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Time series generated by complex systems like financial markets and the earth’s atmosphere

often represent superstatistical random walks: on short time scales, the data follow a simple

low-level model, but the model parameters are not constant and can fluctuate on longer time

scales according to a high-level model. While the low-level model is often dictated by the

type of the data, the high-level model, which describes how the parameters change, is

unknown in most cases. Here we present a computationally efficient method to infer the time

course of the parameter variations from time-series with short-range correlations. Impor-

tantly, this method evaluates the model evidence to objectively select between competing

high-level models. We apply this method to detect anomalous price movements in financial

markets, characterize cancer cell invasiveness, identify historical policies relevant for working

safety in coal mines, and compare different climate change scenarios to forecast global

warming.
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The movements of invasive cancer cells, price fluctuations of
stocks, and the temperature fluctuations tied to global
warming all represent random walks. In contrast to the

well-known Brownian motion of pollen grains in water, the
random walk of, e.g., stock prices cannot readily be described by a
constant diffusion coefficient. Instead, the data follow a simple
low-level model (e.g., a Gaussian distribution with a standard
deviation that corresponds to the diffusion constant) on short
time scales, but the model parameters can fluctuate on longer
time scales according to a high-level model.

Statistical models in which the low-level parameters fluctuate
randomly on long time scales or large spatial scales have been
previously described by a superposition of statistical processes—
commonly referred to as “superstatistics”1,2. For example, the
non-Gaussian, fat-tailed distribution of stock returns can be
described by a superposition of Gaussian distributions of varying
standard deviation σ. A superstatistical analysis aims to recon-
struct the distribution of σ (how often the market is calm (small
σ) or turbulent (large σ)) and its temporal auto-correlation (the
“life-time” of different market conditions) from price
fluctuations3.

Superstatistics has been successfully applied to a variety of
financial4–6, environmental7–9, social10,11, and biological sys-
tems12. Moreover, current superstatistical methods can determine
not only how frequently certain parameter values are realized but
can also pin-point when parameter values change13–16. However,
current methods lack the ability to objectively compare different
time-varying parameter models. Without such an objective
measure, one risks to either underestimate parameter fluctuations
(and therefore to lose valuable information about the system’s
dynamics), overestimate parameter fluctuations (and therefore to
mistake noise for signal) or assume the wrong type of parameter
dynamics (e.g., assuming gradual parameter variations in the case
of abrupt parameter jumps).

Two established approaches to infer time-varying parameters
and their uncertainty are Monte Carlo methods17–20 (which
approximate parameter distributions by random sampling) and
Variational Bayes techniques21 (which approximate parameter
distributions analytically by simpler distributions). However, both
approaches cannot directly estimate the so-called model evidence
—the probability that the measured data is actually generated by
the model (although Variational Bayes methods can at least
provide a lower boundary). An objective comparison between
different models is therefore not possible.

We propose an alternative approach for the inference of time-
varying parameter models. We exploit that many time series can
be fitted by evaluating the contribution of each data point to the
low-level parameter distribution in an iterative way, time step by
time step. This allows us to breakdown a high-dimensional
inference problem into a series of low-dimensional problems.
Furthermore, if the number of time-varying parameters is rela-
tively modest (≲3), parameter distributions can be represented on
a discrete lattice, enabling us to efficiently compute the model
evidence by adding up all probabilities.

In a previous study, we have applied a superstatistical method
to characterize the heterogeneous random walk of migratory
tumor cells, whereby the two low-level parameters of a random
walk—cell speed and directional persistence—were allowed to
vary in time according to an arbitrary user-defined magnitude13.
Here, we extend this approach and automatically tune the high-
level model, i.e., the magnitude of parameter variations, based on
the model evidence. We also utilize the model evidence as a
powerful tool in hypothesis testing by comparing different high-
level models of varying complexity. We apply our method to
problems of current interest from diverse areas of research in
social science, finance, cell biophysics and climate research.

Results
Bayesian updating. Bayesian statistics provides a mathematical
framework for improving our estimates of low-level parameters
(e.g., volatility) as new noisy data (e.g., price fluctuations) become
available. Bayesian updating starts with a prior distribution that
describes any knowledge about the low-level parameters before
seeing the data. By multiplying the prior with the likelihood
function evaluated at each data point, one obtains the (non-
normalized) posterior distribution (Fig. 1a). The likelihood
function is the low-level model and describes the conditional
probability of the current data point, given the current parameter
values and possibly also the past data points. The posterior dis-
tribution provides the most likely low-level parameter values (the
mode of the distribution) and their uncertainty (the width of the
distribution).

We use a grid-based implementation of the Bayesian updating
method, which allows us to compute the normalization constant
of the posterior distribution by summing over the parameter grid.
This normalization constant is the so-called model evidence and
directly represents the probability that the data has been
generated by the model22,23. The model evidence provides a
quantitative measure to compare the statistical power of different
models, as it rewards good model fit to the data and penalizes the
choice of too many free parameters. This can be viewed as an
automatic implementation of “Occam’s razor”24.

Inference of time-varying parameters. For models with time-
varying parameters, a new posterior distribution is needed for
each time step (Fig. 1b). The possibility of a parameter change
between two time steps can be implemented by a redistribution of
the probabilities on the parameter grid. This redistribution is
mathematically defined as a norm-conserving transformation.
For example, to account for stochastic Gaussian parameter fluc-
tuations between successive time steps, the posterior distribution
is convolved with a Gaussian kernel. In this case, the variance of
the Gaussian kernel represents a high-level parameter. To account
for arbitrarily large, abrupt jumps of the time-varying parameters,
the corresponding transformation assigns a minimal probability
to all values on the parameter grid. Furthermore, deterministic
low-level parameter changes over time such as a linear trend can
be achieved by a time-dependent transformation that shifts the
posterior distribution according to a predefined function.

If this transformation is applied only in the forward direction
of time, for example in a prospective study in which new data
points arrive in real-time, the resulting parameter estimates are
based only on the information contained in past data points.
However, in the case of a retrospective analysis, the transforma-
tion can be applied in both forward and backward direction of
time such that the parameter estimates at each time step
incorporate the information contained in all data points.

