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The mTORC1/4E-BP1 axis represents a critical
signaling node during fibrogenesis
Hannah V. Woodcock1, Jessica D. Eley1, Delphine Guillotin1, Manuela Platé 1, Carmel B. Nanthakumar2,

Matteo Martufi3, Simon Peace2, Gerard Joberty4, Daniel Poeckel4, Robert B. Good2, Adam R. Taylor2,

Nico Zinn4, Matthew Redding1, Ellen J. Forty1, Robert E. Hynds 5,6, Charles Swanton5,6, Morten Karsdal7,

Toby M. Maher8, Andrew Fisher9, Giovanna Bergamini4, Richard P. Marshall2, Andy D. Blanchard2,

Paul F. Mercer1 & Rachel C. Chambers 1

Myofibroblasts are the key effector cells responsible for excessive extracellular matrix

deposition in multiple fibrotic conditions, including idiopathic pulmonary fibrosis (IPF). The

PI3K/Akt/mTOR axis has been implicated in fibrosis, with pan-PI3K/mTOR inhibition cur-

rently under clinical evaluation in IPF. Here we demonstrate that rapamycin-insensitive

mTORC1 signaling via 4E-BP1 is a critical pathway for TGF-β1 stimulated collagen synthesis in

human lung fibroblasts, whereas canonical PI3K/Akt signaling is not required. The impor-

tance of mTORC1 signaling was confirmed by CRISPR-Cas9 gene editing in normal and IPF

fibroblasts, as well as in lung cancer-associated fibroblasts, dermal fibroblasts and hepatic

stellate cells. The inhibitory effect of ATP-competitive mTOR inhibition extended to other

matrisome proteins implicated in the development of fibrosis and human disease relevance

was demonstrated in live precision-cut IPF lung slices. Our data demonstrate that the

mTORC1/4E-BP1 axis represents a critical signaling node during fibrogenesis with potential

implications for the development of novel anti-fibrotic strategies.
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F ibrosis, defined as the abnormal accumulation of extra-
cellular matrix (ECM), is a pathological feature of many
chronic inflammatory and metabolic diseases and is often

closely linked with organ dysfunction and, ultimately, organ
failure1,2. The importance of the stroma in influencing cancer
progression is also gaining increasing recognition1,3. Despite this
high unmet clinical need, only two anti-fibrotic drugs, Pirfeni-
done/Esbriet® and Nintedanib/Ofev® have been approved to date.
Moreover, these agents slow rather than halt disease progression
in idiopathic pulmonary fibrosis (IPF)4,5, the most rapidly pro-
gressive and fatal of all fibrotic conditions. The underlying
etiology of IPF remains poorly understood although current
evidence suggests this condition likely arises as a result of a highly
dysregulated wound healing response following chronic epithelial
injury on the background of a combination of genetic predis-
position and environmental factors (including cigarette smoking)
and cellular senescence associated with ageing6–8. Highly syn-
thetic and α-smooth muscle actin positive myofibroblasts are
regarded the key effector cells of the fibrogenic response during
both normal wound healing and in the context of pathological
fibrosis9, including IPF10–13. The persistence of these cells, as a
result of a failure in apoptosis, is felt to be a key event in the
initiation and progression of fibrosis14. In terms of key mediators
involved in promoting excessive myofibroblast differentiation and
fibrogenesis, current evidence points to a key role for the pleio-
tropic cytokine, transforming growth factor-β (in particular the
TGF-β1 isoform), in multiple fibrotic conditions15. TGF-β1 sig-
nals through the canonical Smad pathway and several non-
canonical pathways to influence cellular function in a cell-specific
and cell-context dependent manner. Therapeutic strategies aimed
at targeting the dysregulated TGF-β1 axis in fibrosis, without
compromising its critical roles in tissue and immune homeostasis,
are being intensely pursued16.

The phosphoinositide-3-kinase (PI3K)/mechanistic target of
rapamycin (mTOR) signaling pathway plays a central role in
regulating a broad range of fundamental cellular processes,
including metabolism, cell cycle progression, proliferation,
growth, autophagy, and protein synthesis17. Activation of class 1
PI3K results in the production of membrane-localized phospha-
tidylinositol-3,4,5-trisphosphate (PIP3) and recruitment of Akt
via its pleckstrin homology domain. mTOR functions at two
distinct nodes in this signaling axis. mTOR complex 2
(mTORC2) and 3-phosphoinositide-dependent protein kinase-1
(PDK1) phosphorylate Akt at the plasma membrane to stabilize
the catalytic site of Akt for maximal activation18. Once activated,
Akt phosphorylates the TSC2 subunit of the tuberous sclerosis
complex (TSC), a key control switch for mTORC1. Phosphor-
ylation and inhibition of TSC2 lead to the accumulation of GTP-
bound RAS homologue enriched in brain (Rheb) and activation
of mTORC1 signaling via several downstream substrates,
including p70S6K and eukaryotic translation initiation factor 4E-
binding protein 1 (4E-BP1)19.

The PI3K/mTOR pathway has previously been implicated in
influencing fibroblast proliferative responses and TGF-β1-induced
myofibroblast differentiation and collagen production20,21. More
recently, we provided a strong scientific rationale for progressing
the potent pan-PI3 kinase/mTOR inhibitor Omipalisib
(GSK2126458) as a novel anti-fibrotic agent in a proof-of-
mechanism trial in IPF (https://clinicaltrials.gov/ct2/show/
NCT01725139)22. Omipalisib displays broad target specificity
and may overcome functional redundancy between PI3K iso-
forms and compensatory feedback loops in this pathway but on-
target-toxicities associated with this class of inhibitors could be
limiting23–25.

The mechanism by which the PI3K/mTOR pathway regulates
TGF-β1-induced collagen synthesis is poorly understood. In this

study, we characterize a unique toolbox of commercially available
and proprietary pharmacological inhibitors and use these in
combination with CRISPR-Cas9 gene editing and siRNA
approaches to deconvolute the mechanism by which pan-PI3
kinase/mTOR inhibition blocks TGF-β1-induced collagen synth-
esis in primary human lung fibroblasts (pHLFs). We show that
the potent fibrogenic effects of TGF-β1 are mediated via the
cooperation between canonical Smad3 and rapamycin-insensitive
mTORC1/4E-BP1 signaling and that the canonical PI3K–Akt axis
is dispensable for this response. Furthermore, ATP-competitive
mTOR inhibition halts collagen synthesis in live unmanipulated
precision-cut IPF lung slices. The critical role of the mTORC1/
4E-BP1 axis in influencing collagen synthesis is further general-
izable to fibrogenic cells implicated in the development of fibrosis
in the liver and skin, as well as the stromal reaction in lung
cancer. Taken together, these experiments shed light on the sig-
naling pathways by which TGF-β1 exerts its potent fibrogenic
effects and provide support for selectively targeting
mTORC1 signaling in IPF and potentially other fibrotic
conditions.

Results
TGF-β1-induced PI3K and mTOR signaling in lung fibroblasts.
Initial studies, aimed at defining the kinetics of PI3K/mTOR and
canonical Smad signaling in pHLFs during TGF-β1-induced
collagen deposition, revealed that Smad signaling was rapid and
relatively short-lived with Smad2 phosphorylation peaking within
the first hour and declining after 2 h (Fig. 1a). This preceded
mTORC1 signaling, as evidenced by p70S6K and 4E-BP1 phos-
phorylation (Ser65), which was observed from 2 h onwards and
was sustained for at least 12 h. Maximal PDK1-dependent
phosphorylation of Akt (Thr308) and mTORC2-dependent
phosphorylation of its substrates Akt (Ser473) and SGK1 (infer-
red by phosphorylation of the SGK1 substrate NDRG126) peaked
12 h post-stimulation.

