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The Androgen Receptor (AR) is the key-driving transcription factor in prostate cancer, tightly

controlled by epigenetic regulation. To date, most epigenetic profiling has been performed

in cell lines or limited tissue samples. Here, to comprehensively study the epigenetic land-

scape, we perform RNA-seq with ChIP-seq for AR and histone modification marks (H3K27ac,

H3K4me3, H3K27me3) in 100 primary prostate carcinomas. Integrative molecular subtyping

of the five data streams revealed three major subtypes of which two were clearly TMPRSS2-

ERG dictated. Importantly, we identify a third subtype with low chromatin binding and activity

of AR, but with high activity of FGF and WNT signaling. While positive for neuroendocrine-

hallmark genes, these tumors were copy number-neutral with low mutational burden, sig-

nificantly depleted for genes characteristic of poor-outcome associated luminal B-subtype.

We present a unique resource on transcriptional and epigenetic control in prostate cancer,

revealing tight control of gene regulation differentially dictated by AR over three subtypes.
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Prostate cancer is the second most common cancer in men
worldwide, with over 1 million newly diagnosed cases each
year1. Most men present with organ-confined prostate

cancer which can potentially be cured through local therapy such
as radical prostatectomy, radiation therapy, and/or brachyther-
apy2. However, approximately one-third of these patients will
experience a rise in serum prostate-specific antigen (PSA), indi-
cating cancer relapse which is referred to as biochemical recur-
rence3. Furthering our understanding of molecular alterations in
primary prostate cancer might be helpful in determining why
some patients develop a recurrence while others do not. To date,
studies on primary prostate cancer have provided insight into the
drivers of the disease, mostly focusing on Androgen Receptor
(AR) function, mRNA expression, DNA copy number and
mutations, as well as deviations in protein expression4–10. How-
ever, characterization of the epigenome in prostate cancer tissue
is less well explored.

The most common genetic alteration in prostate adenocarci-
nomas is the fusion of members of the ETS transcription factor
family (ERG, ETV1, and FLI1) with 5′ regions of androgen-
responsive genes8,11,12. In particular, the TMPRSS2-ERG
gene fusion is found in ~50% of the tumors, leading to over-
expression of the oncogene ERG. Recently, it was shown that
TMPRSS2-ERG fusion-positive tumors have a distinct H3K27ac
chromatin landscape, facilitating ERG binding and recruitment of
master transcription factors such as AR, FOXA1, and HOXB13
affecting the transcriptional program13. This reveals how genetic
and epigenetic changes co-participate in regulating gene expres-
sion in TMPRSS2-ERG fusion-positive tumors. In addition to
tumors with ETS fusions, the Cancer Genome Atlas (TCGA)
network further classified primary prostate tumors in three
additional molecular subtypes on the basis of mutations in SPOP,
FOXA1, and IDH1. Both SPOP and FOXA1 are key regulators of
the AR, and tumors carrying mutations in SPOP and FOXA1
possess enhanced AR transcriptional activity. However, the clin-
ical significance of these mutations has not been thoroughly
investigated. Others used gene sets associated with luminal and
basal cell features to classify prostate cancers on outcome14,15. In
the latter study14, it was shown that luminal B classified tumors
have the poorest clinical outcome but a better response to post-
operative androgen deprivation therapy (ADT) than non-luminal
B tumors.

To date, no prostate cancer studies have integrated genetic
information together with epigenetic and gene expression data
and stratified patients accordingly. Previously, we and others
revealed distinct profiles of AR chromatin binding to classify
patients on the outcome, comparing AR chromatin binding in
benign or progressive prostate cancer with primary
prostate cancer16–18. As AR—the main driver of prostate cancer
—functions in conjunction with chromatin modifications to
control transcription, we set out to comprehensively profile 100
primary prostate carcinomas by sequencing RNA transcripts in
combination with ChIP-sequencing for AR and the active histone
marks H3K27ac, H3K4me3 and repressive mark H3K27me3.
Through multidimensional genomic data integration, we present
three subtypes, of which two subtypes show a distinct chromatin
landscape and transcriptional profiles determined by TMPRSS2-
ERG fusion status.

Results
Study design and samples. To investigate the potential existence
of distinct epigenetic and transcriptomic features between pri-
mary prostate tumors, we compared RNA-seq and ChIP-seq
profiles for 100 prostate cancer samples. As ChIP-seq variables,
AR and histone modifications H3K27ac, H3K4me3, and

H3K27me3 were studied. From a Porto cohort of 229 patients, we
selected primary tumors of 49 patients who developed a bio-
chemical recurrence within ~5 years after diagnosis and 50 sam-
ples without relapsed disease within ~10 years after diagnosis
(Supplementary Figure 1). Samples were matched on age, initial
PSA, T-stage, and Gleason score (Fig. 1a, Table 1). The median
follow-up time for cases and controls was 153 and 150 months,
respectively. In addition, two samples without follow-up data
available were included in the study. For each data type, the
following numbers of samples passed quality control: RNA-seq
(n= 91), AR ChIP-seq (n= 88), H3K27ac ChIP-seq (n= 92),
H3K4me3 ChIP-seq (n= 56), and H3K27me3 ChIP-seq (n= 76).
For 42 samples, data was available for all genomic datastreams
(Fig. 1b, Supplementary Figure 2). Information on ChIP-seq
quality metrics is summarized in Supplementary Data 1 and
Supplementary Figure 3. To validate the quality metrics of ChIP-
seq, we utilized publicly available AR ChIP-seq (n= 13)19 and
H3K27ac ChIP-seq (n= 19)13 on primary prostate cancers to
compare normalized strand cross-correlation (NSC) and relative
strand cross-correlation (RSC) values. Overall similar RSC and
NSC values were observed among the datasets, with all NSC
values from the ChIP-seq samples higher than input samples
(Supplementary Figure 3c, d). The fraction of reads in peaks
(FRiP) scores for H3K27ac in our study were lower as compared
to those reported by Kron et al.13 (Supplementary Data 2), which
is possibly related to our lower sequencing depth20. As no input
files were available for Pomerantz et al. samples19, peak calling
analyses could not be performed uniformly among both datasets,
which affects FRiP score20.

