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Sequencing of human genomes with nanopore
technology
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Mariateresa de Cesare 1, Laura E. Oikkonen1, Duncan Parkes 1, Colin Freeman1, Fatima Dhalla5,6,
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Peter Donnelly 1,2,9,11

Whole-genome sequencing (WGS) is becoming widely used in clinical medicine in diagnostic

contexts and to inform treatment choice. Here we evaluate the potential of the Oxford

Nanopore Technologies (ONT) MinION long-read sequencer for routine WGS by sequencing

the reference sample NA12878 and the genome of an individual with ataxia-pancytopenia

syndrome and severe immune dysregulation. We develop and apply a novel reference panel-

free analytical method to infer and then exploit phase information which improves single-

nucleotide variant (SNV) calling performance from otherwise modest levels. In the clinical

sample, we identify and directly phase two non-synonymous de novo variants in SAMD9L,

(OMIM #159550) inferring that they lie on the same paternal haplotype. Whilst consensus

SNV-calling error rates from ONT data remain substantially higher than those from short-

read methods, we demonstrate the substantial benefits of analytical innovation. Ongoing

improvements to base-calling and SNV-calling methodology must continue for nanopore

sequencing to establish itself as a primary method for clinical WGS.
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S ince the Human Genome Project’s 13-year effort to
sequence the human genome using dideoxy chain-
termination (Sanger) sequencing1,2, technological develop-

ments have been crucial in enabling current population-scale
human genome sequencing endeavours in research and the clinic
(www.nhlbiwgs.org and www.genomicsengland.co.uk). The
sequencing-by-synthesis methodology initially developed and
commercialised by Solexa, and progressively improved in both
accuracy and throughput by Illumina, has transformed the study
of the human genome for research and clinical applications3,4.
Despite such advances, short-read lengths restrict the insight that
can be derived from sequencing of an individual genome by
limiting the resolution of repetitive regions, complex structural
variation, and haplotype phase. The single-molecule sequencing
platform developed by Pacific Biosciences of California Inc is
capable of reads longer than 10 kb5,6, providing an advantage in
accessing challenging repetitive regions of the genome7 and in
phasing and the detection of complex structural variation8, but
relatively high cost and low throughput have so far limited the
technology’s adoption.

All major sequencing technologies so far have been built
around modifications of polymerase-mediated DNA synthesis. In
contrast, nanopore-based sequencing represents a radically dif-
ferent approach, in which the sequence of nucleic acids is inferred
from changes in the ionic current across a membrane as a single
DNA molecule passes through a protein nanopore9,10. Nanopore
sequencing has been commercialised in the form of Oxford
Nanopore Technologies’ handheld MinION device, and deployed
extensively for sequencing bacterial and viral genomes11,12. Until
recently the relatively low throughput of the instrument has
limited its use for interrogation of the human genome to the
sequencing of targeted regions13–15. However, recent advances,
which both increase the accuracy at which the DNA sequence
passing through the protein nanopore can be determined and the
speed at which DNA can pass through it, have dramatically
increased the throughput of the instrument, making high-
coverage sequencing of larger genomes including the human
genome feasible.

Initial reports of nanopore human genome sequencing have
focused on the benefits of Oxford Nanopore’s long reads in

achieving a highly contiguous assembly16 or in identifying
structural variation in patient samples17. This focus is unsur-
prising, considering the potential difficulties presented by the
modest per-base accuracy of Oxford Nanopore reads in attaining
the low genome-wide error rates for single-nucleotide variant
(SNV) calling that will be required for most clinical applications
of genome sequencing using a single technology.

To evaluate the potential of nanopore sequencing for clinical
human genomics we have sequenced two human genomes across
multiple runs of the portable MinION device. We have rese-
quenced the genomic reference sample NA12878, which has been
extensively studied by multiple sequencing technologies, to
evaluate and calibrate variant-calling approaches at increasing
sequencing depth. We then sequenced DNA from an individual
with ataxia-pancytopenia syndrome accompanied by severe
immune dysregulation in order to fully resolve a question relating
to the phasing of two de novo protein-coding variants that is
relevant for a complete molecular genetic diagnosis.

Results
Whole-genome sequencing of a reference sample using
MinION. DNA from the reference cell line GM12878 (a lym-
phoblastoid cell line generated from a female CEPH/Utah indi-
vidual) obtained commercially (Coriell Institute, sample
NA12878) was prepared for sequencing using a PCR-based
library protocol that included size selection of fragments of
approximately 6 kb (Methods). Libraries were sequenced across
73 individual R9.4 flow cells on 8 MinION instruments, gen-
erating a total of 45,740,123 reads (Fig. 1a, Supplementary
Table 1), that were base-called using Albacore v2.0.2 and trimmed
using Porechop 0.2.2 (Methods). A total of 3,224,356 low-quality
reads were discarded by the base-caller (2.6% of total yield,
Supplementary Figure 1) and bases were trimmed (1.7% of total
yield). The mean read length of 6373 bp (Fig. 1b) was consistent
across flow cells and very close to expectation based on the
physical size selection of the sequencing library. The total
sequence yield was 273.4 Gb with a mean of 3.7 Gb per flow cell
(Fig. 1c). The recommended MinION run-time was 48 h; some
runs were terminated at 24 h for technical reasons including cases
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where relatively few pores were producing data and so starting a
new flow cell was expected to substantially accelerate data pro-
duction. Flow cells run for 48 h generated a median 5.0 Gb and
runs stopped after 24 h yielded a median 2.1 Gb. Of a total
42,924,782 high-quality reads, 42,631,376 (99.3%) were success-
fully aligned to the GRCh37 reference genome assembly and
37,859,481 (88.8%) mapped uniquely and in a single block. Base
calling took ~3100 CPU hours and mapping of the high-quality
reads took ~500 CPU hours on a cluster comprising Intel(R)
Xeon(R) CPU E5-2680 v3 2.50 GHz CPUs.

