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Decoding topologically associating domains with
ultra-low resolution Hi-C data by graph structural
entropy
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Submegabase-size topologically associating domains (TAD) have been observed in high-
throughput chromatin interaction data (Hi-C). However, accurate detection of TADs depends
on ultra-deep sequencing and sophisticated normalization procedures. Here we propose a
fast and normalization-free method to decode the domains of chromosomes (deDoc) that
utilizes structural information theory. By treating Hi-C contact matrix as a representation of a
graph, deDoc partitions the graph into segments with minimal structural entropy. We show
that structural entropy can also be used to determine the proper bin size of the Hi-C data. By
applying deDoc to pooled Hi-C data from 10 single cells, we detect megabase-size TAD-like
domains. This result implies that the modular structure of the genome spatial organization
may be fundamental to even a small cohort of single cells. Our algorithms may facilitate
systematic investigations of chromosomal domains on a larger scale than hitherto have been
possible.
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n mammalian cells, the meter-long genome is folded into a

complex three-dimensional (3D) configuration in order to fit

inside the pum-size nucleus. The 3D architecture of the genome
is essential to many processes in the nucleil=3. The success of
chromosome conformation capture and its variations in unra-
veling this architecture have stimulated the exploration of the 3D
genome over the past decade?. With the accumulating data, the
hierarchical configuration of the genome has started to emerge.
Each chromosome can be largely partitioned into active and
inactive compartments®, and these compartments may be further
composed of domain structures, commonly named topologically
associating domains (TADs) in mammals®’. TADs have attracted
much attention in the literature®, as they are found to constrain
enhancer-promoter targeting in gene regulation®!1, correlated
with the replication timing domain!?!3, and conserved between
cell types and species®®. Moreover, the disruption of TAD
boundaries may lead to the development of disease!* such as
cancer!®.

Several TAD detection algorithms have been developed®-
8,12,16-18 TADs were first identified by a Hidden Markov Model,
which detects regions with biased upstream and downstream
chromatin interactions®. Filippova et al. introduced the notion of
resolution-specific domains to identify TADs with a dynamic
programming algorithm!®. TADtree developed by Weinreb and
Raphael identifies TADs with an empirical distribution of contact
frequencies?). With the “arrowhead transformation” normal-
ization method, Rao et al. identified multiple-scale TADs by a
dynamic programming algorithm?!. HiTAD developed by Wang
and colleagues refined the definition of TADs by optimal
separation of global chromatin interactions!'?. The Matryoshka
algorithm proposed by Malik and Patro identified a consensus
TAD hierarchy through domain clustering®?, while 3DNetMod-
MM??* and MrTADFinder?* borrowed the concept of graph
modularity to identify hierarchical chromatin domains.

Even with the success of the aforementioned methods, several
fundamental questions about TAD and its identification remain
challenging. First, the global constraints that determine the hier-
archical architecture of genomes remains to be elucidated. This
question was addressed by setting a global object function while
identifying TADs!%23. However, the object functions that the
algorithms aimed to optimize are topological measurements, such
as genomic distance!? and modularization of the genome?3.
Therefore, we still do not know what global constraint defines
hierarchical TAD structures. Second, a method for how to
determine the proper resolution for a given Hi-C dataset has not
been established. Because of the sparsity and noisy nature of
chromatin contacts, Hi-C data need to be divided into bins with a
proper length before further analysis. The length of the bins
(termed binsize) is a key to Hi-C analysis, and improper binsize
setting may cause improper results or waste of sequencing data.
However, the binsize is largely arbitrarily defined in current
practice. Third, the question as to how to identify TADs reliably
and stably with low-resolution Hi-C data has not been addressed.
Almost all current algorithms require ultra-high coverage for TAD
identification®?!. However, with the expanding applications of Hi-
C technology, the requirement for massive sequencing depth has
become an increasing hindrance to further expansion, particularly
in the single-cell context. Finally, TAD is a statistical property of
Hi-C data that was originally observed in bulk samples, which
may be composed of millions of cells®’. The genome architectures
were found to be highly dynamic, with variations in the genome
spatial structures from cell to cell, as indicated by single-cell Hi-C
data®>-28. Although pooling thousands of single cells' Hi-C data
do reconstruct ensemble TADs?%27, it remains an open question
how fundamental the TAD structure, or using a more general
term, the “modular structure,” is for a small cell population.

Based on the structural information theory??, here we address
the above questions by developing a TAD identification algorithm
named decode the domains of chromosomes (deDoc). The
structural information (or entropy) measures the uncertainty
embedded in the dynamics of a graph. To minimize the structural
entropy (SE) is an intuitionistic way to decode the essential
structure of a graph, in which perturbations caused by random
variation and noise have been reduced to a minimum. deDoc
treats the Hi-C contact matrix as the connection matrix of the
graphs and applies the SE to determine the 3D genomic archi-
tecture that has maximal certainty. We show that deDoc is dis-
tinguished from other state-of-the-art methods based on five
outstanding features. First, the method is based on structural
information theory?®. Unlike most of state-of-the-art methods,
which are mainly based on local contacting structures, deDoc is a
graphic method seeking to extract a structure that minimizes the
global uncertainty of the Hi-C graph. Second, deDoc works well
with the raw Hi-C data, neither any normalization nor hand-
choice parameters are needed. This excludes the effects of noise
generated in the normalization or in the manual selection of
parameters. Third, deDoc works well for highly sparse Hi-C
graphs, which means deDoc is highly robust to the input data
quantity. Fourth, we show that deDoc can be used for quantita-
tively determining the best binsize for a given Hi-C dataset. Last,
we show that the megabase-size TAD-like domains can be
unambiguously detected with pooled Hi-C data from 10 single
cells using deDoc. This result implies that the modular structure
of genome spatial organization may be fundamental and that data
from a small cohort of single cells are sufficient for it to emerge.

