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Complex formation of APP with GABAB receptors
links axonal trafficking to amyloidogenic processing
Margarita C. Dinamarca1, Adi Raveh1, Andy Schneider2, Thorsten Fritzius1, Simon Früh 1, Pascal D. Rem1,

Michal Stawarski1, Txomin Lalanne1, Rostislav Turecek1,5, Myeongjeong Choo1, Valérie Besseyrias1,

Wolfgang Bildl2, Detlef Bentrop2, Matthias Staufenbiel3, Martin Gassmann 1, Bernd Fakler2,4,

Jochen Schwenk 2,4 & Bernhard Bettler1

GABAB receptors (GBRs) are key regulators of synaptic release but little is known about

trafficking mechanisms that control their presynaptic abundance. We now show that

sequence-related epitopes in APP, AJAP-1 and PIANP bind with nanomolar affinities to the N-

terminal sushi-domain of presynaptic GBRs. Of the three interacting proteins, selectively the

genetic loss of APP impaired GBR-mediated presynaptic inhibition and axonal GBR expres-

sion. Proteomic and functional analyses revealed that APP associates with JIP and calsyntenin

proteins that link the APP/GBR complex in cargo vesicles to the axonal trafficking motor.

Complex formation with GBRs stabilizes APP at the cell surface and reduces proteolysis of

APP to Aβ, a component of senile plaques in Alzheimer’s disease patients. Thus, APP/GBR

complex formation links presynaptic GBR trafficking to Aβ formation. Our findings support

that dysfunctional axonal trafficking and reduced GBR expression in Alzheimer’s disease

increases Aβ formation.
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GABAB receptors (GBRs) are key regulators of synaptic
transmission in the brain1,2. Presynaptic GBRs inhibit the
release of a variety of neurotransmitters while post-

synaptic GBRs generate inhibitory K+ currents that hyperpolarize
the membrane and inhibit neuronal activity. There is evidence for
a downregulation of presynaptic GBRs in response to neuronal
activity3–5 and in disease, including Alzheimer’s disease (AD)6,7,
Fragile-X syndrome8, epilepsy9, and Parkinson disease10. Despite
their importance for proper brain functioning the trafficking
molecules controlling presynaptic GBR abundance are still
unknown. Heterodimeric GB1a/2 and GB1b/2 receptors accu-
mulate at excitatory terminals and in the somatodendritic com-
partment, respectively1,11–14. The GBR subunit GB1a contains
two N-terminal sushi domains (SDs) that, when deleted, impair
axonal localization and surface stability of the receptor. GB1a
knock-out (GB1a−/−) mice therefore exhibit a lack of axonal
GBRs and a deficit in GBR-mediated inhibition of glutamate
release1,12. Native GB1a/2 receptors co-purify with kinesin-1
adapters of the c-Jun N-terminal kinase-interacting protein (JIP)
and calsyntenin (CSTN) protein families15, in agreement with
kinesin-1 motors mediating long-range vesicular transport of
GB1a/2 receptors in axons16. As the SDs of GB1a face the luminal
side of cargo vesicles, an as-yet unidentified transmembrane
protein must link the SDs to cytoplasmic kinesin-1 motors.
Proteomic analysis revealed several transmembrane proteins that
selectively co-purify with GB1a/2 receptors and potentially link
SDs to kinesin-1 motors, including the β-amyloid precursor
protein (APP), the adherence-junction associated protein 1
(AJAP-1) and the PILRα-associated neural protein (PIANP)15.
APP is the source of β-amyloid (Aβ) peptides, a hallmark of
Alzheimer’s disease (AD)17–19. AJAP-1 interacts with the E-
cadherin-catenin complex at adherens junctions, which mediate
adhesion between pre-and postsynaptic membranes20. PIANP
shares sequence-similarity with AJAP-1, undergoes polarized
sorting in epithelial cells and attenuates E-cadherin cleavage by γ-
secretase21.

In the present study, we analyzed the interaction of APP,
AJAP-1, and PIANP with GB1a and addressed the role of these
proteins in presynaptic GBR transport and expression. Proteomic
approaches indicate that APP, AJAP-1, and PIANP participate in
distinct GBR complexes. NMR studies identify sequence-related
epitopes in APP, AJAP-1, and PIANP that bind to the N-terminal
SD (SD1) of GB1a, with a rank order of affinities AJAP-1 >
PIANP >> APP. Selectively APP links GB1a/2 receptors to vesi-
cular trafficking and, when deleted, induces a significant deficit in
GBR-mediated inhibition of glutamate release. Intriguingly, APP/
GB1a complex formation not only mediates presynaptic GB1a/2
receptor trafficking but also limits the availability of APP for
endosomal processing to Aβ. The association of presynaptic GBR
expression with APP processing can explain pathological features
observed in AD and suggests APP/GB1a complex stabilization as
a promising therapeutic strategy.

Results
APP, AJAP-1, and PIANP assemble into distinct GBR com-
plexes. To investigate the interdependence of protein constituents
in GBR complexes we analyzed the composition of affinity-
purified GBRs from GB1a−/−, APP−/−, AJAP-1−/−, PIANP−/−,
and APP/AJAP-1−/− double knock-out brains using quantitative
mass spectrometry15 (Fig. 1a, Source Data). Lack of GB1a largely
prevented assembly of APP, APLP-2, AJAP-1, PIANP, ITM2B/C,
CSTN-3, and Synaptotagmin-11 (Syt-11) into GBR complexes,
indicating that these proteins directly or indirectly interact with
presynaptic GBRs (Fig. 1a). Analysis of protein levels in APP−/−,
AJAP-1−/−, PIANP−/−, and APP/AJAP-1−/− mice showed that

APP, AJAP-1, and PIANP form independent GBR complexes
(Fig. 1a). GBRs of APP−/− brains lacked APP, APLP-2, ITM2B/C,
CSTN-3, and Syt-11. In contrast, GBRs of AJAP-1−/− and PIANP
−/− brains selectively lacked the deleted protein. Interestingly,
deletion of APP or AJAP-1 increased the amount of PIANP in
GBR complexes, likely because of the increased availability of SDs
for binding (Fig. 1a). GBRs in APP/AJAP-1−/− mice exhibited
roughly additive changes in protein constituents when compared
to individual knock-out mice, corroborating that APP and AJAP-
1 assemble into distinct GBR complexes (Fig. 1a). Whole brain
membranes of APP−/− mice showed an increased abundance of
PIANP after genetic ablation of APP (Fig. 1b), suggesting that
lack of APP frees SDs that bind and stabilize PIANP. Together,
these results indicate that APP, AJAP-1, and PIANP form sepa-
rate complexes with GB1a. Only the APP/GB1 complex binds
CSTN-3, a protein implicated in vesicular trafficking22 and
synapse formation23 that provides a potential link to axonal
kinesin-1 motors.

APP interacts with CSTN kinesin-1 adapters. We isolated native
APP, AJAP-1 and PIANP complexes in a series of multi-epitope
affinity-purifications15 to address whether these proteins interact
with trafficking factors (Fig. 1c, Source Data). Quantitative ana-
lysis of affinity purifications by mass spectrometry confirmed that
all three proteins co-assemble with GB1, GB2 and KCTDs into
multiprotein complexes. However, selectively APP associated
with several additional constituents of the GBR proteome,
including APLP-2, ITM2B/C, Syt-11, NSG1/2, and the kinesin-1
adapters CSTN-1/-2/-3. JIP-1, a linker between kinesin-1 and
APP22, and JIP-3, a protein indirectly associated with GB1a15, did
not co-purify with APP in significant amounts, possibly because
of dynamic interaction(s) or sterical hindrance by the antibodies
used for affinity purification. Together, these proteomic experi-
ments confirm that selectively APP links GBRs to the trafficking
machinery.

APP, AJAP-1 and PIANP bind with nanomolar affinities to
SD1. Deletion mapping revealed that the extracellular acidic
domain (AcD) of APP encompassing amino acids 191–294
interacts with the N-terminal SD1 of GB1a (Fig. 2a, b). Detailed
structural analysis of the complex by two-dimensional 1H-15N
heteronuclear single quantum coherence (HSQC) spectra deli-
neated amino acids 202–219 in the purified AcD as the SD1
binding-site (Fig. 2c). The intrinsically disordered AcD exhibits
low signal dispersion of the backbone amide protons (8.0–8.6
ppm) in the presence or absence of recombinant SD1/2 protein
(Fig. 2c). The extracellular domains of AJAP-1 and PIANP
exhibit sequence similarity with APP residues 202–219 in a
stretch of six amino acids featuring a conserved WG motif pre-
ceded by hydrophobic residues (Fig. 2c). These six amino acids
represent a crucial element of the binding interface, as shown by
1H–15N HSQC spectra of AJAP-1 and PIANP with and without
SD1/2 (Supplementary Fig. 1a). Subsequent mutagenesis con-
firmed that deletion of APP residues 202–219 or replacement of
AJAP-1 residues 181–186 with alanine abolishes binding to GB1a
(Fig. 2d). Surface binding assays indicated a rank order of SD
binding affinities AJAP-1 (KD 6.4 ± 2.4 nM, mean ± s.e.m.)
> PIANP (29.1 ± 5.5 nM) >> APP (187.6 ± 27.9 nM) (Supple-
mentary Fig. 1b). APLP-2 completely lacks sequence similarity
with the SD-binding site of APP (Fig. 2c), consistent with APLP-2
interacting with GB1a via APP (Fig. 1a, c). GBR activity did not
significantly influence the amount of APP, AJAP-1, PIANP, and
other GB1-interacting proteins co-immunoprecipitating with
GB1a (Supplementary Fig. 2a, b). Likewise, GBR activity did not
modify the bioluminescence resonance energy transfer (BRET)
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between APP-Venus and GB1a-Rluc in transfected HEK293 cells
(Supplementary Fig. 2c, d).