The aligned reads have a mean substitution rate of 12.7% (the
frequency at which an aligned base in a read is different from the
reference base), a mean deletion rate of 4.7% (the frequency at
which a base in the reference sequence is absent within a read
aligned to that sequence), and a mean insertion rate of 3.2%
(Fig. 1d). Error profiles between flow cells were similar, with two
outliers (Supplementary Figure 2). We also evaluated the impact
of different base-calling algorithms on read-level accuracy, and
found that Albacore v2.0.2 achieved the lowest unfiltered
substitution error rate and deletion error rate, while other
methods had lower insertion error rates (Supplementary Table 2,
Supplementary Figures 3–5).

The average per-base coverage depth (excluding deletions) was
81.7 (Fig. 1e), with 90.4% of the genome covered by at least 40
reads. Physical coverage (per-read, with deletions) was higher,
with an average depth of 88.3 and 91.7% of the genome covered
to at least 40×. Further, 99.9% of the genome was covered by at
least 1 read and 69.4% of the genome had a per-base coverage
between 40 and 100. A subset (9.6%) of the genome had reduced
coverage (<40×), which may reflect amplification bias in the PCR
step of the library preparation protocol (Fig. 1f).

Single-nucleotide variant discovery in NA12878. We evaluated
the performance of SNV calling in NA12878, using the multi-
platform Genomes in a Bottle (GIAB) variant calls as a gold
standard truth data set18. The relatively high per-base, per-read
error rate of ONT data yields one or more candidate variants at
most positions in the genome, overwhelming most variant callers
designed for sequencing technologies with lower error rates. We
used FreeBayes in a mode robust to this issue for rapid per-site
SNV calling (Methods)19. To generate an initial set of variants we
ran FreeBayes on the NA12878 chromosome 22 data, choosing
parameters that achieved the best F1 score, a measure of accuracy
that combines estimates of the sensitivity and precision of clas-
sification of a sample (Methods). The highest-accuracy variant
call set achieved an overall consensus accuracy across the whole
genome of 99.9%, in comparisons to the GIAB reference set of
variant calls, and we observed a false discovery rate (FDR) of
12.8% and a false-negative rate (FNR) of 14.4%, combining to
create an F1 score of 86.4% (Table 1). Using these learned para-
meters on the full-genome set we achieved an FDR of 10.9%, a
FNR of 12.5% and an F1 score of 88%. Variant calling on the full
genome took 83.4 CPU hours on Intel(R) Xeon(R) CPU E5-2680
v3 2.50 GHz CPUs.

To better understand potential sources of variant-calling errors,
we annotated variant call sites with a range of annotations with
respect to both the reference sequence and reads spanning the
site. Among others, these included proximity to a homopolymer
repeat, lower coverage, strand bias and presence of a large
number of short, in-read deletions (Fig. 2a). These annotations
indicate that the main drivers for both false positives (FP) and
false negatives are homopolymers and low coverage. In addition,
many false negatives arise from the use of a high-quality score
threshold (QUAL) to maintain an acceptable FDR.

A large fraction of false-positive genotype calls in the initial
variant set are heterozygous calls. A benefit of using ONT data is
that the long reads, spanning multiple heterozygous sites, provide
an opportunity to correct this problem. When reads are divided
into two sets representing parental haplotypes, true-positive
variant alleles are expected to be present consistently in one or the
other phased set, while false-positive variants are expected to
be uniformly distributed between sets. To cope with high-
coverage data, we developed our own single-sample, read-based,
reference panel-free phasing algorithm (Supplementary Note).
This method builds on the STITCH model for genotype
imputation20 and models an individual as having two haplotypes
(with no recombination), where the probability of a reference or
alternate base for a read drawn from a haplotype is governed by
per-haplotype, per-SNP emission probabilities, which we convert
into a per-variant phasing-quality metric (Supplementary Note).

We refined our variant calls using filters informed by our
investigation of annotations associated with incorrect variant
calls, as well as the phasing-quality metric. We found that phase-
and annotation-based filtering substantially improved upon the
original approach (Table 1, Supplementary Table 3, Supplemen-
tary Figure 6). The best results with strand and phasing filters
yielded an F1 score of 92.2% with FDR of 7.1% and FNR of 8.5%
(Table 1, Fig. 2b).

Further annotation of residual errors shows that, as before,
coverage remains a powerful predictor of error. When consider-
ing putative variant sites with greater than 60× coverage (85% of
the genome), we saw an improvement to an F1 score of 93.6%,
consisting of an FDR of 6.1% and an FNR of 6.6% (Fig. 2c),
implying that protocol improvements that reduce or eliminate
sources of coverage bias such as PCR have some role to play in
improving accuracy. Among residual errors, FPs are enriched in
homopolymers and regions of low read depth, and we also find
evidence for base-calling and reference-alignment bias (Supple-
mentary Figures 7–9). Remaining FPs without obvious annota-
tion often show evidence that they are impacted by one or more
of the confounding annotations, but are not filtered at the
parameter values used here, which attempt to balance sensitivity
and specificity. By contrast, false negatives reflect a wide variety of
erroneous filtering instances that span all classes of confounding
annotations, including homopolymers and low depth.