Characterization of ChIP-seq data. First, we visually inspected
all AR, H3K27ac, H3K4me3, and H3K27me3 ChIP-seq profiles,
as exemplified for four samples across expressed and repressed
gene loci (Fig. 2a). Narrow peaks were observed for AR, H3K27ac,
and H3K4me3 in contrast to H3K27me3 (Fig. 2b, c). The
genome-wide ChIP-seq profiles for AR and the histone marks
were highly distinct, dividing the samples into 4 clusters
according to the factor ChIPped (Fig. 2d, e). Notably, the active
histone marks (H3K27ac and H3K4me3) co-clustered (Fig. 2e,
Supplementary Figure 4), which is in line with the described co-
occurrence of these marks at promoters and transcribed
regions21. AR binding is somewhat correlated with H3K27ac
binding events, as expected due to its preferential binding at
active enhancers (Fig. 2e, Supplementary Figure 4). Highest
Pearson correlation coefficients were observed for H3K27ac
samples, suggesting relative similarity of histone acetylation
profiles between primary prostate cancer tissues (Fig. 2e, Sup-
plementary Figure 4). However, more heterogeneous chromatin
binding profiles were observed for H3K27me3 (Supplementary
Figure 4). This is further supported by the steep decrease in the
number of overlapping peaks as the number of samples increases
for H3K27me3 ChIP-seq samples (Fig. 2f). To focus on the high-
confidence peaks that were reproducibly identified in a large
number of tumors, we considered those sites present in at least 25
out of 88 AR samples, 40 out of 92 H3K27ac samples, 25 out of 56
H3K4me3 samples, and 15 out of 76 H3K27me3 samples for
further analysis. We found distinct genomic distributions: AR and
H3K27me3 sites were mainly located at distal intergenic regions
and introns (Fig. 2g). H3K4me3 signal was mostly enriched at
promoters and introns, while H3K27ac was less enriched
at promoters. This is in agreement with previously reported
genomic distributions (AR17–19, H3K27ac13, H3K4me3
and H3K27me322). For AR binding sites, DNA sequence motif
analysis revealed, as expected, androgen response elements as
well as forkhead motifs (Fig. 2h). We used publicly available
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AR ChIP-seq19 and H3K27ac ChIP-seq13 data to check for the
enrichment of these factors at the consensus sites defined in this
study. At these 8162 AR consensus sites and 31,085 H3K27ac
consensus sites, robust and strong signal was found for all sam-
ples from the publicly available datasets (Supplementary
Figure 5).

Consensus clustering of RNA-seq and ChIP-seq data. To dis-
cover prostate cancer subgroups with distinct epigenetic and
transcriptomic profiles, we selected the top most-variable genes
based on RNA-seq and the most-variable regions among the high
confidence peaks of AR, H3K27ac, H3K4me3, and H3K27me3
ChIP-seq data across the samples. Consensus hierarchical clus-
tering23 was performed on each dataset and revealed the presence
of five stable patient clusters in RNA-seq data (Fig. 3a). Based on
ChIP-seq, using the normalized read counts in peaks, three
patient clusters were identified using AR and H3K27me3 profiles
and two patient clusters were found using H3K27ac and
H3K4me3 data (Fig. 3a). The heatmaps of consensus matrices

that show the stability of clustering for the number of chosen
k-clusters for each datatype are shown in Supplementary Figure 6.
The resultant clusters do not appear to substantially separate
cases and controls in both transcriptomic and ChIP-seq data
(Fig. 3a, b), which was confirmed in principal component analysis
(Supplementary Figure 7). RNA-seq clusters 1 and 2 (dark blue
and light green clusters) were relatively enriched for high Gleason
score (p-value= 0.005), while no differences in Gleason score
were observed for all ChIP-seq based clusters. Samples were
further classified into luminal and basal-like subtype using the
PAM50 classifier, which was recently applied successfully in
prostate cancer14 (Supplementary Figure 8). Notably, RNA-seq
clusters 1 and 2 (dark blue and light green clusters) were mainly
comprised of luminal B tumors, while clusters 4 and 5 (light blue
and dark green clusters) contained the majority of samples clas-
sified as luminal A (p-value= 6.83e−06). However, the
PAM50 subtypes distributed almost evenly between all clusters in
the ChIP-seq datasets. Next, we analyzed AR pathway activation
within the tumors using a previously reported AR activity sig-
nature24, which was also implemented in the TCGA report on
primary prostate tumors8. The AR activity score was highly
variable among tumors (range: −23.5 to 19.0). Interestingly, AR
activity score is associated with RNA-seq, H3K4me3- as well as
H3K27me3-derived clustering (p-value= 7.64e−05, 0.0006,
0.005, respectively) (Fig. 3b). Given that ERG fusion status
represents one of the largest molecular subtypes in the TCGA
prostate cancer cohort8, we analyzed ERG mRNA expression in
our patient population. We observed a bimodal distribution of
ERG expression, with 45 samples showing low and 46 samples
high ERG expression, suggesting ERG translocations in high ERG
expressing samples (Supplementary Figure 9a). To confirm
expression of ERG fusion transcripts in high ERG expressing
tumors, we examined the presence of fusion junction spanning
reads in our RNA-seq data, as well as the 5 prime–3 prime ERG
transcript ratio. Furthermore, a fraction of the tumors was pre-
viously assessed for ERG rearrangements12. Indeed, we only
observed junction reads and high 5 prime–3 prime transcript
ratio in high ERG expressing tumors, which were strongly con-
cordant with ERG rearrangement status (Supplementary Fig-
ure 9b, c). This prevalence of ERG fusions in ~50% of the tumors
is consistent with other studies8. Other than ERG fusions, we
observed nine tumors with ETV1 rearrangements (10%) and 1
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Fig. 1 Overview of data. a Illustration of the matched case-control cohort. Prostate tumor samples from 49 patients with biochemical recurrence were
matched to 50 patients without a recurrence. Samples were matched on clinical parameters age, TNM stage, PSA level, and Gleason score. Fresh frozen
material of each patient was processed for RNA-seq, AR ChIP-seq, H3K27ac ChIP-seq, H3K4me3 ChIP-seq, and H3K27me3 ChIP-seq. The male silhouette
was adapted from Wikipedia (https://upload.wikimedia.org/wikipedia/commons/archive/4/4e/20180727161732%21Aiga_toiletsq_men.svg). b Data
availability for RNA-seq, AR ChIP-seq, H3K27ac ChIP-seq, H3K4me3 ChIP-seq, and H3K27me3 ChIP-seq for each sample. Columns represent individual
patient samples. Cases and controls are depicted in red and blue, respectively. Two samples without follow-up are depicted in green (top row)

