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Optimal features for auditory categorization
Shi Tong Liu1, Pilar Montes-Lourido2, Xiaoqin Wang 3 & Srivatsun Sadagopan 1,2,4

Humans and vocal animals use vocalizations to communicate with members of their species.

A necessary function of auditory perception is to generalize across the high variability

inherent in vocalization production and classify them into behaviorally distinct categories

(‘words’ or ‘call types’). Here, we demonstrate that detecting mid-level features in calls

achieves production-invariant classification. Starting from randomly chosen marmoset call

features, we use a greedy search algorithm to determine the most informative and least

redundant features necessary for call classification. High classification performance is

achieved using only 10–20 features per call type. Predictions of tuning properties of putative

feature-selective neurons accurately match some observed auditory cortical responses. This

feature-based approach also succeeds for call categorization in other species, and for other

complex classification tasks such as caller identification. Our results suggest that high-level

neural representations of sounds are based on task-dependent features optimized for specific

computational goals.
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Human speech recognition is a highly robust behavior,
showing tolerance to variations in prosody, stress, accents,
and pitch. For example, speech features such as formant

frequencies exhibit large variations within- and between-
speakers1,2, arising from production mechanisms (production
variability). To achieve accurate speech recognition, the auditory
system must generalize across these variations. This challenge is
not uniquely human. Animals produce species-specific vocaliza-
tions (calls) with large within- and between-caller variability3, and
must classify these calls into distinct categories to produce
appropriate behaviors. For example, in common marmosets
(Callithrix jacchus), a highly vocal New World primate species,
critical behaviors such as finding other marmosets when isolated
depend on accurate extraction of call-type and caller informa-
tion4–8. Similar to human speech, marmoset call categories
overlap in their long-term spectra (Fig. 1a), precluding the
possibility that calls can be classified based on spectral content
alone, and requiring selectivity for fine spectrotemporal features
to classify calls. At the same time, marmoset calls also show
considerable production variability along a variety of acoustic
parameters8. For example, twitter calls produced by different
marmosets vary in such parameters as dominant frequencies,
lengths, inter-phrase intervals, and harmonic ratios (Fig. 1).
Tolerance to large variations in spectrotemporal features within
each call type is thus necessary to generalize across this variability.
Therefore, there is a simultaneous requirement for fine and broad
selectivity for production-invariant call classification. The present
study explores how the auditory system resolves these conflicting
requirements.

This problem of requiring fine- and tolerant feature tuning,
necessitated by high variability amongst members belonging to a
category, is not unique to the auditory domain. For example, in

visual perception, object categories such as faces also possess a
high degree of intrinsic variability9–12. To classify faces from
other objects, using an exemplar face as a template typically fails
because this does not generalize across within-class variability12.
Face detection algorithms use combinations of mid-level features,
such as regions with specific contrast relationships13,14, or com-
binations of face parts12, to accomplish classification. Of these
algorithms, the one proposed by Ullman et al.12 is especially
interesting because of its potential to generalize to other classi-
fication tasks across sensory modalities. In this algorithm, starting
from a set of random fragments of faces, the authors used greedy
search to extract the most informative fragments that were highly
conserved across all faces despite within-class variability. Post hoc
analyses revealed that these fragments were mid-level, i.e., they
typically contained combinations of face parts, such as eyes and a
nose. The features identified using this algorithm were consistent
with some physiological observations, for example at the
level of BOLD responses15. While the differences between visual
and auditory processing are vast, these results inspired us to ask
whether a similar concept – sound categorization using
combinations of acoustic features – could be implemented by the
auditory system.

The behavioral salience of calls for marmosets4–8, and the
increasing resources allocated to the processing of calls along the
cortical processing hierarchy16, suggest that call processing is a
computational goal of auditory cortex. Call processing involves
detecting the presence of calls in the acoustic input, classifying
them into behaviorally relevant categories, extracting information
about caller identity, determining the behavioral state of the
caller, and developing situational awareness of the environment.
Although a number of studies have described call-selective
responses at various stages of the auditory pathway, there has
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Fig. 1 Production variability in marmoset calls. a The overall spectra of 3 major marmoset call types and other minor call types (grouped as ‘Other calls’),
showing spectral overlap between call categories. b Spectrograms of three twitter calls showing examples of production variability between individuals. c–f
Production variability of twitter calls quantified along multiple parameters: c bandwidth, d dominant frequency, e duration, and f inter-phrase interval. Dots
are parameter values of a single call produced by an individual marmoset. Histograms are overall parameter distributions, split into the training (blue) and
testing (red) sets. These data show the large production variability captured by the training and test datasets, over which the model must generalize. No
systematic bias is evident in calls used for model training and testing
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been little investigation into how the auditory system goes about
solving these problems, both at the algorithmic and mechanistic
levels. In this study, we start with the premise that the detection
and classification of calls into discrete call types is a critical first
step that enables the above computations. Our overall question in
this study is to ask how production-invariant call classification
can be accomplished in the auditory pathway. Specifically, we test
the hypothesis that production-invariant call classification can be
accomplished by detecting constituent features that maximally
distinguish between call types. Starting from an initial set of
randomly selected marmoset call features, we use a greedy search
algorithm to determine the most informative and least redundant
set of features necessary for call classification. We show that high
classification performance can indeed be achieved by detecting
combinations of a small number of mid-level features. We then
demonstrate that predictions of tuning properties of putative
feature-selective neurons match previous data from marmoset
primary auditory cortex. Finally, we show that the same algo-
rithm is equally successful in caller identification with marmoset
calls, and in call classification in other species such as guinea pigs
(Cavia porcellus) and macaque monkeys (Macaca mulatta).
Taken together, our findings suggest that classification of sound
categories using mid-level features may be a general auditory
computation.