Lack of APP impairs presynaptic GBR-mediated inhibition.
We next addressed whether the lack of APP, AJAP-1, or PIANP
impairs GBR-mediated inhibition of excitatory postsynaptic cur-
rents (EPSCs) at CA3/CA1 synapses. The prototypical GBR ago-
nist baclofen was less efficient in reducing the amplitude of evoked
EPSCs in APP−/− than in WT hippocampal slices (WT: 53.2 ±
2.7%, APP−/−: 38.7 ± 2.8%; P < 0.01; Fig. 3a). There was also a
trend towards reduced presynaptic inhibition of EPSC amplitudes
in AJAP-1−/− and PIANP−/− slices, which however did not reach

significance (P > 0.05, Fig. 3a). Consistent with impaired baclofen-
mediated inhibition of evoked EPSCs in APP−/− slices we also
observed impaired baclofen-mediated inhibition of the miniature
EPSC (mEPSC) frequency (WT: 64.4 ± 2.6%; APP−/−: 43.9 ±
3.2%; P < 0.001; Fig. 3b). Baseline mEPSC frequency and ampli-
tude were unaltered in APP−/− slices (Fig. 3b). Similarly, baclofen-
mediated inhibition of the mEPSC frequency in cultured hippo-
campal neurons was impaired in APP−/− mice (WT: 74.07 ±
0.98%, APP−/−: 57.01 ± 4.37%; P < 0.001), without a change of
mEPSC amplitude (P > 0.05, Supplementary Fig. 3). Of note, the
deficit in presynaptic inhibition in cultured APP−/− neurons was
less pronounced than in GB1a−/− neurons (WT: 73.4 ± 1.7%,
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GB1a−/−: 29.8 ± 2.5%; P < 0.0001; Supplementary Fig. 3), sug-
gesting that a fraction of GBRs traffics to axon terminals in the
absence of APP.

APP does not influence GBR dependent G protein signaling. It
is conceivable that lack of APP impairs presynaptic GBR-
mediated inhibition because APP normally exerts a positive
allosteric effect on receptor-induced G protein signaling. We

carried out BRET experiments24 in transfected HEK293 cells to
analyze whether APP influences conformational changes of the G
protein during GB1a/2 receptor activation. APP influenced nei-
ther the baseline BRET nor the magnitude or kinetics of the
BRET change during G protein activation (Supplementary
Fig. 4a). Because soluble extracellular APP fragments (sAPPα) are
reported to signal through G proteins17,25,26 we additionally
incubated GB1a/2 receptors expressed in HEK293 cells with
conditioned medium containing recombinant sAPPα
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(Supplementary Fig. 4b). BRET analysis revealed no G protein
activation upon sAPPα application. Brain membranes of APP−/−

and WT littermate mice exhibited no difference in GABA-
stimulated GTPγ[35S] binding, corroborating that APP does not
influence receptor-induced G protein signaling (Supplementary
Fig. 4c). BRET and GTPγ[35S] binding experiments therefore
support that APP and sAPP do not modulate GBR activity.

Reduced endogenous GB1 protein in axons of APP−/− neu-
rons. Lack of APP influence on GBR-induced G protein signaling
suggests that reduced receptor numbers underlie impaired pre-
synaptic inhibition in APP−/− neurons. We therefore determined
endogenous GB1 expression in the axons of cultured hippo-
campal APP−/− neurons using immunofluorescence staining
(Fig. 3c). Normalization of GB1 immunofluorescence to that of
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the volume marker GFP revealed a 74% reduction in GB1
expression in APP−/− axons (WT: 100 ± 10.1%, APP−/−: 26.0 ±
3.7%; n= 10 neurons, 6 independent transfections per group, P <
0.0001, unpaired t-test). In WT and APP−/− axons 48 and 25%,
respectively, of the GB1 clusters co-localized with piccolo, a
protein associated with the presynaptic cytoskeleton (Fig. 3c). As
a control, normalization of piccolo staining to GFP fluorescence
revealed no significant difference between genotypes (WT: 22.7 ±
3.5 a.u.; APP−/−: 16.6 ± 2.1 a.u.; n= 10 neurons, 6 independent
transfections per group, P > 0.05, unpaired t-test). APP−/− neu-
rons therefore exhibit reduced GB1 expression in axons and
putative presynaptic structures. However, GB1 protein is still
detectable in APP−/− axons, in agreement with electro-
physiological data indicating residual GBR-mediated presynaptic
inhibition in APP−/− neurons (Fig. 3a, b). AJAP-1−/− and PIANP
−/− mice exhibit normal levels of endogenous GB1 protein in the
axons of cultured hippocampal neurons (Supplementary Fig. 5),
explaining why presynaptic GBR-mediated inhibition in these
mice is normal (Fig. 3a).

Rescue of axonal GBR localization in APP−/− neurons. We
next studied the localization of N-terminally tagged Myc-GB1a in
cultured hippocampal APP-−/− neurons. We transfected Myc-
GB1a or control Myc-GB1b together with the volume-markers
GFP and mCherry and determined the subunit distribution by
immunostaining13. In WT neurons Myc-GB1a was present in
axons, somata and dendrites (Fig. 4a, b) while Myc-GB1b was
mostly excluded from axons (Supplementary Fig. 6a, b), as
reported earlier13. To quantify axonal and dendritic Myc-GB1a
and Myc-GB1b expression, we normalized the anti-Myc fluor-
escence to GFP fluorescence. Axonal Myc-GB1a expression was
reduced by 64% in APP−/− neurons (WT: 100 ± 7.3%, APP−/−:
36.4 ± 3.6%, n= 12 neurons; P < 0.0001) while dendritic Myc-
GB1a expression remained normal (WT: 100 ± 8.8%, APP−/−:
98.7 ± 9.7%: n= 11 neurons, P > 0.05; unpaired Student’s t-test;
Fig. 4d). Accordingly, the axon-to-dendrite (A:D) ratio of Myc-
GB1a was significantly reduced in APP−/− neurons (WT: 0.53 ±
0.04, APP−/− 0.28 ± 0.02; P < 0.0001; Fig. 4e). In contrast, axonal
Myc-GB1b expression and the A:D ratio (WT: 0.34 ± 0.03, APP
−/− 0.30 ± 0.03; P > 0.05) were similar in APP−/− and WT neu-
rons and markedly lower than for Myc-GB1a (Supplementary
Fig. 6c, d). We examined whether exogenous APP expression in
APP−/− neurons rescues axonal localization of Myc-GB1a. We
co-transfected cultured hippocampal neurons from APP−/− mice
with mCherry-tagged APP (APPmCherry) and Myc-GB1a or
Myc-GB1b, together with GFP as a volume marker (Fig. 4c,
Supplementary Fig. 6d). APPmCherry significantly increased the
A:D ratio of Myc-GB1a compared to control transfections with
mCherry alone (+mCherry: 0.28 ± 0.02, +APPmCherry: 0.50 ±
0.02; P < 0.0001; Fig. 4c, e). In contrast, transgenic expression of

APPmCherry in APP−/− neurons had no effect on the A:D ratio
of Myc-GB1b (+mCherry: 0.30 ± 0.03, +APPmCherry: 0.31 ±
0.02; P > 0.05; Supplementary Fig. 6d). Similarly, APLP-
2mCherry did not rescue axonal localization of Myc-GB1a
(Fig. 4c) and had no significant effect on the A:D ratio of GB1a
in APP−/− neurons (+mCherry: 0.28 ± 0.02, +APLP-2mCherry:
0.32 ± 0.05; P > 0.05; Fig. 4e). These experiments identify APP as a
key factor mediating axonal localization of GBRs.

Visualization of APP/GB1a complexes in axons and dendrites.
We used bimolecular fluorescence complementation27 (BiFC) to
investigate APP/GB1a complex localization in axons, after tagging
the two proteins at their C-termini with the N-terminal and C-
terminal fragments of fluorescent Venus protein (VN, VC;
Fig. 5a). BiFC in transfected HEK293 cells was successful between
APP-VN and GB1a-VC but not between APP-VN and GB1b-VC
(Supplementary Fig. 7a). BiFC imaging in HEK293 cells using
total internal reflection fluorescence (TIRF) microscopy showed
that the APP-VN/GB1a-VC complex is assembled early in the
biosynthetic pathway in the perinuclear region and requires GB2
for surface expression1 (Supplementary Fig. 7b). Transfected
cultured hippocampal neurons exhibited APP-VN/GB1a-VC
BiFC in axons, soma and dendrites (Fig. 5a). Co-expression of
APP-VN with GB1b-VC generated no BiFC (Fig. 5a) even though
the fusion proteins expressed normally (Supplementary Fig. 7c).
In axons, the APP-VN/GB1a-VC complex partly co-localized
with piccolo (Fig. 5b, correlation coefficients for BiFC/piccolo:
Pearson 0.69 ± 0.02, Mander’s 0.55 ± 0.03, n= 11 neurons, 4
independent transfections per group). The APP-VN/GB1a-VC
complex also co-localized with the co-expressed presynaptic
marker Synaptophysin-mCherry at boutons opposing PSD-95-
positive spines (Supplementary Fig. 8). In dendrites, the APP-
VN/GB1a-VC complex was present in the shafts but excluded
from the spines (Fig. 5b), as shown by lack of co-localization with
PSD-95 (overlap coefficient BiFC with PSD-95: Pearson 0.05 ±
0.01, Mander’s 0.04 ± 0.02, n= 11 neurons, 4 independent
transfections per group). This agrees with earlier findings show-
ing that GB1a is not entering dendritic spines3,12.

