco, cat.no.
10010015) using a multichannel dispensing pipet, and finally filling each well again
with 150 µL of fresh medium. The plate was imaged to determine the confluence
(see below) immediately before and after media change, and after 72 h. The starting
cell density for metabolomics experiments was then chosen to guarantee a
minimum of 20-30% cell confluence after media change, and approx. 80%
confluence after 72 h.

Cell imaging and image analysis. We monitor cell growth by measuring cell
confluence (i.e., area of the well covered by cells in percentage) directly from 96-
well plates (Nunc cat.no. 167008, Thermo Scientific) using automated time-lapse
microscopy imaging. Every 1.5 h, bright-field microscopy images of each well were
acquired using a TECAN Spark 10M plate reader. In addition, we developed an
image analysis framework to segment cells and determine the characteristic cell size
area (i.e., average surface area of single adherent cells) for each cell line (Supple-
mentary Fig. 1 and Supplementary Note). To quantify the number of extracted
cells, confluence was divided by the characteristic cell size (Supplementary Fig. 1).

A detailed description and validation of the algorithm used for estimating cell
numbers from bright-field microscopy images is provided in the Supplementary
Note, alongside with a Matlab code. Of note, this approach has several important
advantages, in that it is non-destructive, and allows quantifying cell growth and cell
numbers without any manual sample manipulation.

Metabolomics experiments. Cells were plated in triplicates in 150 µL of RPMI-
1640 medium (5% dFBS, 2 g/L glucose, 2 mM glutamine, 1% P/S) in 96-microtiter
well plates. After an initial growth phase, the medium in each well was renewed on
the third day, and the cultures were subsequently monitored for four more days
(96 h). Ten replicate plates were prepared in each experiment to allow for gen-
erating metabolomics samples at five different time-points (immediately before
media change, and at 24, 48, 72 and 96 h after media change), and one additional
plate for continuous growth monitoring (TECAN Spark 10M, 37 °C, 5% CO2).

At each sampling time point, two replicate 96-well plates were processed (plates
A and B). Plate A was used to generate cell extracts, by (1) removing the spent
medium, (2) washing once with 75 mM ammonium carbonate (pH 7.4, 37 °C), and
(3) adding ice-cold extraction solvent (40% methanol, 40% acetonitrile, 20% water,
25 µM phenyl hydrazine64). Finally, the plate is sealed, incubated at −20 °C for one
hour, and subsequently stored at -80 °C until MS analysis. Plate B undergoes the
same processing steps, except for the last one, where each well is filled with PBS
(pH 7.4, 37 °C), and the plate is immediately imaged to determine cell confluence
for subsequent normalization of MS spectra.

Immediately prior to MS analysis, the plates were thawed on ice, and the
extracted cells were scraped off the bottom of each well using a multichannel pipet
with wide-bore tips. Next, the cell extracts were transferred to 96-well plates with
conical bottom and centrifuged at 4 °C, 4000 rpm for 5 min to separate cell debris.
Finally, pooled cell extracts for each experiment (pooled from five cell lines
processed within the same experiment) as well as aliquots of cell-free extraction
solvent were added to each measurement plate as control samples, and the plates
were sealed and stored at 4 °C until injection.

Metabolome profiling using FIA-TOFMS. Cell extract samples were analyzed
by flow-injection analysis time-of-flight mass spectrometry (FIA-TOFMS) on an
Agilent 6550 iFunnel Q-TOF LC-MS System (Agilent Technologies, Santa Clara,
CA, USA), as described by Fuhrer et al.14. This method allows generating high-
resolution spectral profiles in less than one minute per sample, allowing for
sensitive high-throughput profiling of large sample collections. In brief, a defined
sample volume of 5 µL is injected using a Gerstel MPS2 autosampler into a
constant flow of isopropanol/water (60:40, v/v) buffered with 5 mM ammonium
carbonate (pH 9), containing two compounds for online mass axis correction:
3-Amino-1-propanesulfonic acid, (138.0230374 m/z, Sigma Aldrich, cat. no.
A76109) and hexakis(1H,1H,3H-tetrafluoropropoxy)phosphazine (940.0003763m/
z, HP-0921, Agilent Technologies, Santa Clara, CA, USA). The sample plug is
delivered directly to the ion source for ionization in negative mode (325 °C source
temperature, 5 L/min drying gas, 30 psig nebulizer pressure, 175 V fragmentor
voltage, 65 V skimmer voltage). Mass spectra were recorded in the mass range
50–1000m/z in 4 GHz high-resolution mode with an acquisition rate of 1.4 spectra
per second. Raw MS profiles were processed to align spectra and pick centroid
ion masses using an in-house data processing environment in Matlab R2015b
(The Mathworks, Natick).