Results
Intermediate features are more informative for classification.
We start with the premise that the first step in call processing is
the categorization of calls into discrete call types, generalizing
across the production variability that is inherent to calls. Let us
consider the example of classifying twitter calls from all other call
types. Marmoset twitters can be characterized along several
acoustic parameters, such as bandwidth, duration, dominant
frequency, and inter-phrase interval8. In Fig. 1c–f, we plot the

values of these parameters for individual calls emitted by 8 ani-
mals, showing the extent of within- and between-individual
variability over which generalization is required for twitter cate-
gorization. Similar generalization is required for categorizing the
other call types as well (Supplementary Fig. 1). We first generated
6000 random initial features from the cochleagrams of 500 twitter
calls emitted by 8 marmosets (‘training’ set, blue histograms in
Fig. 1). For the purposes of this study, a feature is a randomly
selected rectangular segment of the cochleagram, corresponding
to the spatiotemporal activity pattern of a subset of auditory nerve
fibers within a specified time window. For each random feature,
we determined an optimal threshold at which its utility for
classifying twitters from other calls was maximized. The merit of
each feature was taken to be the mutual information value
(in bits) at this optimal threshold (Fig. 2; Equation 1).

In Supplementary Fig. 2, we plot the merits of all 6000 initial
features as a function of each feature’s bandwidth and temporal
integration window. Along the margins, we plot the maximum
merit of features within each bandwidth- or temporal window
bin. These distributions compare the best features from each time
bin, and show that features of intermediate lengths relative to the
total call length show higher merits for call classification. This is
an expected consequence of two characteristics of calls: (1) call
types overlap in spectral content, so that brief features do not
contain sufficient information to separate out categories, and (2)
calls have high production variability, so that long features are
less likely to be found across all calls belonging to the
same category. We observed similar distributions for the
classification of other marmoset call types, i.e., for trill vs. other
calls, and phee vs. other calls (Supplementary Fig. 2). We then
characterized feature complexity using a kurtosis-based metric
(Methods). While features of low merit showed low complexity
values and whole calls showed high complexity values, features
of high-merit showed intermediate complexity values. This
observation supported the hypothesis that mid-level features of
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Fig. 2 Initial feature generation and evaluation. a The spectrogram of a twitter call (top), and its corresponding cochleagram (bottom). Cochleagram color
scale denotes firing rates of auditory nerve fibers. b Schematic for initial random feature generation for a twitter (within-class) versus other calls (outside-
class) categorization task. Waveforms (top) were converted to cochleagrams (middle). The magenta box outlines a random initial feature picked from the
twitter cochleagram shown. The maximum value of the normalized cross-correlation function between each call (within-class—blue, outside-class—green)
and each random feature was taken to be the response of a feature to a call. c Distributions (top) of a feature’s responses to 500 within-class (blue) and
500 outside-class (green) calls. The mutual information (bottom) of a feature computed as a function of a parametrically varied threshold. The dotted line,
corresponding to maximal mutual information, is taken to be each feature’s optimal threshold
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intermediate complexity were most informative for classification
(Supplementary Fig. 2).

Most informative features for classification. Because, we gen-
erated the initial features at random, many of these have low
merit, and many are similar. Therefore, the set of optimal features
for classification is expected to be much smaller than this initial
set. To determine the set of optimal features that together max-
imize classification performance, we used a greedy-search algo-
rithm (see Methods). Briefly, we started with the feature of
highest merit, and successively added features that maximized
pairwise mutual information with respect to the already chosen
feature set. We refer to the set of these optimal features as most
informative features (MIFs) following the nomenclature of Ull-
man et al.12,17. We determined that call classification could be

accomplished using 11 MIFs for twitter vs. all other calls, 20 MIFs
for trill vs. all other calls, and 16 for phee vs. all other calls. In
Fig. 3, magenta boxes outline the top 5 MIFs that are optimal for
each of these classification tasks (the first five MIFs in Table 1).
The optimal features that we arrive at are mostly intuitive – for
example, the top MIFs for classifying twitters detect the frequency
contour of individual twitter phrases and the repetitive nature of
the twitter call. In some cases, features seemed counter-intuitive—
for example, the second MIF for trill classification seems to detect
empty regions of the cochleagram. In this theoretical framework,
the lack of energy at those frequencies is also informative about
the presence of a trill.

In Table 1, we show the pairwise information added by each
MIF, the merits, and the weights of the top 10 MIFs for these
classification tasks. Note that 1 bit of information corresponds to
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Table 1 Information content of MIFs

Twitter Phee Trill

MIF # Added Info. Merit Weight Added Info. Merit Weight Added Info. Merit Weight

1 0.95 0.95 14.58 0.78 0.78 10.06 0.60 0.60 7.88
2 0.01 0.84 12.14 0.01 0.67 7.76 0.10 0.12 5.37
3 0.01 0.44 9.26 0.01 0.74 8.65 0.04 0.12 4.40
4 0.01 0.85 12.49 0.01 0.71 8.29 0.04 0.25 7.13
5 0.01 0.87 12.49 0.01 0.75 8.87 0.04 0.53 7.59
6 <0.01 0.87 12.49 0.01 0.72 8.39 0.03 0.43 6.18
7 <0.01 0.80 11.71 0.01 0.71 8.27 0.03 0.29 7.44
8 <0.01 0.84 12.30 <0.01 0.71 8.27 0.03 0.27 8.14
9 <0.01 0.39 8.97 <0.01 0.75 8.90 0.02 0.27 8.26
10 <0.01 0.34 8.62 <0.01 0.71 8.49 0.02 0.22 7.74