The model evidence of a time-varying parameter model is
obtained by summing the probability values of the (unnorma-
lized) posterior distribution over the parameter grid for each time
step in the forward time direction, and multiplying the sums from
all time steps. The obtained model evidence assesses the
goodness-of-fit of both the low-level model and the transforma-
tion that is applied to the posterior distribution. The model
evidence can thus be used to compare different (high-level)
hypotheses about the (low-level) parameter dynamics. When we
systematically compute the model evidence over an equally
spaced grid of the high-level parameter values, we obtain the
complete distribution of the high-level parameters. By summing
all model evidence values over the high-level parameter grid, we
obtain a compound model evidence value that takes into account
the uncertainty of the high-level parameters.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04241-5

2 NATURE COMMUNICATIONS |  (2018) 9:1803 | DOI: 10.1038/s41467-018-04241-5 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


The grid-based evaluation of the model evidence is a major
advantage of this method, but it also limits the number of time-
varying parameters to ≲3 and the number of data points in the
time series to ≲104 as computation time and computer memory
space increases linearly with the number of grid points times the
number of data points. Within this niche, however, our method
outperforms the state-of-the-art Hamiltonian Monte Carlo
approach for inferring stochastic parameter variations (Supple-
mentary Fig. 1).

Policy assessment in coal-mining safety. The number of coal-
mining disasters in the United Kingdom between 1852 and 1961
in which ten or more men were killed has served as a classic
example of a so-called change-point analysis25–30 (Supplementary
Data 1). At some point between 1880 and 1900 (the change-
point), the number of disasters dropped abruptly to one third,
due to updated safety regulations. Here, we use our method to
identify which safety regulations have led to the significant
decrease of mining disasters.

The statistics of the annual disaster count is readily described
by a Poisson distribution with a single parameter—the accident
rate. To identify the time point at which the accident rate changed
systematically, we compare two competing models: The “classi-
cal” approach used in most studies assumes that the accident rate
is piecewise constant before and after the change-point (Fig. 2a).
Here, the Poisson process represents the low-level model, and the
time point at which the accident rate changes is the high-level

parameter. Alternatively, we further allow for smaller Gaussian
fluctuations of the accident rate over time (Fig. 2b). In this case,
the magnitude of the fluctuations (standard deviation) is assumed
to be piecewise constant before and after the change-point,
representing two additional high-level parameters. Thus, in the
alternative model, Poisson processes with Gaussian rate
fluctuations10,31–33 are combined with an additional change-
point.

To solve the inference problem, we systematically vary the
change-point and the two standard deviations (both are zero in
the classical approach), and fit the distribution of the accident
rate and the corresponding mean value to the data (Fig. 2a, b).
For each combination of change-point and standard deviation, we
obtain a different model evidence value. When multiplied with
appropriate prior probability values (Supplementary Figs. 2 and
3) and normalized, these model evidence values correspond to the
distribution of the change-point (Fig. 2a, b) and of the two
standard deviations (Fig. 2c, d). The distributions characterize the
most likely value and the uncertainty of the high-level parameter
estimates. When the model evidence values are not normalized
but integrated over all high-level parameter combinations, we
obtain the compound model evidence which characterizes the
goodness-of-fit for the two competing models (Fig. 2e).

We find that the alternative model fits the data with a 2-fold
higher compound model evidence compared to the classical
model and also shows a broader change-point distribution with
several distinct peaks (Fig. 2b; Supplementary Fig. 4) that line up
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the posterior distribution represents the model evidence. Here, restrictive models (inset, yellow) concentrate their evidence on a smaller subset of possible
datasets compared to more flexible models (inset, blue) and thus attain a higher model evidence, if both models fit the data equally well. b For a model with
time-dependent parameters, the multiplication of the prior distribution (blue) and the likelihood function (green) is carried out for each time step
individually. Between time steps, the posterior distribution (red) is transformed according to a high-level model T, to reflect possible changes of the low-
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with relevant historical events: The first major peak occurred in
1886 and coincides with the publication of a report by the Royal
Commission on Accidents in Mines28,34. The second peak
occurred in 1891, two years after the foundation of the Miner’s
Federation35. The third peak occurred 1896 and coincides with
the enactment of the Explosives in Coal Mines Order and the
Coal Mines Regulation Act which finally enforced regulations
such as the use of safety lamps and safer explosives28,34. This
important transforming event marks the most plausible turning
point for the reduction in mining accidents and accordingly
attains the largest change-point probability in the alternative
model but not in the classical model, which appears to emphasize
more the foundation of the Miner’s Federation (Fig. 2a).

Tumor cell invasiveness. The ability of tumor cells to invade
interstitial tissue represents a crucial factor in the pathological
process of metastasis. A common way to characterize cell moti-
lity, as a substitute for cell invasiveness, are migration experi-
ments on flat surfaces such as a Petri dish. Unfortunately, cell
motility parameters measured on 2D substrates, such as average
speed or directional persistence, do not serve as a viable indicator
for cell migration in 3D surrogate tissue36–39. This may be
because 3D invasiveness is not so much a function of the average
speed and persistence, as even highly invasive cancer cells usually
display frequent changes between phases with low and high
migratory activity40. Rather, tissue invasion requires phases with
simultaneously high speed and high persistence. To test whether
such a correlation between speed and persistence exists also for
2D migration, we analyze cell trajectories of three differently
invasive cell lines (A125 lung carcinoma, MDA-MB231 breast
carcinoma, HT1080 fibrosarcoma) and of highly invasive primary
inflammatory duct (ID) breast carcinoma cells (Fig. 3a, b;

Supplementary Data 2). Individual cells are continuously tracked
for 2–16 h. Cell trajectories are then modeled by a random walk
characterized by a step size and a turning angle. The step sizes
follow a Rayleigh distribution, and the turning angles follow a
Gaussian distribution confined to the unit circle (a von-Mises
distribution), centered around zero. The width of the von-Mises
distribution quantifies the directional persistence of a cell, and the
mode of the Rayleigh distribution is a measure of average cell
speed. Both of these low-level parameters (cell speed and direc-
tional persistence) are allowed to change over time, each
according to a Gaussian random walk (Fig. 3c, d). The two
standard deviations of this Gaussian random walk are determined
separately for each individual cell (Fig. 3c, d, insets).
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During 2D migration, all four cell types show phases with high
and low directional persistence and cell speed. Directional
persistence and speed are positively correlated in three of the
investigated cell types to a varying degree (Fig. 3e; Supplementary
Fig. 5). By contrast, the non-invasive A125 cells show no such
correlation. Furthermore, we have measured the characteristic
invasion depth for the same four cell lines in a reconstituted
collagen matrix (a surrogate for interstitial tissue)41.