APP/GB1a complexes traffic in axons. Our proteomic data
suggest that members of the CSTN and JIP family of proteins,
which are kinesin-1 adapters22,28, associate with GB1a/2 receptors
through APP15 (Fig. 1). We studied whether APP-VN/GB1a-VC
complexes (identified by BiFC) co-localize with CSTN-1/-3 and
JIP-1/-3 in the axons of transfected hippocampal neurons (Fig. 5c,
Supplementary Fig. 9). Mander’s overlap coefficient analysis
indicated that a fraction of APP-VN/GB1a-VC complexes co-
localizes with CSTN-1/-3 and JIP-1/-3 (Fig. 5d). Moreover, the
APP-VN/GB1a-VC complex partly co-localized with endogenous
kinesin light-chain 1 (KLC1) protein (Fig. 5c, Supplementary
Fig. 9), consistent with reports on CSTN and JIP family members

Fig. 4 APP localizes exogenous GB1a protein to axons in cultured hippocampal neurons. a Representative images of hippocampal neurons co-expressing
Myc-GB1a and GFP in APP−/− and control littermate (WT) mice. Neurons were transfected at DIV5, fixed at DIV10, permeabilized and then stained with
anti-Myc antibodies. Note that APP−/− neurons exhibit significantly reduced axonal Myc-GB1a expression. Dendrites were distinguished from axons using
morphological criteria66. Scale bar 10 μm. b Higher magnification images of distal axons and dendrites from APP−/− and WT neurons expressing
exogenous Myc-GB1a, GFP and mCherry. Scale bar 10 μm. c Images of distal axons and dendrites from APP−/− neurons expressing exogenous Myc-GB1a,
GFP and APPmCherry or APLP-2mCherry. Note that APPmCherry but not APLP-2mCherry rescues axonal localization of Myc-GB1a. Scale bar 10 μm.
d Exogenous Myc-GB1a levels in axons and dendrites of transfected APP−/− or WT neurons. Normalized fluorescence refers to the Myc-GB1a
immunofluorescence intensity normalized to the GFP fluorescence intensity. ****P < 0.0001, unpaired Student’s t-test. e Axon:dendrite (A:D) ratio of Myc-
GB1a in APP−/− and WT neurons transfected with Myc-GB1a in the presence of mCherry, APPmCherry or APLP-2mCherry (DIV10). The n number of
neurons analyzed is indicated. ***P < 0.001, ****P < 0.0001, one-way ANOVA. Data are presented as mean ± s.e.m. Source data are provided as a Source
Data file
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linking APP to kinesin motors22,28 (Fig. 5e). We used live-cell
confocal imaging to visualize axonal trafficking of the APP-VN/
GB1a-VC complex and APPmCherry in cultured hippocampal
neurons (Fig. 5f, Supplementary movie 1). Kymographs revealed

anterograde and retrograde axonal transport of APPmCherry and
APP-VN/GB1a-VC BiFC complexes (Fig. 5g, Supplementary
Fig. 10a), similarly as previously observed for APP29. The
majority of APP vesicles colocalized with NPY, a marker for
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Golgi-derived vesicles29. 51% GB1a-GFP and 54% APP-VN/
GB1a-VC axonal vesicles also contained NPY-mCherry (Sup-
plementary Fig. 11). The percentage of mobile APPmCherry
vesicles in axons was similar to that reported for APP vesicles in
cultured hippocampal/cortical neurons30 and similar to that of
APP-VN/GB1a-VC (Fig. 5g) or APPmCherry/GB1a-GFP vesicles
(Supplementary Fig. 10b). However, significantly less GB1a-GFP
(23%) than APPmCherry (73%) or APPmCherry/GB1a-GFP
(66%) vesicles were mobile (Supplementary Fig. 10b), suggesting
that endogenous APP is limiting for axonal transport of over-
expressed GB1a-GFP. The fraction of vesicles trafficking ante-
rogradely or retrogradely in axons was similar for APP-VN/
GB1a-VC and APPmCherry (Fig. 5g, Supplementary Fig. 10b).
The mean anterograde (2.2 ± 0.4 μm/s, n= 29 vesicles) and ret-
rograde (2.0 ± 0.2 μm/s, n= 29) trafficking velocities of APPm-
Cherry in axons were similar as reported for dendrites29.
APPmCherry/GB1a-GFP (antero: 1.6 ± 0.2 μm/s, n= 16: retro:
1.3 ± 0.2 μm/s, n= 26) and APP-VN/GB1a-VC vesicles (antero:
1.6 ± 0.1, n= 19; retro: 1.5 ± 0.1 μm/s, n= 8) had lower mean
transport velocities than APPmCherry alone. GB1a-GFP vesicles
(anterograde: 1.0 ± 0.1, n= 15; retrograde: 1.2 ± 0.1 μm/s, n= 25)
had even lower transport velocities, similarly as observed
before16.

Interaction of APP with GB1a inhibits Aβ generation. Similar
to other APP interacting proteins22, GB1a/2 receptors may
influence continuous proteolytic processing of APP. We investi-
gated whether GB1a protects APP from cleavage by the β-site
APP cleaving enzyme (BACE1) that, together with γ-secretase,
generates Aβ18 (Fig. 6a). Immunoblot analysis of transfected
HEK293 cells indeed showed that co-expression of GB1a/2
receptors with APP markedly reduced the BACE1-cleavage pro-
ducts sAPPβ and β-carboxy-terminal fragment (APP-βCTF).
Densitometric analysis revealed a reduction in the APP-βCTF/
APP-FL and sAPPβ/APP-FL ratio by 60% (P < 0.0001 vs. exo-
genous APP together with BACE1) and 57% (P < 0.01), respec-
tively, in the presence of GB1a/2 receptors (Fig. 6b). GB1b/2
receptors had no significant effect on BACE1 cleavage (Fig. 6b).
GB1a/2 receptors had no effect on APP processing by ADAM10,
an enzyme involved in non-amyloidogenic processing of APP
(Supplementary Fig. 12a). We also studied amyloid-β40 (Aβ40)
production in HEK293 cells expressing APP with GB1a/2 or
GB1b/2, together with BACE1 or ADAM10 (Fig. 6c). The amount
of Aβ40 secreted into the conditioned medium was determined
32 h post-transfection using a commercial ELISA. Expression of
BACE1 but not ADAM10 increased Aβ40 secretion by one order

of magnitude. The presence of GB1a/2 receptors reduced this
BACE1-mediated Aβ40 secretion by 77% (P < 0.01 vs. exogenous
APP with BACE1). A smaller non-significant decrease in
Aβ40 secretion was also observed in the presence of GB1b/2
receptors (P > 0.05 vs. exogenous APP with BACE1).

GB1a/2 receptors stabilize APP at the cell surface. GBRs activity
did not influence Aβ40 secretion in cultured hippocampal neu-
rons (Fig. 6d), consistent with GBR activity not influencing the
APP/GB1a interaction (Supplementary Fig. 2). However, cultured
hippocampal neurons of GB1a−/− mice exhibited a significant
increase in secreted Aβ40 protein (P < 0.0001 vs. WT, Fig. 6e)
indicating that loss of GB1a promotes amyloidogenic processing
of APP. Control neurons of GB1b−/− mice exhibited no increase
in Aβ40 secretion (P > 0.05 vs. WT, Fig. 6e). Infection of cultured
hippocampal neurons of GB1a−/− or WT mice with lentiviral
particles expressing GFP-GB1a significantly reduced
Aβ40 secretion (P < 0.05 vs. GFP or GFP-GB1b, Fig. 6f). We
investigated how GB1a/2 receptors inhibit amyloidogenesis.
Immunoprecipitation experiments with transfected HEK293 cells
showed that GB1a does not compete with BACE1 for APP
(Supplementary Fig. 12b). Surface biotinylation experiments with
cultured hippocampal neurons indicated that loss of GB1a but
not GB1b significantly (P < 0.01) reduces APP levels (Fig. 7a),
suggesting that GB1a stabilizes APP at the plasma membrane.
Consistent with this hypothesis, surface biotinylation experiments
in transfected HEK293 cells confirmed that GB1a/2 receptors
significantly (P < 0.05) increased APP at the cell surface while
GB1b/2 receptors failed to exert such an effect (P > 0.05, Fig. 7b).