The added information, merit, and weight (log-likelihood ratio) of the top 10 MIFs for twitter, phee, and trill
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perfect classification. For twitters, detecting a single feature (the
top MIF) was sufficient to gain 0.95 bits of information.
Subsequent features probably detected only a few additional
twitters without introducing new false alarms. For the other call
types, however, the top MIF only provided 0.78 or 0.6 bits of
information. Although successive MIFs individually had high
merit (second column), they added little information to the top
MIF (first column), likely because of redundancy—each MIF
could only add a small number of additional hits without
introducing new false alarms. However, detecting these features
was crucial for solving the task, as they ultimately elevated the
total information to >0.9 bits. The MIFs have positive weights,
suggesting that they are informative by virtue of their presence
(rather than absence) in the target category. Because, we approach
very high levels of classification using our pairwise optimization
of mutual information, and because joint optimization of mutual
information across the entire MIF set is computationally
expensive, we used the pairwise-optimized MIF set for all further
analyses.

In frequency, MIFs neither encompassed the entire call
bandwidth, nor consisted of only few frequency bands. In time,
MIFs showed integration windows of the order of hundreds of
milliseconds (Fig. 4a–c). The mean MIF lengths were 215 ms, 68
ms, and 406 ms for twitters, trills, and phees, respectively.
Compared to the average lengths of the calls (twitters: 1.25 s,
trills: 0.5 s, phees: 1.27 s), these correspond to 17%, 14%, and 32%

of mean call length, respectively. Interestingly, these lengths may
correspond to timescales of temporal modulations in calls—for
twitters, the sum of mean phrase length and mean inter-phrase
interval is ~190 ms; for trills, the mean amplitude modulation
period is ~30 ms. Thus, as with the initial feature set, MIFs for call
classification were also of intermediate length and complexity.

Accurate classification of novel calls using MIFs alone. To
validate our model and to test the effectiveness of using only the
MIFs for classifying call types, we used a novel set of calls con-
sisting of 500 new within-category and 500 new outside-category
calls drawn from the same 8 marmosets. This test call set did
not significantly differ from the training set along any of the
characterized parameters (red histograms in Fig. 1). We con-
ceptualized each MIF as a simulated template-matching neuron
whose response to a stimulus was defined as the maximum value
of the normalized cross-correlation (NCC) function. This simu-
lated MIF-selective neuron ‘spiked’ whenever its response crossed
its optimal threshold, i.e., when an MIF was detected in the sti-
mulus. In Fig. 5, we plot the spike rasters of simulated MIF-
selective neurons for twitter, phee, and trill (top 10 MIFs shown),
responding to a train of randomly selected calls from the novel
test set. Each spike was weighted by the log-likelihood ratio of the
MIF and the weighted sum of responses in 50 ms time bins was
taken as the evidence in support of the presence of a particular
call type. Although occasional false positives and misses occurred,
over the set of MIFs, the evidence in support of the correct call
type was almost always the highest. Therefore, production-
invariant call categorization is a two-step process—first, MIFs are
detected in the stimuli, and then each feature is weighted by its
log-likelihood ratio to provide evidence for a call type.

We quantified the performance of the entire set of MIFs (n=
11, 16, and 20 for twitter, phee, and trill, respectively) for the
classification of novel calls by parametrically varying an overall
evidence threshold and computing the hit rate (true positives)
and false alarm rate (false positives) at each threshold. From these
data, we plotted receiver operating characteristic (ROC) curves
(Fig. 6a). In these plots, the diagonal corresponds to chance, and
perfect performance corresponds to the upper left corner. The
MIFs achieved >95% detection rates for all call types with very
low false alarm rates.

Control simulations. First, we ensured that our selection of 6000
initial random features adequately sampled stimulus space. To do
so, we iteratively selected sets of MIFs using our greedy search
algorithm from initial random sets from which previously picked
MIFs were excluded. We found that distinct sets of MIFs that had
similar classification performance could be selected in successive
iterations (Supplementary Fig. 3). This suggests that our initial
random feature set indeed contained several redundant MIF-like
features, confirming the adequacy of our initial sampling.

Second, in order to determine the contributions of various
model assumptions and parameters, we repeated this process of
random initial feature generation, threshold optimization, and
MIF selection in different scenarios. To better visualize these
differences, we used detection-error tradeoff curves (Fig. 6b),
where perfect performance is the lower left corner. In this figure,
the performance of the default model, as described above, is
plotted in blue. First, when we used the acoustic waveform of calls
instead of cochleagrams, classification performance was on
average worse (Fig. 6b; red), suggesting that phase information
in the waveform may be detrimental for classification. Second, we
used the features with top merits without greedy-search
optimization for classification, and again found that performance
compared to the default model was worse (Fig. 6b, green). Finally,
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using entire calls as features, either treating entire individual calls
as features (‘grandmother cell’ model; Fig. 6b, yellow), or using
the aligned and averaged training call as a single feature
(Supplementary Fig. 4) also resulted in worse performance
compared to the intermediate feature-based model.

