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Flexibility in motor timing constrains the topology
and dynamics of pattern generator circuits
Cengiz Pehlevan1, Farhan Ali2,3,4 & Bence P. Ölveczky2,3

Temporally precise movement patterns underlie many motor skills and innate actions, yet the

flexibility with which the timing of such stereotyped behaviors can be modified is poorly

understood. To probe this, we induce adaptive changes to the temporal structure of birdsong.

We find that the duration of specific song segments can be modified without affecting the

timing in other parts of the song. We derive formal prescriptions for how neural networks can

implement such flexible motor timing. We find that randomly connected recurrent networks,

a common approximation for how neocortex is wired, do not generally conform to these,

though certain implementations can approximate them. We show that feedforward networks,

by virtue of their one-to-one mapping between network activity and time, are better suited.

Our study provides general prescriptions for pattern generator networks that implement

flexible motor timing, an important aspect of many motor skills, including birdsong and

human speech.
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The brain’s ability to generate spatiotemporally precise
motor patterns underlies much of what we do, from the
expert performances of athletes and musicians to the daily

acts of speaking or walking. Despite the ubiquity and importance
of stereotyped motor sequences, our understanding of how the
brain controls and modifies their timing remains poor1,2.

Many different neural network architectures can generate
temporally reproducible dynamics, a minimum requirement for
producing precisely timed motor output3–9. Randomly connected
recurrent neural networks (RNNs), a common approximation for
how neocortex is wired10, can be trained to generate prescribed
temporal patterns7,9,11. Feedforward networks, such as synfire
chains3,4, naturally map network activity to elapsed time, and
hence are also suited for generating timing signals underlying
stereotyped motor sequences1.

However, the demands on pattern generator networks often go
beyond simply producing the same dynamics every time an
action is executed. A characteristic of skilled performance is the
flexibility with which established motor patterns can be modified,
including changes to their timing12–14. Modifying the overall
tempo of a continuous action sequence is an obvious and often
discussed example15,16 (Fig. 1a). However, careful analysis of
stereotyped action sequences suggests that the nervous system
may be capable of altering their timing in far more specific and
flexible ways (Fig. 1a). In speech production or typing, for
example, the duration of discrete segments (e.g. phonemes or
elements of key strokes) can change independently of other parts
of a continuous action sequence14,17. Such flexibility in motor
timing can be essential for improving motor skills and adapting
them to new contingencies or task demands. Increasing the power
of your tennis serve, for example, may require selectively speeding
up the power-generating stroke, while leaving the timing of the
rest of the serve unchanged. Learning the speech patterns of a
new language can similarly benefit from the ability to alter the
duration of distinct phonemes and syllables in context-specific
and flexible ways18.

To better characterize the flexibility with which the brain can
modify the timing of stereotyped motor sequences, we took
advantage of an experimental paradigm that allows adaptive
changes to the temporal structure of zebra finch song to be
induced19. The complex learned vocalizations of adult songbirds
are in many ways similar to human speech20,21, being temporally
precise and under certain experimental conditions also quite
malleable19,22,23. Moreover, the temporal precision and repro-
ducibility of birdsong are of ethological importance24 as is the
capacity to change the song’s temporal structure12. These attri-
butes make the adult zebra finch a good model for interrogating
the flexibility with which the timing of complex and reproducible
motor sequences can be modified.

Here we show that changes to the duration of specific song
segments do not interfere with the temporal structure of other
segments, and that two segments in the same song can be
modified simultaneously and independently. Such flexibility in
motor timing constrains the functional architecture of the
underlying pattern generator circuits. We derive formal pre-
scriptions for how such specific and adaptive changes to motor
timing can be implemented in neural circuits. We show that for
the duration of two intervals in a motor sequence to change
independently, their respective ‘gradient’ vectors in synaptic
weight space must be orthogonal to each other (a gradient vec-
tor’s direction is the direction of maximal duration increase while
its magnitude represents how fast the duration increases in that
direction). We probe the extent to which neural networks capable
of generating precise temporal patterns conform to this pre-
scription. While RNNs, in general, do not fulfill the strict con-
ditions of orthogonality, certain implementations can achieve

reasonable approximations. However, we find that feedforward
networks, which unambiguously map network activity to time,
are better suited to implement flexible motor timing.

Consistent with our theoretical analysis, simulations of tem-
poral learning using biologically plausible plasticity rules in a
synfire chain network reproduced the phenomenology observed
in songbirds, while similar simulations in RNNs failed to attain
the required degree of temporal flexibility. The different network
simulations also generated predictions for how variability in the
duration of a song segment should change with modifications to
its mean duration. Here too, our experimental data conformed to
the predictions of the synfire chain model, but not those of the
RNNs. These results constrain the topology and dynamics of
neural networks underlying flexible motor timing, and suggest
that the synfire chain architecture may be ideally suited for its
implementation. Even though the experimental data come from
songbirds, we note that the theoretical constraints on temporally
flexible pattern generator circuits we derive are very general and
apply also to other systems.

Results
Flexible modifications to the temporal structure of birdsong.
Flexibility in motor timing can be characterized in terms of
specificity and independence. Specificity means that changes to
the duration of one part of a sequence leaves the temporal
structure of other parts unaffected (Fig. 1a). Independence means
that the timing in different parts of a sequence can be modified
simultaneously without any effect on learning rates. We studied
both aspects of timing flexibility in perhaps the best understood
example of how the brain acquires and executes complex learned
motor sequences: the courtship song of the zebra finch25,26.

To characterize the flexibility with which the pattern generator
circuit underlying stereotyped adult song can modify motor
timing (Fig. 1a), we challenged adult birds to produce changes to
the duration of specific song segments (Fig. 1b), using Condi-
tional Auditory Feedback (CAF), a reinforcement learning-based
paradigm19,27 (Methods). By playing loud (~80−90 dB) aversive
sound bursts contingent on the duration of a targeted song
segment, significant changes to the song’s temporal structure can
be induced in a matter of hours19 (Fig. 1c). To explore the
specificity of these modifications, we compared the changes in the
duration of targeted segments to the changes in other parts of the
song.

Across the population of birds (n= 18 birds), targeted
segments changed by, on average, 2.9 ± 1.7 ms (mean ± SD, n=
18 targets) per day relative to baseline drift (Fig. 1d, Methods). In
contrast, we saw no significant changes in non-targeted segments
(n= 120) regardless of their position relative to the targeted
segment (Fig. 1d, Supplementary Fig. 1A). Previous analyses have
shown correlations among song segment durations during
baseline undirected singing28,29. However, more detailed analysis
found that specificity in the CAF-induced timing changes was not
related to baseline timing correlations (Supplementary Fig. 1B,
1C). This demonstrates that the timing of stereotyped learned
motor patterns can change in temporally very specific ways.

We next tested whether learning-induced changes to the
duration of one song segment interferes with adaptive modifica-
tions to other parts of the song by targeting two segments (>100
ms apart) for CAF simultaneously (Fig. 1e, Methods). Interest-
ingly, we found no difference in learning rates whether a segment
was targeted for modification alone (2.8 ± 2.4 ms per day) or in
conjunction with another segment (3.0 ± 2.4 ms per day, n=
12 segments in 6 birds, Fig. 1f, g), suggesting that individual
segments of song are, in terms of changes to their durations,
independent.
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Constraints imposed on flexible time-keeper circuits. While
many different neural network architectures have been proposed
to generate reproducible temporal patterns1,7,9, the extent to
which they support flexibility in motor timing has not been
considered.

Here we use theoretical and computational approaches to
examine how specificity and independence in motor timing
constrain the topology and dynamics of the underlying pattern
generator networks. We assume that network output is modified
by changing connection strengths between its neurons, and seek
to understand the network properties that enable flexible motor
timing.

To modify the duration of a discrete segment in a longer action
sequence with independence and specificity (Fig. 1a), there must
exist a path in synaptic weight space along which only the
duration of that segment (i.e., its interval) changes (specificity).
Moreover, changes along such a path should not affect the
network’s capacity to change along paths associated with other
intervals (independence). The analytical discussion that this
condition can be satisfied in a generic pattern generator network
is presented in Supplementary Note 1.