We next investigated whether increased APP surface expres-
sion in the presence of GB1a reflects reduced endocytosis. We
fused a 13 amino-acid α-bungarotoxin (BTX) binding site (BBS)
to the N-terminus of APPmCherry27 (Fig. 7c). TIRF microscopy
was used to analyze time-dependent changes in surface
fluorescence of BTX-488 (Alexa488-labeled BTX) and mCherry
in HEK293 cells expressing BBS-APPmCherry in the absence or
presence of GB1a/2 or GB1b/2 receptors (Fig. 7c). Endocytosis
decreased BTX-488 cell surface fluorescence during a 15 min
period, both in the absence of GBRs (residual TIRF intensity 58.9
± 3.1%) and in the presence of GB1b/2 receptors (59.5 ± 5.5%).
GB1a/2 receptors significantly reduced the decrease in BTX-488
cell surface fluorescence (81.0 ± 2.8%, P < 0.001), indicating that
association with GB1a/2 receptors reduces APP endocytosis
(Fig. 7c). Of note, the cell surface mCherry fluorescence remained
unaltered during the internalization period (control 103.7 ± 7.0%,
GB1a/2 101.0 ± 5.1%, GB1b/2 112.6 ± 8.0%, normalized to the

Fig. 5 The APP/GB1a complex co-localizes with CSTN and JIP proteins in axons. a Scheme depicting the BiFC principle27. Complex formation of APP-VN
with GB1a-VC reconstitutes Venus fluorescence and leads to BiFC. GB1b-VC serves as a negative control. Representative confocal images show
hippocampal neurons (DIV10) expressing APP-VN together with GB1a-VC or GB1b-VC. BiFC is observed in axons and dendrites for GB1a-VC. Microtubule-
associated protein Map2 identifies dendrites; mCherry served as a volume marker. Neurons were imaged 7 h post-transfection27. Scale bar 10 μm. b Higher
magnification of axons and dendrites of hippocampal neurons transfected with APP-VN and GB1a-VC. The BiFC complex (Venus) partly co-localizes with
piccolo (magenta) in axons. The BiFC complex is also present along dendritic shafts but excluded from spines (PSD-95, magenta). Scale bar 5 μm. c Partial
co-localization (white, arrowheads) of the BiFC complex (green) with FLAG-CSTN-1, FLAG-CSTN-3, FLAG-JIP-1b, and FLAG-JIP-3 (magenta) and
endogenous kinesin light-chain 1 (KLC1) (blue) in the axons of neurons. Scale bar 5 μm. d Quantification of the co-localization of the BiFC complex with
FLAG-CSTN-1, FLAG-CSTN-3, FLAG-JIP-1b, and FLAG-JIP-3. The n numbers of neurons analyzed are indicated. e Scheme illustrating that APP together
with interacting JIP and CSTN proteins link the GB1a/APP complex in cargo vesicles to axonal kinesin-1 motors. The neural adaptor protein X11-like (X11L)
connects APP to CSTN-122. f Time-lapse images of a well-separated APP-VN/GB1a-VC complex trafficking anterogradely in axons (acquisition times in
seconds). White arrowheads mark a fluorescent APP-VN/GB1a-VC complex. A kymograph shows the entire time-lapse recording (right). Scale bars 25
μm. Data are presented as mean ± s.e.m. g Top: Analysis showing the percentage of mobile and non-mobile vesicles per axon within 5 min in hippocampal
neurons expressing APPmCherry or the BiFC complex. Bottom: Number of vesicles moving antero-gradely and retrogradely per axons within 5 min. Data
are presented in a min to max-box and whisker plot, with whiskers representing the smallest and largest values, the boxes representing the 25–75%
percentile and the middle line representing the median. P > 0.05, one-way ANOVA. Source data are provided as a Source Data file
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fluorescence at t0; Fig.7c), suggesting that transfected BBS-
APPmCherry reached a steady-state level at the plasma
membrane.

We additionally studied APP endocytosis in live HEK293 cells
using time-lapse confocal microscopy, which allowed monitoring

surface BTX-488/APPmCherry internalization (Fig. 7d). In the
absence of GBRs or in the presence of GB1b/2 receptors, we
observed internalized BTX-488-labeled vesicles after 10 min
(Fig. 7d). However, in the presence of GB1a/2 receptors we did
not detect internalized BTX-488-labeled vesicles before 30 min.
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Simultaneous monitoring of the decay in BTX-488 surface
fluorescence showed that GB1a/2 receptors led to a more than
3-fold increase in the respective time constant (no GBRs: τ= 5.6
min, GB1b/2: 5.4 min, GB1a/2: 16.5 min; Fig. 7e). These results
indicate that GB1a/2 receptors increase APP surface expression
by reducing APP internalization, which prevents amyloidogenic
processing in recycling endosomes. GB1a/2 receptors exhibit
slower internalization and longer surface stability than GB1b/2
receptors in neurons11. It is therefore possible that APP
reciprocally stabilizes GB1a/2 receptors at the cell surface,
although we did not directly test this.

We addressed whether the presence of GB1a prevents sorting
of APP into endosomes in cultured hippocampal neurons
(DIV14) transfected with GB1a-GFP, APPmCherry or both. To
identify recycling endosomes we incubated neurons with Alexa-
AF647 conjugated transferrin. Co-expression of GB1a-GFP
indeed significantly decreased the presence of APP-mCherry in
transferrin-AF657 positive endosomes (Supplementary Fig. 13).
We further analyzed whether neuronal activity influences APP-
mCherry and GB1a-GFP sorting into endosomes. To induce
neuronal activity we used an established glycine/bicuculine
stimulation protocol29. This protocol did not significantly alter
endosomal localization of APP-mCherry in the presence and
absence of GB1a-GFP (Supplementary Fig. 13).

Discussion
Presynaptic GBRs regulate neurotransmitter release at most
synapses in the brain1. Presynaptic GBR expression is itself
subject to regulation by neuronal activity3–5 and frequently
impaired in disease6–10. The SDs of GB1a are essential for pre-
synaptic localization and membrane stabilization of GBRs11–14.
Proteomic analysis identified several proteins that selectively and
directly interact with presynaptic GB1a/2 receptors, including
APP, AJAP-1, and PIANP15,31,32. We now found that sequence-
related epitopes in these proteins interact with the N-terminal
SD1 of GB1a. Electrophysiological analysis of AJAP-1−/−, PIANP
−/−, and APP−/− mice revealed that selectively the absence of
APP generates a deficit in GBR-mediated presynaptic inhibition.
Proteomic, electrophysiological and trafficking data show that
binding of APP to the SD1 serves to sort GB1a/2 receptors into
axonally destined vesicles. At the same time, binding to surface
GB1a/2 receptors interferes with APP processing to Aβ peptides
in recycling endosomes. Our results therefore support that APP/
GB1a/2 complex formation simultaneously regulates bioavail-
ability and localization of the partner proteins.

APP is reported to link cargo vesicles via adaptor proteins to
axonal kinesin-1 motors22,28,33. Our proteomic data support that
APP/GB1a complexes bind to adaptor proteins of the JIP and
CSTN families. BiFC directly showed that APP/GB1a complexes
traffic anterogradely in axons. We additionally observed retro-
grade trafficking of complexes, presumably mediated by dynein
motors28. APP−/− mice exhibit a 74% reduction but not a
complete absence of GBRs in axons. Likewise, APP−/− mice show
an impairment but not a complete loss of GBR-mediated inhi-
bition of glutamate release. Differences in the transport velocities
of GB1a-GFP and APPmCherry/GB1a-GFP vesicles further sug-
gest the existence of an APP-independent GB1a transport. Pos-
sibly, some GB1a/2 receptors also diffuse laterally in the
membrane and accumulate at terminals by binding to SD-
interacting proteins14. It is unclear whether APP, AJAP-1 and/or
PIANP retain GB1a/2 receptors at terminals after delivery. The
interacting epitopes of SD1 and APP represent intrinsically dis-
ordered regions with dynamically interconverting structures,
suggestive of a transient regulatory interaction34,35. After ante-
rograde trafficking APP may therefore transfer GB1a/2 receptors
to the higher affinity binding-sites of PIANP and AJAP-1. In
support of such a scenario, AJAP-1−/− and PIANP−/− mice show
a trend towards reduced presynaptic GBR-mediated inhibition in
electrophysiological experiments. Moreover, both proteins are
expected to localize to synaptic adherens junctions20 and should
therefore be well positioned to anchor GB1a/2 receptors at pre-
synaptic terminals. APP/GB1a complexes are also present in
dendritic shafts. This is consistent with axonal proteins not being
restricted to axons because endoplasmic reticulum and Golgi
apparatus extend into dendrites. However, it is also possible that
some APP/GB1a complexes internalize in axons and transcytose
to the dendrites, as proposed for APP36,37.

GB1a−/− and APP−/− mice share several phenotypes, includ-
ing a deficit in GBR-mediated presynaptic inhibition12 (this
study), increased seizure susceptibility1,17, deficits in long-term
potentiation12,17,38, cognitive impairments1,12,38, altered network
oscillations39,40, and circadian locomotor activity1,38. This is
consistent with the proposal that genetic ablation of genes whose
protein products belong to the same functional complex produce
similar phenotypes41. Some phenotypes of APP−/− mice may also
relate to a down-regulation of the K+–Cl− transporter KCC2 and
a resulting decrease in GABAA receptor inhibition42. Interest-
ingly, GBRs and KCC2 are reported to associate with one
another and GBR activity reduces KCC2 levels at the cell sur-
face43. Loss of GBRs may therefore counteract downregulation of
KCC2 in APP−/− mice.