Results
deDoc is an accurate tool for TAD detection. To identify TADs
from Hi-C data, we implemented the structural information?’
based algorithms deDoc(2) and its variants, denoted as deDoc(E)
and deDoc(M), respectively (Supplementary Figure la and Sup-
plementary Table 1). The detailed algorithms can be found in the
Methods section. Briefly, deDoc takes a Hi-C contact matrix as a
weighted undirected graph and partitions it into subgraphs. The
basic idea behind deDoc is to find an essential structure of a
graph whose perturbations by random variation and noise has
been reduced to a minimum. The structural information (or
entropy) measures the uncertainty embedded in the dynamics of
the graph?®. Thus it is an intuitionistic way to decode the essential
structure of a graph by finding a structure that minimize the SE.
We show below that deDoc partitions the chromosomes into
hierarchical domains that faithfully reveal the TAD structure. To
assess deDoc, we compared it with five widely used algorithms,
including Armatus!®, TADtree??, Arrowhead?!, MrTADFinder?4,
and Domaincall®, as well as with a classical graph modularity
detection algorithm, denoted as CNM*° (Fig. 1, Fig. 2, Fig. 3,
Supplementary Figure 1, 2, 3, 4, 5, Supplementary Tables 1, 2 and
3, and Supplementary Data 1). The comparison was carried out
with all algorithm operation with default parameters, except for
MrTADFinder, which we set res=2.875, as suggested by the
original paper?4,

deDoc can accurately detect TAD boundaries. Since there is no
golden standard for TAD prediction available, we can only assess
the accuracy of the algorithms indirectly. First, we examined the
genomic features that was known to be associated with TAD
boundaries. The CCCTC-binding factor (CTCF) is conservatively
concentrated at TAD boundaries from fly to mammals®31-33,
Except for CNM, CTCF binding was, indeed, enriched in the
predicted domain boundaries by almost all algorithms (Fig. 1a).
We also checked the enrichment of all the histone modifications,
chromatin-binding proteins, and transcription factors that have
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chromatin immunoprecipitation-sequencing data available in the
ENCODE project in two cell types (hESC and mESC, in
Supplementary Figure 3, 4, respectively). Similar to the previous
report, housekeeping genes, H3K4me3, H4K20mel, and
H3K36me3, are enriched in the predicted TAD boundaries®.
Moreover, in all the cell types we examined (hESC, IMR90,
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mESC, and CO), the distribution of predicted TAD lengths by all
the algorithms fall reasonably well within the normal length range
(Fig. 1b).

Next, we compared the structural features of the predicted
TADs. Visually, the TADs are dense squares in the Hi-C
heatmaps (Fig. 1c). Structurally, the TADs are the genome

3


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

Fig. 1 deDoc is an accurate TAD detection tool. The data analyzed in this figure was from Dixon et al.. a deDoc identified border regions are enriched for
CTCEF bindings The plot represents ChlP-seq peaks with CTCF enrichment in human ES cells (hES). Each curve represents the result from an algorithm
(color code for the algorithms in d). deDoc(M) and Armatus (magenta and turquoise, respectively) had the highest enrichment of CTCF-binding sites at
their predicted TAD boundaries. b Box plots representing distributions of TAD lengths as predicted by each algorithm in four cell types. The mean and
median of each prediction are indicated as dashed and solid lines, respectively. € Side-by-side comparison of the TADs predicted by each algorithm on
chromosome 21. d deDoc identified more locally condensed TADs. Contact density is defined as the number of intra-TAD contacts divided by TAD length.
The plot shows the cumulative contact density along chromosome 21 in hES cells. e TADs identified by deDoc have a lower structure information content.
The boxplots summarized the structural entropies of TADs identified by the algorithms over all chromosomes in the hES cells. The means and medians are
indicated by black and magenta lines, respectively. f Spider chart showing the similarities between the TADs predicted by the different algorithms. Each
spoke represents a comparison of the weighted similarity (WS) between a reference algorithm (indicated as a colored square) and each of the other

algorithms. Box plot quartiles, and the means and medians of each dataset are indicated by black and magenta lines, respectively. The ends of the up and

down whiskers represent the highest and lowest datum or 1.5 interquartile range of the upper and lower quartiles, respectively
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Fig. 2 deDoc is a robust TAD identification algorithm. 50, 25, 10, 1 and 0.1% of the data from chromosome 22 in GM12878 cells (Rao et al.2h) were
sampled. a We compared the a the number of domains, b the lengths of the domains, and ¢ weighted similarities of the TADs as identified using whole and
down-sampled data. The error bars indicate s.d. from 50 replications of each experiment

regions within which intra-domain interactions are significantly
enriched. We found that deDoc identified the TADs having the
highest enrichment of intra-domain Hi-C contacts (Fig. 1d).
Moreover, comparing to the other algorithms, we found that the
TADs predicted by deDocs had the lowest SE (Fig. 1le). The SE
measures the global uncertainty embedded in the dynamics of a
graph?®. The lower the SE of a domain structure, the more
essential the structure is (see the section “Remarks on structural
information (entropy)” in the Methods section).