The observed FDR of 5.3% on the whole genome corresponds
to 140 thousand FP variant calls. While true-positive sites,
representing real genetic variation, are constrained in their

Table 1 SNV discovery and filtering

Filtering approach Chromosomes F1 score FDR FNR

QUAL+ contamination 22 86.4% 12.8% 14.4%
All 88.3% 10.9% 12.5%

Phasing+ heuristics 22 91.8% 7.9% 8.5%
All 93.4% 5.3% 7.8%

Filtering approaches are either pre-phasing, optimising over contamination parameters in FreeBayes and QUAL score, or post-phasing, optimising over use of phasing metrics given a fixed QUAL score,
strand bias, and contamination parameters. Shown are both results for chromosome 22 on which parameter cutoffs were derived, as well as for the full set of autosomes
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genomic location through evolution, FP calls occur more or less
independently of genic context. As such, FP variant calls may be
disproportionately enriched in disruptive variants, in particular
putative loss-of-function (LoF) alleles, which are often the most
clinically interesting variants. This problem of false enrichment
should be further exacerbated by genic tolerance to LoF
mutations21. To investigate the present impact of FDR on
putative pathogenic FP rates, we annotated variants as LoF based
on either introducing a stop-gain mutation or affecting splice site
(Methods). We observed that among putative pathogenic
variants, FPs are enriched (69/45219, 0.15%) versus true positives
(173/788782, 0.02%) (Supplementary Table 4, Supplementary
Figure 10). Similarly, we observed that FPs are proportionally
enriched in highly constrained genes (pLI > 0.90, 17 FP vs 20 TP)
versus non-constrained genes (pLI <= 0.10, 46 FP vs 122 TP).
Nonetheless, and reassuringly, though enriched, the absolute
number of FPs (20) is similar to true positives (17) among
putative high impact LoF variants at the current FDR.

To investigate whether alternative base-callers could yield more
accurate SNV calls, we compared SNVs called using reads base-
called using Albacore 2.0.2 against three other base-callers
(Methods). Interestingly, we observed slightly more accurate
results on unfiltered variant calls using the now-discontinued
base-caller Metrichor (Supplementary Figures 11-13, Supplemen-
tary Table 5), while Albacore again outperformed Metrichor and
the other base-callers when phasing-derived filtering was applied
(Supplementary Table 6, Supplementary Figure 14). This suggests
that base-callers are affected by kmer biases to different degrees,
complicating the relationship between per-read error rates and
variant-calling performance.

To further clarify the impact of systematic biases in nanopore
data, we simulated NA12878 datasets under an idealized model of
random per-read base-substitution errors and no genome
amplification bias, with read lengths and ratios of substitution/
deletion/insertion error rates informed by observed data from a
single flow cell. We evaluated variant-calling performance across
error rates (Supplementary Figure 15) and sequencing depths
(Supplementary Figure 16). At similar depth and error rate to the
Albacore v2.0.2 results, simulations indicate an achievable F1
score of 99% with an FDR and an FNR of 1% (Supplementary
Figure 17). The difference of 10 percentage points between
simulated data and observed results in the actual data again
indicate that systematic errors dominate. The simulations show
that under idealized conditions, but with the current available
sequence analysis tools, both FNR and FDR decrease as coverage
increases but eventually reach a plateau with the height of
the plateau determined by the error profile (Supplementary
Figure 17). We traced this failure to converge to perfect FNR/FDR
under the idealized error model to alignment artefacts at
homopolymers driven by the high deletion error rate in ONT.
For instance, reads tend to have shorter homopolymer runs than
the reference, so that deletion errors in homopolymers accumu-
late resulting in deletion variant call errors (Supplementary
Figures 18-19), which contrasts with simulated datasets domi-
nated by insertions (of any base), in which individual-read errors
are not compounded by alignment artefacts (Supplementary
Figure 20). These simulations indicate that the effect of increased
sequencing coverage in reducing homopolymer-associated FDRs
in nanopore sequencing is currently limited by high genome-
wide, per-read deletion rates.
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(all SNPs)
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Fig. 2 Investigation of residual errors in NA12878 data. Annotation of called or truth SNPs using genomic features or sequencing context in NA12878.
Results across columns give the different sets of SNPs, either pre or post-phasing, and for post-phasing, optionally all SNPs or those at high local depth
( >= 60× coverage). Results across rows give SNP classes of true positives, false positives and false negatives. Bars are broken horizontally to reflect
multiple possible annotations, while vertical splits represent SNPs with multiple annotations. Annotations are: homopolymer, SNP intersects a
homopolymer of length at least 5 bases; Coverage <40×, per-base coverage of less than 40×; 40%<Dels, at least 40% of reads have deletions at that SNP;
Bad phasing, the quality control phasing metric for that SNP was below threshold; QUAL < threshold, the quality score for the SNP was below threshold;
Missing from VCF, there was insufficient evidence from the variant caller to put this variant in the output VCF; Incorrect genotype, disagreement between
truth and called genotype; Strand bias, Freebayes metrics SRP or SAP < 30; More than three, more than three of the above annotations; Normal, no
annotations
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Phasing in NA12878. Fundamentally, genotypes are inherited
through maternal or paternal haplotypes, yet most genotyping
methods, including most methods employed with WGS, generate
unphased genotype calls. Phased genotypes have value in their
own right, enabling many genetic analyses in addition to the
improvements in variant-calling accuracy they facilitate. Clinical
uses include resolving the co-segregation of multiple hetero-
zygous LoF variants and identifying parent of origin for de novo
mutations.