Fig. 6 GB1a inhibits BACE1-mediated APP proteolysis and Aβ40 generation. a Scheme indicating proteolytic cleavage sites in APP for α-secretase,
β-secretase (BACE1) and γ-secretase. APP-FL, APP full-length; sAPP, soluble APP; APP-βCTF, β carboxy-terminal fragment of APP. b Immunoblot of APP
cleavage products in HEK293 cells expressing Myc-BACE1, APP and GB2-YFP together with Flag-GB1a or Flag-GB1b. For sAPP analysis, the cell culture
medium was filtered and concentrated 32 h post-transfection. Glyceraldehyde 3-phosphate dehydrogenase (GADPH) served as loading control. A
significant reduction in the APP-βCTF/APP-FL and the sAPP/APP-FL ratio is observed in the presence of GB1a vs. GB1b. One-way ANOVA, n= 3–4
independent experiments. c Bar graphs of Aβ40 secretion into the culture medium of HEK293 cells expressing APP with or without Myc-BACE1 or Myc-
ADAM10 in the presence of GB1a/2 or GB1b/2 (32 h post-transfection). Note that selectively GB1a/2 significantly prevents Aβ40 secretion. One-way
ANOVA, n= 6 independent experiments. d GBR activity does not influence Aβ40 production. Bar graphs of the amount of Aβ40 secreted into the culture
medium of WT hippocampal neurons after treatment for 7 days with baclofen (10 μM) or CGP54626 (CGP, 10 nM) or both. Values normalized to
untreated (100%). One-way ANOVA, n= 3 independent neuronal cultures. e Bar graphs of the amount of Aβ40 secreted within 10 days into the culture
medium of hippocampal neurons of GB1a−/−, GB1b−/− and control WT littermate mice. Neurons from GB1a−/− but not GB1b−/− mice exhibit increased
Aβ40 secretion. Unpaired Student’s t-test, n= 4–7 independent neuron preparations. f Lentiviral expression of GB1a but not GB1b decreases
Aβ40 secretion in neuronal cultures from GB1a−/− and WT mice. Bar graphs of Aβ40 secreted within 10 days into the culture medium of hippocampal
neurons infected with purified lentiviral particles expressing GFP, GFP-GB1a or GFP-GB1b. GB1a−/− cultures; unpaired Student’s t-test, n= 4 independent
neuronal cultures. WT cultures normalized to uninfected (100%); one-way ANOVA, n= 3 independent neuronal cultures. *P < 0.05, **P < 0.01,
***P < 0.001, ****P < 0.0001. Data are presented as mean ± s.e.m. Source data are provided as a Source Data file
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Fig. 7 GB1a stabilizes APP at the cell surface. a Cell surface biotinylation of APP in cultured hippocampal neurons of GB1a−/−, GB1b−/−, and control WT
littermate mice. Bar graph summarizes the densitometric quantification of APP surface levels: WT 100.0 ± 4.1%, GB1a−/− 69.6 ± 4.9%, **P < 0.01, unpaired
Student’s t-test; WT 100.0 ± 2.9%, GB1b−/−, 89.6 ± 11.2%, P > 0.05, Mann-Whitney. b Cell surface biotinylation of APP in HEK293 cells in the presence or
absence of GB1a or GB1b. Bar graphs summarizes the densitometric quantification of APP surface levels. APP: 100 ± 0.9%; APP+GB1a/2: 129.7 ± 5.3%;
APP+GB1b/2: 83.9 ± 17.5%; *P < 0.05, one-way ANOVA; n= 3 independent experiments. c To study APP internalization the α-BTX binding site (BBS)
was fused to the extracellular N-terminus of APPmCherry (BBS-APPmCherry). BTX-488 and mCherry cell surface fluorescence of HEK293 expressing BBS-
APPmCherry with or without GB1a/2 or GB1b/2 before (time 0’) and after BBS-APPmCherry internalization for 15 min at 37 °C (15’). Bar graphs show the
mean surface BTX-488 and mCherry fluorescence intensity after 15 min of BBS-APPmCherry internalization. ***P < 0.001, one-way ANOVA, BBS-
APPmCherry n= 11, BBS-APPmCherry+GB1a/2 n= 13, BBS-APPmCherry+GB1b/2 n= 13 independent experiments. Scale bar 20 μm. d Representative
confocal images of the BTX-488 fluorescence in HEK293 cells expressing BBS-APPmCherry with or without GB1a/2 or GB1b/2 before (0’) and after BBS-
APPmCherry internalization for 10, 20, and 30min. Scale bar 10 μm. e Decrease of BTX-488 surface fluorescence in c over time. n= 14 cells per group, 3
independent transfections per group. ***P < 0.001, one-way ANOVA. Data are presented as mean ± s.e.m. Source data are provided as a Source Data file
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In amyloidogenic processing, Aβ is liberated from APP by the
concerted action of BACE1 and γ-secretase17,18. BACE1 is pre-
sent in axons and dendrites but highly polarized to axonal
domains44, which are the main source of Aβ45. Nevertheless,
dendritic compartments also release Aβ46. BACE1 activity typi-
cally occurs in the acidified environment of recycling
endosomes27,47. While GBR activity influences neither the APP/
GB1a interaction nor Aβ40 production, we found that GB1a
protects APP from BACE1-dependent endosomal processing by
stabilizing APP at the cell surface. Adding to its protective role,
GB1a also keeps APP out of dendritic spines that are particularly
rich in recycling endosomes48. Most neurons in the brain express
GB1a, which therefore should markedly influence APP proces-
sing. Accordingly, cultured hippocampal neurons of GB1a−/−

mice exhibited a ~40% increase in secreted Aβ levels compared to
WT littermate mice.

While several genome-wide association studies link GBRs to
mental health disorders1,49, no such study directly links GBRs to
AD. However, several reports describe a downregulation of GBRs
in AD6,7,49. GBR downregulation is likely a consequence of the
disease, for example caused by increased GBR activity due to
excess GABA release by reactive astrocytes50,51. Likewise, dysre-
gulated axonal transport, an early pathological feature in AD
associated with increased Aβ production45,52, will reduce the
number of GB1a/2 receptors on glutamatergic terminals and
promote NMDA receptor-dependent GBR degradation3,4. GBR
downregulation in AD6,7 may not only increase Aβ production
but also contribute to excitotoxicity and the high incidence in
seizures and memory deficits in patients53, which is supported by
the pathology of GB1a−/− and APP−/− mice. Increased GABA
release by reactive astrocytes in AD50,51 may help to counteract
excess glutamate release and therefore play opposing roles in
excitotoxic processes.

According to the amyloid hypothesis, accumulation of Aβ in
the brain drives AD pathogenesis. Reducing Aβ production is
therefore expected to ameliorate AD symptoms18,19. Our study
shows that stabilizing APP with GB1a at the cell surface prevents
Aβ formation. NMDA receptor blockade prevents GBR
degradation3,4 and provides a means to stabilize APP/GB1a
complexes. Although controversial, Memantine®, a non-
competitive NMDA receptor antagonist used to treat AD
patients, is reported to stabilize APP at the cell surface and to
reduce Aβ levels54. Thus it is possible that Memantine® stabilizes
APP at the cell surface by preventing NMDA receptor-induced
GBR internalization3,4. GBR antagonists provide another means
to stabilize GBRs at the cells surface by preventing GBR
degradation51,55. GBR antagonists are already undergoing eva-
luation as possible AD therapeutics because they promote exci-
tatory neurotransmitter release and enhance cognition55.
Moreover, signaling pathways that increase cAMP levels, such as
activation of β-adrenergic receptors, increase GBR availability at
the cell surface56. Thus, pharmacological stabilization of APP/
GB1a complexes at the cell surface may have potential for
symptomatic amelioration in AD patients.

Methods
Molecular biology. Plasmids were gifts from D. Selkoe and T. Young-Pearse
(pCAX-APP695, pCAX-FLAG-APP695, pCAX-APPs-α; Addgene #30137, #30154,
#30147), R. Davis (pcDNA3-Flag-JIP-1b, Addgene #52123), R. Derynck (pRK5M-
ADAM10, Addgene #31717), W. Almers (NPY-mCherry, Addgene #67156), P.
Scheiffele (Synaptophysin-mCherry), M. Di Luca (Myc-BACE1), J.P. Pin (pRK6-
Flag-GB1a), and K. Kaupmann (pCI-HA-GB2-YFP). AJAP-1 (Source BioScience)
was subcloned into pcDNA3, PIANP cDNA (OriGene) placed into pCMV6 with
an HA-tag insertion after amino acid 27. Myc-GB1a, Myc-GB1b, GB1a-GFP and
GB1b-GFP, Myc-GB1aΔSD1, Myc-GB1aΔSD2 and Myc-GB1aΔSD1/2 were as
described57. pRK6-Flag-GB1b was constructed by replacing the GB1a MluI-
BamH1 fragment in pRK6-Flag-GB1a with GB1b. GB1a-Rluc, GB1b-Rluc, APP-
Venus and APPmCherry were constructed using overlap extension polymerase

chain reaction and cloned into the pCI vector (Promega). For transfection
experiments we used the predominant neuronal APP isoform, APP69517 (hereafter
named APP). The APP deletion mutants APPΔGFLD(Δ28–123), APPΔCuBD
(Δ124–189), APPΔAcD(Δ191–294) and APPΔCAPPD (Δ295–504) were generated
by overlap extension in the pCAX vector. Numbers indicate the residues deleted
in APP. To construct APP-VN, the Venus in APP-Venus was replaced with the
N-terminal Venus residues 1–172. To construct GB1a-VC or GB1b-VC, the GFP in
Myc-GB1a-GFP or Myc-GB1b-GFP was replaced with the C-terminal Venus
residues 155–238. Split Venus constructs include the PRARDPPVAT linker 5’ of
the Venus fragments. BBS-APPmCherry was created by adding the α-bungarotoxin
(BTX) binding site (BBS) WRYYESSLEPYPD at the N-term of APPCherry between
amino acids A30 and E31 (Trenzyme, Germany)27.