PI3K pathway inhibition and the TGF-β1 collagen response.
We next investigated the contribution of the PI3K/mTOR sig-
naling axis to TGF-β1-induced collagen synthesis by quantitative
high-content imaging of collagen I deposition under macro-
molecular crowding conditions22,27. TGF-β1 (1 ng/ml) increased
pHLF collagen deposition by 2.1-fold (±0.1) after 72 h (Fig. 1b, c).
To determine whether canonical PI3K signaling was necessary for
this response, we investigated the effect of highly selective inhi-
bitors of critical components of the PI3K/Akt axis: PI3K (Com-
pound 2), Akt (MK2206), and PDK1 (GSK23344770)
(Supplementary Fig. 1). A schematic of inhibitors used with their
corresponding targets is shown in Fig. 2a. Compound 2, an ATP-
competitive inhibitor selective for class 1 PI3K isoforms that
exhibits low affinity for mTOR (Supplementary Table 2), atte-
nuated both Akt Thr308 and Ser473 phosphorylation in addition
to inhibiting phosphorylation of downstream substrates of Akt
(PRAS40 and GSK3β; Fig. 2b). In contrast, this inhibitor had no
effect on TGF-β1-induced collagen deposition (Fig. 2c). Similarly,
treatment with either the allosteric inhibitor of Akt, MK2206, or
the PDK1 inhibitor, GSK2334479, attenuated Akt phosphoryla-
tion at both Thr308 and Ser473 sites in addition to downstream
Akt signaling (Fig. 2d, f) but had no effect on the TGF-β1-induced
collagen response (Fig. 2e, g). The mTORC2 substrates, Akt and
SGK1, require sequential phosphorylation by PDK1 and
mTORC2 to become fully activated. TGF-β1-induced mTORC2-
mediated downstream signaling (Akt and NDRG) was attenuated
in the presence of a PDK1 inhibitor, but collagen synthesis was
unaffected (Fig. 2f, g). Taken together, these data led us to
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conclude that canonical PI3K/Akt signaling is redundant for
TGF-β1-induced collagen synthesis.

The role of mTOR signaling in the TGF-β1 collagen response.
Having ruled out a role for the linear PI3K/Akt pathway, we next
investigated the contribution of mTOR signaling to TGF-β1-
induced collagen synthesis using four structurally distinct, potent
and highly selective ATP-competitive mTOR kinase inhibitors
that target both mTORC1 and mTORC2 (Supplementary Table 2,
Supplementary Fig. 1). The first compound, AZD8055, attenuated
TGF-β1-induced phosphorylation of the mTORC1 substrates,
p70S6K (Thr389) and 4E-BP1 (Thr37/46, Ser65), as well as the
mTORC2 substrates, Akt (Ser473) and SGK1 (phosphorylated
NDRG1 Thr346) in a concentration-dependent manner (Fig. 3a).
This compound was also highly effective at inhibiting TGF-β1-
induced collagen synthesis (Fig. 3b, c). This observation was
reproducible in fibroblasts derived from 4 additional donors
(Supplementary Table 3). Similar inhibitory profiles were
observed with the ATP-competitive mTOR inhibitors; Torin-1
(Fig. 3d and Supplementary Fig. 3a), Compound 1 (Fig. 3e and
Supplementary Fig. 3b), and CZ415 (Fig. 3f and Supplementary
Fig. 2). Supplementary Table 4 illustrates the comparative selec-
tivity profiles of CZ415 and AZD8055 derived from the MS-based
binding analysis. The complete selectivity profiles are available in
Supplementary Data 1. AZD8055 also significantly attenuated the
peak increase in COL1A1 mRNA levels following TGF-β1 sti-
mulation suggesting that mTOR signaling acts, at least in part, by
influencing COL1A1 mRNA levels (Fig. 3g).

Having established a key role for mTOR in mediating the
fibrogenic effects of TGF-β1, we next investigated the relative
contributions of mTORC1 and mTORC2 by CRISPR-Cas9 gene
editing of either RPTOR (mTORC1) or RICTOR (mTORC2).

Successful gene editing was confirmed by Western blot (Fig. 3h).
TGF-β1-induced collagen synthesis was maintained in RICTOR-
edited cells (Fig. 3i, j). In contrast, RPTOR gene editing resulted in
near complete inhibition of TGF-β1-induced collagen synthesis.
These observations were confirmed in a second assay based on
the quantitation of hydroxyproline in procollagen by reverse
phase HPLC (Fig. 3k) and provided strong evidence that
mTORC1 is a key signaling node involved in mediating the
potent fibrogenic effects of TGF-β1.

The PI3K pathway is considered to be the primary pathway for
the activation of mTORC1 (Fig. 2a). Akt phosphorylates TSC2 at
multiple sites to relieve the inhibition on Rheb and stimulate
mTORC1 activity. However, neither PI3K nor Akt inhibition
influenced mTORC1 downstream signaling despite attenuating
TSC2 phosphorylation at the Akt-dependent Ser939 residue
(Supplementary Fig. 4a, b). MAPK signaling via ERK represents a
parallel pathway which also leads to the phosphorylation of TSC219.
Phosphorylation of TSC2 at the ERK-dependent Ser664 residue was
retained when fibroblasts were stimulated with TGF-β1 in the
presence of inhibitors targeting PI3K, Akt, or PDK1 (Supplemen-
tary Fig. 4b). In order to rule out the possibility of ERK-mediated
compensation when the Akt pathway is fully inhibited, we show
that the ERK inhibitor AS-703026, used either on its own or in
combination with the Akt inhibitor (MK2206), did not attenuate
TGF-β1-induced collagen deposition (Supplementary Fig. 4c, d).
Inhibition of RSK1 (SL0101), which lies downstream of ERK and
also phosphorylates TSC2, similarly did not inhibit the TGF-β1
collagen response (Supplementary Fig. 4e). This led us to conclude
that TGF-β1-induced collagen synthesis is not dependent on Akt-
or MAPK-mediated phosphorylation of TSC2.

Canonical Smad signaling was found to precede the activation
of mTORC1 signaling in response to TGF-β1 stimulation (Fig. 1a),
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but whether Smad is necessary for the activation of mTORC1 is
not known. Targeted knockdown of Smad3 in pHLFs attenuated
mTORC1-dependent phosphorylation of p70S6K and 4E-BP1,
indicating that the activation of mTORC1 is Smad3-dependent

(Fig. 4a, b). Smad3 knockdown was also associated with a
significant reduction in TGF-β1-induced COL1A1 mRNA levels
and collagen synthesis (Fig. 4c, d). Further support for the
conclusion that Smad signaling is temporally upstream of mTOR
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was obtained by showing that AZD8055, Torin-1, and Com-
pound 1 have no effect on the phosphorylation of either Smad2 or
3 (Fig. 3a and Supplementary Fig. 3).

TGF-β1-induced collagen synthesis is rapamycin-insensitive.
Having established the importance of mTORC1 signaling for
TGF-β1-induced collagen synthesis, we examined the effect of the
partial allosteric mTORC1 inhibitor, rapamycin. In contrast to
ATP-competitive mTOR inhibitors, which directly bind to the
mTOR catalytic site, rapamycin had no effect on TGF-β1-induced
collagen synthesis (Fig. 5a) or the peak increase in COL1A1
mRNA levels (Fig. 5b). Comparison of the effect of AZD8055

versus rapamycin on downstream mTORC1 substrates revealed
that treatment with rapamycin completely inhibited p70S6K
phosphorylation, whereas its effects on mTORC1-mediated 4E-
BP1 phosphorylation were modest (Fig. 5c). In contrast,
Fig. 3a shows that the ATP-competitive mTORC1/2 inhibitor,
AZD8055, completely inhibited phosphorylation of both
mTORC1 substrates, p70S6K and 4E-BP1, notably affecting all
measured 4E-BP-1 phosphorylation sites.