Multiple hypothesis testing correction. Given a sufficient number of tests, the
Storey method65 for correction of multiple hypothesis testing was adopted (i.e.,
q-value). However, this methodology typically requires a large number of null tests
to derive an accurate estimate of π0 (estimate of the proportion of true null
p-values)65. In cases where the number of tests is inadequate for q-value correction,
we adopted the Bonferroni correction. Only in two cases, we applied a resampling
confidence interval-based method: (i) to generate Fig. 2c of strongest TR-
metabolite associations, and (ii) to select the strongest TR-metabolite-kinase pre-
dicted interactions (Fig. 5d). In these cases, to avoid any a priori assumptions of the
underlying distributions, we determine the false discovery rate (FDR) from the bulk
distribution of correlation or mean squared error values, respectively, derived from
random sampling. The procedure is described in details in the respective sections.

Metabolite annotation. Measured ions were putatively annotated by matching
mass-to-charge ratios to a reference list of calculated masses of metabolites listed in
the Human Metabolome Database (HMDB) and the genome-scale reconstruction
of human metabolism21 (Recon2) within 0.003 amu mass accuracy. The reference
mass list was generated from the respective sum formulae, considering deproto-
nation as the most prevalent mode of ionization in the chosen acquisition con-
ditions. To allow for the annotation of α-keto acid derivatives formed in presence
of phenyl hydrazine in the extraction solvent64, sum formulae for the phenylhy-
drazone derivatives (+C6H8N2−H2O) of a total of 30 α-keto acid compounds
(selected via KEGG SimComp search http://www.genome.jp/tools/simcomp/) were
added to the metabolite list for annotation. The final list of putatively annotated
metabolites consisted of 689 and 5949 unique compound IDs from Recon2, and
HMDB, respectively.
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Data normalization. We corrected for systematic errors using a two-step regres-
sion model to disentangle the contributions of extracted cell numbers, plate-to-
plate variance, instrumental and background noise from the actual variance in
metabolite abundances between cell types (Supplementary Fig. 2). To this end, raw
data were first corrected for instrument drift by normalizing for possible batch/
plate effects. Each plate contains 12 pooled cell extract samples prepared from the 5
different cell lines in each experiment (i.e., batch). Measured intensities for each
annotated ion are modeled as follows:

Ii;j;p ¼ γp �Mi;j ð1Þ

log Ii;j;p
� �

¼ logðγpÞ þ logðMi;jÞ ð2Þ

Where Ii,j,p is the measured intensity for ion I, in pooled sample j and plate p, γp is
the scaling factor associated to each plate and Mi,j represents the actual abundance
of metabolite i in sample j. By using a linear regression scheme we can estimate
both parameters (γp and Mi,j) within an unknown scaling factor. After correcting
for possible instrumental artifacts, we implemented a second step in order to derive
comparative measurements of metabolite abundance for each cell line. Here, we
follow each cell line along the linear growth phase, sampling every 24 h across
5 days. We typically obtain 15 data points for each cell line at different cell den-
sities. The expectation is that the signal measured for any ion of biological origin
(i.e., a genuine metabolite) would increase linearly as the number of cells in the
sample increases. The proportionality (i.e., α parameter) between ion intensity and
extracted cells depend on the intracellular concentration of the metabolite. Here, by
implementing a multiple regression scheme, we estimate the relative abundance of
a given metabolite in each of the cell lines, α, alongside with its standard error
(Fig. 1b, Supplementary Fig. 2). A linear regression model describes variation in ion
intensity as a linear function of cells extracted (α) and a constant parameter (β) that
capture MS background noise. For each ion, the α values are specific of each cell
line while the constant term in the model is fixed (i.e., expected ion signal at zero
confluence that is independent of the cell line).

Because of the large number of measurements for each cell line at different cell
densities, we can apply a multiple regression analysis (fitlm function in Matlab) to
infer all model parameters αs and β at once, by minimizing the Euclidian distance
between measured metabolite intensities and model predictions. For each
metabolite, we solve the following linear model, including all 54 cell lines:
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Where Icell c,s is the measured metabolite intensity in sample s of cell line c, Ncell c,s

is the number of cells extracted in sample s of cell line c, and αs (for each cell line)
and β are the unknown parameters to be fitted. The number of cells per sample is
derived from the confluence measurements at sampling, divided by the average cell
size area determined using our image segmentation analysis (see Supplementary
Fig. 2 and Supplementary Note). After this step, we retained 2181 ions with a
regression p-value below a threshold value of 3.4e-7 (adjusted by the number of cell
lines and ions) in at least one cell line, and that showed a significant dependency
with the extracted cell number in more than 80% of cell lines (Supplementary
Fig. 2). Of note, we found that prior to normalization, the variance across three
biological replicates at the same time-point was equally low in cell confluence
(median: 7.4% CV) and raw ion intensities (median: 13%, Supplementary Fig. 2),
reflecting the high quality of MS measurements.