We find a strong linear relationship between the invasion
depth in 3D matrices and the correlation strength between 2D
speed and persistence (Fig. 3e), indicating that migratory phases
of simultaneously high persistence and cell speed are crucial for
the invasion process of tumor cells. This finding is in line with
earlier work that revealed the presence of such highly efficient
migratory phases for a single invasive cell line (MDA-MB-231) in
3D surrogate tissue40. That these migratory phases can also be
detected in a 2D motility assay suggests that some aspects of 2D
motility may be indicative of 3D invasive behavior, underlining
the role of heterogeneity in cancer on a cellular level42,43.

Stock market fluctuations. For many financial assets, the dis-
tribution of (logarithmic) returns has a “fat” tail, rendering large
price fluctuations much more probable compared to a standard
Gaussian random walk. Numerous approaches exist to model fat-
tailed distributions of stock market fluctuations, such as the
extreme value theory44, Autoregressive Conditional

Heteroskedasticity models45 and optimal-trade models for large
market participants46.

Here, we describe stock market returns as a correlated random
walk with two parameters, volatility and correlation. Volatility
measures the magnitude of price fluctuations, analogous to cell
speed, while the correlation coefficient of subsequent returns
quantifies the directional persistence of stock market trends. We
show that fat-tailed distributions in stock market returns emerge
naturally from temporal fluctuations of both volatility and
correlation. These fluctuations are described by a high-level
model that accounts for both, gradual and abrupt changes.
Abrupt changes are implemented by assigning a minimal
probability for all possible parameter values.

We analyze minute-scale fluctuations in the price of the
exchange-traded fund SPY, which is specifically designed to track
the value of the Standard&Poor’s 500 index. On long time-scales,
its value therefore reflects the current macro-economic state of
the U.S. economy. Due to its large daily trading volume, the SPY
moreover reflects the market micro-structure on the minute time-
scale. Using our method, we obtain a minute-scale time series of
volatility and correlation for each of the 1246 regular trading days
from 2011 to 2015.

As an example, we show the price fluctuations of the SPY
during an individual trading day (Fig. 4a) and the associated
fluctuations in correlation (Fig. 4b) and volatility (Fig. 4c). On
that particular day, the price was fairly constant until around 2:00
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p.m. when the Federal Open Market Committee announced its
latest report. After the announcement, the trading volume
(Fig. 4d) increased drastically and the price began to fluctuate
and to decline. Accordingly, the correlation switched from a
negative to a positive value, and volatility increased by several
fold. Averaged over several years, we find that a usual trading day
starts with above-average volatility during the first trading
minutes and then settles to a low value, only to increase towards
the end of the trading day (Fig. 4c).

When we plot the volatility of all trading minutes during the
years 2011–2015 versus the correlation, we obtain the joint
distribution of both parameters (Fig. 4e). Accordingly, most of
the time the stock market shows low volatility and a slightly
negative correlation. The correlation of returns approximates a
two-sided exponential (Laplace) distribution, indicating that
series of strongly positive or negative correlated price fluctuations
are highly unlikely. A close-to-zero correlation characterizes an
efficient market, as strong correlations would render price
movements predictable and could be immediately exploited.

The volatility follows a so-called compound gamma distribu-
tion47, according to which trading days with low volatility are
more likely than days with high volatility, but trading days with
extremely high volatility (“Black Fridays”) are still possible. The
compound gamma distribution has been previously observed for
minute-scale trading volumes of NASDAQ stocks48, which
underscores the known tight relationship between volatility and
trading volume. Simulated price series using the two-sided
exponential distribution for correlation and the compound
gamma distribution for volatility accurately reproduce the fat
tail seen in the data (Fig. 4f).

We further find that changes in correlation and volatility
become uncorrelated after 90 min (Fig. 4g), while stock price
fluctuations become uncorrelated within few minutes (Supple-
mentary Fig. 6). Thus, a triggering event (like an unexpected news
announcement) not only changes correlation and volatility
momentarily, but alters the market dynamics for a period of 90
min on average. Moreover, we find a weak but significant peak in
the cross-correlation function, revealing that changes in volatility
tend to follow changes in correlation with a delay of 45 min
(Fig. 4h). We speculate that trading strategies such as “technical
analysis”, which try to identify trends (periods of high
correlation) in price series, trigger a higher trading activity and
thus increase volatility. Although the fat-tailed distribution of
returns can readily be described solely by a time-varying volatility
parameter6,49–51 (Supplementary Fig. 7), our example shows that
additional insights into financial markets can be gained by
investigating the connection between different market
parameters.

Real-time model selection. Abrupt changes in market dynamics
(as shown in Fig. 4b, c) can easily be detected with hindsight,
taking into account all data points of a trading day (including
data points generated after the parameter jump). For applications
in finance, however, one is interested in detecting abrupt changes
in market dynamics in real-time, as these events are often tied to
the release of new, market-relevant information. If new infor-
mation drastically changes the way traders act on the market,
previous information about parameters like volatility and corre-
lation will become useless.

Our method can be used to evaluate exactly this probability of
current information becoming useless. In particular, we test
whether each minute-to-minute price change is best described by
previously obtained estimates of volatility and correlation, or by
discarding previous parameter estimates (Fig. 5a). In the former
case (“normal” market dynamics), the transformation that

converts the posterior to the new prior distribution is a Gaussian
convolution so that the new prior is firmly based on previous
information and allows only for gradual parameter variations. In
the latter case (“chaotic”market dynamics), we assume a flat prior
that erases any previous parameter information. In case of abrupt
changes in market dynamics, the “normal” model will fail to
adapt the parameters to the new price due to its inflexible prior
and thus yield a low compound model evidence, while the
memoryless “chaotic” model will readily adjust the parameter
estimates and thus attain a high compound model evidence.

''Normal'' ''Chaotic''

t = n

t = n + 1

a

b

c

d

136.50 Price (USD)
2012-07-02

Counted events:
p(chaotic⎪rt  ) > 0.05

136.25
136.00
135.75

1.00

0.75

0.50

0.25

0.00
80

60

40

20

0
10 am 11 am 12 am 1 pm 2 pm 3 pm 4 pm

d� d� d� d�

= p(rt ⎪ normal) = p(rt ⎪ chaotic)

p(chaotic⎪rt  )

× ×

= =
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probability in favor of the memoryless high-level model) for all trading
minutes of SPY on July 2nd, 2012. d Distribution of events with a probability
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Between 2011 and 2015, we detect a total of 1640 irregular
events with a risk of at least 5% of rendering previous parameter
estimates useless. Such events are often accompanied by large
price deviations (Fig. 5b, c). Note that this risk metric is increased
only at the time of the initial market perturbation, even if such an
event has a prolonged effect on market dynamics (Supplementary
Fig. 8).