To further interrogate the role of mTORC1 downstream
substrates in TGF-β1-induced collagen synthesis, we investigated
the effects of p70S6K inhibition with LY2584702. This compound
(1 μM) inhibited the phosphorylation of its downstream sub-
strate, ribosomal protein S6 (Fig. 5d), but had no effect on
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Fig. 3 ATP-competitive inhibition of mTOR and mTORC1 knockout attenuates collagen I deposition in pHLFs. pHLFs were pre-incubated with vehicle (0.1%
DMSO) or increasing concentrations of AZD8055 prior to stimulation with TGF-β1 (1 ng/ml). Cells were lysed at 1 h to assess Smad phosphorylation and at
12 h to assess the phosphorylation of specified proteins, assessed by Western blot (a). pHLFs were pre-incubated with vehicle (0.1% DMSO) or increasing
concentrations of AZD8055 (b, c), Torin-1 (d), Compound 1 (e), or CZ415 (f) and stimulated with TGF-β1 for 72 h with collagen I deposition assessed by
macromolecular crowding assay. Data are expressed as collagen I signal calculated as a percentage of the TGF-β1-treated control (n= 4 fields of view
imaged per well) and cell counts obtained by staining nuclei with DAPI (n= 4). Data are representative of 5 independent experiments. Scale bars=
360 µm. IC50 values were calculated using 4-parameter non-linear regression: AZD8055, IC50= 368 nM, 95% CI 220–616 nM; Torin-1, IC50= 57.8 nM,
95% CI 38–87.7 nM; Compound 1, IC50= 2.6 µM, CI 2.1–3.1 µM; CZ415, IC50= 165.9 nM, 95% CI 135.4–203 nM. COL1A1 mRNA levels were assessed by
real-time RT qPCR after pre-incubation of pHLFs with vehicle (0.1% DMSO) or 1 µM AZD8055 prior to TGF-β1 stimulation for 24 h (n= 4) (g). Relative
expression was calculated using 2−ΔCt. ΔCt was calculated from the geometric mean of two reference genes. pHLFs were modified by CRISPR-Cas9 gene
editing using guide RNAs (gRNA) targeting exon 26 of RPTOR or exon 29 of RICTOR. Analysis of the resultant levels of Raptor and Rictor protein are shown
(h). CRISPR-Cas9-edited pHLFs were stimulated with TGF-β1 (1 ng/ml) for 72 h, with collagen I deposition normalized to cell count assessed by
macromolecular crowding assay (n= 3) (i). Representative images are shown in j. In addition, supernatants were collected from CRISPR-Cas9-edited
pHLFs treated with TGF-β1 (1 ng/ml) for 72 h and hydroxyproline was quantified using HPLC (n= 3) (k). Data are presented as means ± SEM. Differences
between groups were evaluated with two-way ANOVA with Tukey multiple comparison testing, ***p < 0.001, ****p < 0.0001
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TGF-β1-induced collagen synthesis (Fig. 5e). p70S6K is a member
of the AGC kinase superfamily that is sequentially phosphorylated
by PDK1 and mTOR to become fully activated. PDK1 inhibition
attenuated p70S6K phosphorylation by mTORC1 (Fig. 5f), but as
previously mentioned had no effect on TGF-β1-induced collagen
synthesis (Fig. 2f). Taken together, these data led us to conclude
that rapamycin-sensitive mTORC1 signaling through p70S6K is
dispensable for TGF-β1-induced collagen synthesis.

The role of 4E-BP1 downstream of mTORC1 signaling. Having
ruled out p70S6K, we next addressed the potential involvement of
4E-BP1. 4E-BP1 is a major translational repressor which inhibits
cap-dependent translation by binding to eukaryotic translation
initiation factor (eIF)4E, preventing the recruitment of eIF4G and
the subsequent formation of the translation initiation complex.
Dissociation of 4E-BP1 from eIF4E is dependent on the stepwise
phosphorylation of at least four critical sites by mTORC1
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Fig. 5 Rapamycin-insensitive mTORC1 signaling mediates TGF-β1-induced collagen I deposition. pHLFs were pre-incubated with vehicle (0.1% DMSO) or
increasing concentrations of rapamycin (a) and LY2584702 (e) and stimulated with TGF-β1 for 72 h with collagen I deposition assessed by macromolecular
crowding assay. Data are expressed as collagen I signal as a percentage of the TGF-β1-treated control (n= 4 fields of view imaged per well) and cell counts
obtained by staining nuclei with DAPI. Data are presented as mean ± SEM (n= 4) and are representative of 3 independent experiments. Additionally,
pHLFs were pre-incubated with vehicle (0.1% DMSO) or increasing concentrations of rapamycin (c), 1 µM LY2584702 (d), or 1 µM GSK2334470 (f) prior
to stimulation with TGF-β1 (1 ng/ml). Cells were lysed 12 h later and the phosphorylation of specified proteins was assessed by Western blot. COL1A1
mRNA levels were assessed by RT qPCR after pre-incubation of pHLFs with vehicle (0.1% DMSO) or 100 nM rapamycin prior to TGF-β1 stimulation for
24 h (b). Relative expression was calculated using 2−ΔCt. ΔCt was calculated from the geometric mean of two reference genes. Data are presented as
mean ± SEM (n= 4). Differences between groups were evaluated with two-way ANOVA. For immunoprecipitation of the m7GTP cap, pHLFs were pre-
incubated with vehicle (0.1% DMSO), 1 µM AZD8055 or 100 nM rapamycin prior to TGF-β1 stimulation. Protein levels were assessed by Western blot (g)
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(threonine residues 37, 46, and 70 and serine residue 65) and
allows eIF4G to bind eIF4E to facilitate cap-dependent transla-
tion28,29. Cap pull-down studies with the m7GTP cap analog with
lysates from TGF-β1-treated fibroblasts in the presence of either
rapamycin or AZD8055 revealed that TGF-β1 stimulation led to
the release of 4E-BP1, allowing eIF4G to bind to the cap complex
(Fig. 5g). Treatment with AZD8055 enhanced the binding of
4E-BP1 to the cap complex, excluding eIF4G despite TGF-β1
stimulation. In contrast, rapamycin treatment failed to prevent

4E-BP1 dissociation from the cap complex in TGF-β1-stimulated
fibroblasts. Taken together, these data suggest that only ATP-
competitive mTOR inhibition, which fully suppresses 4E-BP1
phosphorylation downstream of mTORC1 to enhance 4E-BP1
binding to the cap (Fig. 3a and Supplementary Fig. 3), is capable
of preventing the initiation of TGF-β1-induced cap-dependent
translation.

To further interrogate the role of 4E-BP1, we knocked down
4E-BP1 by targeted siRNA (which should mimic full 4E-BP1
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phosphorylation). This led to an enhanced TGF-β1 response and
interfered with the ability of AZD8055 to inhibit TGF-β1 induced
collagen synthesis (Fig. 6a, b) indicating that the inhibitory effects
of AZD8055 are mediated by blocking the phosphorylation of 4E-
BP1. To further interrogate the mTORC1/4E-BP1 axis, we
generated pHLFs expressing a doxycycline-inducible 4E-BP1
dominant negative phospho-mutant (with mTORC1 phosphor-
ylation sites Thr37, Thr46, Ser65, and Thr70 replaced by alanine,
abbreviated as 4E-BP1-4A29). We reasoned that the expression of
4E-BP1-4A would mimic the effects of ATP-competitive mTOR
inhibition on collagen deposition. m7GTP cap pull-down
confirmed doxycycline treatment induced 4E-BP1-4A expression
and constitutive binding of 4E-BP1-4A to eIF4E (Fig. 6c).
Doxycycline had no effect on 4E-BP1 expression or collagen
deposition in untransduced pHLFs (Supplementary Fig. 5a, b).
Expression of the dominant negative 4E-BP1-4A phosphomutant
resulted in a marked attenuation of TGF-β1-induced collagen
deposition to below constitutive baseline values (Fig. 6d, e).