We phased sample genotypes from all base-callers using both
WhatsHap22 and the novel phasing algorithm described in this
paper. We judged the accuracy of phasing by considering the
switch error rate, namely the percentage of connections between
heterozygous sites that contain a phase-switch error relative to the
truth data set of NA12878 that was externally phased using
parental samples NA12891 and NA12892. Considering all SNVs
on chromosome 22, we observe a switch error rate of 1.91% for
WhatsHap and 1.84% for our method. Restricting the analysis to
sets of adjacent heterozygous SNPs that are spanned by
overlapping reads, the switch error rate reduces to 0.90% for
WhatsHap and 0.80% using our method (Supplementary Table 6).
This phasing accuracy is similar to that obtainable for phasing
common variants from SNP genotyping array data using very
large reference panels23.

Large variant discovery in NA12878. Compared to SNVs and
small indels, large variants, arbitrarily defined here as those
affecting > 100 nucleotides, are relatively rare yet contribute dis-
proportionately to rare disease phenotypes, e.g. ref. 24. The impact
of large variants on rare disease is likely even greater than cur-
rently estimated, because of the technical difficulty of detecting
these mutations with existing assays24. We used Sniffles25, a

method that exploits the signature of large variants in aligned
ONT reads. We applied this method to chromosome 22, and
compared the resulting calls against a truth set of large variants
derived from a consensus of several sequencing technologies26. Of
the 82 variants we discovered, 22 were also found in the truth set.
We adjudicated the remaining 60 calls by visual inspection of
ONT, Illumina and PacBio read data. We find that 21 are either
called by PacBio or are strongly supported by PacBio reads. A
further 31 show clear evidence in ONT reads but weak or no
support in PacBio reads. These ONT-specific calls may represent
true deletions missed by other technologies, artefacts resulting
from PCR amplification, or subclonal deletions that have occur-
red during the cell culture of the NA12878 cell line. Indeed, 6 of
the ONT-specific large deletion calls appear to be supported in
only a fraction of the reads (Supplementary Figures 21 and 22).
The remaining 8 calls show no clear evidence in the data and
appear to be FPs generated by the algorithmic approach.

We next sought to assess sensitivity. To reduce the impact of
false negatives in the truth set, we focused on deletions only,
which are the most abundant and thus clinically relevant subclass
of large variants, and are relatively easy to call. Of the 35 deletions
over 100 bp in the truth set, we call 21. Of the remaining variants,
11 show evidence of a deletion but the method fails to call it
(Supplementary Figure 23), while the remaining three calls show
no evidence in ONT data (Supplementary Figure 24). We
conclude that the current ONT platform allows the detection of
large deletions with a sensitivity between 60% and 91% (21/35
and 32/35).

Whole-genome sequencing of a clinical sample using MinION.
Given the ability to successfully phase heterozygous variant calls
with long reads, we sought to use whole-genome nanopore
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member of the trio. Unphased genotypes are represented with triangles in boxes where blue= alt and orange= ref. Phased proband genotypes (P N) are
represented by two rows of vertical bars, where each row is an arbitrarily labelled haplotype, and each bar is split by colour according to the probability of
that haplotype having reference or alternate base. Middle of figure shows two rows with the reads for haplotype 1 or haplotype 2, where for each read,
bases are rectangles, and read span is given by a horizontal line. Gaps represent either a gap (deletion), or a base that corresponds to neither the reference
nor the alternate allele. Bottom shows physical position, with sites of interest in red. Note that some of the phase set containing the sites of interest
extends another 150 kb distally but is not shown in the interests of clarity. Based on GRCh37 and NM_152703.3, 92761932 T > C corresponds to c.3353 A
> G whilst 92764209 C > T is corresponds to c.1076 G > A
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sequencing to resolve a question of clinical interest in the genome
of an individual with an undefined immunodysregulatory dis-
order. In brief, the female patient had initially presented in
infancy with recurrent infections, panhypogammaglobulinaemia,
thrombocytopaenia, and mild anaemia and had developed
chronic inflammatory conditions during childhood and pro-
gressive neurological symptoms in early adulthood [Supplemen-
tary Material for more detail].

Whole-genome sequencing of the patient and her parents using
Illumina 126-base, paired-end reads was used first to exclude
variants in several genes known to cause antibody deficiency or
cerebellar atrophy. Subsequent analysis revealed 84 high-
confidence de novo SNVs, a figure towards the upper end of
the expected range, in line with the parental ages at conception
(mother was 38 years old and father 39 years old) [see Fig. 1 in
ref. 27]. Notably, of the 3 of 84 de novo variants predicted to alter
protein sequences, two lay in the protein-coding region of a single
gene, SAMD9L. Rare inherited heterozygous variation in this gene
has recently been implicated in autosomal dominant Ataxia-
pancytopenia syndrome (OMIM: #159550)28 and there is
emerging evidence that postnatal reversions in haematopoietic
tissues may be associated with milder disease manifestations29.
Although the two variants we identified (c.1076 G > A and c.3353
A > G; p.R359Q and p.Y1118C, NM_152703.3) lie in the same
exon, they are 2277 bp apart and so could not be directly phased
using the Illumina paired reads. A paucity of nearby inherited
heterozygous variants also prevented us localizing the mutations
to parental haplotypes. Resolving these questions is important in
interpreting the pathogenic potential of each allele, and the ability
to resolve questions of this type is of direct relevance to
reproductive decision-making in similar situations.

