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Dynamics of starvation and recovery predict
extinction risk and both Damuth’s law and Cope’s
rule

Justin D. Yeakel® 2, Christopher P. Kempes? & Sidney Redner?

The eco-evolutionary dynamics of species are fundamentally linked to the energetic con-
straints of their constituent individuals. Of particular importance is the interplay between
reproduction and the dynamics of starvation and recovery. To elucidate this interplay, here
we introduce a nutritional state-structured model that incorporates two classes of con-
sumers: nutritionally replete, reproducing consumers, and undernourished, nonreproducing
consumers. We obtain strong constraints on starvation and recovery rates by deriving
allometric scaling relationships and find that population dynamics are typically driven to a
steady state. Moreover, these rates fall within a “refuge” in parameter space, where the
probability of population extinction is minimized. We also show that our model provides a
natural framework to predict steady state population abundances known as Damuth's law,
and maximum mammalian body size. By determining the relative stability of an otherwise
homogeneous population to a competing population with altered percent body fat, this fra-
mework provides a principled mechanism for a selective driver of Cope's rule.
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he behavioral ecology of all organisms is influenced by

their energetic states, which directly impacts how they

invest reserves in uncertain environments. Such behaviors
are generally manifested as tradeoffs between investing in somatic
maintenance or allocating energy toward reproduction'™. The
timing of these behaviors responds to selective pressure, as the
choice of the investment impacts future fitness*°. The influence
of resource limitation on an organism’s ability to maintain its
nutritional stores may lead to repeated delays or shifts in repro-
duction over the course of an organism’s life.

The balance between (a) somatic growth and maintenance, and
(b) reproduction depends on resource availability®. For example,
reindeer invest less in calves born after harsh winters (when the
mother’s energetic state is depleted) than in calves born after
moderate winters’. Many bird species invest differently in broods
during periods of resource scarcity®’, sometimes delaying or even
foregoing reproduction for a breeding season'!%!!. Even fresh-
water and marine zooplankton have been observed to avoid
reproduction under nutritional stress'?, and those that do
reproduce have lower survival rates?. Organisms may also sepa-
rate maintenance and growth from reproduction over space and
time: many salmonids, birds, and some mammals return to
migratory breeding grounds to reproduce after one or multiple
seasons in resource-rich environments where they accumulate
reserves!371°

Physiology also plays an important role in regulating repro-
ductive expenditures during periods of resource limitation. Many
mammals (47 species in ten families) exhibit delayed implanta-
tion, whereby females postpone fetal development until nutri-
tional reserves can be accumulated'®!”. Many other species
(including humans) suffer irregular menstrual cycling and higher
abortion rates during periods of nutritional stress'®!°. In the
extreme case of unicellular organisms, nutrition directly controls
growth to a reproductive state>?°, The existence of so many
independently evolved mechanisms across such a diverse suite of
organisms highlights the near-universality of the fundamental
trade-off between somatic and reproductive investment.

Including individual energetic dynamics®! in a population-level
framework?!?? is challenging®’. A common simplifying approach
is the classic Lotka—Volterra (LV) model, which assumes that
consumer population growth rate depends linearly on resource
density?*. Here, we introduce an alternative approach—the
nutritional state-structured model (NSM)—that accounts for
resource limitation via explicit starvation. In contrast to the LV
model, the NSM incorporates two consumer states: hungry and
full, with only the former susceptible to mortality and only the
latter possessing sufficient energetic reserves to reproduce.
Additionally, we incorporate allometrically derived constraints on
the timescales for reproduction’, starvation, and recovery. Our
model makes several basic predictions: (i) the dynamics are
typically driven to a refuge far from cyclic behavior and extinction
risk, (ii) the steady-state conditions of the NSM accurately predict
the measured biomass densities for mammals described by
Damuth’s law?>28, (iii) there is an allometrically constrained
upper bound for mammalian body size, and (iv) the NSM pro-
vides a selective mechanism for the evolution of larger body size,
known as Cope’s rule?®=32,

Results

Nutritional state-structured model. We begin by defining the
nutritional state-structured population model, where the con-
sumer population is partitioned into two states: (a) an energeti-
cally replete (full) state F, where the consumer reproduces at a
constant rate 1 and does not die from starvation, and (b) an
energetically deficient (hungry) state H, where the consumer does
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not reproduce but dies by starvation at rate y. The dynamics of
the underlying resource R are governed by logistic growth with an
intrinsic growth rate a and a carrying capacity C. The rate at
which consumers transition between states and consume
resources is dependent on their number, the abundance of
resources, the efficiency of converting resources into metabolism,
and how that metabolism is partitioned between maintenance
and growth purposes. We provide a physiologically and energe-
tically mechanistic model for each of these dynamics and con-
stants (Methods), and show that the system produces a simple
nondimensional form that we describe below.