Last, we compared the similarities between TADs predicted by
different algorithms using a metric called weighted similarity
(WS; see Eq. 9 in the Methods section). The pairwise comparison
shows that, except for CNM, the detected domains were rather
similar between deDoc and five other algorithms (Fig. 1f,
Supplementary Figure 2). This indicates that the overall
consistency of the domain boundaries between the predictions
are generally very good and that the main difference between the

algorithms might be the total number and lengths of the domains
they return. Together, we have shown that deDoc can accurately
partition genomes into the domains with the most significantly
enriched characters for the currently understood TADs.

deDoc performs well with ultra-sparse Hi-C data. To examine
the performance of the algorithms with ultra-sparse input data,
we composed a series of Hi-C datasets. Taking dataset of Rao
et al.2! as the full dataset, we down-sampled to 50, 25, 10, 1, and
0.1% of the full data, respectively, to mimic different data
volumes. First, we checked whether the numbers and lengths of
the domains predicted with sparse input data is consistent to the
original predictions with full data (Fig. 2a, b, respectively). deDoc
algorithms were the single algorithms that did not substantially
gain or lose predictions at 0.1% of full data volume. Although the
lengths of the domains as predicted by TADtree, Arrowhead, and
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Fig. 3 Hierarchical structure of genomes as detected by deDoc using different binsizes. a Heatmap of nested domains as predicted by deDoc(E) and deDoc
(M) in human chromosome 21 are shown at the top and bottom panels, respectively. The predicted domains were highlighted in magenta and yellow

sawteeth for binsizes of 25 and 50 kb, respectively. The distribution of b the relative distance to the nearest TAD borders, ¢ the weighted similarities, d the
structure entropies, e TAD lengths, and f the number of domains as predicted by the different algorithms using different binsizes. Each curve represents the
result from one algorithm, and the color code for the algorithms are found in d. Zoom-in plots are embedded. Data from human GM12878 cells (Rao

et al.2") were used to produce all plots in this figure. Box plot quartiles, and the means and medians of each dataset are indicated by black and magenta
lines. The ends of the up and down whiskers represent the highest and lowest datum or 1.5 interquartile range of the upper and lower quartiles, respectively
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Armatus stayed almost unchanged at 0.1% of full data volume
(Fig. 2a), the total number of domains was either substantially
decreased (Arrowhead) or expanded (TADtree and Armatus,
Fig. 2b). Domains predicted by both MrTADFinder and CNM
contains only one or two bins when the input data are not too
sparse (>1% of full data), but the domains became very large
when the input data was only 0.1% of the full data.

Next, we asked how much of the domain structure could be
faithfully predicted with lower input data volumes by the different
algorithms (Fig. 2¢). The structural faithfulness was measured as
the WSs between the domains that were predicted with the full
Rao et al.’s data compared to those predicted with down-sampled
data. We found that deDoc algorithms were the only algorithms
that faithfully predicted the domain structures with 0.1% of the
full data (WS=10.88 and 0.79 for deDoc(E) and deDoc(M),
respectively, Fig. 2c). For CNM, Arrowhead, TADtree, and
Armatus, the predictions remained only moderately faithful even
when the input data volume were 10% of the full data (WS =
0.96, 0.70, 0.74, and 0.80, respectively). The four algorithms failed
almost completely to make faithful predictions with 1% of full
data. The WS of MrTADFinder’s prediction is 0.97 with 1% of
full data; however, this is because the predicted domains are
almost all single bins, and MrTADFinder failed to predict
domains with high WS when the input data volume was 0.1% of
full (WS =0.16). Taken together, when the input Hi-C data is
extremely sparse, e.g., 0.1% of Rao et al.’s data volume?!, deDoc is
the only algorithm able to consistently predict a reasonable
number of domain structures with reasonable sizes.

deDoc detects the hierarchical structures of the genome. We
next asked whether deDoc could reveal the hierarchical structure
of genomes. A natural way to reveal the hierarchical level of graph
(chromosome) partitions is to trace back the hierarchical struc-
ture of its structure entropy minimalized coding tree. This rela-
tionship between the depth of the coding tree and the hierarchical
level of TADs is determined by the definition of the coding tree
(Fig. 1). By definition, the whole graph (chromosome) was set as
the root of the coding tree, where the depth is 0; then the graph
was roughly partitioned into a number of parts as the children of
the root, where the depth is 1, and in each part, the partitioning
proceeds iteratively with incremental depth till the parts are only
single vertices or a given depth is reached. However, in deDoc, we
chose depth 2 for deDoc(E), and deDoc(M) was then reapplied to
the domains predicted by deDoc(E), which is equivalent to attain
a depth of 3. We can therefore say that the domains predicted by
deDoc(E) is at an upper layer of the hierarchical structure relative
to those predicted by deDoc(M). This approach was chosen
mainly based on the empirical observation that the partitioning at
the depths of 2 or 3 is likely to be about the average size of
canonical TADs. However, because there also exist smaller size
domain types, e.g., sub-TADs?!, and CTCF loop domains34, the
domains at depth 3, may also be biologically relevant.

An alternative way to reveal the hierarchical structure of the
genomes by deDoc would be to use different binsizes (Fig. 3). If
domains, as identified by different binsizes, are in fact at different
levels of the genome hierarchy, we should see most high-level
domain borders overlapping with the borders at lower levels. By
applying 25 and 50 kb binsizes to the data of Rao et al.2! as an
example, we found that this was true for domains detected by
both deDoc(E) and deDoc(M) (Fig. 3a). Further inspection
showed that it was also true for most of the domain borders
detected by deDoc(E) when compared to annotated compartment
borders (Supplementary Figure 1c). For a genome-wide inspec-
tion of this assumption, we compared the distribution of relative
genomic distances between domain borders using binsizes of 50