Sequencing libraries were constructed from whole-blood
genomic DNA and sequenced across 34 R9.4 MinION flow cells.
Base-calling using Albacore v2.0.2 generated a total of 122 Gb of
sequence in 16,692,656 high-quality reads (16,692,656 reads
before filtering and trimming), of which 16,684,879 (99.1%)
fragments aligned to the reference genome. Results at the flow cell
level were similar to NA12878 in PASS/FAIL fraction (Supple-
mentary Figure 25), yield (Supplementary Figure 26), average
read length (Supplementary Figure 27), fraction of mapped reads
(Supplementary Figure 28), substitution error rate among pass
reads (Supplementary Figure 29), and the genome-wide distribu-
tion of coverage (Supplementary Figure 30). Variants were called
using FreeBayes with contamination parameters 0.7/0.1, and
phased and filtered in the same way as the best-performing
Albacore v2.0.2 SNP callset for NA12878.

Our variant-calling approach identified both the c.1076 G > A
and c.3353 A > G variants with the expected heterozygous
genotypes. We then phased other nearby variants identified in
short-read data using the ONT reads to confirm inheritance and
origin of the de novo variants (Fig. 3). Both de novo sites were
phased into a phase set 199 kb long. Within this block, 33 reads
(size range 6.1–18.9 kb) spanned both de novo variant sites, of
which 26 had a base at each of the two de novo sites that matched
either the expected reference or the alternate allele. Eleven of
these reads contained both de novo alleles and eight contained
both reference alleles, indicating that the mutated alleles are in cis.
For comparison, we observed no read in the NA12878 data that
contained both de novo variant alleles out of 89 reads spanning
both sites. Seven observed reads from the patient were
inconsistent with the in cis pattern; four with the apparent de
novo allele at the c.1076 G > A site and the reference allele at the
c.3353 A > G site and three vice versa, however two of these reads
had a higher-than-average substitution rate (24% and 25%,
Supplementary Figure 31). The haplotypic conformation of de
novo alleles from the ONT reads was confirmed using a series of

allele-specific PCR assays (Supplementary Figure 32). Flanking
sites in the phase block indicated that the de novo variants arose
on the paternally inherited haplotype (Fig. 3).

Discussion
In this work, we demonstrate the sequencing of the entire human
genome on the handheld MinION nanopore sequencing device.
Sequencing the reference sample NA12878 to high coverage
across 73 flow cells enabled the evaluation of variant-calling
approaches in comparison to the GIAB reference data set. We
used a PCR-based protocol partly out of necessity, since native
library preparation protocols could not produce the amount of
library we needed from the available quantity of the clinical-
sample DNA, but also, and critically, because relatively small
amounts and shorter fragments of DNA reflect the reality of
current DNA sampling pathways. Thus our evaluation in the
reference sample reflects a realistic assessment of nanopore
sequencing of existing clinical DNA samples. Despite per-read
error substitution rates of about 13% and deletion rates of about
5%, the consensus accuracy of the 82 × genome was above 99.9%.
However, there remain substantial hurdles to accurately identi-
fying and genotyping sites in the genome that harbour non-
reference alleles. Many key components for processing ONT
sequencing data are under active methodological development,
including base-calling from raw signal, long-read mapping and
alignment, variant calling and variant filtering. We evaluated four
different base-callers in a straightforward approach to variant
calling that only evaluates base calls at each site of interest. While
similar approaches were originally used for short-read variant
callers, e.g., GATK UnifiedGenotyper30 and Samtools31,
improvements in accuracy have since come from the use of local
re-alignment or assembly methods such as FreeBayes19, Platy-
pus32, and GATK HaplotypeCaller30. These refined approaches
are currently computationally prohibitive for nanopore sequen-
cing data’s per-read error rates and read lengths.

Our analyses identified a series of sequence contexts and
coverage parameters in which both false-positive and false-
negative calls were made, and used this information to refine our
variant call sets. Many false-negative and false-positive variant
calls overlapped regions with a large number of within-read
deletions, reflecting a mix of homopolymers and local mapping
problems. Interestingly, we note a poor relationship between per-
read accuracy and SNP-calling accuracy, illustrating the impor-
tance of developing new methods with primary endpoints, such
as variant calling or assembly, rather than surrogate endpoints,
such as read-level error rates. Indeed, for methods such as
Metrichor, which produced the most accurate variant call set,
residual SNP-calling errors are dominated by homopolymers,
whereas by contrast Scrappie, a method that attempts to model
homopolymers explicitly, has fewer homopolymer SNP-calling
errors among a larger number of errors overall. Further
improvements may come from bringing together the best aspects
of multiple approaches. While we focused on reducing SNV error
rate, the effect of deletions in reads suggests that without
improvements in raw signal or in base calling, even greater
sequencing depths will be required to reliably genotype short
deletions.