4E-BP1-4A expression also inhibited TGF-β1-induced COL1A1
mRNA levels (Fig. 6f); whereas 4E-BP1 siRNA knockdown
similarly rescued the inhibitory effect of AZD8055 on TGF-β1-
induced COL1A1 mRNA levels (Fig. 6g), indicating that the
mTORC1/4E-BP1 axis acts at least in part, at the level of

regulating COL1A1 mRNA levels to mediate the fibrogenic effects
of TGF-β1 in pHLFs. Our proposed model is shown in Fig. 6h.

mTORC1 signaling and fibrogenesis in IPF. All studies thus far
were performed with pHLFs from control donors. Since IPF
fibroblasts have been reported to be epigenetically modified
(reviewed in ref. 8), we next examined the role of mTOR signaling
in IPF-derived fibroblasts. ATP-competitive mTOR inhibition
with AZD8055 (Fig. 7a) and CZ415 (Fig. 7b) was also found to
inhibit TGF-β1-induced collagen synthesis in a concentration-
dependent manner in IPF fibroblasts. This observation was
confirmed in 4 additional IPF donor lines (Supplementary
Table 3). As observed for control fibroblasts, the TGF-β1 collagen
response was completely rapamycin-insensitive in IPF fibroblasts
(Fig. 7c).

We were also successful in performing CRISPR-Cas9 gene
editing of RPTOR (mTORC1) or RICTOR (mTORC2) in IPF
fibroblasts as evidenced by marked reduction in Raptor and
Rictor protein expression (Fig. 7d). As observed for control
fibroblasts, TGF-β1-induced collagen deposition was maintained
in RICTOR-silenced cells but RPTOR gene editing resulted in
near-complete inhibition of TGF-β1-induced collagen synthesis
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Fig. 7mTORC1 plays a critical role in mediating the pro-fibrotic effects of TGF-β1 in IPF-derived lung fibroblasts. IPF human lung fibroblasts (IPF-HLFs) were
pre-incubated with vehicle (0.1% DMSO) or increasing concentrations of AZD8055 (a), CZ415 (b), or rapamycin (c) and stimulated with TGF-β1 (1 ng/ml)
for 72 h with collagen I deposition assessed by macromolecular crowding assay. Data are expressed as collagen I signal calculated as a percentage of the
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(Fig. 7e) indicating that mTORC1 is also a key signaling node
during fibrogenesis in IPF fibroblasts.

We next explored the potential role of mTOR in the broader
context of regulating the TGF-β1-modulated matrisome by
conducting a proteomic analysis of IPF fibroblasts grown under
identical macromolecular crowding conditions in the presence
of either CZ415 or rapamycin (Fig. 8a). We focus here on the
core matrisome proteins (http://matrisomeproject.mit.edu/
other-resources/human-matrisome/) and proteins involved in

collagen synthesis and degradation (https://reactome.org/
PathwayBrowser/#/R-HSA-1650814); the complete data is in
Supplementary Data 2. Among these matrisome proteins, about
50% (169/330) were detectable in our cell system. Figure 8a
represents a heatmap of the 50 proteins that showed a fold change
(FC) (pAdj < 0.05 and |FC| > 1.2 in both replicates) in any one
condition relative to the negative TGF-β1 control. Among these,
41 proteins showed increased levels and 9 showed decreased
levels after 24 h stimulation with TGF-β1. To identify differences

COL16A1
MXRA5
TGFBI
HMCN1
PXDN
MFAP2
COL5A2
COL5A1
FBLN5
THBS2
BGN
POSTN
IGFBP3
SPARC
COL1A1
COL3A1
COL7A1
SPOCK1
SRPX2
THBS1
CTHRC1
MMP3
CYR61
BMP1
LEPREL1
COL1A2
ADAMTS2
MFAP4
AGRN
COL4A2
COL4A1
VCAN
IGFBP7
ASPN
COL10A1
CTGF
TNFAIP6
COMP
PRG4
CILP
ELN
IGFBP5
LAMA4
TNXB
CTSL1
SPON1
IGSF10
CTSK
IGFBP4
NOV

−3 3

TGF-β1+
CZ415

TGF-β1+
rapamycin

TGF-β1
+vehicle

Log2 fold change

Color key

Lo
g2

, p
ro

te
in

 F
C

tr
ea

tm
en

t v
s 

no
 T

G
F

-β
1

3

2.5

2

1.5

1

0.5

0

–0.5

P
1N

P
 (

ng
/m

l)

150

100

50

0

– TGF-β1 + TGF-β1 + TGF-β1
+ rapamycin

+ TGF-β1
+ CZ415

+ vehicle

COL5A1
ELN

SPARC CILP
IGFBP3 COL7A1
MFAP2 COL1A1
COL3A1

ADAMTS2 MFAP4

AGRN

**
**

[CZ415] (μM)

vehicle 0.001 0.01 0.1 1 10

A
na

ly
te

 le
ve

l
(%

 o
f v

eh
ic

le
)

150

200

250

100

50

0

**

p-4E-BP1
(Thr37/46)

p-4E-BP1
(Ser65)

P1NP

vehicle vehicle vehicleCZ415 CZ415 CZ415

****

****

a b

c

d
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between CZ415 and rapamycin on the TGF-β1 response, we
selected proteins that were upregulated by TGF-β1, inhibited by
CZ415, and insensitive to rapamycin treatment as depicted in
Fig. 8b. This group included several collagen types (I, III, V, VII),
as well as other ECM proteins (e.g., elastin/ELN) and matricel-
lular proteins (e.g., SPARC) and the key procollagen processing
enzyme, ADAMTS2 (also known as procollagen I N-proteinase).
Of note, the procollagen processing enzyme BMP1 (responsible
for cleaving the C-propeptide of fibrillar collagens) presented the
same profile but just missed the significance cut-off for one
replicate (pAdj= 0.051). Finally, the proteoglycan Agrin (AGRN)
was not affected by TGF-β1 or rapamycin, but was significantly
down-regulated by CZ415 relative to both TGF-β1 treatment and
vehicle control levels.

In order to determine if there is a functional link between
mTOR signaling and collagen synthesis in the context of human
fibrotic lung disease, we next evaluated the effect of the most
potent and selective ATP-competitive mTOR inhibitor, CZ415, in
live unmanipulated precision-cut lung slices generated from IPF
lung transplant tissue. De novo collagen synthesis was monitored
by measuring the release of the human procollagen 1 formation
marker; amino-terminal peptide (P1NP) by proprietary ELISA

(Nordic Bioscience). Figure 8c shows that P1NP levels in slice
supernatants were reduced in the presence of CZ415 in a
concentration-dependent manner. This observation was con-
firmed in tissue slices obtained from 5 additional IPF donors
(Supplementary Table 5). To confirm target engagement of the
mTORC1/4E-BP1 axis, 4E-BP1 phosphorylation was measured in
tissue slice homogenates following exposure to CZ415 (1 μM).
Inhibition of supernatant P1NP levels was associated with
significant attenuation of 4E-BP1 Ser65 and Thr37/46 phosphor-
ylation (Fig. 8d).

mTORC1/4E-BP1 is a core fibrogenic pathway. We also
examined the relative contribution of mTORC1 and
mTORC2 signaling in primary human dermal fibroblasts
(pHDFs), hepatic stellate cells (HSCs), and cancer-associated
fibroblasts (CAFs) derived from patients with lung adenocarci-
noma by CRISPR-Cas9 gene editing to disrupt mTORC1
(RPTOR) and mTORC2 (RICTOR) signaling. These studies
revealed that the magnitude of the TGF-β1 collagen response was
variable and appeared to be related to higher baseline levels of
collagen I deposition observed, especially for HSCs. Moreover,