However, the existence of specific and independent paths in
synaptic weight space is, on its own, not sufficient to ensure

flexible motor timing. Such paths must be found and followed by
biologically plausible learning algorithms. For real-world pattern
generators, exemplified by the vocal control pathway of the zebra
finch, modifications to motor timing often happens through trial-
and-error learning, i.e., variations in temporal structure are
generated and certain variants reinforced19. Our experiments
with zebra finches showed that reinforcement targeted to specific
song segments produce specific and independent changes to the
song’s temporal structure (Fig. 1).

Synaptic learning rules that implement reinforcement learning
typically find the reward gradient vector, i.e., the vector in
synaptic weight space that points along the direction that
maximizes reward increase (or punishment decrease), and
updates synaptic weights along that direction30–33. To implement
such trial-and-error learning, network dynamics must vary from
rendition-to-rendition, with dynamics resulting in higher rewards
being reinforced by changing synaptic weights appropriately.

Important to note is that such learning rules will only find the
exact reward gradient after averaging synaptic weight updates
over many trials, a luxury not afforded a learning animal. In
reality, the synaptic updates are noisy approximations of the true
gradient. In the next sections, we will explicitly simulate trial-and-
error learning in the temporal domain, comparing
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Fig. 1 Flexible modification of motor timing in songbirds. a Schematic showing different ways in which the temporal structure of a motor sequence
(encompassing motor segments m1–m6) can change. (Left) Global change—duration of all segments change together. (Middle) Interference—
modifications to the duration of one segment (m3, red box) interferes with (i.e., changes) the duration of other segments. (Right) Specificity—each
segment can change independently of others. b (Top) Spectrogram of a zebra finch song, divided into four segments. One of these (‘target’) was marked
for lengthening/shortening by delivering aversive noise bursts after the end of the target segment when its duration was below/above a threshold (Bottom,
see Methods). c Duration distributions for the segments in b when the target segment was lengthened by our CAF paradigm. d Summary statistics (mean
± SEM) of the daily changes to the duration of target and non-target segments (N= 18 targeted segments and n= 120 non-targeted segments in 18 birds).
Changes in target intervals differed significantly from zero (p= 1.6 × 10−6, one-sample t-test), whereas non-targets did not (0.24≤ p≤ 0.98, one-sample t-
test). We used the same number of days of baseline (before CAF was started) as the number of days of CAF, which for each bird varied between 6 and
10 days. e Spectrogram of a song for which two segments were targeted for modification, either alone or in conjunction with each other. f Learning
trajectories (mean ± SEM) from an example bird during CAF experiments designed to change the duration of the targets in e, either alone or together.
Arrows denote the direction in which the duration of the targets were induced to change by the CAF paradigm. g Summary statistics (mean ± SEM) from
our population of birds of the daily changes to the duration of targeted segments, as a function of whether they were targeted alone or together with
another segment (n= 12 segments in 6 birds, p= 0.54, paired-samples t-test; see Methods)
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implementations in different network architectures. Here, we
focus on the gradient directions themselves, assuming that they
can be found, and probe if their geometries allow for flexible time
keeping. This allows us to separate two factors that influence and
determine timing flexibility: (1) the geometry of gradient vectors,
purely a property of the network, and (2) the constraints of
working with noisy approximations of the gradient, which arises
due to trial-and-error learning.

Let R(α)(I(α)) denote a scalar reward signal associated with the
duration of an interval α, which we denote by I(α). To state the
condition for specificity in a pattern generator network, we make
use of two facts. First, the reward gradient is parallel to the
interval duration gradient (a fact that follows from the chain rule
of calculus). Second, while the gradient points along the direction
of maximal increase in interval duration, directions perpendicular
to it are directions along which the duration of the interval does
not change. Then, specificity requires an interval gradient to be
orthogonal to all other interval gradients. Formally:

X
ijf g

∂IðαÞ

∂Wij

∂IðβÞ

∂Wij
¼ 0; if α≠β; ð1Þ

where Wij is the strength of the connection from neuron j to
neuron i, and the summation being over all existing synapses (see
also Methods and Supplementary Note 1). Importantly, the
orthogonality constraint must hold throughout learning. Other-
wise, a network that initially exhibits specificity could lose that
property as the target segment (and the gradient vector associated
with it) changes. See Methods and Supplementary Note 1 for a
comprehensive discussion of these points. Importantly, Eq. (1)
also ensures independent learning, assuming that the effects of
separately delivered reinforcers sum linearly (see Supplementary
Note 1).

Quantifying timing flexibility. We next asked whether neural
network architectures proposed to underlie the temporal pat-
terning of action sequences conform to the prescriptions we
derived. We consider two broad classes of networks: RNNs7,9,10

and feedforward networks3,4,34,35, and investigate the condition
under which instantiations of these networks satisfy or approx-
imate the orthogonality condition in Eq. (1). To quantify the
extent to which a network deviates from the specificity and
independence criterion (Eq. 1), we numerically calculate the
gradient vector associated with each interval and then compute
the “interference matrix”. This is a symmetric matrix whose
elements are given by the inner products of the gradients asso-
ciated with pairs of targeted segments:

Mαβ ¼
X
ijf g

∂IðαÞ

∂Wij

∂IðβÞ

∂Wij
: ð2Þ

This matrix has non-zero off-diagonal elements when gradients
are non-orthogonal.

The interference matrix of a pattern generator network
quantifies the degree to which the network is flexible. For
example, consider an ‘experiment’ akin to the one we performed
in songbirds (Fig. 1), where the duration of a segment α (i.e., its
‘interval’) is targeted for modification. For small changes in
synaptic weights, the expected change to the duration of another
segment β, normalized by the change in the target interval α, is
given by:

δIðβÞ

δIðαÞ
¼ Mβα

Mαα
: ð3Þ

Eq. (3) shows how the interference matrix relates to specificity. If

the gradients with respect to intervals α and β are non-
orthogonal, then Mβα is non-zero and there is a change in
interval β, even though the reward was targeted at α. In these
cases, timing modifications will not be specific to the targeted
interval. In an ‘experiment’ where two intervals (α and β) are
targeted for modification simultaneously with separately delivered
reinforcers, the expected change in interval α, normalized to the
expected change in an ‘experiment’ where only interval α is
targeted, is given by:

δIðαÞtwo�tar:
δIðαÞsingle�tar:

¼ 1þMβα

Mαα

dRβ

dIβ

dRα

dIα
: ð4Þ

Eq. (4) shows how the interference matrix relates to indepen-
dence. If the gradients with respect to intervals α and β are non-
orthogonal, then Mβα is non-zero, meaning that learning directed
at interval β will affect the learning rate of interval α. In these
instances, the temporal modifications to different segments will
not be independent. We note that the ratio Mβα/Mαα appears in
both Eqs. (3) and (4) and quantifies the deviation from specificity
and independence. Below, we use it, or rather its absolute value,
as a measure of interference (or non-flexibility) between intervals
α and β. Therefore, with the knowledge of the interference matrix,
we can quantify the degree to which a time-keeper network allows
for flexible motor timing.

Probing random recurrent networks as flexible time-keepers.
RNNs in their chaotic regime10 produce spatiotemporal patterns
suitable for generating complex motor output. However, chaotic
network dynamics cannot produce the same dynamics repeatedly
and reliably because even small perturbations to the network can
cause large changes in its dynamics. Recently, algorithms that
suppress chaos in RNNs7,9 have demonstrated the capacity of
such networks to learn and reliably produce complex stereotyped
output, making them suitable as pattern generators. Next, we
examine the extent to which such networks, specifically the
feedback-stabilized RNNs of Sussillo and Abbott9 and the
dynamic attractor networks of Laje and Bounomano7, support
flexibility in motor timing.