Consumers transition from the full state F to the hungry state
H at a rate o—the starvation rate—and also in proportion to the
absence of resources (1-R) (the maximum resource density has
been nondimensionalized to 1; see Methods). Conversely,
consumers recover from state H to state F at rate £p and in
proportion to R, where £ represents a ratio between maximal
resource consumption and the carrying capacity of the resource.
The resources that are eaten by hungry consumers (at rate pR+6)
account for their somatic growth (pR) and maintenance (). Full
consumers eat resources at a constant rate f that accounts for
maximal maintenance and somatic growth (see Methods for
mechanistic derivations of these rates from resource energetics).
The NSM represents an ecologically motivated fundamental
extension of the idealized starving random walk model of
foraging, which focuses on resource de3pletion, to include
reproduction and resource replenishment®>=, and is a more
general formulation than previous models that incorporate
starvation®®%7,

In the mean-field approximation, in which the consumers and
resources are perfectly mixed, their densities are governed by the
rate equations

F = JF+&RH — (1 — R)F,
H =o(1 —R)F—&RH — uH, (1)
R =a(l —R)R— (pR+ 8)H — fiF.

This system of nondimensional equations follows from a set of
first-principle relationships for resource consumption and growth
(see Methods for a full derivation and the dimensional form).
Notice that the total consumer density F+H follows
F+ H = AF — uH. This resembles the equation of motion for
the predator density in the LV model®3, except that the resource
density does not appear in the growth term. The rate of
reproduction is independent of resource density because the full
consumer partitions a constant amount of energy toward
reproduction, whereas a hungry consumer partitions no energy
toward reproduction. Similarly, the consumer maintenance terms
(6H and pF) are also independent of resource density because
they represent a minimal energetic requirement for consumers in
the H and F state, respectively.

Steady states of the NSM. From the single internal fixed point
(Eq. 5, see Methods), an obvious constraint on the NSM is that
the reproduction rate 4 must be less than the starvation rate o, so
that the consumer and resource densities are positive. The con-
dition o=/ represents a transcritical (TC) bifurcation®® that
demarcates a physical from an unphysical (negative steady-state
densities) regime. The biological implication of the constraint 1 <
o has a simple interpretation—the rate at which a macroscopic
organism loses mass due to lack of resources is generally much
faster than the rate of reproduction. As we will discuss below, this
inequality is also a natural consequence of allometric constraints
for organisms within empirically observed body size ranges.
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Fig. 1 The transcritical (TC; dashed line) and Hopf bifurcation (solid line) as
a function of the starvation rate ¢ and recovery rate p for a 100-g consumer.
These bifurcation conditions separate parameter space into unphysical (left
of the TC), cyclic, and steady-state dynamic regimes. The colors show the
steady-state densities for the energetically replete consumer F’

In the physical regime of 1 < o, the fixed point (Eq. 5) may either
be a stable node or a limit cycle (Fig. 1). In continuous-time
systems, a limit cycle arises when a pair of complex conjugate
eigenvalues crosses the imaginary axis to attain positive real parts*,
This Hopf bifurcation is defined by Det(S) =0, where S is the
Sylvester matrix, which is composed of the coefficients of the
characteristic polynomial of the Jacobian matrix*!. As the system
parameters are tuned to be within the stable regime, but close to the
Hopf bifurcation, the amplitude of the transient cycles becomes
large. Given that ecological systems are constantly being per-
turbed*?, the onset of transient cycles, even though they decay with
time in the mean-field description, can increase extinction risk*>°,

When the starvation rate 6 >> 4, a substantial fraction of the
consumers is driven to the hungry nonreproducing state. Because
reproduction is inhibited, there is a low steady-state consumer
density and a high steady-state resource density. However, if
6/2-1 from above, the population is overloaded with energetically
replete (reproducing) individuals, thereby promoting transient
oscillations between the consumer and resource densities (Fig. 1).
If the starvation rate is low enough that the Hopf bifurcation is
crossed, these oscillations become stable. This threshold occurs at
higher values of the starvation rate as the recovery rate p
increases, such that the range of parameter space giving rise to
cyclic dynamics also increases with higher recovery rates.

The allometry of extinction risk. While there are no a priori
constraints on the parameters in the NSM, we expect that each
species should be restricted to a distinct portion of the parameter
space. We use allometric scaling relations to constrain the cov-
ariation of rates in a principled and biologically meaningful
manner (Methods). Allometric scaling relations highlight com-
mon constraints and average trends across large ranges in body
size and species diversity. Many of these relations can be derived
from a small set of assumptions. In Methods, we describe our
framework to determine the covariation of timescales and rates
across a range of body sizes for each of the key parameters of our
model (cf. ref. 49).