Table 1 Characteristics of the Porto cohort (n= 101)

Cases
n= 49

Controls
n= 50

No follow-up
n= 2

Age at diagnosis 64 (49–73) 64 (47–72) 67 (65–68)
PSA at diagnosis 8.8 (3.3–23) 8.2 (3.6–23) 5.2 (4.5–5.8)
Gleason score

6 6 14 1
7 28 22 1
8 3 5 –
9 12 9 –

T stage
2 15 15 1
3 33 35 1
4 1 – –

Lymph node status
N0 49 50 2
N1 – – –

Time to recurrence
in months

41 (14–74) 120 (109–120)

Time to last follow-up
in months

153
(99–195)

150 (70–191) –
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tumor with an ETV5 fusion transcript (1%). Transcriptome-wide
analysis between low and high ERG expressing tumors revealed
differential expression of previously identified ERG target genes
(Supplementary Figure 9d), and two gene sets related to
TMPRSS2-ERG fusion from MSigDB show significant enrichment

(Supplementary Figure 9e). Remarkably, the five mRNA clusters
nearly perfectly matched ERG transcript classification, capturing
three clusters with low ERG expressing tumors (clusters 2, 3, 4;
light green, salmon, light blue) and two clusters with high ERG
expressing samples (cluster 1; dark blue and cluster 5; dark green)
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(Fig. 3a). Also, for all ChIP-seq based clustering, except for
H3K4me3, strong separation on ERG expression was found. We
confirmed the strong association with ERG expression using
principal component analyses on each molecular platform, which
revealed separation between low and high ERG expressing
tumors, with exception of H3K4me3 ChIP-seq (Fig. 3c). We also
found separation of ERG fusion positive and negative samples
using previously published H3K27ac ChIP-seq data looking at
the sites defined in this study (Supplementary Figure 10a). The
sites defined in the previous study, also classified the Porto

samples on ERG expression (Supplementary Figure 10b). In
conclusion, clustering based on both transcriptomic and epige-
netic profiles identifies distinct groups that largely overlap with
ERG classification.

Individual ChIP-seq data clustering shows similarities to
transcriptomic clustering (Fig. 3d), which likely reflects the interplay
between epigenetic modifications and gene expression. Indeed, the
presence of AR and the chromatin marks H3K27ac and H3K4me3
are associated with active gene transcription, while H3K27me3-
marked genes have low expression level (Supplementary Figure 11).

Fig. 2 Characterization of ChIP-seq data. a Snapshots for AR (green), H3K27ac (orange), H3K4me3 (pink), and H3K27me3 (purple) ChIP-seq are shown at
four example loci in four patients. Genomic coordinates are indicated above. b Peak width distribution of ChIP-seq peaks for AR (green), H3K27ac
(orange), and H3K4me3 (pink) peaks. c Distribution of peak width for H3K27me3 ChIP-seq peaks. d Scores plot of principal component analysis based on
occupancy (called peaks) of AR (green), H3K27ac (orange), H3K4me3 (pink), and H3K27me3 (purple) ChIP-seq samples. e Correlation heatmap based on
peak occupancy. The clustering of the samples represents correlations between individual ChIP-seq samples on the basis of all called peaks. The column
color bar indicates the ChIPped factor. Pearson correlation is plotted in white-green color scale. f Plot depicts the number of peaks overlapping in tumors
for each factor ChIPped. Consensus peakset were chosen by using a cutoff of peaks present in at least 25, 40, 25, or 15 samples for AR, H3K27ac,
H3K4me3, and H3K27me3, respectively. The number of consensus peaks is indicated for each factor. g Genomic distribution of consensus peaks from AR,
H3K27me3, H3K27ac, and H3K4me3 across genomic features. h Bar chart shows the Z-score of the top 5 sequence motifs found at consensus AR peaks
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Fig. 3 Consensus clustering of prostate cancer samples by each dataset. a Heatmaps of RNA expression, AR binding, H3K27ac, H3K4me3, and H3K27me3
ChIP-seq signal. Each sample is annotated for AR activity score, PAM50 subtype, Gleason score, case/control status, ERG expression, and consensus
cluster assignment. Samples are ordered according to consensus clustering in Supplementary Figure 6. As shown in the color scale for RNA-seq, yellow
indicates relatively low expression and blue relatively high expression (z-scores), whereas for ChIP-seq, yellow indicates relatively low peak intensity and
blue relatively high peak intensity (z-scores). b Plots showing the distribution of case/control status, Gleason score, PAM50 subtypes, and AR activity
score across the clusters identified in RNA-seq, AR ChIP-seq, H3K27ac ChIP-seq, H3K4me3 ChIP-seq, and H3K27me3 ChIP-seq datasets. Boxplots
represent median AR activity scores with interquartile ranges. c PCA scores plot for RNA expression, AR binding, H3K27ac, H3K4me3, and H3K27me3
ChIP-seq signal, based on the top 1000 most-varying genes/regions across the samples. Samples are colored according to ERG high or low expression.
d Comparison of consensus cluster assignment of the samples (rows) for each datatype (columns)
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Noteworthy, low concordance between H3K4me3-based clustering
and any other clustering (RNA-seq, ChIP-seq, ERG expression) was
observed, which may be in part affected by the smaller sample size
for H3K4me3 ChIP-seq. To capture both concordant and unique
features across the individual data types, we next performed
integrative molecular clustering.