CAFs

pHDFs

HSCs

a b c d

e f g h

i j k l

R
IC

T
O

R

R
P

T
O

R

C
on

tr
ol

gRNA

Rictor

kDa

mTOR

130
Raptor

250

250

C
on

tr
ol

 s
iR

N
A

4E
-B

P
1 

si
R

N
A

α-tubulin

15

kDa

kDa
kDa

50

130
250

50

Rictor

Raptor

α-tubulin

R
IC

T
O

R

R
P

T
O

R

C
on

tr
ol

gRNA

15

50α-tubulin

4E-BP1

C
on

tr
ol

 s
iR

N
A

4E
-B

P
1 

si
R

N
A

kDa

130
250

50

Rictor

Raptor

R
IC

T
O

R

R
P

T
O

R

C
on

tr
ol

gRNA

α-tubulin

kDa

15

50α-tubulin

4E-BP1
C

on
tr

ol
 s

iR
N

A

4E
-B

P
1 

si
R

N
A

2.0 × 107

1.0 × 107

C
ol

la
ge

n 
I s

ig
na

l
(A

U
)

C
ol

la
ge

n 
I s

ig
na

l
(A

U
)

5.0 × 106

0.0
TGF-β1

TGF-β1gRNA Control

– + – + – – –+

++

+

+ +

+

RPTOR RICTOR

1.5 × 107

Control siRNA

4E-BP1 siRNA
3 × 107

2 × 107

1 × 107

0
AZD8055

****
***

2.0 × 107

2.5 × 107

1.0 × 107

C
ol

la
ge

n 
I s

ig
na

l
(A

U
)

C
ol

la
ge

n 
I s

ig
na

l
(A

U
)

C
ol

la
ge

n 
I s

ig
na

l
(A

U
)

5.0 × 106

0.0
TGF-β1

gRNA Control

– + – + – +

RPTOR RICTOR

TGF-β1

gRNA Control

– + – + – +

RPTOR RICTOR

1.5 × 107

****
****

5 × 107

4 × 107

3 × 107

****
****

1 × 107

2 × 107

0

Control siRNA
4E-BP1 siRNA

Control siRNA
4E-BP1 siRNA

1.8 × 107

1.2 × 107

6.0 × 106

0.0

*

C
ol

la
ge

n 
I s

ig
na

l
(A

U
)

TGF-β1

AZD8055 – –

++ +

+ +

+

2.0 × 107

2.5 × 107

1.0 × 107

5.0 × 106

0.0

1.5 × 107
****

TGF-β1

AZD8055 – –

++ +

+ +

+

4E-BP1

Fig. 9 mTORC1/4E-BP1 axis mediates collagen I deposition in other mesenchymal cells. Lung adenocarcinoma-associated fibroblasts (CAFs), primary
human dermal fibroblasts (pHDFs), and primary hepatic stellate cells (HSCs) were modified by CRISPR-Cas9 gene editing using gRNAs targeting exon 26
of RPTOR or exon 29 of RICTOR. Analysis of the resultant levels of Raptor and Rictor protein are shown (a, e, i). CRISPR-Cas9-edited CAFs, pHDFs, and
HSCs were stimulated with TGF-β1 (1 ng/ml) for 72 h, with collagen I deposition assessed by macromolecular crowding assay (b, f, j). Data are expressed
as collagen intensity (n= 4 fields of view imaged per well) normalized to cell count. Data are presented as mean ± SEM (CAFs n= 5, pHDFs n= 6, HSCs
n= 8). CAFs, pHDFs, and HSCs were transfected with control siRNA or siRNA targeting 4E-BP and 4E-BP1 protein expression was measured (c, g, k).
Following transfection, cells were preincubated with 1 μM (CAFs) or 300 nM (pHDFs, HSCs) AZD8055 or vehicle prior to stimulation with TGF-β1 for 72 h.
Collagen I deposition was analyzed by macromolecular crowding assay (d, h, l). Data are expressed as collagen intensity (n= 4 fields of view imaged per
well) normalized to cell count. Data are presented as mean ± SEM (CAFs n= 3, pHDFs n= 4, HSCs n= 5). Differences between groups were evaluated
with two-way ANOVA with Tukey multiple comparison testing, *p < 0.05, ***p < 0.001, ****p < 0.0001
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CAFs displayed evidence of heterogeneous phenotypes as has
been extensively reported30. For the purpose of this study, we
focused on collagen-producing CAFs. Successful gene editing was
confirmed at the protein level for all lines tested (Fig. 9a, e, i).
Importantly, all cell types in which RPTOR was disrupted were
unable to mount a full TGF-β1 induced collagen response. In
contrast, this response was fully maintained in cells in which
RICTOR was disrupted (Fig. 9b, f, j). We also determined whether
4E-BP1 siRNA was able to restore the attenuated TGF-β1 induced
collagen response in cells treated with AZD8055. 4E-BP1 was
successfully knocked down at the protein level by targeted siRNA
(Fig. 9c, g, k). In all cell types examined, 4E-BP1 siRNA rescued
the impact of AZD8055 on TGF-β1 induced collagen synthesis
(Fig. 9d, h, l), suggesting that the mTORC1/4E-BP1 axis repre-
sents a common fibrogenic signaling hub across stromal cells
derived from different organs.

Discussion
Highly synthetic myofibroblasts are the key effector cells involved
in excessive ECM deposition in multiple fibrotic conditions,
including IPF. We recently reported that combined pan-PI3K and
mTOR inhibition with Omipalisib attenuates TGF-β1-induced
collagen synthesis in human lung fibroblasts (HLFs)22. We now
dissect the relative contributions of PI3K and mTOR signaling to
TGF-β1-induced collagen deposition and report that rapamycin-
insensitive mTORC1/4E-BP1 signaling is critical for this response
in control and IPF-derived fibroblasts, whereas upstream cano-
nical PI3K/Akt signaling is dispensable. Moreover, the effects of
mTOR inhibition extend to other matrisome proteins implicated
in the fibrotic response. Targeting mTOR by ATP-competitive
mTOR inhibition further blocks collagen synthesis in live IPF
tissue slices. Finally, the mTORC1/4E-BP1 axis is also critical for
collagen I synthesis by dermal fibroblasts, HSCs, and lung cancer-
associated fibroblasts.

PI3K/Akt signaling in response to TGF-β1 stimulation in HLFs
has previously been implicated in pro-survival and anti-apoptotic
signaling31,32. We now provide strong pharmacological evidence
that this axis is however not required for TGF-β1-induced col-
lagen synthesis in that class 1 PI3K, Akt, and PDK1 inhibitors,
which robustly attenuated Akt signaling, consistently had no
effect on TGF-β1-induced collagen deposition in our assays.
Although this observation contrasts with previous studies
reporting a role for PI3K in TGF-β1 mediated collagen synth-
esis33–35, these earlier studies employed first generation PI3K
inhibitors, LY294002 and wortmannin, which inhibit a broad
range of other PI3K-related proteins, including mTOR36. In
contrast, Compound 2 used here exhibits exquisite selectivity for
all class 1 PI3K isoforms over mTOR.