We also exploit the length of nanopore reads to reduce the rate
of false-positive heterozygous variant calls. We developed a novel
phasing algorithm to distinguish between real variants that phase
consistently with their neighbours, and false variants that segre-
gate randomly. This method, which becomes increasingly pow-
erful as read length increases, greatly decreased FPs with only a
modest increase in false negatives, the latter of which may be
mitigated through approaches such as iteratively removing the

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09637-5

6 NATURE COMMUNICATIONS |         (2019) 10:1869 | https://doi.org/10.1038/s41467-019-09637-5 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


most poorly phasing SNPs to reduce the influence of multiple
false-positive SNPs on phasing of true positives, and pass through
of heterozygous SNPs spanned by reads that do not span addi-
tional heterozygous variants. Crucially, this method has linear
computational scaling in read depth, allowing the full comple-
ment of reads to efficiently inform read partitioning and geno-
typing, in contrast to other approaches under development33.
Recent work by Jain et al has demonstrated that with appropriate
DNA extraction and library preparation protocols, read lengths
from human genomes in excess of 100 kb are feasible16. Such long
reads will undoubtedly further increase the utility of phasing-
informed variant calling and filtering through more confident
read assignment to haplotypes, and increasing the per-
heterozygous variant depth of read coverage to adjacent hetero-
zygous variants.

We sought to directly explore the clinical utility of nanopore
sequencing technology for an individual with an undefined
immunodysregulatory disorder. In humans and other eukaryotes,
multi-nucleotide variants (MNVs) such as the two missense
mutations, identified 2277 bp apart in SAMD9L, make up around
~3% of all de novo SNVs34,35. The variant-calling strategy opti-
mised through our analysis of NA12878 was able to identify and
correctly genotype the two de novo SAMD9L variants, and long-
read phasing unambiguously confirmed that the novel alleles lay
in cis on the paternally inherited haplotype, a feat unachievable
with short reads. The functional impact of the p.R359Q and
p.Y1118C variants remains an open question, although several
lines of evidence suggest that p.Y1118C is the more likely disease-
causing allele: p.Y1118C is a novel variant whereas p.R359Q is
present in gnomAD (allele frequency of 2/245,750), p.Y1118C
scores higher with in silico prediction tools such as CADD (23.1
vs 10.9) and SIFT (damaging vs tolerated), and published disease-
causing mutations in SAMD9L are almost invariably in the
C-terminal half of the protein28,29,36–38. Apart from features
specific to this case, the ability to phase de novo alleles in a single
step has substantial potential utility, since an estimated 42% of
developmental disorders are caused by de novo alleles39 whose
resolution onto parental haplotypes can inform estimates of
recurrence risk27,40.

This study represents the first detailed evaluation of the
accuracy of ONT sequencing for variant discovery and geno-
typing on human samples. While promising, the current com-
putational requirements would be overwhelming at higher
throughputs, and work is required to implement more efficient
algorithms for base calling, mapping and variant calling, or to
establish implementations on dedicated hardware. Sequencing of
these two human genomes across a combined total of 107
MinION flow cells was a substantial undertaking that entailed
logistical, technical, and computational challenges. The recent
commercial introduction of the PromethION, a scaled-up
nanopore sequencer with on-board data processing, promises to
solve many of these challenges for human genome-scale data.
Finally, while there remain limitations to the overall accuracy of
variant calling, our work highlights several error contexts that
would benefit from improvements in methods for base calling,
read mapping and consensus variant calling and illustrates a path
towards the use of ONT for clinical purposes.

Methods
Samples and library preparation. The genomic DNA sample NA12878 from the
GM12878 lymphoblastoid cell line genomic DNA used in this study was purchased
from the Coriell Institute. The study complied with all relevant regulations for
work with human subjects. The patient and her biological parents provided
informed consent and were recruited to our study Molecular Genetic Analysis
and Clinical Studies of Individuals and Families at Risk of Genetic Disease
(West Midlands REC, 13/WM/0466). Patient DNA was extracted from a
whole-blood sample.

ONT libraries were prepared as follows: For each of several batches of libraries,
2–4 μg in 150 μl of genomic DNA per library was sheared in a Covaris g-TUBE by
spinning twice for 2 min at 7000 rpm in an Eppendorf MiniSpin centrifuge. The
sample was split into three 50 μl aliquots, each mixed with 6.5 μl of NEBNext FFPE
DNA Repair Buffer, 2 μl of NEBNext FFPE DNA Repair Mix (New England Biolab,
M6630), and 3.5 μl of nuclease-free water (NFW) and incubated at 20 °C for 15 min
for DNA repair, re-pooled and cleaned up using a 0.8 × volume of AMPure XP
beads (Beckman Coulter) according to the manufacturer’s instructions, with final
elution in 30 μl of EB (10 mM Tris pH 8.0). The size of the sheared DNA was
assessed using a TapeStation Genomic DNA system (Agilent).

To remove small, unwanted fragments of DNA, the sample was size-selected
using a BluePippin™ gel cassette (BLF7510, Sage Science) using the 0.75% DF
Marker S1 high-pass 6–10 kb vs3 cassette definition, with Range mode and BP start
set at 6000 bp. The DNA recovered from the elution well (~40 μl) was brought
to 50 μl and end-repaired by the addition of 7 μl NEBNext Ultra II End Prep
Reaction Buffer and 3 μl NEBNext Ultra II End Prep Enzyme Mix (New
England Biolab, E7546) with incubation for 30 min at 20 °C followed by 30 min at
65 °C. The sample was cleaned up with 1 × volume AMPure XP beads and eluted in
30 μl of EB.

PCR adapters (20 μl) from Oxford Nanopore Technology (SQK-LSK108
Ligation Sequencing Kit 1D) were ligated to the end-repaired DNA with 50 μl of
NEB Blunt/TA Ligase Master Mix (M0367) at room temperature for 10 min,
followed by clean-up with 1 × volume AMPure XP beads and elution in 48 μl of EB.