In Fig. 6c, we compare the average cumulative information
added by successive features across all three call classification tasks
(twitter vs. all other calls, trill vs. all other calls, and phee vs. all
other calls) for each control simulation against the performance of
the default model. The default model significantly outperformed
(at p < 0.01, rank-sum test) the no greedy-search model for all
classification tasks, after correcting for multiple comparisons
(Bonferroni correction). Exact p-values corresponding to default
model comparison with the constrained model and the no-greedy-
search model were: twitter (p= 0.000087 and p= 0.00021,
respectively, rank-sum tests), trill (p= 0.0058 and p= 0.00067,
respectively, rank-sum tests), and phee (p= 0.00015 and p=
0.00021, respectively, rank-sum tests). While the default model for
trill exhibited significantly higher performance compared to the
acoustic-waveform model (p= 0.000091, rank-sum test), the
default models for twitter and phee did not (p= 0.89 and p=
0.43, respectively, rank-sum tests). These results suggest that our
underlying assumptions—using the cochleagram, unconstrained
initial feature selection, and MIF optimization using a greedy
search—were justified. Twitter MIFs were not qualitatively
different when derived from calls emitted by a smaller set of
animals (4 animals). Training on a set of 4 animals and testing on
the other 4 animals yielded high performance (Fig. 6d, triangles),
confirming the robustness of using MIFs for categorization of new
calls. Twitter MIF performance in classifying twitters from other
twitters was near-chance, suggesting that the estimation of mutual
information values was unbiased (Fig. 6d, circles). Finally, MIFs
derived for one task (such as trill vs. other calls) showed chance
level performance for other tasks (such as twitter vs. other calls;
Fig. 6d, crosses), demonstrating the task-dependence of the
derived MIFs.

The precedence of intermediate features for classification. We
have previously shown that features of intermediate lengths and

complexities possess high individual merits for classification
(Supplementary Fig. 2). We have also shown that the set of MIFs
is composed intermediate features (Fig. 4a–c). To directly test
whether features of intermediate size were indeed the most
informative, we re-derived MIFs after constraining the initial set
of features to particular time and frequency bins and quantified
model performance (Fig. 7). When we constrained the features to
be only small (<100 ms and <1 oct.) or removed all small features,
performance was worse than the default model (Fig. 7, top row).
Similarly, model performance was worse compared to the default
model when we constrained to only large features (>250 ms and
>2 oct.), or removed all large features. When we constrained
bandwidth and time independently to be large or small, model
performance was worse compared to the default model, with large
values being more detrimental (Fig. 7, bottom row). As previously
discussed, using the largest possible features (whole calls or
average call) resulted in poor classification performance as well.
These results demonstrate that features of intermediate size
indeed provide the best classification performance.

MIF tuning properties match neural responses from A1 L2/3.
So far, we have demonstrated MIFs derived purely using theo-
retical principles can achieve high levels of production-invariant
call categorization performance. We then asked whether the
auditory system uses such an optimal feature-based approach for
call classification. To explore this possibility, as a first step, we
generated tuning curves of model neurons that were selective for
the theoretically derived MIFs, and asked if these tuning curves
matched previous experimental observations. In this effort, we
were restricted by the appropriateness and availability of previous
data. To do so, we first constructed cochleagrams of stimuli, such
as trains of frequency-modulated sweeps, amplitude modulated
tones, noise bursts, clicks, two-tone combinations, etc. We then
used the maximum value of the NCC function as a metric of the
model MIF neurons’ response to these stimuli, as we did earlier
for calls. These responses were conceptualized as membrane
potential responses, which elicited spiking only if they crossed
each MIF neuron’s optimal threshold. We used a power law
nonlinearity, applied to the maximum NCC values (see Methods,
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Equation 2), to determine the firing rate responses of model MIF
neurons (Supplementary Fig. 6). We then compared these model
MIF tuning curves to neural data from marmoset primary
auditory cortex (A1).

Although, the MIF model did not have prior access to
neurophysiological data, we found that model MIF neural tuning
recapitulated actual data to a remarkable degree, both at the
population and single-unit levels. For example, the population of
model MIFs showed high preference for natural calls compared to
reversed calls (Fig. 8a, bottom), similar to observations by Wang
and Kadia18 (reproduced in Fig. 8a, top). The high sparseness of
auditory cortical neurons is well-documented19–21. The responses
of model MIF-selective neurons were also sparse—only few MIF
neurons were activated by any given stimulus set, and only after
extensively optimizing the parameters of the stimulus set to drive-
specific model MIF neurons. For example, in Fig. 8b (top), we
show a single-unit recording from a marmoset A1 L2/3 neuron
that did not respond to most stimulus types (reproduced from
Sadagopan and Wang21), and only strongly responded to two-
tone stimuli. Twitter MIFs (Fig. 8b, bottom) were similarly not

responsive to most stimulus types, and only responded to
carefully optimized linear frequency-modulated (lFM) sweeps.
None of the model twitter and trill MIF-selective neurons
responded to pure tones (Fig. 8b, bottom), similar to many A1
L2/3 neurons.

Most strikingly, we could recapitulate some specific and highly
nonlinear single-neuron tuning properties as well. Figure 8c (top;
reproduced from Sadagopan and Wang21) is a single-unit
recording from marmoset A1 L2/3 that did not respond to pure
tones, but selectively responded to upward lFM sweeps of specific
lengths (~80 ms). Responses of at least three of the top 5 twitter
MIF-selective model neurons showed similar tuning for 80 ms-
long upward lFM sweeps (Fig. 8c, bottom). A second peak at ~40
ms was also present in responses of two model twitter MIF-
selective neurons, also matching the experimental data. Figure 8d
(top; reproduced from Sadagopan and Wang21) shows another
single-unit recording from marmoset A1 L2/3, where the neuron
did not respond to single lFM sweeps (lightest gray line), but
strongly responded to trains of upward lFM sweeps occurring
with 50 ms inter-sweep interval. The neuron’s response scaled
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with the number of sweeps present in the train (darker colors
correspond to more sweeps). Three of the top 5 twitter MIF-
selective neurons also showed remarkably similar tuning (Fig. 8d,
bottom)—these model neurons did not respond to single
sweeps, but responded to trains of at least 2 or more sweeps
occurring with a 50 ms inter-sweep interval. Taken together, these
data suggest neurons tuned to MIF-like features are present in A1
L2/3. Therefore, we predict that a spectral-content based
representation of calls in the ascending auditory pathway
becomes largely a feature-based representation in A1 L2/3.