Interestingly, the temporal distribution of such seemingly
irregular events shows pronounced peaks at 10:00 a.m., 2:00 p.m.,
3:45 p.m., and 4:00 p.m. (Fig. 5d). The peak at 10:00 a.m. is
explained by scheduled announcements of U.S. macroeconomic
indicators by the Bureau of Census (Fig. 5b, c shows the impact of
a monthly announcement by the Bureau of Census on the price of
SPY), the National Association of Realtors, the Conference Board
and possibly others52. If the information that is shared by these
announcements is unexpected at least to some extent, it alters
market behavior and thus renders previous intra-day knowledge
about market dynamics useless. In the same way, the peak at 2:00
p.m. is generated by press releases of the Federal Open Market
Committee. The final two peaks occur 15 min before market close

and in the last trading minute of the day, respectively, and are
associated with a higher trading activity by market participants
who close their open positions at the end of the trading day to
protect themselves against new information that might become
available after trading hours. This temporal clustering of trading-
induced anomalies is not exclusive to financial assets but instead
represents a general property of exchange-traded goods and has
also been reported for electrical power prices53.

In addition to this novel risk metric introduced here, our
method can be adapted to evaluate more established risk
estimators such as the Value-at-Risk (Supplementary Figs. 9
and 10), providing an alternative to the commonly employed
moving-window or return interval approach4,54,55.

Robust predictions for climate change. As a final example, we
analyze global warming56. Numerous models have been used to
extrapolate historic climate data on regional as well as global
scales and for different time ranges, from decades to centuries.
Due to the wide spectrum of possible future climate scenarios, so-
called multi-model projections that compute the weighted aver-
age of predictions from different climate models are thought to
provide more robust climate projections57. However, there is no
consensus on how to objectively assign weights to different
models58,59. Here we focus on reconstructed annual temperature
values of Australasia from the years 1600 to 2001, compiled by
the PAGES 2k Consortium60.

For each year, we model the temperature series using a
Gaussian distribution with unknown mean as the low-level
model. As high-level models for describing how the mean
temperature changes on long time-scales, we implement three
different climate scenarios: constant, accelerating or plateauing
global warming. Although the distribution of temperature
fluctuations has been described in the superstatistical context
before7, this example focuses on identifying the onset of global
warming and its functional form, and further provides objective
probability weights for all the three scenarios.

Our first scenario corresponds to the classic “hockey-stick
graph”61,62 and assumes a constant mean temperature beginning
in the year 1600, followed by a linear increase in temperature after
a breakpoint that is to be inferred from the data (Fig. 6a). We find
that the transition to the linear increase occurred around 1937
(±6 years) and results in an increase of 0.010 ± 0.002 °C yr−1. To
compute the predictive distribution of future temperature values
for 25 years, we supply the inference algorithm with 25 additional
but empty data slots. The inference algorithm then fills these
gaps, generating predictions of future parameter values. For 2026,
it predicts a temperature anomaly of 0.47 ± 0.09 °C.

The second scenario is an example for accelerating climate
change with a quadratic increase in temperature after a period of
constant temperature (Fig. 6b). The model predicts a temperature
increase starting around 1906 (±10 years), 30 years earlier than in
the linear model. For 2026, it predicts a temperature anomaly of
0.68 ± 0.13 °C.

In a third model, we consider a stagnating temperature after a
period of global warming. By introducing a second break-point to
the linear model and assuming a constant temperature after this
point, this model represents the possibility that the recent
warming trend of the 20th century has come or will come to an
end (Fig. 6c). The model predicts a temperature increase starting
around 1938 (±6 years) and identifies 1990 as the most probable
end of the warming period. For 2026, it predicts a temperature
anomaly of 0.25 ± 0.13 °C.

While these models do not give us a deeper understanding of
the underlying processes that drive global warming, they capture
basic scenarios of climate change. All three models fit the past
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Fig. 6 Weighting different climate change scenarios. a Reconstructed
annual mean temperature (red line) and corresponding standard error
intervals (red shading) from the PAGES 2k Consortium for the Australasia
region. Assuming a linear increase in temperature after a break-point, the
distribution of the inferred temperature (blue shading), together with its
mean value (black line) and 1 s.d., 2 s.d., and 3 s.d.-intervals (from dark to
light gray) are displayed. The inferred distribution of the breakpoint is
depicted in gray. b Same as in a, but assuming a quadratic increase in
temperature after a break-point. c Same as in a, but assuming a second
temperature plateau after a linear warming. d Distribution of predicted
temperature differences between 2001 and 2026, obtained by averaging of
single model predictions, weighted by the respective model evidence values
(inset)
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temperature data reasonably well, but they arrive at diverging
predictions. By computing the compound model evidence for
each of the three scenarios, we find that the linear increase model
is clearly favored, followed by the plateauing climate change
model, while the accelerating climate change model is least likely
(Fig. 6d, inset).

By averaging the predicted mean temperature distributions of
all three models, weighted by their compound model evidence, we
gain a robust prediction for the year 2026. We compute a chance
of 0.7% that 2026 will be cooler compared to 2001. A mild
temperature increase of <0.5 °C has a probability of 86.3%,
leaving a 13.0% chance of a temperature increase >0.5 °C. This
example demonstrates how model averaging may be used to gain
robust yet easily interpretable predictions. Finally, it is important
to note that we neglect any long-range correlations in the
measured temperature data, because the likelihood function (low-
level model) does not factorize for long-range correlated
parameters, as required by our iterative inference method. While
our method provides a solution to the weighting problem in
multi-model climate projections, it may therefore still under-
estimate the uncertainty of the temperature predictions63–65.

Discussion
In this study, we present a novel method for the inference of
time-varying parameters from noisy, short-term correlated time
series data. The parameters describe the data according to a two-
level hierarchical model. Importantly, our method can objectively
compare different models and select the best model based on the
principle of Occam’s razor that weighs goodness of fit against
model complexity. Inferring the parameter distributions itera-
tively, step by step, the computation time of our method scales
linearly with the number of time steps, and in this regard out-
performs Markov Chain Monte Carlo methods.