and 100 kb (Fig. 3b). For any given boundary as predicted using
binsize of 100kb, the relative distance was defined as “the
distance to the boundary as predicted using binsize of 50 kb” over
“the average length of the TADs predicted using binsize 100 kb,
by the algorithm.” Comparing to the other algorithms, deDoc(M)
has the highest frequency of predicted TADs that have shortest
relative distance, i.e., the relative distance was <0.1, except for
CNM and MrTADFinder. However, CNM and MrTADFinder
are not comparable here, because most of the domains predicted
by these two algorithms only contain a single bin at this
resolution (Fig. 3e, f). This might be because CNM is not actually
predicting TADs, and because the argument setting for
MrTADFinder was not appropriate for this binsize (we used
2.875 as was recommended in the origin paper?¥). Next, it is
obviously expected that higher WS values will be observed
between domains sets that are hierarchically organized than
between domain sets that are not. We consequently compared the
WS values between the domains that were predicted using 25 kb
bins and those predicted using larger bins (Fig. 3¢). Comparing to
other algorithms, deDocs had the highest WS in all binsizes
tested. Last, we checked whether the domain structures as
predicted using different binsizes kept their essentiality by the
algorithms (Fig. 3d). The SEs of domains predicted by deDocs
were consistently low and always the lowest in all the binsizes
tested. In summary, deDoc can consistently partition genome into
domains, and such partitioning under different resolutions
reflects the hierarchical structure of the 3D genome.

Using SE to determine binsize for a given Hi-C dataset. How to
determine the proper binsize for a given Hi-C remains an open
question. Intuitively, the best binsize should be the one that
reliably captures the most essential structure of a given Hi-C
dataset. Because SE characterizes the uncertainty of the high-
dimensional hierarchical structure of a graph, and the mini-
mization procedure of deDoc maximally reduces perturbations to
a minimum, one would intuitively choose the binsize that mini-
mizes the structural information to the fullest extent.

However, the SE is not directly comparable between binsizes.
We compared the 1D- and 2D-SE of the Hi-C graph from the
dataset of Dixon et al.% using binsizes from 10 to 100 kb. For all
chromosomes, we found that both metrics decreased with
increasing binsize in a near-monotonic manner (Fig. 4a, b),
essentially because structural information is a metric that depends
on the size of the graphs. In other words, SE is not directly
comparable between binsizes before normalization. Because 1D-
SE characterizes the uncertainty of the connectivity of the graph,
we normalized the 1D-SE by dividing the SE by the total number
of bins. The normalized 1D-SE (1D-nSE) is comparable between
binsizes, except for very small binsizes (Fig. 3c). When the
binsizes are very small, the graph becomes extremely sparse, and
the corresponding 1D-nSE will be trivially low. In this case, we
think that binsizes that correspond to trivially low 1D-nSE should
not be chosen. The same reasoning demonstrates the validity of
2D-SE. To explain, we normalized 2D-SE (2D-nSE) by dividing
2D-SE by 1D-SE because 2D-SE characterizes the uncertainty of
the high-dimensional hierarchical structure of the graph (Fig. 3d).
The 2D-nSE is comparable between binsizes, again with the
exception of very small binsizes (Fig. 3d) that should not be
chosen as the corresponding 2D-SE values will be trivially high.

We chose the stable minimum binsize as the best resolution for
TAD detection (see Methods). Both 1D-nSE and 2D-nSE could be
used as the metric for binsize selection because the stable minimum
binsizes, as determined by 1D-nSE and 2D-nSE, are close to each
other. For example, we investigated a series of binsizes with 5kb
intervals from 10 to 100 kb, using the data of Dixon et al.%. For 19
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Fig. 4 Using SE to determine the proper binsize for a given Hi-C dataset. Before normalization both a 1D-SE and b 2D-SE decrease in a near-monotonic
manner with increasing binsizes in all 24 chromosomes. After normalization, both ¢ 1D-SE and d 2D-SE differ far less with binsize for most of the binsize
range. The main plots show data from chromosome 5, and the minimum stable binsizes are marked as magenta circles. The embedded plots show the
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domains using binsizes of 85 and 95 kb are highlighted in magenta and yellow sawteeth, respectively. The two binsizes were determined by 1D-SE and 2D-

SE, respectively, as the best resolution

out of the 24 chromosomes, both stable minimum1D-nSE and 2D-
nSE exist (Supplementary Table 2). For 12 out of the 19
chromosomes, we found that the differences between the
corresponding stable minimum binsizes identified by 1D-nSE and
2D-nSE, respectively, were within a size difference of 5kb.
Furthermore, even for chromosomes whose stable minimum
binsizes identified by 1D-nSE and 2D-nSE by more than 5 kb, the
TAD:s identified based on the binsizes by both methods were highly
similar (Fig. 4e). We also found that the binsizes did not affect the
TAD margins relative to the resolution (Supplementary Figure 5). It

should be noted that a stable minimum binsize for chromosome
chrY could not be identified by neither 1D-nSE nor 2D-nSE. This
may be due to either the incompleteness of the dataset or the fact
that current methods are approximation algorithms without the
necessary precision required. Our results nonetheless demonstrate
that both 1D-nSE and 2D-nSE are sound strategies for determining
appropriate binsizes on autosomes. Intuitively, 2D-nSE might be
regarded as better than 1D-nSE; however, 1D-nSE is significantly
faster than 2D-nSE. In the present report, 1D-nSE was shown to be
a sound strategy for binsize selection in most cases. Of course, for
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specific chromosomes, it is necessary to develop refined, or even
higher-dimensional, strategies for detecting the most appropriate
binsizes.