Consistent with the prediction of feature selectivity, we also
found neurons in A1 of both marmosets and guinea pigs that
respond selectively to conspecific call features. In Fig. 9, we
present the spike rasters of example single neurons in both
marmoset and guinea pig A1 responding to marmoset (Fig. 9a)
and guinea pig calls (Fig. 9b), respectively. We presented multiple
exemplars of each call type as stimuli. These example neurons
responded at specific time points to a few call stimuli, typically
across 1–3 categories. Such responses are consistent with our
feature-based model because single features alone do not
completely categorize calls, i.e., MIFs do not have 1 bit of
information for categorization. Rather, combinations of features
weighted by their log-likelihood ratios are necessary to ultimately
achieve complete call category information. These data provide
promising support for our model, but further experiments are
necessary to: (1) determine how informative these neural features
are about call category and how they compare with model
features, (2) to confirm where such responses arise in the auditory
pathway, and (3) to account for possible low-level confounds.
Experiments are presently ongoing to address these issues.

Task-dependent MIF detection as a general computation. To
determine whether MIF-based representations of sounds could
also be used for optimally solving other tasks, we performed three
proof-of-principle simulations using limited available datasets.
First, we tested whether we could accurately determine caller

identity using an MIF-based approach. We generated training
and test sets of 60 twitters each from eight marmosets, and
generated 500 initial random features from the training set. We
applied the greedy-search algorithm to determine the MIFs for
caller identification in a caller A vs. all other callers task
(Fig. 10a). We found that similar to call categorization, caller
identification could also be achieved using a small number of
MIFs (n= 4). If caller identification was performed in a binary
fashion (four classifications between two animals each), in half of
these tasks, classification could be accomplished using less than 3
MIFs, indicating that the calls of these marmosets probably dif-
fered along the frequency axis. This is because if there are clear
differences in dominant frequency (for example, Animal 1 vs. 4 in
Fig. 1d), all features that lie in one animal’s frequency range will
detect all of that animal’s calls and none of the other animal’s
calls. During the greedy search procedure, these features will be
considered redundant and reduced to a single feature. In the
other half, more MIFs were required for caller identification, and
in general, MIFs were larger than those for call-type classification.
This is likely because the differences between twitters produced
by these animals are smaller compared to the differences between
call types and can only be resolved in a higher dimensional space.
Thus, integration over more frequencies and a larger time win-
dow may be necessary to resolve caller differences. In Supple-
mentary Fig. 7, we plot the ROC for caller identification between
a pair of marmosets with overlapping dominant frequencies. The
MIF-based approach (n= 20 MIFs) achieved >80% hit rates with
<10% false alarm rate for caller identification.

Second, we tested whether MIF-based call classification
generalized to other vocal species, using guinea pig and macaque
call classification as examples. Guinea pigs are highly vocal
rodents that produce seven primary call types22–24, which are
highly overlapping in the low frequency end of the spectrum, and
show high production variability. We used the MIF-based
approach to classify guinea pig call types (whine, wheek, and
rumble) from all other guinea pig call types. Similar to
marmosets, guinea pig classification could be accomplished using
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a handful of features (12, 9, and 3 MIFs for whine, wheek, and
rumble), and MIF-based classification achieved high performance
levels (Fig. 10b). Similarly, we implemented the MIF-based
algorithm to classify macaque calls (using 5, 4, and 9 MIFs for
coos, grunts, and harmonic arches) from a limited macaque call
dataset25 and achieved high classification performance (Fig. 10c).
These proof-of-principle experiments demonstrate that an MIF-
based approach indeed succeeds for different auditory classifica-
tion tasks and in different species, suggesting that building
representations of sounds using task-relevant features in auditory
cortex may be a general auditory computation.

Discussion
In these experiments, we set out to understand the computations
performed by the auditory system that enable the categorization
of behaviorally critical sounds, such as calls, despite wide varia-
tions in the spectrotemporal structure of calls belonging to a
category (production variability). We found that the optimal
theoretical solution is to detect the presence of informative mid-
level features (termed MIFs) in calls. These MIFs generalize over
production variability, and conjunctions of MIFs accomplish
production-invariant call classification with high accuracy. Cri-
tically, the tuning properties of model MIF-selective neurons
matched previous recordings from marmoset A1 to a surprising
degree. MIF-based classification was also successful for other
tasks (marmoset caller identification), and in other species (gui-
nea pig and macaque call recognition). Our results suggest that
the representation of sounds in higher auditory cortical areas is
based on the detection of optimal task-relevant features.