Integrative epigenomic analysis identifies three subtypes. To
perform integrative molecular characterization, we applied clus-
tering combining available data from RNA-seq and ChIP-seq on
97 prostate cancers using multiple incomplete-view non-negative
matrix factorization (MIV-NMF). This computational approach
allows for the use of incomplete data, so that all samples
(including those for which one or more datastream are missing)
could be included in the analyses. To find the number of clusters
that provide a stable solution, we applied MIV-NMF multiple
times with random initialization using varying number of clusters
from k= 2 up to k= 5. Consensus scores for different k’s sug-
gested robust assignment of the samples into two or three clusters
(Fig. 4a and Supplementary Figure 12). For k= 2, the samples are
basically divided into an ERG low and an ERG high group, which
is in line with the individual clustering. Intriguingly, within the
three cluster solution, k= 3, an additional group was revealed
that was not dictated by ERG expression. Repeated clustering for

100 times with 80% random subsampling identified similar
cluster solution, emphasizing the stability of the three clusters
(Supplementary Figure 13). Motivated by the identification of
the third subcluster, we focused on the three cluster solution;
Cl1 (n= 40), Cl2 (n= 28), Cl3 (n= 29) (Fig. 4a).

We assessed the contribution of each data type in integrative
clustering analysis by comparing consensus factor matrix to
individual data factor matrix derived from MIV-NMF analysis.
RNA-seq data achieved the highest Pearson’s correlation
coefficient of 0.63, while H3K4me3 contributed least (Pearson’s
correlation coefficient= 0.11) (Fig. 4b). The integrative
clustering-produced classifications were highly concordant with
the individual clustering classifications (Fig. 4c). Importantly, no
individual molecular data type could recover all three cluster of
integrative clustering analysis, providing compelling evidence that
the five data types contain complementary information.

Characterization of the three subtypes. To explore reproduci-
bility of the three prostate cancer subtypes, we downloaded gene
expression data for 497 primary prostate cancers from the TCGA
database. The top 100 most differentially expressed genes in each
of the three clusters in Porto data (in total 285 genes, Supple-
mentary Data 3) were used to perform unsupervised hierarchical
clustering on mRNA data from the TCGA cohort. As in our
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dataset, the TCGA dataset is partitioned into three clusters with
comparable expression profiles as the three clusters in the Porto
cohort (Fig. 5a). The three identified clusters in both the Porto as
well as the TCGA cohort will be termed hereafter as cluster 1
(Cl1), cluster 2 (Cl2), and cluster 3 (Cl3).

Tables 2 and 3 show associations between the three clusters
identified in the Porto cohort and the TCGA cohort, respectively,
with clinical data, ERG expression, PAM50 classification, and AR
activity score. Most of the clinical variables, including age, initial
PSA, T-Stage, Gleason score, and biochemical recurrence, did not
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show significant differences across the three clusters in both
cohorts. In the Porto cohort, out of the 97 patients, 21 patients
developed a clinical recurrence, 23 patients died of which 8 died
of prostate cancer. Between the three subgroups, no statistically
significant differences could be observed on metastatic-free
survival and overall survival, which may be related to the low
number of events. In the TCGA cluster 2 however, the age at
diagnosis is slightly higher than cluster 1 and cluster 3 (p-value=
0.025). As expected from individual data cluster analysis, the
three clusters were strongly associated with ERG expression status

in both cohorts (Porto cohort; p-value= 6.642e−12, TCGA
cohort; p-value < 2.2e−16). Tumors in cluster 1 are characterized
by high ERG expression, while tumors in cluster 2 express low
ERG levels. Interestingly, ERG levels were not the sole-driving
factor, as cluster 3 contains both tumors with low and high ERG
expression level. Assessment of PAM50 subtype classification for
the three newly-identified clusters in both cohorts, revealed that
luminal B tumors were less frequently classified into cluster 3,
while basal-like tumors were less often grouped into cluster 1.
Also, AR activity score was associated with the three clusters
(Porto cohort; p-value= 6.825e−6, TCGA cohort; p-value < 2.2e
−16), revealing high AR activity score in cluster 2 and a low score
in cluster 3. Though AR mRNA expression levels were slightly

Fig. 5 Validation and characterization of three subtypes. a On the left: unsupervised hierarchical clustering of 285 differentially expressed genes between
the three integrative clusters. The sample classification according to integrative cluster analysis is indicated below the branching. On the right:
unsupervised hierarchical clustering on the TCGA cohort using the genes differentially expressed across the three clusters of the Porto cohort. The genes
(rows) in the heatmap are ordered the same as for the Porto cohort. Color scale: red indicates high expression an blue low expression (z-score). b Heatmap
of copy number alterations (CNAs) of 88 Porto samples (left) and TCGA samples (right). Samples from Porto and TCGA cohort are ordered the same as in
Figs. 4a and 5a, respectively. Red and blue represent copy number gains and losses, respectively. c CNA burden as fraction of the genome that is copy
number altered in the Porto cohort (left) and TCGA cohort (right). Boxplot: median values with interquartile range. p-Values were calculated using the
Wilcoxon test. d Boxplot (median values with interquartile range) showing the number of genes with a mutation for the three clusters in the TCGA cohort.
p-Values were calculated using the Wilcoxon test. e Association of mutation with the three clusters identified in the TCGA cohort. Only genes with
significant differential enrichment among the clusters are shown (FDR < 0.2). Percentages on the left show the mutation frequency. f p-Values for top gene
sets enriched (FDR < 0.2) from the MSigDB collection of “curated” gene sets in any of the three clusters, represented in a radar plot for Porto (left) and
TCGA cohort (right). p-Value for each cluster is indicated with a line with the corresponding color

Table 2 Patient characteristics by integrative clusters—
Porto cohort

Integrative clustering—Porto cohort

Cl1
n= 40

Cl2
n= 28

Cl3
n= 29

p-Value

Age at diagnosis 63.2 63.3 63.4 0.984
PSA at diagnosis 8.94 9.54 9.94 0.648
T stage 0.932