TAD-like domains emerged from pooled single cells Hi-C data.
Next, we asked whether deDoc can be used to address the
question how fundamental the TAD structure, or, using the more
general term “modular structure”, is for a small cell population.
The hierarchical structure we explored above implies that a
domain structure may exist at a higher level than canonical
TADs. Given the capacity to faithfully identify chromosome
domains with ultra-low input data volume (Fig. 2), we speculated
whether deDoc might be able to reveal such higher-level domain
structures with pooled Hi-C data from a small cohort of single
cells. If this were possible, it would at least imply that the modular
structure of genome spatial organization may be a fundamental
characteristic and that data from a small cohort of single cells are
sufficient for it to emerge.

To examine this possibility, we assessed the predictions of
deDoc and six other algorithms on the pooled Hi-C data from
10 single cells®® (Fig. 5). The ensemble TAD structure, which was
generated from the bulk sample and downloaded from the origin
paper?®, was used as the reference. First, the SEs of domains that
were predicted by deDocs, CNM, and MrTADFinder was lower
than the SE of reference (Fig. 5b), implying that the domains
predicted should be at least as essential as those of the reference.
Second, the intra-domain contact density of the domains that
were predicted by deDocs, TADtree, Armatus, CNM, and
MrTADFinder were comparable or higher than that of the
reference (Fig. 5¢). Third, the number of domains that were
predicted by deDoc(M) and MrTADFinder are comparable to
the reference (Fig. 5d). Fourth, the length of domains that were
predicted by deDoc(M), Armatus, and MrTADFinder were
comparable to the reference (Fig. 5e). Last, the WSs between
the reference and the domains that were predicted by deDoc
algorithms and MrTADFinder were much higher than the
corresponding WSs predicted by the other algorithms (Fig. 5f).
Collectively, the domain structures that were predicted by deDoc
(M) and MrTADFinder with the pooled Hi-C data from 10 single
cells were essential and sufficiently similar to the annotated
ensemble TADs (Fig. 5a).

The domains that were predicted by deDocs and MrTADFin-
der with the pooled Hi-C data from 10 single cells may not
necessarily be the canonical TADs, as the former were much
larger. The canonical TADs were originally defined by the bulk
Hi-C data®’ and have average length about 500 k ~ 1 M. While
the average lengths of the domains predicted by deDoc and
MrTADFinder from the pooled Hi-C data from 10 single cells
were 1.68 and 2.75 M, respectively, and thus much larger than
canonical ones. We can presently think of explanations for this.
One is that the TAD structure in the mouse CD41+ THI cells
from which the single cell Hi-C data generated?’ are indeed larger
than canonical TADs, as their average length is 1.46 M (i.e., much
larger than 500 k ~ 1 M of the canonical TADs). The other is that
these domains might represent a higher hierarchical structure in
the upper layer of the 3D genome organization. However, to
determine which of the explanations is correct will need more
sophistic assays.

Discussion

In the present paper, we have reported a structural information
theory?® based TAD detection algorithm, deDoc. The SE is
defined over the coding tree of a graph by fixing and decoding the
graph in a way that minimizes the uncertainty occurring in
random walks in the graph. This means that the SE of the graph is

the information embedded in the graph that determines and
decodes the essential structure of the graph. The SE measures the
information or uncertainty in situ wherever such uncertainty
exists, without extracting any probabilistic distribution as in the
Shannon entropy. Furthermore, the SE of a graph can be mea-
sured locally by fixing the vertices at which uncertainty is large.
Thus the essence of deDoc algorithm is to fix the genomic loci at
which the uncertainty of the structure is maximized. After fixing
all the loci at which uncertainty is large, the algorithm deDoc
identifies the essential structure that minimizes the uncertainty of
the whole chromosomes.

deDoc is different from other state-of-the-art TAD prediction
methods in the following four aspects. First, unlike most of other
methods that are mainly based on local contacting structures of
the chromosome, deDoc is a graphic method seeking the structure
that corresponds to the minimal global uncertainty, i.e., the lowest
structure entropy, in the Hi-C graph. This ensures that deDoc is
an approach that detects the globally optimized structure of the
genome. Recently, two modularity-based methods, named
MrTADFinder?* and 3DNetMod-MM?23, appeared in the litera-
ture. Although modularity is also a global property of the graphs,
it is conceptually different from SE?°. A detailed analysis of SE can
be found in Li and Pan’s original paper?. Practically, the differ-
ences between deDoc and the two modularity-based methods are
considerable. Both MrTADFinder and 3DNetMod-MM have
arguments that need to be empirically determined, and correct
settings of these may be critical for both algorithms. For example,
the authors of 3DNetMod-MM recommend users to performing a
full sweep of values for a range of possible settings. An additional
problem for our analysis was that, because there are multiple
arguments that need to be carefully set in 3DNetMod-MM, and
not all of them have default settings, it was difficult to do fair
comparison with other algorithms that had default settings?3.
Because of this, we did not include the 3DNetMod-MM in the
comparison of the present work. We have included MrTADFinder
in our comparison because it has only one argument that needs to
be set, and this had a recommended value (2.875)%4. We found,
however, that with this recommended setting MrTADFinder
performed dramatically different on different datasets, implying
that the algorithm is heavily dependent on the setting of the
arguments. In contrast, deDoc does not have any arguments and
had a similar performance on all the datasets we tested.

Second, deDoc works well with raw Hi-C data without any
normalization. This makes deDoc avoid the effects of noise gen-
erated in the normalization. Owing to the fact that the structure
entropy allows deDoc to locally measure the uncertainty on site,
data normalization is not unnecessary for finding the structure
with minimum uncertainty. This feature of the structure entropy
renders it markedly different from Shannon entropy, which
measures only the global uncertainty based on a probabilistic
distribution extracted from an observed structure. In summary,
deDoc follows the principle of uncertainty minimization, which
identifies the essential structure directly from the raw Hi-C data.