Compared to Variational Bayes techniques, our method is
more easily adaptable to a large class of probabilistic and deter-
ministic models without expert knowledge. While the repre-
sentation of the model parameters on a discrete lattice limits the
number of parameters, it also facilitates the direct evaluation of
the model evidence and provides an objective model selection
criterion. To our knowledge, no other general methods are cur-
rently available to select between competing models involving
time-varying parameters.

We have applied our method to four examples from social
science, cell biophysics, finance and climate research, and have
demonstrated that the dynamics of the model parameters uncover
relevant information about complex systems which cannot be
obtained from the static mean values of the parameters alone.
Furthermore, we have shown that the goodness-of-fit in change-
point models can be greatly improved by additionally accounting
for gradual stochastic parameter fluctuations before and after the
change-point. Our method is also applicable to continuous data
streams (for example sensor data in medicine, meteorology and
seismology, or social data like twitter messages), thereby allowing
users to compare the likelihood of different scenarios in real-time,
for example normal heart function versus cardiac arrhythmia. In
addition, with our method it is straight-forward to predict future
parameter values and their uncertainty. In the same way, the
method can bridge gaps in the measured time series.

In future work, our method could be extended to include a
larger number of low-level parameters by using non-regular
parameter grids. For example, a recently reported information-
theoretic approach66 maximizes the information that can be
learned about the model parameters based on the available data.
This method not only yields an appropriate discretization of the

parameter space, but further automatically identifies parameters
that are poorly constrained by the data.

To facilitate the use of this method, we have developed the
open-source probabilistic programming framework bayesloop67

written in Python (bayesloop.com).

Methods
Iterative evaluation of the model evidence. In Bayesian statistics, a parameter
distribution that is inferred from data based on a probabilistic model is called
posterior distribution. This posterior distribution is computed as the product of a
likelihood function with a prior distribution, normalized by a model evidence.
Traditionally, this model evidence is computed from the integral of likelihood
times prior so that the posterior distribution is properly normalized. Therefore, in
the case of time series with time-varying model parameters, this integration step
can only be performed after every point of the time series has been analyzed. By
contrast, in our method we update the model evidence for every new data point of
the time series with an iterative approach. Specifically, we have adapted the iterative
approach used for evaluating Hidden Markov models68,69 to hierarchical models
that consist of a low-level model (defined by the likelihood function L) with time-
varying parameters θt (t= 1, 2, .. N), and a high-level model (defined by a trans-
formation T) with high-level parameters η. We discretize θ and η on a regular grid,
resulting in a discrete set of parameter values θ(i) with i= 1, .. ni, and a set of high-
level parameter values η(j) with j= 1, .. nj. Then

αðijÞt ¼ p df gt′�t jθðiÞt
� �

� p θðiÞt jηðjÞ
� �

¼ p θðiÞt ; dt′f gt′�t jηðjÞ
� �

ð1Þ

is the product of likelihood and prior, i.e., the non-normalized posterior (the
conditional probability of the data d up to time step t and the parameters θ at time
t, given the high-level parameters η). To advance Eq. (1) by one time step, our
method relies on models with a factorizable likelihood function. Each of the
likelihood factors describes the probability of one data point, given the parameter
values of the same time step and past data points:

LðiÞtþ1 ¼ p dtþ1jθðiÞtþ1; dt′f gt′�t

� �
ð2Þ

The class of models which supports such a likelihood factorization includes not
only models with independent observations (e.g., a Poisson process), but also auto-
regressive models for which the current data point depends on past data points
(e.g., a correlated random walk model). Not supported are models in which the
current data point also depends on past parameter values, as in moving-average
models or models with long-range correlated data. If the likelihood function of the
model is factorizable, we may advance Eq. (1) by one time step as follows:

αðijÞtþ1 ¼ LðiÞtþ1 � TðjÞ
tþ1 αðijÞt

� �
: ð3Þ

Here, T denotes the high-level model. It is a norm-preserving transformation as
specified by the high-level parameters. T defines the temporal variations of the low-
level parameters and may itself depend on time. In essence, T modifies the non-
normalized posterior α(ij). Norm-preserving in this context means that the
transformation does not change the integral value of α with respect to the
parameters θ. One example for a possible transformation T is a convolution of α
with a Gaussian, which allows the low-level parameters θ to slowly change over
time. Another example is the addition of α with a constant small value, followed by
a norm-preserving multiplication with another constant value, which allows the
low-level parameters θ to suddenly change within the next time step.

Starting with an initial prior distribution pðθðiÞ0 Þ that summarizes the prior
knowledge about the parameter values before taking into account any data, the
iteration described in Eq. (3) is applied to all time steps. From the unnormalized
posterior of the last time step αðijÞN , we finally compute the model evidence (i.e., the
probability of all data points given the hyper parameter values η(j)) by
marginalizing αðijÞN with respect to all low-level parameters:

p dt′f gt′�N jηðjÞ
� �

¼
X
i

αðijÞN � Δθ ð4Þ

Here, Δθ represents the voxel size of the parameter grid. By maximizing the model
evidence, one can optimize high-level parameter values, and at the same time select
between different choices of low-level and high-level models. Note that the model
evidence can be computed without inferring the time-varying parameters θ(i).

Inference of time-varying parameters. Once we know the model evidence, we
can infer the joint parameter distribution for each time step, given past and future
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data points and the high-level parameter values:

p θðiÞt jfdt′gt′�N ; η
ðjÞ

� �
¼ αðijÞt � βðijÞt

p dt′f gt′�N jηðjÞ
� � ; ð5Þ

The non-normalized posterior αðijÞt in the “forward” time direction is computed
from Eq. (1). βðijÞt is the probability of all future data points, given the current
(hyper-) parameter values and the current and past data points:

βðijÞt ¼ p dt′f gt′>t jθðiÞt ; dt′�t ; η
ðjÞ

� �
ð6Þ

When we restrict ourselves to low-level models with a likelihood function that
factorizes as in Eq. (2), however, past observations {dt′}t′<t must be independent of
future observations {dt′}t′>t, and can only depend on the current parameters θt and
observations dt69. Exploiting this conditional independence, βðijÞt is simplified to

βðijÞt ¼ p dt′f gt′>t jθðiÞt ; dt ; η
ðjÞ

� �
ð7Þ

and can be efficiently computed in an iterative way, moving backwards in time:

βðijÞt ¼ T′ðjÞtþ1 LðiÞtþ1 � βðijÞtþ1

� �
ð8Þ

The transformation T′ is used to incorporate the parameter dynamics in
negative direction of time. If the parameter dynamics are reversible (e.g., for a
Gaussian Random Walk), T′= T. To model non-reversible dynamics, such as
deterministic trend, two separate transformations are needed.