In the third and last step, we take into account systematic changes in metabolite
abundances related to differences in cell size (i.e., cell volume) between the 54 cell
lines to derive comparative estimates of intracellular metabolite concentration.
Principal component analysis of relative metabolite abundance per cell revealed a
strong trend across the 54 cell lines (PC1, 58.9% explained variance, Supplementary
Fig. 2), which strongly correlates with cell line volumes derived from cell diameters
measured in ref. 66 as well as with the herein determined adherent cell size area
(Supplementary Fig. 2, see Supplementary Note). The transitive correlation
between adherent cell size and the spherical cell volume in suspension indicates
that adherent cell height can be approximated as a constant. To correct MS data for
differences in cell line volumes, we selected 987 ions that showed a significant and
strong correlation (Pearson’s r > 0.8, p < 0.05, Supplementary Fig. 2) with PC1.
KEGG pathway enrichment analysis showed that these putatively annotated
metabolites were strongly overrepresented in fatty acid metabolism
(Supplementary Fig. 2), consistent with the expected linear dependency between
cell membrane surface (i.e., phospholipid content) and cell volume of adherent
cells. For each ion, cell line-specific α-values of the selected metabolites across all 54

cell lines were used to calculate a consensus correction factor for each cell line by
taking the mean across the 987 ions. To apply the cell volume correction to the full
data set, we divided the cell line-specific α-values for each ion by the consensus
correction factor (Supplementary Data 1).

Finally, the corrected α-values were normalized using Z-score normalization:

Zα ¼ αcell � �αffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
cell¼1 αcell � �αð Þ

q ; ð4Þ

where n is the number of cell lines (i.e., 54).
The final normalized data set is provided in Supplementary Data 1 alongside

with p-values and standard errors derived from regression analysis. Missing values
(NaN) correspond to cases where the measured ion abundance for the annotated
metabolite was close to the background level in the cell line, and can be considered
as zero for further analysis. In cell lines where a significant dependency (p-value <
3.4e−7, Bonferroni-adjusted threshold) of given metabolite’s abundance with cell
number could be robustly determined and exceeded the background noise, relative
standard errors of α calculated during fitting analysis were below 20% (median:
11%, Supplementary Fig. 2).

Analysis of tissue signatures across four omics data types. A complete
description of the analysis can be found in Supplementary Methods.

Estimating TR activity by network component analysis (NCA). Originally
established by Liao et al.29, NCA provides a mathematical framework for recon-
structing TR regulatory signals (TR activity) from gene expression profiles. Here,
we adopted sparseNCA implementation by Noor et al.67 (Matlab code downloaded
from https://sites.google.com/site/aminanoor/softwares). This methodology adopts
a mathematical model to approximate TR-target regulatory interactions and
integrates prior network information with the expression of target genes across
multiple conditions to regress the activity of the respective TRs, delivering a relative
measure of TR activity. We obtained normalized gene expression profiles across the
NCI-60 cell lines from Gene Expression Omnibus (accession number GSE32474),
containing 54,675 mRNA probes. TRRUST database24 served as the source of TR-
target gene interactions relevant in human, including 748 human TRs and 1975
non-TR gene targets. Intersecting these two resources, we assembled a network of
2209 unique genes corresponding to 5490 mRNA probes that match target genes
of 728 TRs in the TRRUST database (Supplementary Fig. 5). We implemented a
bootstrapping approach to account for incompleteness of the regulatory network
(i.e., missing regulatory interactions), and the fact that there may be multiple
optima in the solution space. Of note, even if the current knowledge of TR-target
genes is incomplete, few gene targets can be sufficient to estimate TR relative
activities using this approach. To this end, for each TR we randomly selected 48
additional TRs and constructed a sub-network containing the 49 TRs and their
target genes. Because growth-rate has a pleiotropic effect on gene expression, here
reflected in the correlation between first principal component of gene expression
data and cell line growth rates (Supplementary Fig. 5), we decouple TR activity
from the confounding effect of growth-rate by adding an additional TR that targets
all genes. This fictitious TR mimics the general effect of proliferation rates on
transcription. As a result, each TR is embedded in a sub-network of 50 TRs and
their target genes from the full network. Ten such subnetworks were created
randomly for each TR to apply NCA. In this bootstrapping scheme, each TR was
sampled in on average 490 subnetworks (permutations, min. 423, max. 556 data
points per TR). In the final data set, we normalized the calculated TR activity to the
maximum across all permutations, and finally calculated the median TR activity
and its standard deviation for each TR and cell line (Supplementary Fig. 5). It is
worth noting that the estimates we obtain with this approach are correct within
an unknown scaling factor, and hence we determine a relative measure of activity
for each of the 728 TRs across the NCI-60 cell lines (Supplementary Data 2).