An implication of our results is that in higher auditory pro-
cessing stages, neural representations of sounds serve-specific

behavioral purposes. For example, the MIF-based classification
approach that we proposed here is targeted to solve well-defined
classification problems. At earlier stages of the auditory pathway,
however, it may be more important to faithfully represent sounds
using basis sets that enable the accurate and complete encoding of
novel stimuli. Previous theoretical studies have proposed, for
example, that natural sounds can be efficiently encoded using
spike patterns, where each spike represents the magnitude and
timing of input acoustic features26. However, when optimized to
encode the complete waveforms of natural sound ensembles, the
kernel functions that elicit each spike show a striking similarity to
cochlear filters. The advantage of this approach is that novel
stimuli can be completely encoded using these kernel functions.
In our approach, the input to our model implements a similar
encoding schematic—in the cochleagram, inputs are encoded as
spatiotemporal spike patterns, where each spike is the result of
cochlear filtering. In this early representation, while information
about category identity is present, it is distributed in the activity
of many neurons in a high-dimensional space. We propose that
in later processing stages, this early representation is transformed
into a representation where category identity is more easily
separable. By encoding MIF-like features, sound representation in
later processing stages is less useful for high-fidelity encoding
(although stimulus reconstruction is possible, see Supplementary
Note and Supplementary Fig. 5), but is instead goal-oriented.
However, this means that each task will require a distinct set of
MIFs for optimal performance, and animals likely perform a large
number of such behaviorally relevant tasks. The observed >1000-
fold increase between the number of cochlear inputs and auditory
cortical neurons may partially result from this necessity to encode
a multitude of task-dependent MIFs. Previous theoretical studies
have suggested that the generation of redundant and over-
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complete representations of sounds to solve spatial localization
problems might underlie this increase in the number of neu-
rons27. Our study proposes another computational reason why
such an expanded representation of sounds may be necessary.

Another powerful method to accomplish classification uses
hierarchical convolutional neural networks, or deep networks. In
these models, layers of filtering, normalization, and pooling
operations are cascaded, resulting in individual units exhibiting
increasingly complex tuning properties28–30. A final layer reads
out class identity. Deep networks can achieve near-human levels
of performance on specific tasks, but carry some disadvantages.
First, they often require training data of the order of millions of
samples. In the visual domain, deep networks appear not to use
the same features as humans for object classification31. Finally, an
intuitive explanation for how deep network models actually
accomplish classification is not yet available. In our approach, we
explicitly train our MIF neurons to extract maximally distin-
guishing features, providing insight into why certain features are
represented amongst these neurons. Our model does not require
as extensive a training set. We consider our approach

complementary to the deep learning approach, in that we aim to
provide an explicit and intuitive explanation of why certain fea-
tures are extracted, as opposed to matching human performance
using complex model architectures.

Conceptually, our MIFs may be similar to ‘image signatures’
obtained by recently developed unsupervised methods32

(see Supplementary Discussion). Our approach is complementary
to alternative experimental approaches, such the characterization
of neural tuning along an exhaustive list of call parameters33,
characterizing call tuning as tuning for regions of the modulation
spectrum34–36, and combinations of these methods in conjunc-
tion with machine learning tools37 (see Supplementary Discus-
sion). Our results suggesting auditory cortex as a locus where the
neural representation of vocalization sounds generalizes over
production variability is consistent with a recent study showing
that neurons in the auditory cortex of ferrets show robust
responses to vowel identity tolerant to manipulations of various
vowel features38.

Mechanistically, neural selectivity for MIFs may be generated
(1) gradually along the ascending auditory pathway, or (2) de
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novo in cortex. Single-neuron feature selectivity often (but not
always, see below) leads to selectivity for one or a few call types,
and analyzing call selectivity of neurons at different auditory
processing stages could provide insight into where MIF-based
representations might be generated in the auditory pathway. In
early auditory processing stages, evidence for call selectivity at the
single-neuron level is minimal. For example, at the level of the
cochlear nucleus, few single neurons in species other than mice
show call selectivity39. At the level of inferior colliculus, a
population-level bias in call-selectivity has been reported39–41, but
evidence for single-neuron level call-selectivity is equivocal42. It is
only at the level of auditory cortex where clear single-neuron
selectivity for calls or call features has been observed. Therefore, it
is quite likely that selectivity for MIF-like features in species with
spectrotemporally complex calls is generated at the level of
auditory cortex. This is supported by the expansion in the
number of cortical neurons mentioned above. Importantly, the
cortical emergence of MIF-based representations is also sup-
ported by the fact that MIF-like responses have been observed in
the superficial layers of marmoset A121.

We propose the following hierarchical model for auditory
processing based on the representation of task-relevant features.
In thalamorecipient layers of A1, representation of sound identity
is still based on spectral content. This is reflected in the strongly
tone-tuned responses of A1 L4 neurons. From these neurons,
tuning for MIF-like features may be generated using nonlinear
mechanisms, such as combination-sensitivity. For example, the
tuning properties of the marmoset A1 responses shown in Fig. 8
was determined to be the result of selectivity for precise
spectral and temporal combinations of two-tone pips21. This is
also consistent with a recent computational model showing
that combinations of spectrotemporal kernels, optimized for

representing natural sounds, recreates aspects of experimentally
observed spectrotemporal receptive fields from recordings in cat
auditory cortex43. Further experiments, probing call and feature
selectivity in identified layers of A1, are necessary to more pre-
cisely address where selectivity for MIF-like features first emerges
in the ascending auditory pathway, and at what stage MIFs are
combined to result in a categorical read-out. Once categories are
detected, further hierarchical processing stages might be neces-
sary to accomplish more sophisticated behavioral goals, such as
caller identification, integration of social context with call per-
ception, or decoding the emotional valence of calls.