Model averaging. For most high-level models, the optimal high-level parameter
values are not known a-priori, for example the magnitude of volatility fluctuations
in the case of stock market models. Therefore, one may choose a discrete set of
high-level parameter values η(j) that cover an interval of interest, and then run the
inference algorithm described above for each individual high-level parameter value
η(j), each time resulting in a model evidence p dt′f gt′�N jηðjÞ

� �
. From these indi-

vidual runs, we compute the compound model evidence which takes into account
the uncertainty of the high-level parameters:

p dtf gt�N

� �
¼

X
j

p dtf gt�N jηðjÞ
� �

� p ηðjÞ
� �

ð9Þ

Here, p(η(j)) denotes the prior distribution of the high-level parameters. If not
specified otherwise, we assign equal probability to all η(j). Using Eq. (9), the joint
distribution of the high-level parameters can be determined:

p ηðjÞj dtf gt�N

� �
¼

p dtf gt�N jηðjÞ
� �

� p ηðjÞ
� �

p dtf gt�N

� � ð10Þ

In essence, this is the normalized model evidence of each individual run with
fixed high-level parameters. This high-level parameter distribution can now be
used to compute the time course of the weighted average distribution of the low-
level parameters from each individual run of the inference algorithm:

p θðiÞt j dt′f gt′�N

� �
¼

X
j

p θðiÞt j dt′f gt′�N ; η
ðjÞ

� �
� p ηðjÞj dtf gt�N

� �
ð11Þ

Prediction and handling of missing data. To infer the parameter distribution of
time steps for which no data are available, either because data is missing or because
the time steps lie in the future, we may simply replace the likelihood function of the
low-level model by a flat, improper (non-normalized) distribution:

LðiÞt ¼ 1 8i ð12Þ

Inserting this into Eqs. (3) and (8), we find that the iteration from αðijÞt to αðijÞtþ1
(and from βðijÞtþ1 to β

ðijÞ
t ) is given by transforming the current distributions according

to the high-level model, without adding any information from data.

Online model selection. Assume that we have (for simplicity) two mutually
exclusive high-level models A and B with high-level parameter values a(j) and b(k),
e.g., one for gradual parameter changes and one for abrupt parameter jumps. In an
analysis of an on-going data stream, we want to compute the relative probability
that each of those two high-level models describe only the latest data point tnow.
First, we compute the hyper-model evidence of only the latest data point, using Eq.
(9), by dividing the model evidence after seeing the data point of time step tnow by

the model evidence before seeing this data point:

p dtnow jA; dtf gt� tnow�1ð Þ
� �

¼
p dtf gt�tnow

jA
� �

p dtf gt� tnow�1ð ÞjA
� � ; ð13Þ

and analogous for high-level model B.
For independent observations, i.e., if the probability of the current observation

does not depend on past observations given the current parameter values (as it is
the case for all examples given in this report except for the auto-regressive model of
stock market fluctuations), the expression above simplifies to:

p dtnow jA; dtf gt� tnow�1ð Þ
� �

¼ p dtnow jA
� �

ð14Þ

Using a prior probability p(A) and p(B) to state our initial belief that the data
point is described by either model A or model B (p(A)+ p(B)= 1), we compute
the relative probabilities that each of the two high-level models describes the
current data point:

p Ajdtnow
� �

¼
p dtnow jA
� �

� p Að Þ
p dtnow jA
� �

� p Að Þ þ p dtnow jB
� �

� p Bð Þ
; ð15Þ

and analogous for high-level model B.
If the current observation depends on the previous observation (as in our stock

market example where we use an autoregressive model of first order), Eq. (13)
simplifies to:

p dtnow jA; dtf gt� tnow�1ð Þ
� �

¼ p dtnow jA; d tnow�1ð Þ
� �

ð16Þ

In this case, we can compute the relative probability that each of the two high-
level models describe the current and the previous data point:

p Ajdtnow ; d tnow�1ð Þ
� �

¼ p dtnow jA;d tnow�1ð Þð Þ�p Ajd tnow�1ð Þð Þ
p dtnow jA;d tnow�1ð Þð Þ�p Ajd tnow�1ð Þð Þþp dtnow jB;d tnow�1ð Þð Þ�p Bjd tnow�1ð Þð Þ:

ð17Þ

In our stock market example, we set fixed prior probabilities for each high-level
model p Ajdðtnow�1Þ

� �
¼ p Að Þ in each time step, and analogous for B.

Cell culture and experiments. The data for the 2D migration assay and the 3D
invasion assay analyzed in this work are part of a larger dataset that is described in
detail in ref. 70. All reagents were obtained from Gibco unless stated otherwise. All
cell lines are maintained at 37 °C, 5% CO2 and 95% humidity. MDA-MB-231 cells
(obtained from the American Type Culture Collection (ATCC)) and A125 cells
(gift from Peter Altevogt) are cultured in low glucose (1 g L−1) Dulbecco’s modified
Eagle’s medium supplemented with 10% fetal calf serum, 2 mM L-glutamine, and
100 Uml−1 penicilin-streptomycin. HT1080 cells (obtained from the ATCC) are
cultured in advanced Dulbecco’s modified Eagle’s medium F-12 and supplemented
with 5% fetal calf serum, 2 mM L-glutamine, and 100 Uml−1 penicillin-
streptomycin. Primary cells isolated from a patient with inflammatory duct (ID)
breast cancer are maintained in collagen-coated dishes in Epicult-C medium (Stem
Cell Technologies), supplemented with 1× Supplement C, 5% fetal calf serum, 2
mM L-glutamine, 50 Uml−1 penicillin-streptomycin and 0.5 mgml−1 hydro-
cortisone (Stem Cell Technologies). Before plating, cells are rinsed with PBS and
detached with 0.05% Trypsin-ethylenediaminetetraacetic acid (Trypsin-EDTA).

For the 2D cell migration assay, we use fibronectin-coated petri dishes. Cells are
plated 24 h prior to the beginning of the measurement. Cells are subsequently
imaged every 5 min for 24 h. For the statistical analysis, we select cells that were
tracked continuously for at least 2 h and migrated at least 30 μm away from their
original position (Supplementary Data 2).

To assess the invasiveness of the cells in a 3D environment, collagen invasion
assays are performed as described in ref. 41. Cells are seeded on the surface of a 1
mm thick collagen gel. After a 3-day incubation period, the invasion depth of each
cell is determined from the z-position of the stained cell nuclei. The characteristic
invasion depth is computed by modeling the cumulative probability of finding a
cell below a given depth as an exponential function.