2 8 10 10
3 31 18 19
4 1 – –

Gleason score 0.357
6 10 4 6
7 18 14 17
8 2 5 1
9 10 5 5

Group 0.224
Case 23 11 14
Control 15 17 15
Exclude 2 – –

ERG status 6.642 × 10−12

Low 3 26 16
High 35 1 10
NA 2 1 3

PAM50 subtype 0.01343
Basal 4 6 11
LumA 17 9 13
LumB 17 12 2
NA 2 1 3

AR activity −0.97 4.97 −4.94 6.825e−6
Clinical recurrence 0.2379

No 28 24 24
Yes 12 4 5

Death 0.07688
No 30 18 26
Yes 10 10 3

Cause of death PCa 0.3995
No 35 27 27
Yes 5 1 2

Table 3 Patient characteristics by three clusters—TCGA
cohort

TCGA clustering

Cl1
n= 206

Cl2
n= 171

Cl3
n= 120

p-Value

Age at diagnosis 61 63 61 0.025
PSA at diagnosis 7.2 9.6 5.7 0.7587
T stage 0.530

2 71 67 49
3 130 98 65
4 3 5 2
NA 2 1 4

Gleason score 0.834
6 17 14 14
7 101 82 64
8 26 23 15
9 61 50 26
10 1 2 1

Biochemical recurrence 0.312
No 159 120 92
Yes 25 20 13
NA 22 31 15

ERG status <2.2e−16
Low 26 170 100
High 180 1 20

PAM50 subtype 7.2e−15
Basal 36 25 34
LumA 82 57 80
LumB 88 89 6

AR activity −0.72 5.36 −1.31 <2.2e−16
RFS event 0.7029

0 158 126 100
1 24 17 11
NA 24 28 9

RFS recurrence-free survival
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lower in cluster 3 (Supplementary Figure 14a), but no difference
in AR protein expression was observed among the clusters
(Supplementary Figure 14b). These data imply that not AR
expression levels, but its activation status was diminished
selectively in cluster 3. These results were further confirmed by
AR ChIP-seq data, as the number of AR peaks was lower in
cluster 3 (Supplementary Figure 14c), while the number of peaks
for H3K27ac did not differ between the clusters (Supplementary
Figure 14d). As low AR activity is observed in prostate cancers
with a neuroendocrine phenotype25, we analyzed the expression
of a 70-gene neuroendocrine prostate cancer (NEPC) classifier26.
Intriguingly, tumors in clusters 1 and 2 scored low on NEPC-
likeness, while cluster 3 tumors showed a more NEPC-like
expression profile (Supplementary Figure 14e). To detect
neuroendocrine differentiation on the protein level, we performed
immunohistochemistry for the detection of two neuroendocrine
markers typically used in clinical practice, chromogranin and
synaptophysin. As both genes (CHGA and SYP) are not
represented in the neuroendocrine gene expression signature,
these findings would be an independent validation of NEPC-
status in these tumors. However, most cases have less than 1% of
cells expressing chromogranin and/or synaptophysin (Supple-
mentary Figure 15a). Only 10 samples stained positive (>1%) for
chromogranin and 22 samples for synaptophysin. Importantly,
both CHGA and SYP were not enriched in cluster 3 at either the
mRNA level and protein level (Supplementary Figure 15b, c).
Thus, while cluster 3 was enriched for tumors that possess a
number of neuroendocrine-like features, including lack of AR
functionality (even though the receptor is expressed) and
enrichment for a neuroendocrine gene signature, classical
pathological neuroendocrine markers were negative in these
tumors.

We next sought to relate the three clusters to copy number
alterations. In the Porto cohort, we determined copy number
alterations by using CopywriteR27 that utilizes the off-target reads
in AR ChIP-seq data. We identified several well-known copy
number alterations, including loss of chromosome arm 8p, 10q
and chromosome 8q gain (Fig. 5b). Notably, in both Porto and
TCGA cohorts, the tumors in cluster 3 tend to have minimal copy
number alterations, in contrast to the tumors in cluster 2 that
showed most copy number alterations (Fig. 5b, c). The samples in
TCGA cluster 3 showed mildly lower tumor percentage which
reached statistical significance (Supplementary Figure 14f), but
this was not the case for the Porto cohort, excluding tumor cell
percentage as a sole driver in these findings. Cluster 2 is mainly
distinguished by the alterations at chromosomes 2q, 5q, 6q, and
8q (Fig. 5b). As cluster 1 comprises tumors with a TMPRSS2-
ERG fusion, this cluster exhibited an interstitial deletion between
the two genes on chromosome 21. In addition, these samples can
be further characterized by loss of chromosome 10q (PTEN) and
17p (TP53), previously shown to be associated with TMPRSS2-
ERG fusions5.

The samples in the TCGA cohort have been previously
characterized for mutations in coding regions. A low mutational
burden was observed for tumors classified in cluster 3 as
compared to tumors in clusters 1 and 2 (Fig. 5d). Mutations
with significant enrichment in one of the clusters are shown in
Fig. 5e. Mutations in TP53 are enriched in cluster 1, while
mutations in SPOP, KMT2D, FOXA1, CSDM3, KDM6A, FBN3,
and NOTCH2 are enriched in cluster 2. Among the mutated
genes in cluster 2, FOXA1 and SPOP mutations have been
previously shown to be mutually exclusive with ERG fusions
possessing high AR activity8,28,29. Importantly, none of the
mutations are enriched in cluster 3.