Mouse strains. GB1a−/−, GB1b−/−, and GB2−/− mice were kept in the BALB/c
background12,58, APP−/− mice in the C57BL/6 background59. AJAP-1−/− mice
were generated by blastocyst injection of embryonic stem cell clone
HEPD0583_2_B09 harboring a knockout-first promotor-driven tm1a allele (AJAP-
1tm1a(EUCOMM)Hmgu)60 and subsequent crossing of founders with the Cre-
deleter strain B6.C-Tg(CMV-cre)1Cgn/J. In the converted tm1b allele exon 2 of the
AJAP-1 gene was deleted leaving a LacZ reporter behind, which contains an en-2
splice acceptor and an internal ribosomal entry site. PIANP−/− mice (B6-Pian-
pem1Bet) in the C57BL/6 background were generated using the Alt-R CRISPR/Cas9
targeting system (IDT, Leuven, Belgium). The Cas9 target sequence 5′-GACCCCA
CACTATAGCCCAAGGG-3’ in the Pianp gene (MGI:2441908) was selected using
the CRISPOR search algorithm http://crispor.tefor.net. Enzymatic mutation altered
the targeting sequence to 5′-GACCCCACACTATAGGTGTGAGATGGG-3′
resulting in a frame shift after P97 and premature termination of translation. All
mouse experiments were conducted in accordance with Swiss guidelines and
received ethical approval from the veterinary office of Basel-Stadt.

Affinity purifications from brain membranes. Plasma-membrane enriched pro-
tein fractions were prepared from whole brain isolated from a pool of 10 WT and
2–4 knock-out mice61. Concentrations of protein fractions were determined by
Bradford assays (Biorad). Membrane proteins were solubilised with CL-47 and CL-
91 buffers at 1 mg protein per ml (Logopharm GmbH, Germany). After 30 min
incubation on ice and clearing by ultracentrifugation (10 min, 150,000 × g) solu-
bilisates were incubated with the immobilized antibodies and incubated for 2 h on
ice. 10–15 µg of the following antibodies were used for an immunoprecipitation out
of 1 mg of solubilised membrane proteins: anti-APP, Ab#1, rabbit anti-APP
(A8717, Sigma), Ab#2, rabbit anti-APP (ABIN1741750, Antikörper-online), Ab#3,
goat anti-APP (sc-7498, Santa Cruz); anti-AJAP-1, Ab#1, sheep anti-AJAP-1
(AF7970, R&D Systems), Ab#2, rabbit anti-AJAP-1 (HPA012157, Sigma), Ab#3,
goat anti-AJAP-1 (sc-163371, Santa Cruz); anti-PIANP, Ab#1, rabbit anti-PIANP
(PAB21925, Abnova), Ab#2, rabbit anti-PIANP (raised against epitope: mouse
PIANP aa 221–237, generated by Young in Frontier, South Korea) (Fig. 1c). For a
quantitative comparison of GBRs in two samples (Fig. 1a), a mixture of anti-GB
antibodies including rabbit anti-GB1 (322102, Synaptic Systems), rabbit anti-GB2
(322203, Synaptic Systems), guinea pig anti-GB2 (322204/5, Synaptic Systems))
was applied to isolate the complete pool of receptor protein complexes, which was
controlled by immunoblot analysis of the respective supernatant after antibody
incubation. After two washes, proteins were eluted and the majority processed for
MS-analysis. Proteins were separated on SDS-PAGE gels and silver-stained. Lanes
were cut into two sections (high and low MW) and digested with sequencing-grade
modified trypsin (Promega, Mannheim, Germany). Peptides were extracted and
prepared for MS analysis as described15. Influence of GBR activity on complex
formation was analyzed by incubating unsolubilized membranes with 1 mM GABA
or 4 µM CGP54626 in PBS buffer for 1 h at room temperature. Subsequently
membrane proteins were solubilised and processed for immunoprecipitations as
described above (Supplementary Fig. 2a).

Mass-spectrometry and protein identification. Mass spectrometric analysis was
carried out as described61. Peptide samples dissolved in 0.5% trifluoroacetic acid
were loaded onto a trap column (C18 PepMap100, 5 µm particles; Thermo Sci-
entific), separated by reversed phase chromatography via a 10 cm C18 column
(PicoTip™ Emitter, 75 µm, tip: 8 µm, New Objective, self-packed with ReproSil-Pur
120 ODS-3, 3 µm, Dr. Maisch HPLC; flow rate 300 nl/min) using an UltiMate 3000
RSLCnano HPLC system (Thermo Scientific), and eluted by an aqueous organic
gradient (eluent “A”: 0.5% acetic acid; eluent “B” 0.5% acetic acid in 80% acet-
onitrile; “A”/”B” gradient: 5 min 3% B, 60 min from 3% B to 30% B, 15 min from
30% B to 100% B, 5 min 100% B, 5 min from 100% B to 3% B, 15 min 3% B).
Sensitive and high-resolution MS-analyses were executed on an Orbitrap Elite mass
spectrometer with a Nanospray Flex Ion Source (both Thermo Scientific). Pre-
cursor signals (LC-MS) were acquired with a target value of 1,000,000 and a
nominal resolution of 240,000 (FWHM) at m/z 400; scan range 370 to 1700 m/z).
LC-MS/MS data were extracted using “msconvert.exe” (part of ProteoWizard;
http://proteowizard.sourceforge.net/, version 3.0.6906). Peak lists were searched
against a UniProtKB/Swiss-Prot database (containing all rat, mouse and human
entries) using Mascot 2.6.0 (Matrix Science, UK). One missed trypsin cleavage and
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common variable modifications including S/T/Y phosphorylation were accepted
for peptide identification. Significance threshold was set to p < 0.05.

Mass-spectrometry based protein quantification. Label-free quantification of
proteins was based on peak volumes (PVs= peptide m/z signal intensities inte-
grated over time) of peptide features61. Peptide feature extraction was done with
MaxQuant62 (http://www.maxquant.org/, version 1.4) with integrated effective
mass calibration. Features were then aligned between different LC-MS/MS runs
and assigned to peptides with retention time tolerance ±1 min and mass tolerance:
±1.5 ppm using an in-house developed software. The resulting peptide PV tables
formed the basis for protein quantification (Fig. 1). For relative quantification of
proteins in two samples (Fig. 1a, Supplementary Fig. 2a), protein ratios (rPVs) were
determined from protein profiles61. Briefly, for each peptide, the PVs were then
normalized to their maximum over all AP data sets yielding relative peptide pro-
files, ranked for each protein by pairwise Pearson correlation. These values were
normalized to the molecular abundance of GBRs (Source Data File) to obtain the
degree of association with the target. The median from all peptides, assigned as
unique for each individual protein, was used to calculate the abundance difference
of GBR constituents in knock-outs vs. WT (Fig. 1a). Interactome analysis were
performed by comparing relative protein abundance in a sample vs. control (rPV,
Fig. 1c, Source Data File), determined by the TopCorr method as the median of at
least 2–6 individual peptide PV ratios of the best correlating protein-specific
peptides (as determined by Pearson correlation of their abundance values)63.
Specificity thresholds of APs were determined from rPV histograms of all proteins
detected in the respective AP vs. control. Constituents of the GBR proteome were
considered specifically co-purified when rPVs (wild-type mouse vs. IgG and KO)
were above the threshold.