The DNA was amplified by adding 2 μl of the primer mix PRM (SQK-LSK108,
ONT) and 50 μl of KAPA HiFi HotStart ReadyMix (Kapa Biosystem) and thermal
cycling as follows: 95 °C 3mins; 8 × (98 °C 20 s, 64 °C 15 s, 72 °C 10 min); 72 °C 10
min.

Amplified samples were cleaned up with 0.4 × volume AMPure XP, then eluted
in 40 μl of EB and quantified using the Qubit dsHS DNA assay (Thermo Fisher
Scientific). A mass of 1–1.5 μg DNA in 50 μl was end-repaired by adding 7 μl
NEBNext Ultra II End Prep Reaction Buffer and 3 μl NEBNext Ultra II End Prep
Enzyme Mix), incubated for 30 min at 20 °C followed by 30 min at 65 °C, then
cleaned up with 1 × AMPure XP beads and eluted in 30 μl of EB.

The end-repaired DNA was ligated with 20 μl Adapter Mix (SQK-LSK108,
ONT) using 50 μl NEB Blunt/TA Master Mix for 10 min at room temperature. The
adapter-ligated DNA was cleaned up by adding a 0.4 × volume of AMPure XP
beads and incubating at room temperature for 5 min. The beads were pelleted on a
magnetic rack and the pellet was washed twice by resuspending in 140 μl ABB
(SQK-LSK108, ONT) then, after removal of the final wash, resuspended in 25 μl
ELB (SQK-LSK108, ONT) and left at room temperature for 10 min. The beads
were pelleted again and the supernatant containing the pre-sequencing mix (PSM)
was recovered.

The PSM was quantified by Qubit. Each R9.4 flow cell (FLO-MIN106, ONT)
was primed according to the manufacturer’s guidelines before loading with a mix
containing 12 μl of PSM, 37.5 μl RBF (SQK-LSK108, ONT), and 25.5 μl LLB (SQK-
LSK108, ONT). The flow cell was mounted on a MinION Mk 1B device (ONT) for
sequencing with the MinKNOW versions 1.1.15–1.1.21
NC_48Hr_Sequencing_Run_FLO-MIN106_SQK-LSK108 script.

Base calling. Reads were base-called in batches using Albacore v2.0.2 using the
R9.4 450 bps linear config. Reads from each flow cell were merged and mapped
against the human genome reference assembly (1000 Genomes GRCh37 including
decoy sequence and phage lambda) using bwa mem -x ont2d version 0.7.12-
r103941.

For comparisons of different base-calling strategies, we used an earlier set of
reads which were all base-called with Nanonet v2.0.0 and mapped to the GRCh37
genome. From this data set, we selected reads mapping to chromosome 22 and
extracted the corresponding MinION reads from the original Fast5 data set. The
Fast5 was then re-called using three alternatives to Nanonet v2.0.0: Albacore v2.0.2,
Metrichor v2.43.1 and Scrappie v0.2.2. Albacore v2.0.2 was run using the R9.4 450
bps linear config; Scrappie v0.2.2 was run in default configuration; and Metrichor
was run using the 1D workflow. After base calling, the reads in each data set were
re-mapped against the human genome reference. For each of these 4 base-called
datasets, we also evaluated 3 post-alignment filters for removing poor quality reads.
The filters were unfiltered, fixed error (removing all reads with an error rate of
20%) and fixed size (removing 20% of reads with the highest error rate).

Genomic coverage. Alignment coverage was computed using samtools mpileup31

including all reads (options -Q 0 -B -A). Coverage was only computed on canonical
chromosomes (1–22, X, MT) excluding regions with assembly gaps of >100 bp. The
effective genome size was 2,835,690,258 bases.

Read error rate. We considered the following definitions of alignment error
between a read and the reference genome. The substitution error rate esub indicates
the frequency at which a reference base has been aligned to a read base and
substituted by a non-reference base and is the ratio of mismatched base pairs and
the total number of aligned bases. The percent identity of an alignment is given as
pid= 100 × (1 − esub). The deletion error rate edel indicates the frequency of
unaligned reference bases within an alignment of the reference and a read and is
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computed as the number of bases in the reference sequence that correspond to gaps
in the read sequence divided by the length of the aligned reference sequence. The
insertion error rate eins indicates the frequency of unaligned read bases within an
alignment and is computed as the number of bases in the read sequence that
correspond to gaps in the reference sequence divided by the aligned read sequence.

Variant calling. To improve run-time, alignments of reads to the reference genome
were split into shorter fragments of 100 aligned read base pairs, and the resulting
BAM file was used for variant calling. Freebayes version v1.0.2-16-gd466dde19 was
run using options --no-indels --use-best-n-alleles 4 -C 5 --no-mnps --no-complex
--haplotype-length 0 --pooled-continuous, where: -C 5 means a site to contain least
5 variant nucleotides before being considered a putative variant; haplotype con-
struction and local realignment have been turned off (--haplotype-length 0); and
variants are called using a simple frequency-based model (--pooled-continuous).
To account for the high error rate we used the option --contamination-estimates to
modify the expected reference and variant allele frequencies for heterozygous and
homozygous variants. We generated variant calls by varying the first contamination
parameter of p(read= R|genotype=AR) over 0.6, 0.7, and 0.8, and the second
contamination parameter of p(read=A|genotype=AA) over 0.1, 0.2, 0.3, 0.4, 0.5
0.6, respectively.