Finally, to identify gene sets and regulatory networks associated
with the molecular subtypes, we performed differential gene

expression analysis between the three clusters within both the
Porto and TCGA cohorts. Even though most of the gene sets
reached significance only in the TCGA cohort, most likely due to
smaller sample size of the Porto cohort, the normalized
enrichment score (NES) between the Porto and TCGA cohort
correlated well. In cluster 1, comprising ERG fusion-positive
tumors, only one gene set related to ERG fusion passed FDR
threshold < 0.2 (Fig. 5f, Supplementary Figure 16a). In cluster 3,
we observed gene sets reflecting benign-like state among the most
significantly deregulated gene sets. The top gene sets are shown in
Fig. 5f (see Supplementary Data 4 for all significantly deregulated
gene sets). To narrow-down the key characteristics for cluster 3,
we identified differentially expressed regulatory networks by
integrating transcriptomics data with protein–protein interaction
datasets using HotNet230. HotNet2 identified eight large net-
works including those indicating activated fibroblast growth
factor (FGF) signaling, WNT signaling, and nerve growth factor
(NGF) signaling (Supplementary Figure 16b and Supplementary
Data 5). As cluster 3 was hallmarked by inactive AR signaling,
strong activation of the above-mentioned pathways may indicate
dependence on alternative drivers for this newly identified patient
subpopulation. Recently, single cell RNA-seq analyses in CTCs
indicate WNT signaling activation in antiandrogen resistant
tumors, supporting functional compensation by WNT in absence
AR action, albeit in the progressive disease setting31. Also, FGF
signaling pathway has been reported as an alternative driver to
bypass AR dependence32.

Cumulatively, these data indicate that by integrative analyses,
we revealed a subclass of prostate tumors, hallmarked by low AR
activity, neuroendocrine-like gene expression, minimal copy
number alterations, and few mutations.

Discussion
Here, we present a pioneering report on transcriptomics- and
epigenetics-based subtyping of prostate cancer. As AR is the key-
driving transcription factor in prostate cancer, tightly controlled
by epigenetic regulation, integrating these datastreams has the
potency to reveal distinct biological features for a tumor type
classically-known as difficult to classify.

AR transcriptional regulation requires a permissive epigenetic
environment, but the interdependent relationships thereof in
clinical samples remained thus far elusive. We show here that
unsupervised patient classification based on genome-wide profiles
for AR, H3K27ac, and H3K27me3 (but not H3K4me3) groups
patients in strong accordance to RNA-seq-based tumor profiling.

Previously, we and others have revealed distinct AR chromatin
binding profiles between healthy tissue and primary prostate
cancer17 as well as between primary prostate cancer and castra-
tion resistant prostate cancer (CRPC)18, which successfully stra-
tified patients on outcome. As no differences are observed in AR
binding profiles between cases and controls in this study, we
conclude that AR reprogramming is associated with tumor onset
and disease progression, but no distinct AR profiles are found in
primary disease that bear prognostic potential. In order to iden-
tify differences in the location of transcription factor binding sites
and epigenetic marks between samples groups, genomic regions-
of-interest need to be defined. In selecting high-confidence peaks
that were reliably identified in multiple samples, we selected for
each datatype its own cut-off in overlap between samples (based
on Fig. 2f). As no clear consensus exists currently in the field on
the minimal number of samples in which peaks should be iden-
tified (peaks found in at least 3 out of 8 samples18; union of
peaks13,19; peaks found in at least 2 out of 21 samples33; peaks
found in ~50% of samples34), future studies should be directed in
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finding the optimal selection criteria while appreciating inter-
tumor heterogeneity.

The TMRPSS2-ERG gene fusion is found in ~50% of all pri-
mary prostate cancer samples, and provided the most-potent
patient stratification based on transcriptomic, AR cistromic, and
epigenetic classification. This is in accordance with a recently
reported smaller study using H3K27ac ChIP-seq data from
19 samples13. We confirm these findings in a far-larger dataset,
and illustrate that AR and H3K27me3 show comparable profiles,
indicating that TMPRSS2-ERG fusion may have far larger con-
sequences beyond enhancer usage, dictating AR cistromic profiles
along with genomic selectivity of polycomb-mediated gene
suppression.

Integrative clustering, combining RNA-seq data with ChIP-seq
for AR and the three histone modifications (H3K4me3, H3K27ac,
H3K27me3) revealed three distinct prostate cancer subtypes.
While TMPRSS2-ERG status still was a major discriminating
feature in the integrative clustering analyses, we identified a third
thus far unknown prostate cancer subtype that contained both
high and low ERG expression samples. This subtype is hall-
marked by benign features, with low AR chromatin binding and
limited activity, although the receptor was readily expressed.
Furthermore, this subtype is copy number-neutral with low
mutation burden. Based on PAM50 classification, this subtype
appeared selectively depleted from luminal B tumors, which were
previously reported to be associated with poor outcome14.

In clinical practice, PSA level is used as a biomarker for AR
action. However, even though the tumors of cluster 3 had levels of
both AR and PSA that were comparable to the other subtypes, AR
activity score and AR chromatin binding were low in these
samples. These data suggest not only that conventional bio-
markers would support an incorrect conclusion in this setting,
but also indicate that the tumors in cluster 3 may be potentially
dictated by other tumor-promoting cascades than AR, such as
FGF, WNT, and NGF pathways. Small molecule inhibitors tar-
geting FGF have been developed, future clinical trials on FGF
inhibitors may benefit from pre-selective patients from this
cluster.

Interestingly, luminal B tumors—depleted in cluster 3—have
been previously reported to have a better response to ADT as
compared to non-luminal B tumors. Consequently, ADT may be
least-effective in this specific patient subpopulation. In contrast,
tumors in cluster 2 showed high AR activity score, indicating that
these patients may derive benefit from ADT. However, RNA-seq
data from a large cohort of patients receiving adjuvant ADT is
required to test this hypothesis.

With this, we reveal that by integrating transcriptomic, epi-
genetic, and AR cistromic datastreams, previously unknown
prostate cancer subtypes can be found with distinct biological and
clinical features. Furthermore, these data will provide an invalu-
able resource for the community, presenting the largest prostate
cancer dataset to date containing matched genomic, tran-
scriptomic, and epigenetic datastreams. Future analyses may
further expand our understanding of the interrelationships
between these factors and how these could be affected by genomic
and epigenetic queues.