Transferrin treatment and neuronal activity induction. Lipofectamine 2000 (Life
Technologies) was used to transfect HEK293 cells. The amount of DNA in the
transfections was kept constant by supplementing with pCI plasmid DNA (Pro-
mega). For preparation of cultured neurons embryonic day 16.5 mouse hippocampi
were dissected, digested with 0.25% trypsin (Invitrogen) in HBSS (Gibco,
14170–088) medium for 13 min at 37 °C, dissociated by trituration and plated on
glass coverslips coated with 1 mg/ml poly-L-lysine hydrobromide (PLL, Sigma) in
0.1 m borate buffer (boric acid/sodium tetraborate)13. Neurons were seeded at a
density of ∼550 cells/mm2 in neurobasal medium (Invitrogen) supplemented with
B27 (Invitrogen) and 0.5 mM L-glutamine and cultured in a humidified atmo-
sphere (5% CO2) at 37 °C. Cultured hippocampal neurons were transfected using
Lipofectamine 3000 (Life Technologies) or Effectene (Qiagene). Transferrin-AF647
(Invitrogen) and bicuculline/glycine treatment29 was performed at DIV14, 30 min
before transferrin-AF647 treatment, neurons were incubated with fresh Neurobasal
medium. Incubation of Transferrin-AF647 was added at a final concentration of
50 μg/μl for 1 h, For activity induction neurons were treated with 20 μM bicucul-
line/200 μM glycine for 5 min in Neurobasal medium. The medium was then
replaced with fresh medium supplemented with 20 μM bicuculline for 15 min.
Control cultures were kept in pure Neurobasal medium. Cultures were washed with
1× PBS, fixed for 10 min at room temperature in 4% PFA/4% sucrose and mounted
on microscope slides with Dako Fluorescence Mounting Medium (Agilent).
Samples were imaged on Zeiss LSM880 confocal microscope equipped with Plan-
Apochromat ×63/1.4 Oil objective. Collected Z-stacks were quantified using Fiji
and Adobe Photoshop CC 2018.

IP and immunoblot experiments. Hippocampal neurons or HEK293 cells were
harvested 24 h after transfection, washed twice with ice-cold PBS, and subsequently
lysed in NETN buffer supplemented with complete EDTA-free protease inhibitor
mixture (Roche). After rotation for 10 min at 4 °C, lysates were cleared by cen-
trifugation at 10,000×g for 10 min at 4 °C. Lysates were directly used for immu-
noblot analysis or immunoprecipitated with antibodies coupled to Protein-G/A
Agarose beads (Roche). Membrane protein fractions from brains (prepared as
described above), lysates from cultured cells and immunoprecipitates were resolved
using standard SDS-PAGE gels and decorated with the indicated antibodies.
SuperSignal Femto chemiluminescence detection kit (Thermo Scientific) or ECL
Prime (Amersham Biosciences) were used for visualization using a Fusion FX
Chemiluminescence System (Vilber Lourmat, Witec AG). Band intensities were
quantified by ImageJ software (NIH). Uncropped and unprocessed scans of
immunoblots are shown in the Source Data file.

To determine whether GBR activity regulates binding of APP, AJAP-1, and
PIANP to GB1a, we prepared brain membrane fragments as for [35S]GTPγS
binding assays and resuspended them in NET buffer (100 mM NaCl, 1 mM EDTA,
20 mM Tris/HCl, pH 7.4) supplemented with EDTA-free protease inhibitor
mixture (Roche) for 90 min at 4 °C. Membranes were treated with 1 mM GABA or
4 μM CGP54626 or left untreated for 1 h at room temperature. Nonidet P-40
detergent was added to a final concentration of 0.5%. Incubation with antibodies
(α-APP, (Y188, Abcam), α-AJAP1 (AF7970, R&D Systems), α-PIANP (PAB21925,
Abnova)) was for 16 h at 4 °C, followed by IP. For densitometric analysis of
immunoblots, the GB1a signal was divided by the signal of the immunoprecipitated
protein (APP, AJAP-1, PIANP) and normalized as 1.0 for untreated control
samples.

The antibodies used for immunoprecipitation were: rabbit anti-c-myc (C3956,
Sigma), mouse anti-c-myc 9E10 (sc-40, Santa Cruz), mouse anti-flag M2 (F1804,
Sigma), rabbit anti-flag (F7425, Sigma), rabbit anti-GB1 (rat aa 857–960), rabbit
anti-GB2 (322203, Synaptic Systems), rabbit anti-APP Y188 (ab32136, Abcam) and
rabbit anti-APP Y188 (ab32136, Abcam). The primary antibodies used for
immunoblot analysis were: mouse anti-GB1 (ab55051, Abcam), rabbit anti-GB1
(rat aa 857–960), mouse anti-GB2 (75–124, NeuroMab), mouse anti-c-myc 9E10
(sc-40, Santa Cruz), rabbit anti-c-myc (C3956, Sigma), rabbit anti-flag (F7425,
Sigma), mouse anti-APP A4 22C11 (mab348, Millipore), rabbit anti-APP Y188
(ab32136, Abcam), sheep anti-AJAP-1 (AF7970, R&D Systems), rabbit anti-PIANP
(PAB21925, Abnova), rabbit anti-Calnexin (ab75801, Abcam), rabbit anti-β-Actin
13E5 (#4970, Cell Signaling) and mouse anti-GADPH (sc-32233, Santa Cruz). The
secondary antibodies were: HRP-conjugated anti-rabbit (NA9340V, GE
Healthcare, UK), anti-mouse (NA9310V, GE Healthcare, UK), anti-sheep (ab7111,
Abcam), anti-mouse (sc-2005, Santa Cruz), anti-rabbit (sc-2004, Santa Cruz).

Purification of proteins for structural analysis. SD1/2 was produced as secreted
protein in Sf21 insect cells and subsequently purified by Ni-chelate affinity-matrix
and size exclusion chromatography, as described15. APP(191–294), AJAP-1
(175–279), and PIANP(27–174) were subcloned into pET30 (Novagen) with a
N-terminal His-tag followed by the B1 domain of streptococcal protein G as a
solubility enhancement tag (SET) and a TEV cleavage site. Protein expression was
induced in E.coli BL21 (DE3) by 1 mM IPTG. Cells were either grown on LB-
medium (MP Biomedicals) or for isotopic protein labeling on M9 minimal medium
made with 15NH4Cl and 13C-Glucose (both Cambridge Isotope Laboratories).
After cultivation (LB medium: 4 h, 37 °C, M9 medium: 16 h, 30 °C) cells were lysed
in 20 mM Tris/HCl pH 8, 300 mM NaCl, 10 mM imidazole, 0.5 mM EDTA/EGTA
by sonication. Lysates were cleared by centrifugation (20,000 x g, 4 °C, 20 min),
loaded on a HisTrap HP sepharose column (GE Healthcare) and His-tagged
proteins subsequently eluted with 500 mM imidazole. Respective fractions of the
APP construct were pooled and dialyzed against 50 mM Tris/HCl pH 8, 150 mM
NaCl, 0.5 mM EDTA, 1 mM DTT before adding the TEV-protease. After 14 h
incubation, the digest was loaded on a HisTrap HP sepharose column to remove all
His-tag-containing species. The cleavage step was omitted for the AJAP-1 and
PIANP constructs. Final purification was done by size exclusion separations
(Superdex 200 10/300 GL column, GE Healthcare). The purity of the samples was
determined by separating proteins on SDS-PAGE and visualized by conventional
Coomassie stain solutions. Proteins were concentrated by Vivaspin® 6 centrifugal
concentrators (Vivascience) and directly used for biophysical characterizations.

Protein NMR spectroscopy. The NMR spectra were recorded at 293 K on a
Bruker Avance 600 equipped with a cryogenically cooled pulsed-field gradient
triple-resonance probe (TXI) operating at 600.13 MHz. The sequence-specific
assignment of backbone atoms of APP191–294 both in the absence and the pre-
sence of SD1/2 protein was obtained from the following experiments: 1H-15N
HSQC, HNCA, HN(CO)CA, HNCO, HN(CA)CO, CBCA(CO)NH, HBHA(CO)
NH, CBCANH, NOESY-1H-15N-HSQC (250 ms mixing time), and HN(CA)NNH.
The interaction site of APP with SD1/2 was determined by observation of
chemical-shift changes and cross-peak intensity changes in 1H–15N HSQC spectra
of 15N-labeled or 13C/15N-labeled APP during titrations with unlabeled SD1/2
protein up to a stoichiometric ratio of 1:1.1. The NMR samples contained 0.1–0.65
mM APP in 50 mM sodium phosphate buffer (pH 6.8) with 50 mM NaCl, 0.5 mM
EDTA, 0.5 mM EGTA, and 10% D2O (v/v). Similarly, complex formation of
15N-labeled AJAP-1(175–279) or PIANP(27–174), each with a solubility
enhancement tag (SET64, see Protein Expression), was monitored by 1H–15N
HSQC spectra during titrations with unlabeled SD1/2. 4,4-Dimethyl-4-silapentane-
1-sulfonate (DSS) was used as internal standard for 1H chemical shift referencing.

Cell surface binding. To estimate binding of purified Myc-SDI/II to APP, AJAP-1
and PIANP, cDNAs were transfected into tsA201 cells. After 2 days of cultivation,
cells were incubated for 30 min at room temperature with SD1/2 in reduced serum
OptiMEM® medium. Myc-SD1/2 was added to the medium to give a final con-
centration of 0.2 to 2000 nM. Cells were subsequently fixed in 4% PFA, blocked in
1% BSA and then incubated with mouse anti-c-Myc 9E10 (11667149001, Roche) to
determine bound SD1/2 and goat anti-APP (sc-7498, Santa Cruz), sheep anti-
AJAP-1 (AF7970, R&D Systems) or rat anti-HA (HA-PIANP) (clone 3F10,
11867423001, Roche), respectively, and detected with Alexa-conjugated secondary
antibodies (Alexa Fluor® 488 donkey anti-goat IgG, Alexa Fluor® 488 donkey anti-
rat IgG, Alexa Fluor® 555 donkey anti-mouse IgG all from Life Technologies).
Average intensity values of bound and expressed proteins in individual cells using
drawn region of interests around the perimeter of each cell were determined after
background subtraction and put into ratio. For each measurement, n= 3–20 cells
were used. Apparent dissociation constants (KD values) were determined using a
Hill equation with a coefficient of 1.