Robustness–flexibility trade-off in feedback-stabilized RNNs.
Using the FORCE algorithm9, we trained the read-out units of an
RNN with 500 ‘rate’ neurons to produce an output pattern with
readily identifiable ‘intervals’ (Fig. 2a). In this network, chaos is
suppressed by having the linear read-out neuron feed back to
neurons in the RNN9,36, and hence we refer to it as “feedback-
stabilized RNN” or fsRNN. For simplicity, we trained the network
to produce a waveform with 10 equally spaced peaks, 50 ms apart
(Fig. 2a, Supplementary Fig. 2A, Methods). This allowed us to
define the start and end of specific ‘intervals’ as the times the
output crossed a preset threshold.

In fsRNNs, feedback from the read-out unit to the neurons in
the RNN should be comparable in strength to the recurrent
inputs to those neurons in order to suppress chaos and allow for
successful training9. In our implementation, the strength of the
feedback is governed by the parameter gFB, which is typically set
to be around 1 in applications of FORCE training RNNs9,37–39.
We varied this number from 0 to 5 and trained 20 networks for
each value. We found that increased feedback improves training
success as reflected by a decrease in the ‘test’ error, i.e., the
normalized error between network output and desired output
(Fig. 2b, Methods). To assess whether such networks can produce
precise timing signals, we quantified the fraction of simulations
(out of 400) in which the network failed to produce all 10
intervals within 3 ms (i.e., 6%) of the target duration (the ‘timing
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failure rate’, Fig. 2b). This metric was close to zero even when the
strength of the feedback was low, meaning that even networks
with outputs further from the specified target can produce activity
modulations useful for marking the starts and ends of intervals.

Looking at the networks more closely, we found that changes in
feedback strength led to qualitatively different solutions (Fig. 2a).
When feedback was strong, it dominated the recurrent input to the
pattern generator network close to interval boundaries. Because the
feedback input was periodic, the network state, defined by the

vector of all instantaneous unit activities, was reset to the same state
at interval boundaries (Fig. 2c), leading to periodic activity in the
pattern generator network (see example unit dynamics in a network
with gFB= 2, Fig. 2a). When feedback strength was low, the
recurrent input dominated, causing non-periodic network activity
(see example unit dynamics in a network with gFB= 1, Fig. 2a).
Given these qualitatively different dynamic regimes, we probed
RNNs with varying degrees of feedback in terms of their capacity
for robust and flexible time-keeping.
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We first quantified the robustness of the network as a function
of feedback by injecting 10 ms perturbation pulses of different
magnitudes into all units of the network similar to Laje and
Buonomano7 (Fig. 2d, Supplementary Fig. 2B). We applied this
perturbation during the second interval and found that the timing
failure rate decreased with increased feedback, though not much
beyond gFB= 1. This implies that networks become more robust
as the strength of feedback is increased.

We next examined how these networks cope with demands for
timing flexibility by calculating their interference matrices
(Fig. 2e). We found that interference matrices are sensitive to
the strength of the feedback, gFB: at low feedback, off-diagonal
elements are small, implying relatively low interference between
intervals and high specificity. At high feedback, off-diagonal
elements are almost as large as diagonal elements, implying high
interference and low specificity. This is because the dynamics of
the network as well as the consequences of the synaptic changes
are similar for each interval. Interestingly, at high feedback, the
first interval behaves differently than the others, and interferes
much less. This is because the network state at the beginning of
the first interval, set by an external start signal, is different than
the network states at the beginning of other intervals (Fig. 2c),
which are determined largely by the feedback signal.

We quantified timing flexibility by calculating the normalized

interference matrix elements, Mβα

Mαα

���
��� ´ 100%, which reflect inter-

ference for all pairs of intervals as discussed above. On average,
interference went from ~20% to almost 100% as feedback
increased (Fig. 2f). Taken together, our results (Figs. 2c−f) show
that feedback leads to a trade-off between robustness and timing
flexibility, with strong feedback making the network more robust
to perturbations, but less flexible in the time domain.

Thus far, we have inferred flexibility from gradient vectors in
synaptic weight space and metrics derived from those. Biological
implementations of reinforcement learning, however, must find
those gradients. To understand how this affects timing flexibility,
we simulated the process of reinforcement learning by imple-
menting a biologically plausible rule that updates synaptic weights
to maximize reward on average31,32 (Methods). Noise added to
the network units, both during training and later, ensured trial-
by-trial variability in interval durations to the level observed in
songbirds28(Methods). Reinforcement was provided to the net-
work in a manner analogous to our CAF experiments: if the target
interval differed from the running average in the desired direction
(Methods), reinforcement was delivered at the end of the interval
(Methods). This learning rule successfully modified the duration
of targeted intervals, with learning rates comparable to those seen
during CAF (Fig. 2g, h). When averaged across multiple runs of
the simulated learning ‘experiments’, the interference patterns

were largely predicted by and consistent with the interference
matrix calculations (Fig. 2i, j). However, interference in single
‘experiments’ exceeded the predictions from gradient descent, i.e.,
the interference matrix, by a significant amount (Fig. 2k),
suggesting that experiment-to-experiment variability in the
modification of non-target intervals is large. The single experi-
ment interference decreased with decreasing feedback and leveled
around 35% (averaged across intervals, networks, and simula-
tions, Fig. 2k, Methods).

To assess independence in the temporal domain, we targeted
two intervals for modification as we had done experimentally in
songbirds (Fig. 1e–g), with separate reinforcements given
contingent on the duration of both intervals (Methods). As
expected from the interference matrices, this resulted in
destructive interference, meaning that learning rates for indivi-
dual intervals decreased when they were modified in conjunction
with another (Supplementary Figures 2C−E). This interference
increased with feedback, leading to almost no learning for gFB > 2
(Supplementary Figures 2C−E).

We next asked whether interference can be prevented by an
internally generated “template” reinforcer, which clamps non-
target interval durations to their baseline value? Such reinforcer is
hinted at by the experiments of Ali et al.19, where interval
durations modified by the CAF procedure returned to baseline
values after CAF was turned off. To test this hypothesis, we
introduced a separate reinforcer for each interval, which rewarded
interval duration changes toward the interval’s baseline value.
Such reinforcer successfully restored the target interval’s baseline
duration after the CAF-like process implemented in our
simulations was turned off, with the rate of change comparable
to what is seen in songbirds19 (Supplementary Fig. 2F). However,
the overall level of interference did not systematically decrease
with the inclusion of template reinforcers (Supplementary
Fig. 2G), because they themselves interfered with each other
and the CAF process.

Time-keeping with dynamic attractor networks. Recently, Laje
and Buonomano7 proposed a new dynamic regime for RNNs, the
dynamic attractor, which they showed can function as a “popu-
lation clock” suitable for generating temporally precise output
due to its robustness to perturbations. However, the extent to
which the dynamic attractor allows flexible motor timing has not
been considered.

The dynamic attractor has a similar architecture to the fsRNN,
but differs in that it has no feedback from the read-out neuron
(Fig. 3a). To ensure robustness, the RNN is instead trained using
an “innate training” procedure7, which applies the FORCE
algorithm to neurons in the pattern generator network in order to

Fig. 2 Feedback-stabilized RNNs exhibit a robustness–flexibility trade-off. a (Left) The network architecture. Trained connections are in red. (Middle, right)
Firing rates of example neurons and the network outputs. b Training performance (test error, Methods) and timing failure rate (the frequency with which
the network fails to produce all 10 intervals within 6% of their target durations over 400 trials) versus feedback strength. c The distance between two
instantaneous population firing rate vectors, each constructed at the beginning of an interval (Methods), averaged over all interval pairs for intervals 3–10,
20 fsRNNs and 100 runs over each fsRNN. d Timing failure rate in response to a perturbation pulse (P) versus feedback strength. Error bars show standard
error across 20 fsRNNs. e Example interference matrices for fsRNNS. f Average interference calculated from the interference matrix. The plot shows
averages over all pairings of intervals 2–10 for 20 fsRNNs at each feedback strength. g Examples of a reinforcement learning ‘experiment’ that targeted
interval 3 for lengthening. h Learning rate (the absolute value of the change in the target interval duration after 1000 trials) averaged over 20 learning
‘experiments’ in 20 trained networks. i Interval duration changes (Methods) after 1000 trials for the ‘experiments’ in g, averaged across 20 different
simulations, regressed to the elements of the 3rd row (i.e., those associated with the target interval) of the networks’ interference matrices. Error bars
show standard error across 20 simulations; r denotes Pearson correlation coefficient. j The analysis of i applied to 100 fsRNNs (20 trained networks for
each of gFB= 0.5, 1, 1.5, 2, 3), two times each, one for stretching and one for shrinking the 3rd interval. The median correlation coefficient over the 200
regressions performed is plotted. Error bars denote 25th and 75th percentiles, respectively. k Change in non-targeted intervals in the first 1000 trials of
reinforcement learning simulations, relative to the change in the target interval (interference). Average over all non-target intervals and 20 simulations
across 20 fsRNNs as a function of feedback strength. The blue portion of the bars show the average interference calculated from the interference matrix
(as in f)
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stabilize a chaotic trajectory already produced by the network.
This effectively turns the trajectory into an attractor such that
even if the network is perturbed, it returns to the original
trajectory, yielding a reliable and precise output pattern.