Methods
Cohort. Primary prostate cancer specimens from radical prostatectomy resections
were collected at the Portuguese Oncology Institute, Porto, Portugal. From this
cohort, 49 samples (cases) were selected from patients who developed a relapse
within ~5 years after diagnosis and matched on age, Gleason score, PSA level, and
T-stage with 50 samples (controls) from patients with non-relapsed disease within
~10 years after diagnosis. All samples included were histological diagnosed as
clinically localized acinar adenocarcinoma of the prostate. Two samples had no
follow-up data available. Fresh frozen material was trimmed to maximize tumor
percentage (>70%) and cut in 30-micron sections for ChIP-seq or 10-micron

sections for RNA-seq. This study was approved by the institutional review board
(Comissão de Ética para a Saúde, CES-IPOP-198/2012). All procedures performed
in this study were in accordance with the ethical standards of the institutional and/
or national research committee and with the 1964 Helsinki declaration and its later
amendments or comparable ethical standards. Informed consent was obtained
from the participants included in the study. A subset of the cohort was previously
characterized for ETS transcription factor rearrangements12.

ChIP-seq. Chromatin immunoprecipitations were performed as described pre-
viously with minor changes35. In brief, samples were crosslinked in solution A with
2 mM DSG (CovaChem) for 25 min at room temperature. After 25 min, 1% for-
maldehyde was added for 20 min and subsequently quenched with glycine. Samples
were lysed as described36 and sonicated for at least 10 cycles of 30 s on, 30 s off
using a Diagenode Bioruptor Pico. For each ChIP, 5 µg of antibody was conjugated
with 50 µl Protein A magnetic beads. Antibodies used were AR (sc-816, Santa
Cruz), H3K27ac (39133, Active Motif), H3K4me3 (Ab8580, Abcam), and
H3K27me3 (39155, Active Motif). Immunoprecipitated DNA was processed for
library preparation (Part# 0801-0303, KAPA Biosystems kit). Libraries were
sequenced using an Illumina Hiseq2500 genome analyzer (65 bp, single end), and
aligned to hg19 using BWA (v0.5.10). Reads with a mapping quality >20 were
selected. Peak calling over input control (mixed inputs) was performed using
DFilter (v1.5)37 and MACS38 for AR and H3K27ac ChIP-seq samples. MACS 1.4
was run with p-value cutoff of 10e−7 and DFilter with bs= 50, ks= 30, refine,
nonzero. For H3K4me3, MACS2 and DFilter were used with broad-peak settings:
(1) –broad and –broad-cutoff= 0.2 for MACS2 and (2) bs= 100 and ks= 60 for
DFilter. The peaks called by both peak callers were used for analysis. H3K27me3
ChIP-seq peaks were called by genome segmentation using ChromHMM (v1.12)
choosing the state with high H3K27me3 signal39. Normalized strand coefficient
(NSC) and relative strand correlation (RSC) were calculated using phantompeak-
tools (Supplementary Data 1 and Supplementary Figure 3)40.

Samples that passed the following quality parameters were included in the final
analysis; tumor cell percentage ≥70%, ChIP-qPCR enrichment, more than 100
peaks called and NSC, RSC values higher than input samples.

Genome browser snapshots were generated using Easeq (v1.03)41, motif
analysis was performed using the Galaxy Cistrome SeqPos motif tool with default
settings42 and genomic region enrichment analysis was performed with CEAS43.
Consensus peaklists were generated with the DiffBind R package (v2.4.6)33.
BEDTools (v2.25) was used to calculated read counts in peaks44. The raw counts
were normalized for library size followed by TMM normalization using EdgeR45.

RNA-seq. RNA was extracted using the AllPrep DNA/RNA universal kit (Qiagen)
according to the manufacturer’s instruction with Qiagen’s QIAcube robot. RNA
quantity and quality were assessed with the 2100 Bioanalyzer using a Nano chip
(Agilent, Santa Clara, CA) and samples with a RIN > 8 were considered for library
preparation. Strand-specific libraries were generated with the TruSeq Stranded
mRNA sample preparation kit (Illumina, Part # 15031047 Rev. E) and sequenced
on a HiSeq2500. Sequencing data was aligned to hg38 using TopHat (v2.1.0 using
bowtie 1.1.0) and number of reads per gene were measured with HTSeq count
(v0.5.3). EdgeR (v3.18.1) -Limma (3.34) workflow was used for gene expression
analysis45,46. The ComBat normalization method within the R package SVA
(3.24.4) was used to correct the batch effects observed by day of RNA isolation47.
Genes with >1 count per million in at least 10 samples were included.

For detecting ERG fusion transcripts, we used STAR-fusion (v0.5.4) with
suggested parameters except for chimSegmentMin= 5,
chimJunctionOverhangMin= 5, alignSJDBoverhangMin= 5, alignMatesGapMax
= 200000, and alignIntronMax= 20000048. Coverage in ERG exones were
measured using BEDtools (v2.25), followed by taking ratio between average
expression of five exones close to 5′ end (chr21:39,870,287–39,870,428,
chr21:39,947,586–39,947,671, chr21:39,956,768–39,956,869,
chr21:40,033,582–40,033,704, and chr21:40,032,446–40,032,591 in hg19) and the
exone at 3′ end (chr21:39,751,950–39,755,845 in hg19). A ratio of 0.3 was chosen to
determine low or high 5′–3′ transcript ratio.