TR-metabolite association network. In order to find metabolites whose relative
abundances correlate with TR activity, we calculated pairwise Spearman correla-
tions between all 2181 annotated metabolites and 728 TRs across the 54 cell lines
(Supplementary Data 3).

For visualization in Fig. 2c, we controlled the false discovery rate (FDR) among
network links at 0.1% using a bootstrapping approach to calculate the 99.9%
confidence interval of correlation coefficients after randomizing the data set. To
that end, the cell lines in the metabolome data set were randomized by resampling
100 times with replacement, and pairwise Spearman correlation coefficients were
calculated for each randomized data set. Correlation coefficients yielding a 99.9%
confidence interval (0.1% FDR) were obtained from the pooled list of absolute
correlation coefficients by finding the smallest correlation coefficient that exceeds
the maximum value among 99.9% lowest correlation coefficients).

Measurement of glucose and lactate exchange rates. A complete description
of the experiments and techniques used to determine glucose uptake- and lactate
secretion rates can be found in Supplementary Methods.
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Pathway enrichment in TR-metabolite correlation signatures. To assess the
over-representation of TR-metabolite associations in KEGG metabolic pathways,
the pairwise correlations between TR activity and metabolite relative abundance
across cell lines were rank-transformed. A statistical score that models the prob-
ability of a KEGG pathway to be significantly associated to a TR is based on the
collective activities of multiple metabolites in a pathway following the approach
described in ref. 68. The significance of the rank distribution of all metabolites
within the same KEGG pathway is tested by means of an iterative hypergeometric
test, indicating the statistical significance of metabolic intermediates of a common
metabolic pathway (e.g., TCA cycle) being distributed toward the top ranking ones.
P-values were corrected for multiple tests by q-value estimation69 (Supplementary
Data 3).

siRNA transfection and HIF-1A knockdown. A complete description of the
experimental procedures used to knockdown the TR HIF-1A in IGROV-1 ovarian
cancer cells, and quantify metabolic changes in response to the knockdown can be
found in Supplementary Methods.

Inferring TR involvement from in vivo metabolic changes. Based on the TR-
metabolite association network, the procedure used to estimate the contribution of
each of the 728 TRs in mediating metabolic changes observed in vivo, consists of 3
main steps: (i) For each patient log2 fold-changes of detected metabolites between
cancer and adjacent normal tissue are estimated (FCp), (ii) The dot product
between metabolite fold-changes and the TR-metabolite correlation vector (cTR,
product of correlation R and –log10 p) estimated from in vitro cell lines is com-
puted for each TR (SpTR), (iii) the significance is estimated using a permutation test,
where metabolite order is shuffled 10.000 times, the dot product is estimated for
each random permutation (~S

p
TR) and p-values are estimated as follows:

SpTR ¼ CTR � FCp

jj CTR jj1 ð5Þ

p� valueTR ¼
P10;000

k
~SpTR � SpTR
� �
10; 000

ð6Þ
P-values are corrected for multiple tests by q-value estimation69, and the

median across patients is calculated (Supplementary Data 3). Notably, when
analyzing the data published in ref. 7 we excluded all detected metabolites with
more than 10 missing values across patient samples.

Associations between TR activity and drug action. A complete description of
the linear regression model used to quantify associations between variation in drug
sensitivity and TR activity can be found in Supplementary Methods.

Prediction of metabolite-TR effectors. A complete description of the non-linear
model fitting analysis for the prediction of metabolite- or kinase effectors of TRs
can be found in Supplementary Methods.

Data availability
All data generated or analyzed during this study are included in this published article as
Supplementary Data.

Code availability
A detailed description of all data analysis steps is published in this article in the Methods
section and Supplementary Information. Matlab code for the image analysis software is
available for download at http://www.imsb.ethz.ch/research/zampieri-group/resources.
html.
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