We trained instantiations of these dynamic attractor networks,
matched in size and other parameters to those of the fsRNNs
(Methods), to produce output patterns from which interval
durations could readily be extracted (Fig. 3a, Methods). We found
that a large fraction of the trained networks successfully produced
all 10 intervals within 3 ms of their target duration (Fig. 3b). In
our analysis, we only considered networks that were successful
>99% of the time (out of 400 simulations, 14 out of 20 trained
networks). The robustness of these networks to perturbations was
comparable to fsRNNs with low feedback (gFB ≈ 1), i.e., similar
perturbation magnitudes led to similar failure rates (Fig. 3c).
These results ensured that our dynamic attractor networks were
comparable to fsRNNs in reliability and robustness, allowing us
to compare them in terms of their capacity to support flexible
motor timing.

Interference matrices revealed less interference across intervals
(~12%) than the low feedback RNNs (~23%) (Fig. 3d, e). In
contrast to the fsRNNs trained by the FORCE learning algorithm,
the interference between adjacent intervals was, on average, much
larger (~35%) than the average interference (Fig. 3e). This is

consistent with the dynamic attractor trying to ‘return’ to its
original pattern, compensating for a decrease/increase in the
duration of an interval by increasing/decreasing the duration of
adjacent intervals. In line with this, the interference matrix
elements corresponding to neighboring intervals consistently had
negative values (Fig. 3d).

When we modified the duration of targeted intervals with the
same reinforcement learning algorithm that we used for the
fsRNNs (Methods), learning rates were similar to the simulated
experiments in fsRNNs and comparable to what we observed in
songbirds (Fig. 3f, g). Changes in the duration of target and non-
target intervals were, over all, well predicted by the interference
matrices (Fig. 3h), though as with the fsRNNs, interference on
average (~20%) exceeded what was expected by gradient descent
(~12%) (Fig. 3i).

To assess independence, we again targeted two non-adjacent
intervals for simultaneous modification. We found that the
learning changed as predicted by the associated interference
matrices (Supplementary Fig. 3A–C). Absolute changes in
learning rates were less (~15%) than for low feedback fsRNNs
(~30% for gFB= 1), consistent with dynamic attractors exhibiting
less interference on average. Including template reinforcers
(Supplementary Fig. 3D, E) did not lead to a systematic reduction
in interference.
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These results suggest that dynamic attractor networks, as in
Laje and Buonomano7, allow for more flexible adjustments to
motor timing than fsRNNs. In contrast to the fsRNNs,
interference was largely concentrated on nearest neighbor
intervals with changes to non-targeted intervals being opposite
in sign to the target. We note that this is inconsistent with our
birdsong data (Fig. 1d).

Time-keeping in feedforward networks. Feedforward networks
have been proposed as alternatives to RNNs for generating
temporal patterns1,34,35,40. By organizing neurons into layers
connected in a feedforward manner, these networks naturally
map layer-specific neural activity to elapsed time1. In this section,
we focus on feedforward networks with a single neuron per layer
(Fig. 4a). This simplification allows us to study the constraints
that flexible time-keeping imposes on feedforward network
dynamics analytically. Using insights gained from this treatment,
we then discuss more realistic feedforward networks in the next
section.

Applying the orthogonality constraint (Eq. 1) to feedforward
networks revealed that flexible time-keeping requires that
synaptic weights be mapped to interval durations in a unique
one-to-one manner (Methods and Supplementary Note 2).
Consider an interval I(α), the duration of which depends on
activity in layers α−1 and α. In Methods and Supplementary
Note 2, we prove that flexible time-keeping requires changes to
the synaptic weight between layers α−1 and α, denoted here by
Wα, to affect only the duration of Iα:

∂IðαÞ

∂Wβ
¼ 0; if α≠β: ð5Þ

As we show in Methods and Supplementary Note 2, the one-to-
one mapping constraint (Eq. 5) is satisfied if synaptic weight
changes that alter the timing of the post-synaptic neuron’s
activity leave its shape and magnitude unaffected. This ensures
that downstream neurons encoding non-target intervals shift
their activity in time by the same amount, keeping non-target
interval durations unchanged, thus satisfying Eq. (5). Note that
Eq. 5 is naturally satisfied by synaptic connections between
downstream layers, as these cannot affect activity in upstream
layers.

To further illustrate the constraints that Eq. (5) imposes on
dynamics, we use a simple and analytically tractable example of a
feedforward network, a chain of integrate-and-fire neurons
(Fig. 4b), showing how it fails or succeeds in flexible time-
keeping. In this example, initial synaptic weights are chosen such
that when the first neuron in the chain produces a single spike,
downstream neurons in the chain propagate activity by producing
a single spike each. This network satisfies the one-to-one
mapping constraint (Eq. 5) (Methods, Eq. 10). If Wα is increased,
the synaptic weight matrix changes along the gradient (Methods,
Eq. 10), advancing the firing of the αth neuron since it reaches
spiking threshold sooner. However, as long as the neuron
produces only one spike, the time it takes for the next neuron
to spike will not change, keeping all subsequent intervals
unchanged. Similarly, decreasing Wα causes the duration of
interval Iα to increase, without affecting the others. Note that this
is exactly the mechanism described in the previous paragraph:
synaptic weight changes affect only the timing of the post-
synaptic response, not its magnitude or shape. Therefore,
constraint (Eq. 5) is satisfied and the interference matrix is
diagonal.

However, there are limits to the timing flexibility exhibited by a
chain of integrate-and-fire neurons. If synaptic weights decrease
below a point where the excitation in the post-synaptic neuron no

longer drives it above spiking threshold, chain propagation stops
(Fig. 4b). On the other end, if synaptic weights increase to a point
where the post-synaptic neuron produces multiple spikes, then
the downstream intervals may get shorter as the boost in
excitation from the extra spike(s) will cause the downstream
neurons in the chain to reach threshold sooner (Fig. 4b, c). In
other words, if synaptic weight changes, beyond shifting the post-
synaptic response in time, also alter its magnitude, this may
interfere with downstream intervals. Therefore, timing flexibility
holds only for a finite range of synaptic weights (see
Supplementary Note 3 for the exact expressions). Importantly,
this range can be increased by other mechanisms, such as
refractoriness, that make the shape of the post-synaptic response,
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number of spikes in our case, less sensitive to changes in input
(Fig. 4d).

In realistic feedforward networks with multiple spiking
neurons per layer, layer-to-layer propagation of excitation can
occur in asynchronous41,42 or synchronous modes3,4. It has been
argued that the synchronous mode4, is superior to the
asynchronous mode41 in terms of propagating activity across
many layers, making it a viable solution for temporal pattern
generation. Moreover, the synchronous mode, as we show next,
can be made to conform to the constraints on flexible time-keeper
networks.