Third, deDoc works well for very sparse Hi-C graphs, which
means that deDoc performs well even with small quantities of
input data. For example, deDoc was able to predict TADs from
only a small fraction, e.g., 0.1%, of uniformly and randomly
sampled Hi-C data from Rao et al.’s data. In contrast, none of the
other tested algorithms were able to make comprehensive pre-
dictions at this ultra-sparse Hi-C data level. Some algorithm may
work with ultra-sparse data from certain Hi-C dataset, as did
MrTADFinder on the pooled Hi-C data from 10 single cells;
however, only deDoc consistently performed well on all datasets
we tested. The ability of working in ultra-sparse Hi-C makes
deDoc a potential powerful tool in a wide range of applications,
e.g., the rare samples or samples for a large population.
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Fig. 5 Megabase-size chromosomal domains can be detectable at the level of a few single cells. a Heatmap of ensemble TADs (magenta) and deDoc(M)
domains predicted from data Hi-C pooled from 10 single cells (yellow). b-e Box plots of b the SEs, ¢ intra-domain contact density, d the number, and e the
length of the domains as predicted by the algorithms using the pooled Hi-C data. f WSs between the reference and the predicted domains. Box plot
quartiles, and the means and medians of each dataset are indicated by black and magenta lines, respectively. The ends of the up and down whiskers
represent the highest and lowest datum or 1.5 interquartile range of the upper and lower quartiles, respectively

Fourth, we showed that deDoc can be used for determining the
best binsize for a given Hi-C dataset. There are three basic
principles involved in the binsize determination. (1) The 1D- or
2D-SEs should be at a minimum, since these correspond to the
best 3D structure that can be found in noisy data. (2) The 1D-
and/or 2D-SEs should not be trivially low or exceedingly high, to
avoid that the binsize will be unreasonably small or large. If the

binsize is too small, the Hi-C contact matrix will be too sparse to
identify any meaningful structures, while if the binsize is too
large, the matrix will be too dense to distinguish meaningful
domains from random variation. (3) The binsize should be at a
stable minimum, which further ensured the non-triviality.
However, the procedure we have proposed here for determining
the best binsize may not work in all cases, and a more refined
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method thus needs to be developed. For example, the chromatin
interaction peaks might be a potentially ideal metric for assessing
the Hi-C data resolution. However, the problem with the inter-
action peaks is that, when the Hi-C resolution is not high enough,
small binsizes will make the contact matrix too sparse to call
statistically significant loops, while big binsizes will result in few
loops that can be called from the matrix.

We applied deDoc to pooled Hi-C data from 10 single cells and
revealed a megabase-size TAD-like domain structure?>. However,
this result does not indicate that there is a such TAD structure in
each individual cell (Supplementary Figure 7). It has already been
shown that the inter-cellular heterogeneity of chromosome 3D
conformation is substantial®. It is even not known whether there
exists TAD structures at the single-cell level, given the ultra-
sparse Hi-C data that can be obtained from a single cell. This is
also the reason why we do not claim deDoc works on Hi-C data
from one single cell and instead asked whether domain-like
structure would emerge if we pooled data from a small cohort of
single cells? If this were the case, it would at least imply that the
modular structure of genome spatial organization may be fun-
damental characteristic of the genome and might be detectable
from a small cohort of single cells.

Lastly, there are two competing models as to what TADs
actually represent. One model is concentrated on canonically
defined TAD as actual intra-domain chromatin interactions in
each individual cell. The alternative model is that TADs are the
genome segments that may not have higher frequencies of intra-
domain than inter-domain contacts in each individual cell; how-
ever, the intra-domain contacts are more consistent between cells,
whereas inter-domain contacts are not. We want to emphasize
that, although we observed domain-like structure by applying
deDoc to pooled Hi-C data from 10 single cells, this result can
neither prove nor disprove any one of the above models, and the
understanding of the dynamics of the genome architecture at the
single-cell level remains a major challenge to the field.

Taking together, the results of our experiments show that
structural information is a powerful tool for revealing essential
structures of the genome architecture. deDoc is a normalization-
free method for TAD detection and its ability to reliably detect
hierarchical TAD structures with ultra-low-resolution Hi-C data
makes deDoc a promising tool to potentially expanding the field
of 3D genome research by allowing the exploration of more cell
types, tissues, and species.

Methods

Structural information theory. Given a Hi-C contact matrix M = {m,;} of a
chromosome, we interpret the matrix M as a weighted graph (network)

G = (V,E), where the vertex set V = {1,2, ... , n} contains all loci, i.e., bins, in the
chromosome, the edge set E contains all interactions between the loci in V, and the
Hi-C contact matrix M weighs the edge set E. We call the graph G the Hi-C graph
of the chromosome. The problem of finding genome domains is now converted to
a graph partition problem, i.e., finding a partition of the given graph that max-
imizes/minimizes an objective function. In deDoc, the objective function is the
uncertainty of the positioning in random walks.

To measure the uncertainty, we employed the structural information theory
recently developed by Li and Pan?’. The basic idea behind this theory is to measure
the information embedded in a graph G. Information content measurement was
first introduced by Brooks® and Shannon?® in communications. Brooks posed the
question of how to define the information embedded in a graph so that it decodes
the essential structure of the graph3”, whereas Shannon asked whether or not there
is a structural theory of information that supports communication graph
analysis. The question of quantification of structural information was recently
addressed by Li and Pan?’. We briefly review the structural information theory
below. A verbal explanation about SE and a comparison to the Shannon entropy
can be found in the Supplementary Note 1. The first question of the structural
information theory is: how to encode a graph? Recall that the Huffman codes
realize the optimum encoding of an unstructured alphabet X with a probability
distribution p’. In the structural information theory, Li and Pan encode a graph
using a partitioning tree?”. In this manuscript, we call a partitioning tree a “coding

tree” to facilitate a better understanding of the structural information in the context
of genomics.