Whilst the PI3K/Akt axis is one of the best-characterized
pathways leading to mTORC1 activation37, PI3K and Akt inhi-
bition did not impact TGF-β1-induced mTORC1 downstream
signaling. This is consistent with the temporal kinetics of the
signaling response to TGF-β1, in that maximal phosphorylation
of mTORC1 substrates was consistently observed at least 10 h
before maximal phosphorylation of Akt. We considered the
potential involvement of a number of potential PI3K/Akt inde-
pendent pathways that could regulate mTORC1 activation in
response to TGF-β1 stimulation. The TSC complex is a key
control switch for mTORC1 activation and is phosphorylated by
multiple other inputs besides Akt, including MAPK, Wingless-
related integration (Wnt) signaling, redox and nutrient status19.
Our data show that, while MAPK-dependent TSC2 phosphor-
ylation occurs in response to TGF-β1, pharmacological inhibition
of the major MAPKs implicated in TSC phosphorylation, ERK or
RSK1, did not inhibit the downstream TGF-β1 collagen response.

Furthermore, we ruled out the possibility of compensation
between the Akt and ERK pathways, as reported in other cell
contexts38, on the basis of a lack of an inhibitory effect observed
by combined inhibition of Akt and ERK.

In contrast to the lack of evidence supporting the involvement
of PI3K and Akt and MAPK signaling, ATP-competitive mTOR
inhibition had a profound inhibitory effect on TGF-β1-induced
collagen synthesis (with the most potent and selective compounds
tested displaying an IC50 within the nanomolar range) in control
and IPF fibroblasts. We subsequently established a critical role for
rapamycin-insensitive mTORC1 signaling in mediating the
fibrogenic responses of TGF-β1 on the basis of evidence obtained
by CRISPR-Cas9 gene-editing of RPTOR and the lack of effect of
rapamycin treatment on this response, as has been reported by
others39,40.

Compared to ATP-competitive mTOR inhibitors, which
directly bind to the mTOR catalytic site, rapamycin is an allos-
teric inhibitor that exclusively binds to the FKBP12/rapamycin-
binding (FRB) domain of mTORC1 to restrict the access of
substrates to the catalytic site. Previous phosphoproteomic stu-
dies have shown that the mTORC1 substrates, p70S6K and 4E-
BP1, are differentially sensitive to rapamycin treatment, based on
the avidity with which they are phosphorylated by mTORC1.
p70S6K (Thr389) and 4E-BP1 (Ser65) are weakly phosphorylated
by mTORC1 and readily sensitive to rapamycin treatment,
whereas 4E-BP1 (Thr37/46) are avidly phosphorylated and
insensitive to rapamycin treatment41. In contrast, all p70S6K and
4E-BP1 sites are sensitive to ATP-competitive mTOR inhibi-
tors41. Several observations led us to exclude a role for mTORC1/
p70S6K in mediating the TGF-β1 collagen response. First, TGF-
β1-induced p70S6K phosphorylation was highly sensitive to
rapamycin treatment, but rapamycin had no effect on either
TGF-β1-induced COL1A1 mRNA levels or collagen deposition.
Second, the p70S6K specific inhibitor, LY2584702, did not inhibit
the TGF-β1 collagen response. Finally, treatment with the PDK1
inhibitor (GSK2334470) prevented TGF-β1-induced p70S6K
phosphorylation, but again had no effect on TGF-β1-induced
collagen synthesis.

Our data provides strong support that mTORC1 mediates the
fibrogenic effects of TGF-β1 via a 4E-BP1-dependent mechanism.
Analysis of cap-dependent translation complex formation in
response to TGF-β1 stimulation suggests that attenuation of 4E-
BP1 (Ser65) phosphorylation alone by rapamycin is not sufficient
to block mTORC1-mediated cap-dependent translation and fur-
ther that the potent effect of ATP-competitive mTOR inhibition
on TGF-β1-induced collagen synthesis is likely mediated via a
marked inhibitory effect on the phosphorylation of multiple 4E-
BP1 sites. Conclusive evidence for the critical involvement of 4E-
BP1 was provided by data demonstrating that inducible expres-
sion of a dominant-negative 4E-BP1 phosphomutant led to avid
4E-BP1 binding to the 5′ cap and a profound inhibitory effect on
the TGF-β1-induced collagen response. In addition, silencing 4E-
BP1 by siRNA targeted knockdown (which effectively mimics 4E-
BP1 phosphorylation), rescued the inhibitory effect of the mTOR
inhibitor, AZD8055, on TGF-β1-induced collagen synthesis,
indicating that AZD8055 exerts its anti-fibrotic effects via a 4E-
BP1-dependent mechanism. These findings are consistent with a
recent report suggesting the involvement of mTORC1/4E-BP1 in
basal collagen synthesis in the context of bronchiolitis obliter-
ans40. However, we should caution that our findings highlighting
a critical role for mTORC1/4E-BP1 conflict with a previous study
reporting a role for mTORC2 based on Western blotting for
collagen following shRNA knockdown of RICTOR39. We are
currently unable to explain these contrasting findings, but it is
worth commenting that we employed the most selective phar-
macological tools available to probe multiple kinases along the
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PI3K/Akt/mTOR axis in combination with a highly efficient
CRISPR-Cas9 gene-editing approach and used two com-
plementary methods for assessing collagen synthesis (macro-
molecular crowding assays and hydroxyproline levels). Further
studies using conditional tissue-specific RPTOR and RICTOR
deficient mice may help resolve the issue with respect to the
relative contributions of mTORC1 versus mTORC2 signaling and
fibrogenesis in an in vivo setting.

In terms of identifying the mechanism by which mTORC1/4E-
BP1 influences the TGF-β1 collagen response, several lines of
investigation suggest that this occurs, at least in part, at the level
of regulating COL1A1 mRNA levels. First, AZD8055 attenuated
TGF-β1-induced COL1A1 mRNA levels; second, the impact of
AZD8055 on COL1A1 mRNA levels could be rescued by targeted
4E-BP1 silencing; and third, inducible expression of a dominant-
negative 4E-BP1 phosphomutant blocked the increase in TGF-β1-
induced COL1A1 mRNA levels. Given the key role of the cano-
nical Smad pathway in mediating downstream TGF-β1 signaling,
we also examined how mTORC1 signaling might intercept with
the Smad pathway to regulate TGF-β1-induced collagen expres-
sion. We focused our functional interrogations on Smad3, which
has been strongly implicated in mediating the fibrogenic effects of
TGF-β1 in vitro and in vivo42,43. Our data show that Smad3 and
mTORC1 signaling are both critical and cooperate to promote
TGF-β1-induced collagen deposition. We now propose a potential
model whereby canonical Smad3 signaling influences immediate-
early COL1A1 gene transcription as previously described42, but is
also critical for the activation of the mTORC1/4E-BP1 axis fol-
lowing TGF-β1 stimulation. This axis in turn is critical for TGF-
β1-induced collagen expression, at least in part, by influencing
peak COL1A1 mRNA levels, possibly by influencing the transla-
tion of an as yet unidentified protein intermediate (Fig. 6h).

Seminal ribosome profiling studies by the Sabatini laboratory
have demonstrated that mRNAs with a terminal oligopyrimidine
(TOP) motif in the 5′UTR (which includes ribosomal proteins
and translation elongation factors) exhibit enhanced sensitivity to
translational regulation by the mTORC1/4E-BP1 axis29. Sequence
analysis of the 5′UTR of COL1A1 and COL1A2 mRNAs (RefSeq
accession NM_000088, NM_000089, dbTSS) revealed that these
transcripts do not satisfy the original criteria for TOP/TOP-like
motifs. However, given the profound inhibitory effect observed by
disrupting mTORC1/4E-BP1 signaling on TGF-β1-induced col-
lagen synthesis, we propose that mTORC1/4E-BP1 might act at
multiple levels of the collagen biosynthetic cascade. Further
extensive studies, including ribosome profiling, will be required to
pinpoint the precise mechanism by which mTORC1/4E-BP1
influences TGF-β1-induced collagen expression.