In conclusion, we propose a hierarchical model for solving a
central problem in auditory perception—the goal-oriented
categorization of sounds that show high within-category varia-
bility, such as speech1,2 or animal calls3. Our work has broad
implications as to where in the auditory pathway categorization
begins to emerge, and what features are optimal to learn in
categorization tasks. For example, the lack of distinction of
perceptual categories of English /r/ and /l/ by native Japanese
speakers might be a consequence of not learning and
encoding44,45 the optimal features necessary for this /r/-/l/
categorization, as it is not task-relevant for Japanese speech. Our
model would predict that /r/-/l/ category learning would cause
selective responses to develop for new task-relevant features, and
primarily reflected in changes to the A1 L2/3 circuit. Consistent
with this hypothesis, a recent study showed that training
humans to categorize monkey calls resulted in finer tuning for
call features in the auditory cortex46. We therefore suggest that
the neural representation of sounds at higher cortical processing
stages uses task-dependent features as building blocks, and that
new blocks can be added to this representation to enable novel
perceptual requirements.
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Methods
Vocalizations. All procedures conformed to the NIH Guide for Care and Use of
Laboratory Animals. All marmoset procedures were approved by the Institutional
Animal Care and Use Committee (IACUC) of The Johns Hopkins University. All
guinea pig procedures were approved by the IACUC of the University of Pitts-
burgh. We used vocalization recordings from 8 adult marmosets, both male and
female, for these experiments. Marmoset calls were recorded from a marmoset
colony at The Johns Hopkins University using directional microphones8. Guinea
pig calls were recorded from 3 male and 3 female adult guinea pigs. Two or more
guinea pigs with varied social relationships were placed on either side of a trans-
parent divider in a sound attenuated booth. Directional microphones, suspended
above the guinea pigs were used to record calls. Calls were recorded using Sound
Analysis Pro 201147, digitized at a sampling rate of 48 KHz, low-pass filtered at 24
KHz, manually segmented using Audacity, and classified into different call types.

Random feature generation. All modeling was implemented in MATLAB. We
focused on classifying each of three major marmoset call types, twitter, trill, and
phee, from all other call types. That is, three main binary classification tasks—
twitter vs. all other calls, trill vs. all other calls, and phee vs. all other calls were
considered. We set up the categorization tasks as a series of binary classifications
based on the results of an earlier study of visual categorization that demonstrated
the advantages of features learnt using multiple binary classifications compared to
those learnt using a single multi-way classification. Specifically, in that study,
multiple binary classifications resulted in features that were distinctive and highly
tolerant to distortions48. For each classification task, we first generated training
datasets, which consisted of 500 random within-class calls (e.g., twitters) produced
by 8 animals (about 60 calls per animal), and 500 random outside-class calls (e.g.,
trills, phees, other calls) produced by the same 8 animals. In order to convert sound
waveforms of the calls into a physiologically meaningful quantity, we transformed
these calls into cochleagrams using a previously published auditory nerve model49

using human auditory nerve parameters with high spontaneous rate. We used
human auditory nerve parameters because of the close similarity between mar-
moset and human audiograms50. The output of this model was the time-varying
activity pattern of the entire population of auditory nerve fibers, and resembles the
spectrogram of the call (Fig. 2a, b). We then extracted 6000 random features from
these 500 within-class cochleagrams. To do so, we randomly chose a center fre-
quency, bandwidth, onset time and length and extracted a snippet of activity from
the cochleagram. Each feature thus corresponded to the spatiotemporal pattern of
activity of a subset of auditory nerve fibers within a specified time window
(magenta box in Fig. 2b). We used rectangular feature shapes rather than other
shapes to minimize assumptions – for example, an ellipse shaped feature would
imply that the weighting of individual auditory nerve fibers changes over time. For
twitters, to ensure that smaller features were well-sampled, 2000 of these features
were restricted to have a bandwidth less than 1 octave and a duration less than 100
ms. The bandwidth and duration of the remaining 4000 features were not
constrained.

Feature complexity. We characterized feature complexity using the reduced
kurtosis of the activity distribution of all auditory nerve fibers contained within a
feature. Briefly, if the feature was an empty region of the cochleagram, or a region
of uniform activity, the activity of all nerve fibers in all time bins would be about
equal. This activity would thus be normally distributed, and show a reduced
kurtosis value of zero. At the other extreme, for entire calls, there would be many
bins of high activity, and a large number of bins with zero activity, resulting in an
activity distribution with very high reduced kurtosis. We hypothesized that mid-
level features that represent aspects of calls such as frequency-modulated sweeps or
combinations of phrases over time would show intermediate reduced kurtosis
values, and be more informative than low-level (tones) or high-level (entire calls)
features.

Threshold optimization. We defined the response of a feature to a call as the
maximum value of the normalized cross-correlation (NCC) function between the
feature’s cochleagram and the call’s cochleagram, restricted to the auditory nerve
fibers that are represented in the feature. Note that this means features can only be
detected in the frequency range that they span, but can be detected anywhere in
time within a call. NCC is a commonly used metric to quantify template-match. To
compute the NCC, the feature and the cochleagram patch at each lag were nor-
malized by subtracting their respective mean values and dividing by their respective
standard deviations before convolving them. This results in a value between −1,
signifying that the feature and cochleagram patch at that lag are completely anti-
correlated, and +1, signifying a perfect match between the feature and the
cochleagram. Because this is a computation-intensive step, template matching was
implemented on an NVIDIA GeForce 980 Ti GPU. For each feature, then, we
obtained 500 within-class responses, and 500 outside-class responses (response
histograms of an example feature in Fig. 2c). To transform these continuous
response distributions into a binary detection variable, we used mutual information
to quantify the information provided by a feature about the class (within- or
outside-class) over a parametrically varied range of thresholds. We computed
mutual information following the method of Ullman et al.12, by measuring the

frequency of detecting a feature fi at a given threshold θi (fi= 1 if present, 0 if
absent) in the within-class (C= 1) or outside-class (C= 0) cochleagrams as:

IðfiðθiÞ;CÞ ¼
X

fi¼f0;1g
C¼f0;1g

pðfi;CÞ log
pðfi;CÞ
pðfiÞpðCÞ

� �

ð1Þ

where p(C) was assumed to be 0.10. We empirically verified that features identified
were insensitive to variations of this value. The optimal threshold for each feature
was taken to be the threshold value at which the mutual information was maximal,
and the merit of each feature was taken to be the maximum mutual information
value in bits (Fig. 2c). The weight of each feature was taken to be its log-likelihood
ratio. At the end of this procedure, each of the initial 6000 features were allocated a
merit, a weight, and an optimal threshold at which each individual feature’s utility
for classifying calls as belonging to within- or outside-class was maximized. Note
that merit and weight are distinct quantities that need not be monotonically
related. For example, if the lack of energy in a frequency band is indicative of a
target category, features that contain energy in this frequency band will be detected
often in the other categories, but not in the target category. The feature will thus
have high merit for classification, as it is informative by its absence, but have a
negative weight.

Greedy search. Because we chose initial features at random, many of these features
individually provided low information about call category, and many of the best
features for classification were similar, or redundant. Therefore, to extract maximal
information from a minimal set of features for classification, we used a greedy
search algorithm12 to iteratively (1) eliminate redundant features, and (2) pick
features that add the most information to the set of selected features. The minimal
set of features that together maximize information about call type were termed
maximally informative features (MIFs). The first MIF was chosen to be the feature
with maximal merit from the set of all 6000 initial random features. Every con-
secutive MIF was chosen to maximize pairwise added information with respect to
the previously chosen MIFs. Note that these consecutive features need not have
high merit individually. We iteratively added MIFs until we could no longer
increase the hit rate without increasing the false alarm rate. Practically, this meant
adding features until total information reached 0.999 bits, or individual features
added less than 0.001 bits, whichever was reached earlier. At the end of this
procedure, a small set of MIFs, containing the optimal set of features for call
classification was obtained.

Analysis and statistics. To test how well novel calls could be classified using these
MIFs alone, we generated from the same 8 animals a test set of 500 within- and
outside-class calls that the model had not been exposed to before. We computed
the NCC between each test call and MIF, and considered the MIF to be detected in
the call if the maximum value of the NCC function exceeded its optimal threshold.
If detected, the MIF provided evidence in favor of a test call belonging to a call type,
proportional to its log-likelihood ratio. We then summed the evidence provided by
all MIFs and generated ROC curves of classification performance by systematically
varying an overall evidence threshold. We used the area under the curve (AUC) to
compare ROC curves for classification performance by MIFs generated with dif-
ferent constraints (see Results). Statistical significance was evaluated using rank-
sum tests, with Bonferroni multiple-comparisons corrections, for comparing
between these conditions, and for comparing performance to a large number of
simulations generated using random MIFs.

Generating predictions. To generate predictions of the responses of putative MIF-
selective neurons to other auditory stimuli, we first generated a large battery of
stimuli that have been used in previous recordings from marmoset A1, and
computed their cochleagrams as earlier. We then computed the maximum value of
the NCC function between the MIF and the stimulus cochleagram. This resulted in
response values that could be conceptualized as equivalent to membrane potential
(Vm) responses. These were converted to firing rates by applying a power law
nonlinearity, of the form:

FR ¼ k � Vm � θb cp; ð2Þ
where FR is the firing rate response in spk s−1, θ is the MIF’s optimal threshold, p
is the exponential nonlinearity set to a value of 4, and k is an arbitrary scaling
factor.

Call reconstruction from MIFs. To reconstruct calls, we conceptualized MIFs as
MIF-selective neurons, and considered the times at which NCC values exceeded the
optimal threshold to be the spike times of these neurons. MIF spike times were
computed with a time resolution of 2 ms to simulate refractoriness, and alpha-
functions were convolved with the spike times to determine the peak time at which
each MIF was detected. A copy of the MIF cochleagram was then placed at the peak
time, or summed (with log-likelihood weights) if overlapping with a previously
placed cochleagram. The accuracy of reconstruction was defined as the NCC
between the original stimulus and its reconstructed version at
zero lag.
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Electrophysiology methods. Predictions generated from the MIFs were compared
to earlier recordings from marmoset A1. All recordings were from the auditory
cortex of adult marmosets. Population data comparing natural to reversed twitters
were obtained from Wang and Kadia18. These experiments were performed in
anesthetized marmosets. Single-neuron data regarding feature selectivity were
obtained from Sadagopan and Wang21. These recordings were from awake, pas-
sively listening marmosets. Single-neuron data regarding feature selectivity in
guinea pigs were obtained from adult, head-fixed, passively listening guinea pigs at
the University of Pittsburgh. Briefly, a headpost and recording chambers were
secured to the skull using dental cement following aseptic procedures. Animals
were placed in a double-walled, anechoic, sound attenuated booth. A small cra-
niotomy was performed over auditory cortex. High-impedance tungsten electrodes
(3–5MΩ, A-M Systems Inc. or FHC, Inc.) were advanced through the dura into
cortex to record neural activity. Stimuli were generated in MATLAB, converted to
analog (National Instruments), attenuated, power-amplified (TDT Inc.), and pre-
sented from the best location in an azimuthal speaker array (TangBand 4” full-
range driver). Single units were sorted online using a template matching algorithm
(Ripple, Inc), and refined offline (MKSort). All analyses were performed using
custom MATLAB code.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Code availability
Custom code will be provided upon request to the corresponding author (S.S.).

Data availability
The data available upon request from the authors. Some data are from sources for which
requests should be made to the original authors.
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