Synfire chains as flexible time-keepers. We simulated a chain of
integrate-and-burst spiking neurons, modeled on the putative
time-keeper circuit of the songbird (HVC)43–46. The network had
90 layers with 15 neurons per layer, for a total of 1350 neurons
(Fig. 5a, Methods), with the connectivity between layers being all-
to-all. The network was configured to propagate activity in a
synchronous mode, hence a ‘synfire chain’ (Fig. 5b). Output
neurons received input from all neurons in every 9th layer. The
first spike of each output neuron marked the time of an interval
boundary (Fig. 5a, b), yielding 10 intervals of roughly 50 ms
average duration. As expected from the analogy with the single-
spike neuron chain, the interference matrix for the synfire chain
was diagonal at this baseline configuration, i.e., non-diagonal
elements were 0 (see Methods, Fig. 5c).

Modifying the duration of specific intervals using the same
reinforcement learning algorithm as for the recurrent networks
(Methods) resulted in learning rates comparable to what is seen
in songbirds (Fig. 5d). During these simulations, synaptic weights

were bounded from above and below to ensure stable propagation
through the chain. If synapses become too strong, neurons can
produce more than single bursts leading to overexcitation, while if
synapses become too weak activity can die out (Methods).
Furthermore, such bounds prevent possible interference effects
discussed above for the single neuron chain (Fig. 4b, c). Changes
in the duration of targeted and non-targeted intervals were, on
average, well predicted by the interference matrices (Fig. 5e).
Importantly, the interference was an order of magnitude smaller
than in the random recurrent networks, although not zero (~1%,
Fig. 5f), and consistent with what we observed in songbirds
(~0.7% when normalized to non-target segment duration in
baseline). We verified that these results are robust to varying the
the synfire chain model in at least two ways: (1) layer-to-layer
connectivity was changed to all-to-all with weights being
randomly chosen (Supplementary Fig. 4A, B and C), and (2)
neurons made synapses to next layer neurons with some
probability (Supplementary Fig. 4D, E and F).

To assess independence, we again targeted two non-adjacent
intervals for simultaneous modification. The average reduction in
learning rates was small (~3−5%) (Supplementary Fig. 4G and
H), consistent with our observations in songbirds (Fig. 1g). These
results suggest that synfire chains allow for flexible adjustments to
motor timing.

Variability in temporal structure. To further delineate the net-
work that implements song timing in zebra finches43,47, we
analyzed temporal variability of song segments targeted in our
CAF paradigm. We found that when their intervals were shor-
tened, variability in their durations decreased, whereas when
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segments were lengthened their variability increased (Fig. 6a).
This monotonic relationship held across multiple days of learning
for the same target (Fig. 6b) and across our population of birds
(Fig. 6c).

We analyzed the extent to which the network models we have
considered recapitulate the monotonic relationship between
changes in the mean duration and the variability of targeted
segments. Neither of the recurrent pattern generator networks
showed a consistent relationship between target interval duration
and variability. Depending on initial network configuration,
variability could increase, decrease, or have no correlation with
changes in interval duration. It could even have a convex shape
(Fig. 6d, e). In contrast, synfire chain networks showed an
increase in variability as a function of changes in target interval
duration (Fig. 6f and Supplementary Fig. 4C and F), conforming
to the experimental observations in songbirds.

Discussion
Modifying the temporal structure of stereotyped motor sequences
is an important means of adapting motor output to new task
demands12–14,19. Here we combined behavioral experiments in
songbirds with theory and network simulations to explore the
flexibility with which pattern generator circuits, real and simu-
lated, can modify the temporal structure of their output. We
found that the timing of zebra finch song can be altered with very
high degree of specificity (Fig. 1), and derived formal prescrip-
tions for neural networks implementing such flexible motor
timing.

We show that gradient vectors in synaptic weight space asso-
ciated with different intervals in a sequence must be orthogonal
for the intervals to be independently modifiable. Certain feed-
forward networks generally satisfy this criterion making them
ideally suited as flexible time-keepers. The general topology of
RNNs, however, does not guarantee such flexibility. Whereas
synapses in feedforward networks naturally map onto specific
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time points in a sequence, synapses in RNNs that contribute to
changing one interval are often not unique from those that drive
changes in other intervals, leading to interference in the time
domain.

We found that the degree of timing flexibility further depends
on the specifics of the networks and the properties of its neurons.
In RNNs, strong feedback from output neurons to the RNN,
which can increase the network’s robustness to perturbations
(Fig. 2d), makes the network less flexible in the temporal domain
(Fig. 2f). The dynamic attractor network of Laje and Buono-
mano7, which does not require any feedback, shows overall less
interference (Fig. 3). While feedforward networks are structurally
better suited, we found that flexible time-keeping is compromised
in these networks if the synaptic changes between neurons alter
post-synaptic spiking responses beyond just shifting them in time.
In this regime, modifying the strength of a synapse will not only
affect the interval associated with that synapse, but the effect will
propagate to downstream neurons causing changes also to sub-
sequent intervals (Supplementary Notes 2 and 3).

The range over which feedforward networks operate as flexible
time-keepers can be extended by making its neurons’ spiking
responses less sensitive to the magnitude of pre-synaptic input.
Interestingly, projection neurons in HVC, the putative time-
keeper circuit in songbirds16,43,48, generate calcium bursts that
accomplish just that. Modeling a synfire chain network with
integrate-and-burst neurons, akin to those described in HVC43,
recapitulated the flexible timing observed in songbirds (Fig. 5).

Additional support for the idea that song timing is governed by
a synfire chain-like network comes from the relationship between
variability in interval duration and changes to its mean (Fig. 6a
−c). Whereas RNNs show no consistent relationship (Fig. 6d, e),
feedforward networks predict the monotonically increasing rela-
tionship between variability and mean duration we observe
(Fig. 6f). This relationship is a consequence of how interval
durations are altered in feedforward networks: synaptic
strengthening between neurons in subsequent layers makes the
signal propagate faster, shortening the associated interval. But
synaptic strengthening also makes the synapse less prone to noise
and hence less variable49, while weakening the synapse has the
opposite effects. Whether this characteristic monotonic relation-
ship between interval duration and variability, suggestive of an
underlying feedforward network architecture, is seen also in other
flexible behaviors, such as speech, remains to be investigated22.

While both random recurrent and feedforward neural net-
works have been proposed to underlie the temporal structure of
birdsong47,48, our findings together with other recent experi-
mental results16,43, suggest that the network that controls song
timing functions as a synfire chain. The extent to which the
synfire chain-like network is implemented locally in HVC, or in a
more distributed network50, remains to be further explored.
Importantly, our results add intuition as to why a synfire chain-
like network architecture is the preferred solution: it allows very
specific changes to the song’s temporal structure.

We also found that modifications to interval durations in RNN
networks result in more temporal interference than predicted by
gradient ascent (Figs. 2k, 3i). This is because individual learning
experiments do not find the optimal synaptic updates, i.e., those
that align with the gradient vector for the targeted interval. This
solution only emerges when averaging across many experiments.
For an intuition as to why trial-and-error learning leads to more
interference, we can consider two intervals whose gradients are
orthogonal, one of which is targeted for modification. Because the
synaptic updates at the end of an experiment will not exactly
point along the target interval gradient, the updates will not be
orthogonal to the gradient of the non-targeted interval and will
hence cause a change in its duration too, i.e., interference.

While we have limited our study to structurally feedforward
networks, our results generalize also to functionally feedforward
networks34. In these networks, specific modes of network activity
(Schur modes), rather than individual neurons, are organized into
layers and the connectivity matrix is feedforward in the basis of
these modes. Our results suggest that timing flexibility in such
networks would be compromised if synaptic changes alter the
Schur modes beyond just shifting them in time. What is needed
for flexible time-keeping is a ‘generalization’ of the synfire chain
to a functionally feedforward architecture, although how such
generalizations can be made is not clear. Asymmetric Hopfield
networks6,8 might provide insight into how to construct such
networks. Even though these networks are built with binary
neurons, they describe dynamics that evolve from one attractor to
another and their connectivity has a feedforward structure in the
basis of these attractors. We speculate that the attractor states of
the asymmetric Hopfield networks might be analogous to syn-
chronous spiking of neurons in a synfire chain.