A number of ATP-competitive mTOR inhibitors are now
reaching the clinical phase of development in other disease
contexts (including equally fatal conditions such as cancer44), we
therefore extended our analysis to determine the impact of ATP-
competitive mTOR inhibition on other TGF-β1 regulated matri-
some proteins in IPF-derived fibroblasts by comparing the effect
of CZ415 (the most potent and selective ATP-competitive mTOR
inhibitor tested, Supplementary Fig. 2) with rapamycin. Our
proteomic studies revealed that there were major differences
between the anti-fibrotic potential of these two compounds: in
addition to inhibiting collagen I, CZ415 inhibited other major
components of the fibrogenic niche including several other col-
lagen types (III, V, VII), elastin (ELN), several matricellular
proteins, and collagen processing enzymes. In contrast, the
upregulation of these proteins was completely rapamycin-
insensitive. Of the CZ415-sensitive proteins, only ELN was clas-
sifiable as a TOP mRNA whereas COL5A1, MFAP2, and MFAP4
are classifiable as potentially TOP-like. The translation of these
mRNAs may therefore be directly regulated by the mTORC1/4E-

BP1 axis, further supporting the notion that ATP-competitive
mTOR inhibition acts at multiple steps to modulate the TGF-β1
ECM response. We further propose that the lack of a direct anti-
fibrogenic effect by rapamycin might, in part, explain the recent
negative IPF clinical trial of the closely related rapalog,
everolimus45.

Having established a basis for exploring ATP-competitive
mTOR inhibition as a potential novel anti-fibrotic strategy, we
focused on establishing a human-disease-based rationale for
targeting this axis in the context of IPF. Support for this strategy
in the most commonly used animal model of bleomycin-induced
lung injury and fibrosis in mice became available during the
course of this study based on the ATP-competitive mTOR inhi-
bitor, MLN012839. The bleomycin model is widely regarded to be
helpful in terms of enabling mechanistic investigations relevant to
fibrogenesis in an in vivo context. However, it also has well-
recognized limitations in terms of recapitulating important fea-
tures of the human disease and downstream clinical predict-
ability46. We therefore elected to further investigate the potential
of ATP-competitive mTOR inhibition in IPF by investigating the
impact of such an approach on collagen synthesis in live
precision-cut ex-vivo lung slices derived from transplant tissue
from IPF patients. These studies revealed that the potent and
selective ATP-competitive mTOR inhibitor, CZ415, was highly
effective at inhibiting collagen synthesis in these IPF slices. Our
data further provided evidence of target pathway engagement, as
the anti-fibrotic effect of CZ415 was associated with inhibition of
4E-BP1 phosphorylation at residues demonstrated throughout
our study to be critical for regulation of the collagen biosynthetic
cascade. Future studies with clinically developable ATP-
competitive mTOR inhibitors focused on determining their
safety, efficacy, and therapeutic window in animal models of
pulmonary fibrosis will be needed in order to further support the
translatability of this approach for the treatment of IPF.

Excessive ECM deposition leading to architectural distortion
and functional organ impairment is the hallmark of all fibrotic
diseases47 and is also a feature of the stromal reaction in cancer1.
Most of the work presented herein focused on the collagen
response in the context of IPF, the most rapidly progressive and
fatal of all fibrotic diseases. However, it is recognized that
although the initial insult may be distinct in terms of promoting
the development of fibrosis across different organs, there are
likely to be common pro-fibrotic pathways that drive ECM
deposition in different disease contexts2. Data obtained using
CRISPR-Cas9 gene editing of RPTOR and RICTOR in combina-
tion with data obtained by 4E-BP1 siRNA rescue of the inhibitory
effects of AZD8055 on the TGF-β1 collagen response provide
strong support that our key observation regarding the critical role
of the mTORC1/4E-BP1 signaling during fibrogenesis is gen-
eralizable to other key effector cells of the fibrotic response in the
context of the skin (pHDFs), the liver (HSCs), and the stromal
reaction in lung adenocarcinoma (CAFs).

In conclusion, we report evidence based on multiple lines of
investigation that the mTORC1/4E-BP1 axis plays a critical role
in mediating the fibrogenic effects of TGF-β1, the most potent
pro-fibrotic mediator characterized to date. We propose that
targeting this axis may hold broad promise as a potential anti-
fibrotic strategy in the context of multiple fibrotic conditions and
the stromal reaction in cancer.

Methods
Primary cell culture. pHLFs were grown from explant cultures of IPF or non-IPF
control lung tissue. Briefly, lung parenchyma was cut into 1 mm3 fragments and
placed on 10 cm tissue culture dishes with Dulbecco’s modified Eagle’s medium
(DMEM) (ThermoFisher Scientific) supplemented with 10% (v/v) fetal calf
serum (FCS) (Sigma-Aldrich), penicillin (100 U/ml), streptomycin (100 μg/ml),
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and 2.5 μg/ml amphotericin B (ThermoFisher Scientific). Fibroblasts developed
into a near confluent monolayer of cells after 3–4 weeks. Experiments were con-
ducted on cells between passages 2 and 8. CAF cell cultures were established
through the Tracking Cancer Evolution through Therapy (TRACERx) clinical
study (REC reference 13/LO/1546). CAFs were grown from explant culture of
tumor tissue from patients with lung adenocarcinoma. Primary normal human
adult dermal fibroblasts and human HSCs were purchased from Lonza (#CC-2511)
and Zen-Bio (#HP-F-S), respectively.

To generate a HLF cell line expressing a dominant-negative mutant of 4E-BP1,
fibroblasts were transduced with lentiviral tet-on plasmid. pCW57.1-4EBP1_4xAla
was a gift from David Sabatini (Addgene plasmid #38240)29. Cells were selected
with 2 μg/ml puromycin (Sigma-Aldrich) for 5 days. Expression of the 4E-BP1
mutant was induced with 1 μg/ml doxycycline treatment (Sigma-Aldrich) for 24 h.

For experiments analyzed by Western blot or real-time RT-PCR, cells were
seeded into 6-well plates (Nunc™, ThermoFisher Scientific) and cultured for 48 h
prior to serum starvation. Fibroblast cultures assessed for collagen I deposition
were seeded into black-walled 96-well plates (Corning) for 24 h prior to low-serum
(0.4%) starvation. All cell lines tested negative for mycoplasma.

Immunoblotting. Fibroblasts were lysed in ice-cold PhosphoSafe® buffer (Merck
Millipore) supplemented with protease inhibitors (cOmpleteMini™, Roche). Fol-
lowing SDS PAGE, gel to membrane transfer and blocking, protein phosphoryla-
tion was assessed by Western blot using commercially available antibodies
(catalogue numbers and dilutions supplied in Supplementary Table 1), and
visualization of membranes was performed using ImageQuant TL v8.1 software
(GE Healthcare). Following stripping, membranes were blocked and re-probed for
total levels of specified proteins. Uncropped Western blots for all figures are shown
in Supplementary Figs. 6–15.

Determination of type I collagen deposition. Type I collagen biosynthesis and
deposition was determined in a 96-well format by a high-content immuno-
fluorescence-based macromolecular crowding assay modified from a previously
described method27. Briefly, fibroblasts were cultured in DMEM (0.4% FCS) in the
presence of ascorbic acid and a dissolved mix of Ficoll 70 and Ficoll 400 as
macromolecular crowding agents. For compound studies, fibroblasts were incu-
bated either with vehicle (DMSO) or a specified inhibitor (Supplementary Table 2,
Supplementary Fig. 1) for 1 h prior to stimulation with TGF-β1 (1 ng/ml) and
further incubation for 72 h at which point cell monolayers were fixed for immu-
nofluorescence. Fibroblasts were stained with a collagen I antibody (Sigma-
Aldrich) and AlexaFluor488 secondary antibody (ThermoFisher Scientific), nuclei
were counterstained with DAPI. Images of fibroblasts and collagen deposition were
captured and the fluorescent signal quantified on the ImageXpress Micro XLS
high-content imaging system at 20× magnification (Molecular Devices).