Tumor samples with mRNA expression data available were classified into
luminal A, luminal B, or basal-like subtype using the PAM50 classifier. PAM50
clustering was performed as previously described14. The expression of one of the
PAM50 genes (MIA) was not included in the Porto analysis. To calculate the
CD49f signature score, normalized log2 expression value for each gene (91 genes)
was multiplied by their weights and summed up49. AR activity score was calculated
by the composite expression of 20 genes24. In addition, expression of 70
neuroendocrine signature genes were obtained from castration resistant
neuroendocrine and prostate adenocarcinoma samples, previously published26.
The expression of 14 of the 70 neuroendocrine signature genes were not included
in the analysis for the Porto Cohort (KIAA0408, SOGA3, KCNB2, KCND2,
LRRC16B, NRSN1, PCSK1, RGS7, SEZ6, ST8SIA3, SVOP, PRR5-ARHGAP8, UPK2,
MYCN) and four genes for the TCGA cohort (SOGA3, BRINP1, MAP10, PIEZO1)
because the genes are expressed only in <~10% of the samples. Expression fold
changes between neuroendocrine tumors and adenocarcinoma samples were
calculated. Concordance in expression differences (fold change sign) were
measured using Pearson correlation.
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Cluster analysis. Cluster analysis was performed using ConsensusClusterPlus
(v1.40.0)23. The samples were clustered using the top 3000 most variable genes or
the top 1000 most variable regions across the samples as determined by median
absolute deviation. Consensus clustering was run by hierarchical clustering algo-
rithm for 100 iterations with a resampling rate of 80%. For integrative clustering,
we applied MIV-NMF50 using the top 3000 most varying regions and genes as
determined by median absolute deviation from the five data types. For each data
type, we constructed a 3000 by 97 matrix in which rows are features and columns
are samples. The order of samples is maintained across the data types, and 0 values
were used for missing samples. The MIV-NMF takes the five matrices at the same
time, factorizes them to obtain five sample factor matrices and finds a consensus
sample factor matrix, which in turn also affects the individual sample factor matrix.
Given a consensus sample factor matrix, the factor with the highest weight is
identified for each sample, followed by grouping the samples with the same factor
identified. Following regularization parameters are used for MIV-NMF: alpha=
0.001 and beta= 0. MIV-NMF was applied 20 times with random initialization and
a consensus matrix capturing the stability of the clustering was constructed to
identify the optimal number of clusters. Final clusters were defined by hierarchical
clustering on the consensus matrix that captures stable associations across the 20
experiments. To further assess the stability of the three chosen clusters, the same
clustering was repeated for 100 times with 80% subsampling, followed by con-
structing the same consensus matrix with the stability measured. To assess the
contribution of each data type, Pearson correlation was measured for each indi-
vidual sample factor matrix and consensus sample factor matrix. The statistical
relation between consensus clusters and variables was tested using linear regression
and Pearson’s Chi-square test for continuous (age, PSA level, and AR activity
scores) and categorical parameters (Gleason score, T-stage, ERG status,
PAM50 subtype, and Group (Case/Control)), respectively.

Copy number analysis. The CopywriteR R package (v2.6.1) was used to
extract DNA copy number information from off-target reads in AR ChIP-seq
data27. The code is available on GitHub: https://github.com/PeeperLab/
CopywriteRCustomBed. CopywriteR was run with 400 kb bins and a custom peak
file using MACS238. Furthermore, peaks were extended with 1 kb on either side to
minimize the number of on-target reads. Downstream analysis of median nor-
malized log2 values was performed using Circular Binary Segmentation (CBS)
and the R package CGHcall51. To calculate copy number alteration burden per
sample, number of bins with copy number gains or losses were determined and
divided by the total number of bins.

TCGA data. Gene expression, protein expression, and somatic mutation data from
the TCGA prostate cancer cohort were downloaded from https://xenabrowser.net/.
For RNA-seq, genes with >1 count per million in at least 43 samples were included.
TCGAbiolinks52 was used to retrieve copy number data, followed by converting the
data into genome-wide copy number profiles with 400 kb bin resolution. Tumor
cellularity information and initial PSA values for 333 primary tumors were
reported previously8.

Gene expression-based enrichment analysis. Differentially expressed genes
between the clusters were identified by comparing one cluster with the other two
using limma. Given gene expression data with cluster label, gene set enrichment
analysis was performed with ggsea R package (v1.0) (https://doi.org/10.5281/
zenodo.438018) using ggsea_s2n (signal to noise ratio) and ggsea_weighted_ks
(weighted KS statistic) as score function and enrichment score function, respec-
tively. For each cluster, expression of genes was compared between one cluster
versus the other two. Curated gene set collection was obtained from MsigDB v6.1.
For each cluster in TCGA, top gene sets with significant enrichment with FDR < 0.2
are included for radar plot visualization. Differential regulatory networks were
identified using HotNet2 (https://github.com/raphael-group/hotnet2). For initial
heat, FDR score was obtained from differential gene expression analysis with
limma. For reference protein–protein interaction (PPI) network, we used the three
PPI networks of the original study30. After identifying the enriched PPI compo-
nents in each of the three PPI networks, the components were merged with those
sharing the common nodes.

Immunohistochemistry. Immunohistochemistry was performed using Bond™
Polymer Refine Detection kit (Leica Biosystems, Germany), in Leica Bond III
platform. Antigen retrieval was performed for 10 min, with Epitope Retrieval
Solution 1 for chromogranin and Epitope Retrieval Solution 2 for synaptophysin.
Primary monoclonal antibodies for chromogranin (Clone DAK-A3, 1:1000 dilu-
tion, Dako, Denmark) and synaptophysin (Clone DAK-SYNAP, 1:100 dilution,
Dako, Denmark) were used. Hematoxylin was used for nuclear counterstaining.
Appropriate positive controls were used for each antibody and negative controls
consisted on the omission of primary antibodies. Because all cases analyzed con-
tained non-neoplastic prostatic epithelium, this served as (internal) control as
appropriate.

Chromogranin and synaptophysin immunoexpression were assessed using a
routine optical microscope by an experienced pathologist blinded to molecular
data. Each marker was categorized as <1% positive neoplastic cells, 1–10% positive

neoplastic cells and thereafter at 10% increments. Any cytoplasmic staining
regardless of intensity was considered positive.

Data availability
All ChIP-seq and RNA-seq data generated in this study are deposited in the Gene
Expression Omnibus (GEO) database under the accession numbers GSE120738
and GSE120741, respectively. Public ChIP-seq datasets used in this study are
available from GEO or the European Genome-phenome Archive under the
following accession code: GSE70079 (AR ChIP-seq) and EGAS00001002496
(H3K27ac ChIP-seq).
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