One could also consider hybrid architectures, where separate
RNNs encode the individual segments of a longer sequence (e.g.,
song) and are then coupled in a feedforward manner. If learning-
induced modifications to the feedforward connections only shift
the time at which the next recurrent network starts its activity,
this architecture would also function as a temporally flexible
pattern generator.

Modifications to timing could also be induced by changing the
spatiotemporal profile of the inputs to a pattern generator circuit,
as opposed to synaptic plasticity within the pattern generator as
considered here. This amounts to pushing the problem we have
discussed upstream of the pattern generator, since it is the net-
work providing the input that must now ensure that timing is
modified flexibly. Interestingly, synfire chains provide a simple
way for upstream networks to modify timing in a flexible manner.
Suppose all neurons in a layer get a common tonic input from an
upstream area, and these inputs are independent from layer to
layer. By increasing or decreasing the tonic input a layer gets,
without changing its temporal profile, the upstream area can
make the neurons in the layer fire earlier or later, without
interfering with other interval durations. Modifying timing by
means of changing the spatial, but not temporal, profiles of inputs
is made possible by the one-to-one mapping of time to space
inherent to synfire chains. The described mechanism, in addition
to flexible learning, may also allow flexible real-time control of
motor timing. For example, in Bengalese finches, acute pertur-
bations of auditory feedback led to slowing down of the target
syllable duration51,52 accompanied by a decrease in HVC activ-
ity52. It is conceivable that such decrease in activity is due to a
change in auditory feedback-related input to HVC. It would be
interesting to quantify how specific the tempo changes are to the
target syllable in these experiments.

In this study, we only discussed flexibility in motor timing.
However, depending on the structure of the network controlling
the behavior, temporal changes could also interfere with spatial
aspects of motor output1. In the songbird system, for example, the
output neurons of the time-keeper network, HVC, synapse onto
motor cortex analog neurons that, indirectly, drive the vocal
muscles25. If modifications to the song’s temporal structure
change the magnitude of the spiking response in the output
neurons, this could change not only the timing of muscle acti-
vations but also their magnitude. Thus separating the temporal
and spatial aspects of movements19,23 requires separating the
timing of an output neuron’s firing from its magnitude. In gen-
eral, neither RNNs nor feedforward networks ensure such a
separation. However, synfire chains do, suggesting another reason
why they might have the ideal topology and dynamics for
implementing the timing of flexible behaviors.
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Maximal flexibility in modifying motor skills would analo-
gously require the capacity to change specific movement features
without interfering with others. The same requirements for
flexibility in motor timing, i.e., independence and flexibility, also
apply to spatial aspects of movements. For example, in a rein-
forcement learning model of a reaching task53, interference
between different movements were likely54, significantly slowing
down the learning process. The methods and formalisms we
present for understanding the network constraints associated
with flexible motor timing can be extended to study networks
underlying flexibility in the spatial domain.

Beyond informing the neural circuits underlying flexible time
keeping, our study is also an example of how behavioral experi-
ments in combination with network modeling and theory can
inform the structure and dynamics of neural circuits underlying
complex behaviors.

Methods
Birdsong experiments. Animals: The care and experimental manipulation of all
animals were reviewed and approved by the Harvard Institutional Animal Care and
Use Committee. Experimental subjects were adult male zebra finches (>90 days
post-hatch, n= 24).

Behavioral experiments: Adaptive changes to the duration of targeted song
segments were induced as previously described19. Briefly, we computed the
duration of target segments in real-time using a static threshold crossing of the
smoothed amplitude envelope (5 ms boxcar filter with 1 ms advancement). If the
duration did not meet the threshold, a burst of white noise (80−90 dB) was played
through a loudspeaker for 50−100 ms with short latency (~1−3 ms). Syllable
onsets are associated with rapid increases in sound amplitude, which makes the
estimates of their timing more robust to noise. Thus, we mostly targeted ‘syllable
+gap’ segments and estimated the target segments from the onset of the target
syllable to the onset of the following syllable. In a typical single-target experiment,
birds underwent 3−5 days of CAF to lengthen the target followed by 3−5 days of
CAF to shorten the target (for a total of 6−10 days for each experimental block)
and no CAF for at least 4 days before subsequent experiments.

When comparing learning rates across experiments in which one (“alone”,
Fig. 1f-g) versus two targets (“with other”) were targeted for modification, we chose
targets that were separated by at least 100 ms. We first ran the CAF protocol on a
randomly selected group of animals (n= 3 birds) for target 1, then for target 2,
before targeting both intervals in the same experiment. In another group of birds
(n= 3), we counterbalanced the order, running the two-target experiments first,
followed by single-target experiments. The two targets in the same song were
modified in opposite directions.

Birdsong analysis: All analyses of learning rates and variability of segment
durations were done offline on “catch trials” during which the white noise feedback
was turned off for up to 100 song renditions in the morning (AM) and again
approximately 8 h later in the evening (PM). The method for obtaining estimates of
song segment durations has previously been described19. To calculate learning
rates, we computed the change in the target duration from the start to the end of a
CAF run (up or down) and divided it by the number of intervening days. We
compared both morning and evening catch trials, averaging across them to obtain a
more robust estimate of learning rate. We compared variability in interval duration
for the same time-period in the day in order to rule out potential circadian effects.

To compare the changes in segment durations during CAF to normal baseline
drift, we used the same number of days of baseline (before CAF was started) as the
number of days of CAF, which for each bird varied between 6–10 days. Note that
for all changes in duration (CAF or baseline), they are divided by number of days
(ms/day) and not absolute total change. We subtracted the absolute value of this
baseline drift from the CAF-induced changes to obtain a better estimate of
learning. We did the same for non-target intervals, discarding the signs for each
non-target interval change when averaging within a bird to rule out that different
signs negated each other, thus masking any potential non-target effects.

For Fig. 1g, we analyzed the data as follows to prevent pseudoreplication. For
each bird, we averaged the change/day for the 2 segments in the alone condition
and did the same for the w/other condition. This produced a vector of 6 numbers
(one for each bird) for each of the two conditions. Because the same birds were
used in both conditions, we then did a paired samples t-test between the two
conditions

Statistical analysis: No explicit power analysis was conducted to predetermine
sample sizes. However, our sample sizes were generally similar to those used in
previous birdsong studies. We used two-sided statistical tests as noted in the
Figures. All statistics presented in the main text refer to mean ± SD, while error
bars in the figures all represent SEM.

Theoretical and computational methods. Flexibility of pattern generator circuits:
A detailed account of the constraints imposed on pattern generator circuits for

flexible time-keeping is given in Supplementary Note 1. Here, we present simple
derivations of Eqs. (1−4).

Gradient ascent on reward, which we assume to be contingent on the duration
of interval α, requires changes in the synaptic weights along the reward gradient,
which is related to the interval duration gradient by the chain rule:

dWα
ij

dl
¼ η

∂Rα

∂Wij
¼ η

dRα

dIα
∂Iα

∂Wij
; ð6Þ

where η is a learning rate parameter, Wα(l) is the trajectory in synaptic weight
space traced during gradient ascent, and l parametrizes the trajectory. Changes in
the duration of an interval along the curve Wα(l) is given by:

dIβ

dl
¼

X
fijg

∂Iβ

∂Wij

dWα
ij

dl
; ð7Þ

where the summation is over existing (non-zero) synaptic weights. Eq. (6) can be
used to substitute the last term in Eq. (7) to give:

dIβ

dl
¼ η

dRα

dIα
X
ijf g

∂Iα

∂Wij

∂Iβ

∂Wij
: ð8Þ

Eq. (8) shows that unless Eq. (1) is satisfied, non-targeted intervals change while
gradient-ascent is performed.

For small changes in synaptic weights, one can approximate the changes in
intervals using a linear approximation: δIβ � dIβ

dl l ¼ η dRα

dIα
P
ijf g

∂Iα
∂Wij

∂Iβ
∂Wij

l ¼ η dRα

dIα Mαβl.

Eq. (3) directly follows from Eq. (8) by substitution.
A more general scenario is when there are multiple reinforcers acting on

multiple intervals simultaneously. Total reinforcement is now given by R ¼P
α
Rα .