Random walk model of cell migration. To analyze the directional persistence of
individual cell migration paths, we first compute the turning angle ϕ between two
subsequent cell movements v (vectorial difference of positions vt= rt− rt−1):

ϕt ¼ atan2 vyt � vyðt�1Þ; vxt � vxðt�1Þ
� �

ð18Þ
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where atan2(y, x) denotes the multi-valued inverse tangent function. It is defined as

atan2ðy; xÞ ¼

arctanðy=xÞ if x>0

arctanðy=xÞ þ π if x<0andy � 0

arctanðy=xÞ � π if x<0andy<0

þπ=2 if x ¼ 0andy>0

�π=2 if x ¼ 0andy<0

notdefined if x ¼ 0andy ¼ 0

0
BBBBBBBB@

ð19Þ

To model the measured series of turning angles, we choose a von-Mises
distribution that is centered around zero as the low-level model (likelihood
function):

LðiÞt ¼ p ϕt jκðiÞt
� �

¼ eκ
ðiÞ
t cosðϕtÞ

2πI0 κðiÞt
� � ð20Þ

where I0 denotes the modified Bessel function of order zero and the parameter κ
indicates a cell’s directional persistence, from κ= 0 for a diffusive random walk to
ballistic motion as κ →∞. For the inference algorithm, we use a discrete set of ni=
1000 equidistant values for κ in the interval κ(i)∈ ]0, 20[. We further use a flat prior
distribution for κ to initialize the inference algorithm.

The high-level transformation T is given by a discrete convolution with a
Gaussian kernel and depends on a single high-level parameter, the standard
deviation σ of this kernel. To cover a wide range of parameter dynamics, from
constant persistence over gradual changes to very fast changes in persistence, we
choose a large high-level parameter space for the discretized high-level parameter σ
(j) ∈ [0, 5] with nj= 50 equidistant values.

To model the measured series of cell speed values vt ¼ vtj j, we choose a
Rayleigh distribution as the low-level model (likelihood function):

LðiÞt ¼ p vt jsðiÞt
� �

¼ vt � e�v2t =ð2sðiÞ2t Þ

sðiÞ2t

ð21Þ

with the mode parameter s indicating the most probable cell speed. For
discretization, we choose ni= 1000 and s(i)∈ ]0, 1.5[ μmmin−1. To initialize the
inference algorithm, we use the non-informative Jeffreys prior of the Rayleigh
distribution: p(s) ∝ 1/s. Again, a convolution with a Gaussian kernel is used as the
high-level transformation T, and the high-level parameter space is chosen as
follows: σ(j)∈ [0, 0.2] μmmin−1 with nj= 50.

To compute the correlation coefficient between persistence and cell speed, we
use the mean values of the parameter distributions (see Eq. (11)):

κt ¼
X
i

κðiÞ � p κðiÞt jfϕt′gt′�N

� �
; ð22Þ

and analogous for the cell speed st. Finally, we compute the correlation coefficient ρ
of κtk and stk , for all times t and all cells k:

ρ ¼ κtk � μκ
� �

stk � μs
� �� �

tk

σκ � σs
ð23Þ

with μκ, μs denoting the sample mean, and σκ, σs denoting the sample standard
deviation of all times and cells. Finally, as our method does not provide error
estimates for ρ, we verify the inference accuracy of individual cell trajectories by
bootstrapping, see Supplementary Fig. 5.

Minute-scale financial data. Pricing and volume data of the exchange-traded
fund SPY were accessed via the hosted research environment of the algorithmic
trading platform Quantopian.com. The analysis uses closing prices of all trading
minutes on regular trading days from 2011 to 2015. All prices are based on raw
pricing data, without adjusting for dividends.

Autoregressive model of price fluctuations. Given the minute by minute closing
prices st, we compute the log-returns rt= log(st/st−1). The time series of log-returns
rt is modeled by a scaled auto-regressive process of first order (AR-1), which is
defined by the following recursive instruction:

rt ¼ ρt � rt�1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2t

q
� vt � ϵt ð24Þ

ρt represents the time-varying correlation coefficient of subsequent return values
and is a measure of market inertia. vt denotes the time-varying standard deviation
of the stochastic process and therefore represents a measure of volatility. ϵt is
drawn from a standard normal distribution and represents the driving noise of the
process. With ~vt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2t

p � vt for simplification, we obtain the following low-

level model (likelihood function) for the log-return values:

L
ðiρ ivÞ
t ¼ p rt jρ

ðiρÞ
t ; vðivÞt ; rt�1

� �
¼ 1

~vðivÞt

ffiffiffiffiffi
2π

p exp �
rt � ρ

ðiρÞ
t � rt�1

� �2

2~vðivÞ2t

0
B@

1
CA ð25Þ

Note that we have two indices iρ, iv for the discretization of the joint parameter
space. The discrete values ρ iρð Þ cover the interval ] −1, 1[, and the discrete values
vðivÞ cover the interval ]0, 0.006[. The grid dimensions are 100 × 400. We use a flat
prior to initialize the inference algorithm.

The temporal evolution of the two low-level parameters ρt and vt is described by
a two-part high-level transformation: to cover gradual variations, the parameters
are subject to Gaussian fluctuations with standard deviations σρ∈ [0, 15]×10−2 and
σv∈ [0, 15]×10−5, with 10 and 20 equally spaced values for σρ and σv respectively.
To account for abrupt changes, we assign a minimal probability pmin∈ {0, 10−6, 10
−3} (with respect to the probability of a flat distribution) to all parameter values at
each time step. All 600 high-level parameter combinations are assigned equal
probability prior to fitting.

We finally add up the parameter distributions (marginalized with respect to the
hyper-parameters, c.f. Eq. (11)) of all time steps and all trading days to get the
parameter distribution shown in Fig. 4e. We approximate this distribution by a
product of two independent parameter distributions: p(ρ, v)= p(ρ) · p(v). For p(ρ),
we choose a Laplace (two-sided exponential) distribution with a mean of −0.047
and a scale of 0.077. For p(v), we follow48 and choose a compound gamma
distribution:

pðvÞ ¼
Z 1

0
Gðv; α; pÞ � Gðp; β; qÞdp ð26Þ

G(x; a, b) denotes the Gamma distribution with shape a and inverse scale b. The
estimated parameter values are α= 10, β= 6.2 and q= 1.65x10−4.