The coding tree. A coding tree of a graph G is defined as a rooted tree T that has
the following properties:

(1) The root node A is associated with the vertices set V. We termed A the
codeword of V, denoted as ¢(V) = A, and termed V the marker of A, denoted
as M(A) = V.

(2) Every node a € T is a codeword of a subset X C V, ie, ¢(X) =« and
M(a) = X.

(3) For every node « € T, suppose that ,,8,,...,B, are all the immediate
successors of « in T; then all M (f;) are disjointed, and M(a) = UL, M(B,).

(4)  For every leaf node y € T, M(y) is a singleton {v} for some vertex v, and for
every vertex x € V there is a unique leaf node y € T such that M(y) = {x}
and c(x) = y.

The structural information (entropy). Let T be a coding tree of G, we then first
define the structural information (or entropy) of a node in T. For every tree node
a € T, if a#A, then the structural information of « is

T(. — 8u er
H (Ga) = 2m10g2 v (1)

where g, is the number of edges between the vertices in and not in M(«), V, is the
volume of vertices set M(a), i.e., the sum of the degrees of all the vertices in M(«),
o~ is the immediate predecessor of &, and m is the sum of the edges, sum(E). The
volume of G can be calculated as 2m. For an edge-weighted graph, the sum of edges
m can be replaced with the sum of weights, w = sum(w(E)), in all the relevant
formulas above.

The structural information (entropy) of a graph G given by the coding tree T is
defined as

H'(G)= > H'(G;a). 2)

acT,az)

Intuitively, HT(G) is the number of bits required to determine the codeword in
cT(V) of the vertex v that is accessible from random walk with stationary
distribution in G.

In particular, for a natural number k, we define the k-dimensional structural
information (entropy) of G as

H*(G) = min; {H'(G)} (3)

where T ranges over all the possible coding trees of G with height at most k.
When k =1, the one-dimensional (1D) structural information is degraded to
the following format:

d d " d. d.
HY(G)=H(p)=H(=L, ..., ) ==Y —Llog, -+,
(@ = H(p) = [ ) ==Y st

2w’ 2w

whered w is the sum of weights, d; is the weighted degree of vertex i in G, and
Pi =7

Bymt'ieﬁnition, H'(G) is the average number of bits required to determine the 1D
codeword of the vertex that is accessible from the random walk with stationary
distribution in G.

Finally, we define the structural information (entropy) of G as follows,

H(G) = min {H"(G)} (4)

where T ranges over all possible coding trees of G.

In Li and Pan’s original theory?’, only the notion of k-dimensional structural
information (entropy) was defined. We think the notion of structural information
without specific dimensions, as defined herein, is also very interesting.

Remarks for the structural information (entropy). The structural information
(entropy) H(G) in formula (4) has the following intuitions??:

(1) H(G) is the minimum amount of information required to determine the
codeword of a coding tree for the vertex that is accessible from a random
walk with stationary distribution in G.

(2) H(G) is the information embedded in G that determines and decodes a
coding tree T of G such that the uncertainty in the codeword of T for the
vertex accessible from random walk in G is at a minimum. An accompanying
tree is defined as a coding tree T that has H' (G) = H(G). Consequently, an
accompanying tree has minimum uncertainty in the partitioning of G. This
means that an accompanying tree is the structure obtained from G by
excluding the perturbation by noise and random variations to the largest
extent. In another word, an accompanying tree represents the essential
structure of G.
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(3)  Given a graph G, the accompanying trees may not be unique. However, any
such accompanying tree T must provide a reasonable interpretation of G.
This is not surprising, because a syntax may have many different semantics.

(4) How to compute the SE and an accompanying tree, or even me to determine
the height of an accompanying tree T of G, is an important open question. In
practice, we use only simple greedy algorithm to approximate the SE and the
accompanying tree of the graph. In real world, 2D and 1D SE is good enough
for us to decode the essential structure of a graph.

The algorithm of deDoc. The algorithm deDoc(k) aims to find the coding tree T of
height at most k with minimal H*(G). deDoc(k) is composed of two basic
operators, merging and combining.

The merging operator. Let o, § € T be two tree nodes, and M(«) =

{x;,%, ..., x } and M(B) = {y, 75, ... , yn } the markers of a and , respectively.
We call « and f sister nodes, if both are immediate successors of the same node
y € T,ie,a” = =y. The merging operator, denoted as Mg(T;a, 8), is defined
on the sister nodes « and f as follows:

(1) Set M(a) = {x,x,, ..
(2) Delete S.

We can easily derive the difference between the structural information of G
given by the coding tree T and T, (e, ) as

A(A;I(T;a7ﬁ):7 Z

yeT:aCyor pCy

X Y1 Y2 e IN T

& vy 8s Vs
> -logy =+ = —log, 7= 5
2m = &;&g 2m V- ©)
where T’ = T, («, ) is the coding tree obtained from T after the merging

operation Mg(T;a, B). If AY(T;a, f)>0, we write Mg(T;a, ) |.

The combining operator. Let « and f8 be two sister nodes in a coding tree T, and
a~ =~ =0 € T. We define the combining operator, denoted as Cb(T;a, f), as
follows:

(1)  Create a new tree node & with M (&) = M(a) U M(B) and & = 6.
(2)  Let the branch (8 — a) be (£ — a), and let the branch (6 — ) be (£ — f),
while maintaining the same order as that in T.
We can easily derive the difference between the structural information of G
given by the coding tree T and T, (a,f) as

AS(T; a, B) = HT (G; ) + HT(G; B) )
~(H"(G:9) + H" (Gio) + H' (G:p))

where T" = T, (a, f) is the coding tree obtained from T after the combining
operation Cb(T;a, ). If AS(T; a, f)>0, we write Cb(T; a, f) |.