In this case, the interference patterns can be more elaborate, however it is still
governed by the interference matrix:

δIβ � η
X

α

dRα

dIα
Mαβl: ð9Þ

For example, Eq. (4) can be derived using similar arguments to derivation of Eq.
(3), except now the reinforcement is Rα + Rβ.

FsRNNs. Network setup and training: We simulated RNNs with N= 500
neurons. The neural dynamics was described by,

τr
dxi
dt ¼ �xi þ

PN
j¼1

Wijrj tð Þ þ
P2
j¼1

WIn
ij yj tð Þ þ gFBWFB

i z tð Þ þ ffiffiffiffiffi
τη
p

σηi tð Þ;

ri tð Þ ¼ tanh xi tð Þð Þ;
z tð Þ ¼PN

j¼1
WOut

ij rj tð Þ;

where i ¼ 1; ¼ ;N , ri(t) are the firing rates of the neurons, yj(t) are the inputs, and
z(t) is the output. The parameters of the network followed9, with the neural time
constant being τr= 10 ms. The recurrent synaptic connectivity matrix, W, was
sparse: Wij was 0 with probability 1−p, with p= 0.1. Non-zero elements of W were
drawn independently from a Gaussian distribution with 0 mean and a variance of
1.5/(pN), ensuring that the network is in the chaotic regime without the feedback
from the output10. Elements of WIn and WFB were independently drawn from a
uniform distribution between −1 and 1. The strength of feedback gFB was varied, as
discussed in the main text. Unless stated otherwise, the networks were simulated
with independently injected noise to neurons, including during training: ηi(t) is a
zero-mean Gaussian white noise with covariance <ηi tð Þηi t′

� �
> ¼ δ t � t′

� �
, τη=

10 ms and σ= 0.01.
The noise magnitude was chosen to ensure that after training, the coefficients of

variation of temporal variability in the interval durations were about 0.5 ms,
consistent with pattern generator variability in zebra finch song28. Variability in
song tempo is comprised of temporal variability in the pattern generator circuits
and ‘peripheral jitter’. Jitter can be caused by temporal variability in downstream
circuits and muscles28 and is estimated to contribute 2 ms of variability on average,
independent of interval duration28. Combined with the 0.5 ms variability observed
in our models for a 50-ms interval, total variability would add up to

2:06ms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5msð Þ2þ 2msð Þ2

q
. This corresponds to a coefficient of variation

(CV) of ~4% for song timing, consistent the ~1–10% CV range observed in young
adult zebra finches (see refs. 28,55,56 and Fig. 6b).

There were two types of inputs to the network: (1) y1(t) was a unit pulse of
duration 50 ms and amplitude 5 (A.U.). This input was present for all simulations.
The end of the pulse marked the beginning of the first interval. (2) y2(t) was a unit
pulse of duration 10 ms and amplitude P that was varied. It arrived 120 ms after the
start of the first interval. This input was used only when assessing the robustness of
the network to perturbations (Fig. 2d).

The desired output was a 530-ms waveform (Supplementary Fig. 1A)
constructed by:
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(1) summing 10 Gaussian waveforms centered 50 ms apart with widths
(standard deviation) of 10 ms,

(2) normalizing the waveform such that its maximum is 1 and minimum 0.1,
and

(3) shifting it in time such that the first threshold-crossing (which is chosen to
be 0.68) occurs 50 ms after the first interval.

Hence, the desired output marked 10 equally spaced 50 ms intervals. WOut was
trained using the FORCE algorithm9 for 30 training trials. After training, 10 test
runs were performed and the error between the network output and the desired
output (‘test error’) calculated for each test run. The test error was defined byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR 530ms

0
zdes tð Þ�z tð Þð Þ2dt

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR 530ms

0
zdes tð Þ2dt

q , where zdes tð Þ was the desired output.

The equations governing network dynamics were integrated with a first-order
Euler method. The integration step size was dt= 0.1 ms, unless otherwise stated.

For Fig. 2c, the initial state distance between two intervals was calculated by first
making two N= 500 dimensional vectors of the instantaneous firing rates of the
network neurons at the beginning of the two intervals and then calculating the L2-
norm difference of these vectors.

Interference matrix. To calculate the interference matrices of trained fsRNNs,
we calculated the gradients of interval durations numerically: one-by-one, each
non-zero synaptic weight was increased by dW= 0.05 and the change in interval
durations measured. In these simulations, σ= 0 and dt= 0.01ms. To check the
accuracy of our results, we ran the same calculation with dt= 0.1 ms and observed
that changes in our reported values were small, e.g., less than 1% in Fig. 2f.

Reinforcement learning. We implemented a modified version of the synaptic
plasticity rule of Fiete and Seung31 to adaptively change the non-zero elements of
W. Specifically, changes to synaptic weight Wij were given by

ΔWij ¼ γ

Z tðKÞ

0
R tð Þeij tð Þdt;

where t(K) denotes the end of the last interval, γ= 0.004, eij tð Þ the eligibility trace,
and R(t) the reward. γ was chosen to match learning rates observed in experiments
with songbirds. The eligibility trace is:

eij tð Þ ¼
Z t

0

dt′
τe

e�ðt�t′Þ=τeηi t′ð Þrj t′ð Þ;

where τe= 35 ms19. The reward signal is given by R tð Þ ¼ Rðtar1Þδ t � tðtar1Þ
� �

in a
single-target interval ‘experiment’ and by R tð Þ ¼ Rðtar1Þδ t � tðtar1Þ

� �þ
Rðtar2Þδ t � tðtar2Þ

� �
in a two-target intervals ‘experiment’, where tðtar1Þ and

tðtar2Þdenote the times at which the 1st and 2nd target intervals end, and Rðtar1Þ and
Rðtar2Þ are 0–1 rewards contingent on 1st and 2nd target intervals respectively. If the
interval is not targeted, the reward is always 0. If the interval is targeted for
modification, the rewards are calculated by comparing the interval duration in the

current trial, IðtarÞ, to the running average of the target interval duration, I
ðtarÞ

,

which is updated in each trial as follows: I
ðtarÞ  0:995 I

ðtarÞ þ 0:005IðtarÞ. If the
interval is targeted for lengthening, the reward is 1 if IðtarÞ>IðtarÞ, and 0 otherwise. If

the interval is targeted for shortening, the reward is 1 if IðtarÞ<IðtarÞ, and 0 otherwise.
In Supplementary Fig. 2F-G, we simulated a single-interval experiment with an

internally generated reinforcer, which preserves the baseline (or template) values of

interval timings, I
ðiÞ
temp, which is calculated by averaging of 400 trials without

reinforcement. The total reward is given by

R tð Þ ¼ Rðtar1Þ δ t � tðtar1Þ
� �þP10

i¼1
RðiÞtemp δ t � tðiÞ

� �
. Here RðiÞtemp is the template

reinforcement signal. RðiÞtemp ¼ 0:2 if I
ðiÞ � I

ðiÞ
temp

���
���>0:1ms and

I
ðiÞ
temp � I

ðiÞ� �
IðiÞ � I

ðiÞ� �
>0, RðiÞtemp ¼ 0 otherwise.

Interval duration changes during a reinforcement learning experiment are
calculated by a running (200 point window) across trials and subtracting from
them their baseline values. The baseline values are averages of the interval
durations across 400 trials where no reinforcement was delivered.

Dynamic attractor. Network setup and training: The architecture of this
network, the dynamics of its neurons and the numerical integration of the
dynamical equations, its connectivity and noise parameters, as well as its input and
output waveforms, are the same as the fsRNNs, except the feedback from the
output was set to zero, i.e., gFB ¼ 0.

The networks are trained using the ‘innate training’ procedure7, which
consisted of two stages:

(1) 70% of non-zero elements of W are trained using the FORCE algorithm (30
training trials) to stabilize an innately produced trajectory of duration 530
ms. See ref. 7 for details.

(2) WOut is trained using the FORCE algorithm to produce the desired output
waveform, exactly as in fsRNNs.