Simulations. To simulate reads, we used PBSIM42, Version 1.0.3 (5ae589d1)),
which samples read lengths and base quality scores from user-provided data, and
inserts base substitutions according to the base quality scores with a ratio of
substitutions/insertions/deletions provided by the user. We ran PBSIM using
options --accuracy-min= 0.40 --accuracy-sd= 0.20 and set difference-ratio to
60:35:5 for the high insertion error rate runs and 30:30:40 for the high deletion
error rate runs. Depth-per-haplotype was varied from 5 to 50 in increments of 5 for
overall depth between 10- and 100-fold coverage.

For input, we used mapped PASS reads from chromosome 22 for one flow cell
(WTON000155), and simulated results for the two haplotypes of
NA12878 separately using phased variants from the 1000 Genomes Project (Phase
3) before merging the results. To vary the error rate, base quality scores were
uniformly incremented or decremented in the input read data set. For variant
calling with simulated data, we used contamination parameters 07/05 throughout.

Variant-calling accuracy. To evaluate the performance of variant calling, we follow
the protocol set out in the precisionFDA challenge (see https://precision.fda.gov/
challenges/truth). We used the following method from the tool RTG vcfeval version
3.5.143 against NA12878 NIST/GIAB version 2.1944 reference data including only
the SNV data and excluding all indel variants. Predicted variants are true positive
(TP), if both location and genotype match a reference position. A variant location
that is absent from the reference set is called a FP and a position that is a variant in
the reference but absent from the predicted set is a false negative (FN). A predicted
variant that has the same coordinate as a reference variant but different genotype is
recorded both as a false positive and a false negative. The false discovery rate is
defined as FDR= FP / (TP+ FP) while the FNR is defined as FNR= FN / (TP+
FN). The F1 measure is the harmonic mean of precision (= 1−FDR) and sensitivity
(recall) (= 1−FNR), i.e. F1= 2/(1/(1−FDR)+ 1/(1−FNR)).

Variant calls from PacBio data and BAM files originate from GiaB/NIST. The
BAM files were aligned by the authors using BLASR (v1.3.2). We used variant calls
produced by the svclassify tool26 to define the set of known large variants in
NA12878. Variants annotated as splice_acceptor_variant, splice_donor_variant, or
stop_gained by the Variant-Effect-Predictor tool (version 94.5)45 were classified as
putative LoF alleles and assigned the pLI score of overlapping transcripts (Exac
version 0.3.1)21.

Phasing. Here we briefly describe the SEW model underlying the phasing proce-
dure by describing how we would calculate a complete data probability that
includes the observed data (reads), as well as hidden parameters of which haplotype
each read comes from and each underlying base given knowledge of the underlying
parameters of the model. A full description including additional detail and para-
meter estimation using expectation and maximization steps, as well as additional
heuristics, is given in the Supplementary Note.

Consider a read indexed by r (Rr) that comes from haplotype Hr in {1,2} that
intersects Jr SNPs with index j at positions ur,j, has underlying (unobserved) base gr,j,
observed sequenced base sr,j and base quality br,j (where Rr= {(ur,j,sr,j,br,j)|j= 1,…,Jr}).
We assume that P(Hr)= 0.5 (i.e. without further information, each read is equally
likely to come from the maternal and paternal haplotypes), as well as calculate

P Sr;jjGr;j

� �
¼ ψg

ur;j
ð1Þ

directly from the phred-scaled base qualities and observed base (defined in the
Supplementary Note), and further define

PðGr;j ¼ gjHr ; θÞ ¼ θgur;j ð2Þ

θgur;j 2 ½0; 1�, as the probability a read has base g given it comes from haplotype Hr.

Then the probability of observing Sr,j is

PðSr;jjHr ; θÞ ¼
X1
g¼0

P Sr;jjGr;j ¼ g;Hr ; θ
� �

P Gr;j ¼ gjHr ; θ
� �

¼
X1
g¼0

ψg
ur;j
θgur;j ð3Þ

Let O= {R}, H= {Hr} and G= {Gr,j}. Then we can calculate the full data probability
by integrating over the reads and the SNPs each read intersects to yield

P O;H;Gjθð Þ ¼
YjOj

r¼1

YJr
j¼1

P Sr;jjGr;j

� �
P Gr;jjHr ; θ
� �

P Hrð Þ ¼
YjOj

r¼1

YJr
j¼1

0:5ψg
ur;j
θgur;j ð4Þ

For real variants, the expected value of θ is governed by the average per-base error
and the underlying genotype at that SNP in the haplotype, while for false variants, no
such relationship to phase holds. We can therefore use θ, or derived metrics, for
quality control.

For quality control purposes, from the phasing, we define quality control metric
phase entropy (PE) for SNP t as -log10(θt,1 θt,2 (1-θt,1)(1-θt,2)). Similarly, we define
phasing-derived strand metrics by first assigning each read to the haplotype for
which it has the highest posterior probability of having come from given the data,
and then calculate the per-haplotype strand bias (SB1 or SB2) as the sum of reads
assigned to that haplotype coming from the forward strand.

We used SEW version 1.0.0 and whatshap version 0.13+ 2.gf854c0b.dirty.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Sequence data that support the findings of this study have been deposited in ENA
(NA12878) with accession PRJEB30620 and in EGA (clinical sample) with the accession
EGAS00001003469. All other relevant data are available upon request.

Code availability
The code developed for phasing of long reads is available in the SEW software available at
https://github.com/Genomicsplc/SEW
The code used to analyse the data in the current study are available on request from the
authors.
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