With this model, we simulate 106 series of log-returns (each of length 100) with
parameters drawn from the approximated distribution p(ρ, v). The resulting
histogram of log-return values of this simple model closely follow the data from the
years 2011 to 2015 (Fig. 4f).

The auto-correlation and cross-correlation functions of ρt and vt that are shown
in Fig. 4g, h are computed from the mean volatility and mean correlation for each
minute of each trading day, minus the daily average. The correlation functions thus
analyze relative changes of of ρt and vt during a trading day.

Real-time model selection for price fluctuations. To distinguish in real-time
between “normal” market dynamics with only gradual variations of volatility and
correlation, and “chaotic” market dynamics with vanishing market memory, we
compute the compound model evidence for both of these high-level models for
each trading minute. The low-level model for both cases is the scaled AR-1 process
as described in the previous section. The “normal” market model assumes only
Gaussian fluctuations of volatility vt and correlation coefficient ρt (i.e., without a
finite minimum probability pmin at extreme values). The grid values for σρ and σv
are chosen as in the previous section. The “chaotic” market model assigns a flat
prior distribution for vt and ρt in each time step, effectively erasing prior knowledge
about the time-varying parameter values. We further a-priori assume that the
“chaotic” model applies once during a regular trading day, i.e., we assign a prior
probability of 389/390 to the “normal”, and 1/390 to the “chaotic” model in each
time step.

Historic data on coal-mining accidents. The dataset consists of time intervals (in
days) between coal-mining accidents in the United Kingdom involving ten or more
men killed. It was first discussed in ref. 25, and later corrected and extended in ref.
27. The dataset ranges from 15 March 1851 to 22 March 1962. These time intervals
are binned to give the number of accidents per year, excluding the years 1851 and
1962 due to incomplete data (Supplementary Data 1).

Heterogeneous Poisson models for accident rates. The annual number of
accidents kt is assumed to be Poisson-distributed, resulting in the low-level model
(likelihood function):

LðiÞt ¼ p kt jλðiÞt
� �

¼ λðiÞktt � e�λðiÞt

kt !
ð27Þ

with the time-varying accident rate λ that is to be inferred from data. For dis-
cretization, we choose ni= 1000 and λ(i)∈ ]0, 6[ yr−1. We further use the non-
informative Jeffreys prior of the Poisson distribution pðλÞ / 1=

ffiffiffi
λ

p
to initialize the

inference algorithm.
For the classic change-point model (Fig. 2a), we assume a single change-point at

a specific time step, at which we assign the non-informative Jeffreys prior for the
next time step. Before and after this change-point, the accident rate is assumed to
be constant. We restrict the change-point to years before 1921. From the model
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evidence values, we compute the change-point distribution shown in Fig. 2a (red
bars).

In the alternative model shown in Fig. 2b, the accident rate before and after the
change-point is additionally subject to Gaussian fluctuations with standard
deviations σ(j) ∈ [0, 1] with nj= 25. We infer the distributions of σ before and after
the change-point (Fig. 2c, d). We assume a flat prior distribution for σ both before
and after the change-point. The results of this analysis are found to be robust
against choosing different high-level priors, see Supplementary Figs. 2 and 3.

Since this example is based on a small dataset of only 110 data points, we
further verify the inference results by bootstrapping, see Supplementary Fig. 4.

Continental-scale climate data. The paleoclimatic temperature reconstructions
used in this work are part of a larger study by the PAGES 2k Consortium60,
covering seven continental-scale regions during the past one to two millennia. We
focus on annual reconstructed temperature values of the Australasia region, from
1600 to 2001. The reconstructed values are based on proxy data, in this case corals,
tree rings and speleothems and are given as mean annual temperature anomalies
relative to a 1961–1990 reference period together with a two-standard-error
interval.

Modeling different climate scenarios. The annual reconstructed temperature
anomalies mt are assumed to follow a Gaussian distribution with known standard
deviation σt (computed from the given two-standard-error intervals):

LðiÞt ¼ p mt jμðiÞt ; σt

� �
¼ 1ffiffiffiffiffi

2π
p

σt
exp �

mt � μðiÞt
� �2

2σ2t

0
B@

1
CA ð28Þ

where μðiÞt represents the inferred mean temperature anomaly that is discretized
using ni= 15,000 equally spaced values within the interval ]−1, 4[ °C. All three
scenarios assume a constant mean temperature until a change-point t1: μt= const.
for t ≤ t1. We a-priori assume the change-point t1 to lie between the years 1825 and
2001, with equal prior probabilities.

The first scenario models the mean temperature after the first change-point as a
linear increase: μt= a · t for t > t1, with the slope a as an additional high-level
parameter. We discretize the slope a based on 50 equally spaced values within the
interval [0, 0.02] °C yr−1. We use a flat prior distribution for a to initialize the
inference algorithm.

The second scenario models the mean temperature after the first change-point
as a quadratic increase: μt= (b · t)2 for t > t1, with the coefficient b as an additional
high-level parameter. We assume the change-point t1 to lie between the years 1825
and 2001. We discretize the coefficient b exactly like the high-level parameter a in
the first scenario and again use a flat prior distribution for b to initialize the
inference algorithm.

Finally, the third scenario models the mean temperature after the first change-
point as a linear increase up to a second change-point (μt= a · t for t1 < t < t2), and
assumes a constant mean temperature thereafter. We assume the first change-point
t1 to lie between the years 1825 and 2001 with equal prior probability, the second
between 1950 and 2026. We discretize the slope a as in the first scenario.

Code availability. The statistical inference method introduced in this work is
implemented in the Python package bayesloop67. The software is open source
(under the MIT License) and is hosted on GitHub (https://github.com/
christophmark/bayesloop). The website bayesloop.com further provides access to
code examples, tutorials and documentation. bayesloop uses functionality of other
Python modules, namely NumPy71, SciPy (http://www.scipy.org), SymPy72, Mat-
plotlib73, Pathos74, and tqdm75.

Data availability. The coal-mining accident data shown in Fig. 2 are provided as
Supplementary Data 1. The cancer cell trajectories shown in Fig. 3 are provided as
Supplementary Data 2. The financial data shown in Figs. 4 and 5 can be accessed
via the hosted research environment of the algorithmic trading platform Quan-
topian.com. The climate data shown in Fig. 6 is included in the Supplementary
Information of ref. 60. (Database S2; https://media.nature.com/original/nature-
assets/ngeo/journal/v6/n5/extref/ngeo1797-s3.xlsx).
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