Interference matrix. The procedures for calculating the interference matrices are
the same as for the fsRNNs.

Reinforcement learning. The procedures for reinforcement learning are the
same as the fsRNNs, except that γ ¼ 0:004=3.

Chains of single neurons. One-to-one mapping of synaptic weights to intervals:
In Supplementary Note 2, we prove that in a feedforward network with a single
neuron per layer flexible time-keeping requires that the αth interval depend only on
the synaptic weight between layers α� 1 and α, Wα . To prove this result, we make
the following general assumptions: Activity in each layer codes for the start of an
interval and end of the previous one. The network dynamics and the time read-out
for each layer is such that: tðαÞ>tðβÞ when α>β, where tðαÞ is the time read-out from
αth layer. Finally, only the initial layer receives external input.

Chain of single integrate-and-fire neurons. We consider a chain of leaky
integrate-and-fire neurons, which integrate their synaptic input currents with a leak
time constant of τIF. We assume that there is a non-zero volume of synaptic weight
space in which the activity propagates in the chain with each neuron producing a
single spike and the synaptic weights of the network configured to be in that
volume (and not at the boundary of the volume where an infinitesimal change in
synaptic weights may lead to multiple spikes per neuron or no spikes at all). The
spike time of the neuron in the αth layer is denoted by tðαÞ. The subthreshold
dynamics of the neuron’s membrane potential is given by:

τIF
dVα

dt
¼ � Vα � Vrestð Þ þWαE t � t α�1ð Þ

� �
;

where τIF is the leak time constant, Wα is the synaptic weight between layers α� 1
and α, and EðtÞ is the causal post-synaptic potential that follows a pre-synaptic
spike. When the membrane potential reaches a threshold, Vth, the neuron produces
a spike and the membrane potential is reset to VR. We assume that the neuron is at
rest potential, Vrest, when the pre-synaptic spike arrives. The αth neuron spikes
when its membrane potential reaches the threshold:

Vth ¼ Vrest þWα

Z tðαÞ

tðα�1Þ

dt
τIF

e�
tðαÞ�t
τIF E t � tðα�1Þ

� �
;

Taking the derivative of this equation with respect to synaptic weights and noting
that IðαÞ ¼ tðαÞ � tðα�1Þ , we get:

∂IðαÞ

∂Wβ
¼

� τIF

Wα

WαE IðαÞð Þ
Vth�Vrest �1

� � α ¼ β

0 α≠β

8<
: : ð10Þ

In scenarios where some neurons spike more than once, this result still holds for
intervals, IðαÞ, for which the ðα� 1Þth neuron spikes only once.

In simulations shown in Fig. 4, the following parameters were used:
τIF ¼ 10ms,Vth ¼ �50mV, Vrest ¼ VR ¼ �60mV, Wα ¼ 43mV. E tð Þ ¼
Θ tð Þe�t=τs with Θ tð Þ being the step function and τs ¼ 5ms. For Fig. 4c, a 1 ms
refractory period followed a spike during which the membrane potential was set to
VR . The dynamical equations governing the network dynamics were integrated
with a first-order Euler method, with an integration step size of dt ¼ 0:01ms

Synfire chain. Network setup and training: Our synfire chain model consisted of
1350 integrate-and-burst neurons organized into 90 layers, with 15 neurons in each
layer (Fig. 4a). Neurons in a layer projected to all neurons in the next layer,
forming a chain topology. The subthreshold membrane potential of the ith neuron,
Vi, obeyed

τIF
dVi

dt
¼ � Vi � Vrestð Þ þ Isyn;i tð Þ þ Iext;i tð Þ þ ffiffiffiffiffi

τη
p

σηi tð Þ;

where τIF ¼ 10ms, Vrest ¼ �60mV, ηi tð Þ is a zero-mean Gaussian white noise
with covariance <ηi tð Þηi t′

� �
> ¼ δ t � t′

� �
, τη ¼ 10ms, and σ ¼ 2mV. The

synaptic inputs are given by Isyn;i tð Þ ¼
P
j
Wij

P
k
E t � tkj

� �
, where tkj denotes the

kth spike of jth neuron, E tð Þ ¼ Θ tð Þe�t=τs with Θ tð Þ being the step function and
τs ¼ 5ms, and Wij is 1:13mV for synapses from a neuron to the neurons in the
next layer and 0 otherwise. When the membrane potential of the integrate-and-
burst neuron reaches threshold, Vth ¼ �50mV, the neuron emits 4 spikes with 2
ms between spikes and the membrane potential resets to VR ¼ �55mV after a
refractory period of 4 ms. Chain propagation starts by Iext;i tð Þ, a 5-ms pulse input
with magnitude 30 mV applied only to neurons in the first node.

In Supplementary Fig. 4A and B, Wij were chosen uniformly in the range
1–1.27 mV. In Supplementary Fig. 4C and D, Wij was 1:1425mV with probability
0.8 for synapses from a neuron to the neurons in the next layer and 0 otherwise.

To map network dynamics to timing, an integrate-and-fire readout neuron is
connected to all the neurons in every 9th layer, making a total of 10 readout
neurons. Their dynamics are governed by the same equations as the chain neurons,
except they do not receive any external input or noise. Synaptic weights between
neurons in the chain were set to 1:13mV. The first spikes of the output neurons
mark interval boundaries. The first interval commences with the start of the
external pulse.
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The equations governing the network dynamics were integrated with a first-
order Euler method, with an integration step size of dt ¼ 0:1ms, unless stated
otherwise.

Interference matrix. To calculate the interference matrices of the synfire chain,
we calculated the gradients of the interval durations numerically: one-by-one, each
non-zero synaptic weight was increased by dW ¼ 0:113V and the change in
interval durations measured. In these simulations, σ ¼ 0 and dt=0.5 µs. We
observed that when a synaptic weight is increased by dW, durations of the interval
associated with the perturbed synapse, decreased by 0.2645 ms, giving a gradient of
2.3407 ms/V. Changes in other intervals were numerically 0. A zero gradient is also
expected from theory. Since our model synfire chain has all-to-all connectivity
between layers and, at setup, all synaptic weights are the same, in the absence of
noise, neurons that live in the same layer receive exactly the same input. A small
increase in a synaptic weight leads to a larger synaptic input to all post-synaptic
layer neurons, and causes them to shift their bursting to an earlier time by an equal
duration, without changing the shape of the burst. Subsequently, downstream
layers of the chain only shift their activity in time by equal durations, leading to no
change in interval durations.

Reinforcement learning. The procedures for reinforcement learning were kept
the same as for the fsRNNs, except that γ= 1 µV with the eligibility trace now
taking the form:

eij tð Þ ¼
Z t

0

dt′
τe

e�ðt�t′Þ=τeηi t′ð Þsj t′ð Þ;

where τe ¼ 35ms, and sj tð Þ ¼
P
k
E t � tkj

� �
. The synaptic weights were not

allowed to increase above 1:6mV nor fall below 0:92mV for stability of chain

propagation: weights above the upper bound led to explosion, and weights below

the lower bound led to activity propagation terminating before reaching the end of

the chain.
Statistics: In figures, all reported error bars are standard deviations over

different trained networks unless stated otherwise. In Figs. 2k, 3i, 5f, interference
per interval, for a given network and a given reinforcement learning simulation of
1100 trials, was calculated as follows: (1) Intervals whose mean duration had
changed were identified. For this purpose, for each interval, we performed a t-test
(significance value 5%) to test whether the interval’s durations between trials 900
and 1100 was coming from a distribution whose mean is the interval’s mean
baseline duration. (2) When the null-hypothesis was rejected (mean duration
changed) for an interval, the mean duration at 1000th trial was estimated by
averaging over the interval durations between trials 900 and 1100, and the change
in mean duration was calculated by subtracting the baseline mean. When the null-
hypothesis was borne out, the change in mean duration was zero. (3) The absolute
change in non-target interval durations were normalized by the change in target
duration and averaged over non-target intervals.

Data and code availability. All data analyzed and code used for this paper are
available from the authors upon reasonable request.
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