Electrophysiology. Three hundred µm-thick hippocampal slices were prepared
with a Leica VT1200S vibratome from P12-P21 APP−/−, AJAP-1−/−, PIANP−/− or
WT littermate mice and incubated for 15 min at 32 °C in aCSF containing 126 mM
NaCl, 26 mM NaHCO3, 2.5 mM KCl, 1.25 mM NaH2PO4, 2 mM CaCl2, 1 mM
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MgCl2, and 10 mM glucose. Slices were kept at room temperature until recording at
32 °C submerged in a recording chamber perfused with ACSF. CA1 pyramidal cells
were visually identified using a ×60 objective under video infrared Nomarski optics
with a BX51WI microscope (Olympus). Cell cultures were prepared from WT, APP
−/−, or GB1a−/− mice as described above. After 10–13 days in vitro, coverslips
were transferred into a submerged chamber and perfused with aCSF at 32 °C.
Whole-cell voltage-clamp recordings were obtained with 4–6MΩ borosilicate glass
pipettes via an intracellular solution containing 135 mM CsCH3O3S, 8 mM NaCl,
4 mM Mg-ATP, 0.3 mM Na3-GTP, 0.1 mM TEA-Cl, 5 mM QX-314 and 10 mM
HEPES. A liquid junctional potential of −10 mV was left uncorrected. Cells were
voltage-clamped at −60 mV with a Multiclamp700B amplifier (Molecular Devices).
Spontaneous mEPSCs were recorded in the presence of 0.2 µM TTX and 100 µM
picrotoxin. EPSCs were evoked with extracellular monopolar current pulses gen-
erated by a custom-made isolated current stimulator and applied via a patch-
pipette filled with aCSF and positioned to activate the Schaeffer Collateral pathway.
All recordings were filtered at 4–10 kHz and digitized at 10–20 kHz with a Digidata
1550B digitizer (Molecular Devices).

BRET and [35S]GTPγS binding assays. BRET experiments monitoring G protein
activation were conducted and analyzed as described24. Mouse brain membranes
for [35S]GTPγS binding assays were prepared and analyzed as described12.

Biotinylation assay. HEK293 cells were biotinylated using the Pierce Cell Surface
Protein Isolation Kit (Pierce, 89881). Transfected HEK293 cells on 6-well plates
were incubated with 1 mg/ml sulfo-NHS-SS-biotin (Pierce) in PBS for 30 min at
4 °C. After quenching the biotinylation reaction with 50 mM glycine and rinsing of
the cells with ice-cold TBS (Tris-buffered saline) and PBS, cells were scrapped from
the plates and lysed in NETN buffer (100 mM NaCl, 1 mM EDTA, 0.5% Nonidet
P-40, 20 mM Tris/HCl, pH 7.4) supplemented with an EDTA-free protease inhi-
bitor mixture (Roche). The lysate was incubated at 4 °C for 15 min then centrifuged
10,000 × g for 10 min at 4 °C and proteins in the supernatant quantified. Biotiny-
lated surface proteins were purified using NeutrAvidin-agarose (Pierce), washed,
and resuspended in protein loading buffer. Proteins were identified on
immunoblots.

Immunofluorescence. Neurons on glass coverslips were fixed for 5 min in 4%
PFA/4% sucrose at RT, permeabilized with PBS+/+ (D8662, Sigma, supplemented
with 1 mM MgCl2 and 0.1 mM CaCl2))/Triton-0.1%, blocked with PBS+/+/5%
BSA and labeled with primary antibodies in PBS+/+ (D8662, Sigma) and 5% BSA
for 2 h and secondary antibodies for 45 min. PBS+/+ washes were performed after
each antibody incubation. Coverslips were mounted on glass slides in Fluor-
omountTM (F4680, Sigma). Images were captured using Zeiss LSM-700 system
with a Plan-Apochromat 63 × /NA 1.40 oil DIC, using Zen 2010 software.

Primary antibodies used: mouse anti-GB1 (ab55051, Abcam), chicken anti-
map2 (ab5392, Abcam), mouse anti-c-myc 9E10 (11667149001, Roche), mouse
anti-piccolo (142111, Synaptic System), rabbit anti-KLC1 (ab187179, Abcam),
rabbit anti-GFP (ab290, Abcam), mouse anti-flag M2 (F1804, Sigma), mouse anti-
PSD-95 (ab2723, Abcam). Secondary antibodies used: Alexa Fluor® 647 donkey
anti-chicken IgY (Millipore), Alexa Fluor® 555 donkey anti-mouse IgG (Life
Technologies), Alexa Fluor® 488 donkey anti-rabbit IgG (Life Technologies), Alexa
Fluor® 647 donkey anti-mouse IgG (Invitrogen), and Alexa Fluor® 568 donkey
anti-rabbit IgG (Invitrogen).

TIRF microscopy and live confocal imaging. Transfected HEK293 cells were
incubated for 15 min at 16 °C in the dark in PBS+/+ containing 3 μg/ml BTX
conjugated to Alexa-488 (Thermo Scientific). Cells were washed three times with
PBS+/+ at 16 °C and mounted on 37 °C incubator stages of a TIRF Olympus IX81
inverted Microscope equipped with a motorized TIRF system and an Apo N 60 × /
NA 1.49 TIRF objective (Olympus, Japan). Excitation of GFP/Venus and mCherry
was at 488 nm and 561 nm, respectively. Images were acquired with a Hamamatsu
imagEM c9100–13 EMDCCD camera using Xcellence software (Olympus). TIRF
measurements with transfected HEK293 cells was on 35 mm µ-Dishes, high Glass
Bottom (Ibidi, Germany), in serum free DMEM/F-12 medium (Gibco 11320–074)
(Fig. 7c and Supplementary Fig. 6b and 7b). Live confocal imaging was with a Zeiss
point scanning confocal LSM-800 inverted microscope, using a heated stage and a
63 × /NA 1.4 Plan-Apochromat objective. Excitation was at 488 nm and 555 nm;
images were collected at a rate of 1 frame/s (Fig. 7d, Supplementary Fig. 10a,
Supplementary Movie 1).

Image analysis and quantification. Images were taken under identical acquisition
parameters for all conditions within the experiment. Saturation was avoided by
using image acquisition software to monitor intensity values. Images were analyzed
by Fiji analysis software. For quantification, values were averaged over multiple
neurons from at least three independent culture preparation. Pearson and Mander
correlation coefficient statistics were used to analyze the colocalization between
fluorophores using the JACoP plugin of Fiji.

Axon-to-dendrite (A:D) ratio of exogenous Myc-GB1a or Myc-GB1b protein
were performed as described13, using GFP as a volume marker and Fiji analysis

software. For rescue experiments, the neurons were co-transfected with either
mCherry, APPmCherry or APLP-2mCherry (Fig. 4e). Kymographs for analysis of
vesicle transport were created by drawing one-pixel-wide lines traced from the
soma to the axon tip using the KimographBuilder plugin of Fiji. The trafficking
velocities were obtained using the Velocity measurement tool. Episodes of directed
vesicle movement are represented in kymographs as displacements in the
anterograde or retrograde direction. Non-mobile episodes produce straight vertical
lines with short horizontal displacements resulting from the “wiggling” of vesicles.

Aβ40 quantification. Transfected HEK293 cells were incubated with serum free
DMEM/F-12 medium (Gibco 11320–074) for 24 h. After determining the total
amount of protein in the supernatant the Wako II Aβ40 ELISA kit was used for
Aβ40 quantification. For Aβ40 quantification in neurons, 1 × 105 neurons from
GB1a−/−, GB1b−/− or WT littermate mice were incubated for 10 days in condi-
tioned medium. In some experiments purified lentiviral particles (GeneCopoeia:
217LPP-Rn10234-Lv122 GFP-GB1a, 217LPP-Rn10298-Lv122 GFP-GB1b, 217LPP-
EGFP-Lv242 GFP) were added at a concentration of 1 transforming unit per
neuron after 3 days for 24 h in 200 µl conditioned medium, before adding 800 µl
pre-warmed conditioned medium. After 10 days, the conditioned medium was
cleared at 1000×g for 15 min at 4 °C and processed for Aβ40 quantification.

Statistical analysis. Data analysis was with GraphPad Prism version 7.0
(GraphPad Software, La Jolla, CA). Individual data sets were tested for normality
with the Shapiro-Wilk or the D’Agostino-Pearson test (for n ≥ 8). Statistical sig-
nificance of differences between two groups was assessed by unpaired two-tailed
Student’s t-test or ANOVA as indicated. For non-normal distribution the non-
parametric Mann–Whitney test was used. P-values < 0.05 were considered sig-
nificant. Data are presented as mean ± standard error of the mean (s.e.m.).

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Data supporting the findings of this study are available within the paper and in the
Supplementary Information and Source Data files. The mass spectrometry proteomics
data have been deposited to the ProteomeXchange Consortium via the PRIDE partner
repository with the dataset identifier PXD012487.
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