COL1A1 real-time quantitative PCR. Total RNA was extracted from adherent cells
using RNeasy Mini kit (Qiagen) according to the manufacturer’s instructions. Real-
time PCR was performed using a Mastercycler Realplex ep gradient S (Eppendorf).
Primer sequences: COL1A1 forward 5′ ATGTAGGCCACGCTGTTCTT 3′ and
COL1A1 reverse 5′ GAGAGCATGACCGATGGATT 3′. PCR amplification was
carried out for 40 cycles at a melting temperature of 95 °C for 15 s and an annealing
temperature of 60 °C for 1 min. A dissociation curve was analyzed for each PCR
experiment to assess primer–dimer formation or contamination. Relative mRNA
level quantifications of target genes were determined using the cycle threshold
method with ATP5B and β2 microglobulin (β2M) as housekeeping genes (Pri-
merDesign Ltd. Primer sequences for housekeeping genes are proprietary, acces-
sion numbers supplied by manufacturer: NM_001686 (ATP5B), NM_004048
(β2M)), and the data were expressed as the expression relative to the housekeeping
genes.

CRISPR-Cas9 gene editing. Guide RNA (gRNA) sequences were designed using
the Deskgen design platform (https://www.deskgen.com/guidebook/advanced.
html). Primary cells were electroporated with a CRISPR ribonucleoprotein (RNP)
complex targeting either RICTOR exon 29 or RPTOR exon 26 using the Lonza 4D

Nucleofector™ system (Basel, Switzerland). MiSeq analysis was performed to gen-
otype the loci that were targeted by the CRISPR RNP complex and showed 94%
allele mutation frequency. Loss of Rictor and Raptor protein expression was
confirmed using Western blotting. The gRNA sequences and primers used are
given in Table 1.

siRNA transfection. Confluent cells were serum starved and transfected with
10–50 nM ON-TARGETplus siRNA pools targeting EIF4EBP1 or SMAD3 (Dhar-
macon) or Silencer Select negative control siRNA (ThermoFisher Scientific) using
RNAiMax lipofectamine (Invitrogen) according to the manufacturer’s instructions.

m7GTP immunoprecipitation. Fibroblasts were lysed in ice-cold Pierce immu-
noprecipitation lysis buffer (ThermoFisher Scientific) supplemented with EDTA-
free protease and phosphatase inhibitors (ThermoFisher Scientific). Association of
proteins with the 5′ mRNA cap was determined by first incubating lysates with
m7GTP-bound sepharose beads (Jena Bioscience), followed by Western blot to
assess the association of relevant proteins.

Matrisome proteomics. IPF-derived lung fibroblasts were grown in macro-
molecular crowding conditions and treated with either vehicle (DMSO), rapamycin
(100 nM), or the mTOR inhibitor CZ415 (5 µM). Following compound treatment
for 3 h, TGF-β1 (1 ng/ml) was added for 24 h, and cells were harvested by scraping
of the culture surface. PBS-washed cell pellets were then processed for LC-MS/MS
analysis (please see Supplementary materials and methods for a detailed protocol).
The mass spectrometry proteomics data have been deposited to the Proteo-
meXchange consortium via the PRIDE partner repository48 with dataset identifier
PXD010164.

Collagen synthesis in precision-cut lung slices. To generate precision-cut lung
slices, IPF tissue was first inflated with 3% agarose dissolved in RPMI and cooled.
8 mm diameter cores were generated and 250 µm slices were produced using the
Krumdieck tissue slicer (Alabama Research and Development). Slices were cultured
for 24 h in DMEM (10% CO2/100% humidity) prior to incubation with the mTOR
inhibitor, CZ415, for 120 h (media changed and CZ415 re-added at 72 h). The
effect of CZ415 on levels of the collagen formation marker, P1NP, in tissue
supernatant was assessed by proprietary competitive ELISA (Nordic Bioscience)49.
Tissue slices were homogenized and analyzed for the phosphorylation of 4E-BP1
by MSD immunoassay (Meso Scale Discovery, USA).

Quantification of hydroxyproline from cellular supernatants. Fibroblast pro-
collagen production was assessed by high-performance liquid chromatography
(HPLC) quantitation of hydroxyproline in supernatants from confluent fibroblast
monolayers. Briefly, proteins were precipitated by the addition of ethanol to a final
concentration of 67% (vol/vol) at 4 °C overnight and separated from free amino
acids with 0.45 μm filters (Millipore). Filters with adherent proteins were hydro-
lyzed in hydrochloric acid (6M) at 110 °C overnight. Hydrolysates were decolor-
ized with charcoal, filtered through a 0.65 μm filter (Millipore) (Sigma Aldrich) and
then derivatized with 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (Acros Organics,
ThermoFisher Scientific) prior to reverse-phase HPLC (Agilent 1100 series, Agilent
Technologies) for the isolation of hydroxyproline with an acetonitrile gradient
using a LiChrosopher, 100 RP-18 column.

Statistical analysis. Concentration–response curves, mRNA and tissue slice data
figures were constructed using GraphPad Prism version 7.00. Four-parameter non-
linear regression analyses were used to generate IC50 values from
concentration–response curves. Additionally, where specified in relevant figure
legends, data were analyzed by Student’s t-test, one-way ANOVA with Dunnett’s
multiple-comparisons testing or two-way ANOVA with Tukey multiple-
comparisons testing. Data were considered statistically significant at p < 0.05.

Study approval. Samples of IPF lung tissue were obtained from patients under-
going lung transplant or surgical lung biopsy following informed signed consent

Table 1 Guide RNAs and primer sequences used for CRISPR-Cas9 gene editing

RICTOR, exon 29

gRNA AATATCGGCTCATCAAATTGGGG
MiSeq forward primer ACACTCTTTCCCTACACGACGctcttccgatctATGACCTACCCTCTGATGGAAAG
MiSeq reverse primer TGACTGGAGTTCAGACGTGTGctcttccgatctTTTTTCTCTCTCAGAGATGAGGT

RAPTR, exon 26

gRNA CCGCGTCTACGACACAGAAGGATGG
MiSeq forward primer ACACTCTTTCCCTACACGACGctcttccgatctACCCAACCAAATGGCAGTGACAC
MiSeq reverse primer TGACTGGAGTTCAGACGTGTctcttccgatctTGCCTGTGTTTGGCTCTAGGACA
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and with research ethics committee approval (11/NE/0291—NRES Committee
North East—Newcastle and North Tyneside 1, 10/H0504/9—National Institute of
Health Biomedical Research Unit Advanced Disease Biobank, Royal Brompton
Hospital, 10/H0720/12—London—Hampstead Research Ethics Committee and 12/
EM/0058—NRES Committee East Midlands—Nottingham 2). Cancer-associated
fibroblast (CAF) cell cultures were established within the Tracking Cancer Evo-
lution through Therapy (TRACERx) clinical study (13/LO/1546—NRES London—
Camden and Islington). Tissue for lung slice experiments was obtained from
Asterand Europe (Royston, UK) in compliance with the UK Human Tissue Act
2004. The human biological samples were sourced ethically and their research use
was in accord with the terms of the informed consents.

Data availability
The mass spectrometry proteomics data have been deposited to the Proteo-
meXchange consortium via the PRIDE repository, and are publicly available with
the dataset identifier PXD010164. Complete selectivity profiles of CZ415 and
AZD8055 are available in Supplementary Data 1. Complete matrisome and
collagen-modifying protein data is available in Supplementary Data 2. All
remaining data will be available from the corresponding author upon reasonable
request.
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