The deDoc(k) algorithm.

(1) Initiation. Set Ty = V with h(1) = 0, and for every i € {1,2, ... ,n}, define
Ty = {v} with h(A"(i)) = k() + 1.
(2)  Greedy merging. If there exist an a, 8 € T such that (T;a, 8) |, then

(a) choose a and B such that A‘g(T; «, B) is maximized;
(b) set T =T, (a,p);
(c) go back to step (2).

(3)  Greedy combining. If there exist an «, 8 € T such that Cb(T;a, ) |, then

(@)  choose a and f such that AS(T; «, f) is maximized;
(b)  set T=T,(«,p);
(c)  go back to step (3).

(4)  If there is some operation performed, go back to step (2), Otherwise, output
the coding tree T, and terminate the program.

The algorithm deDoc(k) outputs a coding tree T of G. Clearly, the algorithm
deDoc(k) works naturally on weighted graphs.

Remarks on deDoc(k) algorithm. According to the description of algorithm
deDoc(k), a domain of a chromosome is the marker of a node &, M(«) in the
coding tree T. However, the M(«) is not necessarily a set of continuous loci in the
chromosome. To guarantee that a domain is a set of continuous loci, we can
modify the algorithm as follows:

For the merging operator Mg(T;«,f), if M(a) = {i,i+1, ... ,j} and
M(B) = {k,k+1,... 1}, where j <k, we may define M(«) = {i,i+ 1, ... ,I}. For
the combining operator with nodes a, 8 € T, if M(a) = {k|i <k < j} and M(B) =

{k|s < k < t} for some i, j, s, t with j<s, then for the new node £, we define
M(&) = {k|i < k <t}. We denote the algorithm with the modification above as
deDoc(k)’. deDoc(k)’ is efficient, however, it is slower than the original deDoc(k).

Since every bin in the Hi-C matrix has many more interactions with its adjacent
bins than with more distant bins, deDoc(k) cluster densely connected bins to form
TADs that consists of contiguous bins. Our experiments showed that, with a few
trivial exceptions, in all the dataset we tested TADs were composed of contiguous
bins (Supplementary Table 1). The exceptions containing non-contiguous bins
comprised about 1.7% and 2.7% of the domains predicted by deDoc(M) and deDoc
(E), respectively. This fact verified the ability of deDoc to detect canonical TADs.
Therefore, we simply use deDoc(k) in our research here and removed all the non-
contiguous domains in the implements of deDoc(k).

Time complexity of algorithm deDoc(k). It can be easily derived that the time
complexity of deDoc(k) is O(n?) when k = 2. However, the Hi-C contact matrix is
nearly always sparse; therefore, we only need to consider time complexity under the
condition of sparse graphs. When the graph is sparse, the time complexity becomes
O(nlogzn) and O(nzlogzn) for k=2 and 3, respectively. Owing to the high
complexity O(nzlogzn) of our algorithm deDoc(3), we only considered algorithm
deDoc(2), denoted as deDoc(E), in this study. To obtain smaller domains from
deDoc(2) identified modules, we designed a modified version of deDoc(2), denoted
as deDoc(M), which simply reapplies deDoc(2) to its identified modules.

The similarity of two partitions. Let X and Y be two subsets of V, both of which
consist of consecutive locations of a chromosome. We define the similarity of Y to
X as follows:

XNy

SN =R

7)

Suppose that P = {X,,X,, ... ,Xy} and Q= {Y},Y,, ... ,Y,,} are two
partitions of G such that each module X; or Y; is a consecutive set of vertices of G.

Then the similarity of each element X, j € {1,2, ... ,N} in P to Q is defined by
the function S{(j), as

M ‘ijYi‘

Q(j) = maxt, § ——=1. (8)
V|1l

Finally, the WS between Q and P is defined as the function ng,

it %] - s50) o

- .
S|

For any given algorithms A and B, if P and Q are the partitions of G found by
algorithms A and B, respectively, then we define the WS between A and B as ng,
denoted as wsj.

Remarks on the similarity of the two partitions can be found in Supplementary
Note 2.

Choice of binsizes. The intuition for binsize determination is to choose a binsize
that minimizes the SE of the given Hi-C data. However, the number of vertices in G
may have effects on the SEs. To make the SEs comparable between graphs with
different numbers of vertices, we introduce the normalized structure entropy.

Let G, = (Vi, Ep, Wy), k € {1,2, ... ,m} be the weighted graphs with different
binsizes by, ... , b,,, respectively. The 1D normalized SE (1D-nSE, for short) is

defined as
d d,
H(, o)

log,n;.

Huom(1,b) = (10)

norm

where n; is the number of bins at binsize by. The 2D normalized SE (2D-nSE, for
short) is defined as

H(2,b)
H(1,b,)"

H,

norm (

2,b) = (11)

For a given Hi-C dataset, we choose the binsize that makes its associated Hi-C
graph have the minimal normalized SE (nSE, for short) among all the stable
binsizes in a series of incremental binsizes. A binsize k is considered stable if and
only if both H, g, (b_1)>Hporm (85) and Hyo (by) >Hporm (by) hold.

norm norm norm norm

Sampling method. We randomly sampled raw reads from the tested Hi-C data.
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Code availability. The source code of the algorithm deDoc can be found at
https://github.com/yinxc/structural-information-minimisation.

Data availability. The authors declare that all relevant data of this study are
included within the article and its supplementary information. Public datasets used
are summarized in Supplementary Table 1.
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