Nearly all of the rates described in the NSM are determined by
consumer metabolism, which can be used to describe a variety of
organismal features?’. We derive, from first principles, the
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Fig. 2 The growth trajectory over absolute time of an individual organism as
a function of body mass. Initial growth follows the black trajectory to an
energetically replete reproductive adult mass of m=g¢;M (Methods).
Starvation follows the red trajectory to m = e,¢;,M. Recovery follows the
green curve to the replete adult mass, where this trajectory differs from the
original growth because only fat is being regrown that requires a longer
time to reach ¢;M. Alternatively, death from starvation follows the blue
trajectory to m=¢g,e;,M

relationships for the rates of reproduction, starvation, recovery,
and mortality as a function of an organism’s body size and
metabolic rate (Methods). Because we aim to explore the
starvation-recovery dynamics as a function of an organism’s
body mass M, we parameterize these rates in terms of the percent
gain and loss of the asymptotic (maximum) body mass, M,
where different values of ¢ define different states of the consumer
(Fig. 2; see Methods for derivations of allometrically constrained
rate equations). Although the rate equations (1) are general and
can in principle be used to explore the starvation-recovery
dynamics for most organisms, here, we focus on allometric
relationships ~ for  terrestrial-bound  lower-trophic-level
endotherms (Table 1), specifically herbivorous mammals, which
range from a minimum of M =1g (the Etruscan shrew Suncus
etruscus) to a maximum of M=10"g (the early Oligocene
Indricotheriinae and the Miocene Deinotheriinae). Investigating
other classes of organisms would simply involve altering the
metabolic exponents and scalings associated with €. Moreover, we
emphasize that our allometric equations describe mean relation-
ships and do not account for the (sometimes considerable)
variance associated with individual species. We note that
including additional allometrically scaled mortality terms to both
F and H does not change the form of our model nor impact our
quantitative findings (Supplementary Note 1).

As the allometric derivations of the NSM rate laws reveal
(Methods), starvation and recovery rates are not independent
parameters, and the biologically relevant portion of the phase
space shown in Fig. 1 is constrained via covarying parameters.
Given the parameters of terrestrial endotherms, we find that the
starvation rate ¢ and the recovery rate p are constrained to lie
within a small region of potential values for the known range of
body size M. Indeed, starvation and recovery rates across all
values of M fall squarely in the steady-state region at some
distance from the Hopf bifurcation. This suggests that cyclic
population dynamics should be rare, particularly in resource-
limited environments.

Higher rates of starvation result in a larger flux of the
population to the hungry state. In this state, reproduction is
absent, thus increasing the likelihood of extinction. From the
perspective of population survival, it is the rate of starvation
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Table 1 Parameter values for mammals

Definition Parameter Value References
Asymptotic adult mass M (€3]

Initial mass of an organism Mo ()

Metabolic rate scaling exponent n 3/4 64-66
Metabolic normalization constant Bo 0.047 (W g 075) 66
Initial mass scaling exponent v 0.92 74,75
Initial mass scaling normalization constant no 0.097 (g"™) 74,75
Fat mass scaling exponent 7 1.19 78

Fat scaling normalization constant fo 0.02 (g"™) 8
Muscle mass scaling exponent ¢ 1.00 79
Muscle scaling normalization constant ) 0.38 (g% 73
Energy to synthesize a unit of mass En 5774 (Jg™" 64-66
Energy to synthesize a unit of mass during recovery E'm 7000 Jg™ 66,76
Specific resource growth rate a 9.45x107° (s See text
Fraction of asymptotic mass representing full state € 0.95 64
Fraction of asymptotic mass representing starving state £y 1~foM? ! i See text
Fraction of asymptotic mass representing death £, 1— W+°M See text
Carrying capacity (maximum density) of resources C (gm™2)

Half-saturation constant k (gm™?)

Normalized carrying capacity I3 C/k ~ 2

Reproductive fecundity v 2

relative to the rate of recovery that determines the long-term
dynamics of the various species (Fig. 1). We therefore examine
the competing effects of cyclic dynamics vs. changes in steady-
state density on extinction risk, both as functions of ¢ and p. To
this end, we computed the probability of extinction, where we
define extinction as a population trajectory falling below one-fifth
of the allometrically constrained steady state at any time between
t=10% and t= 1010, This procedure was repeated for 50 replicates
of the continuous-time system shown in Eq. 1 for organisms with
mass ranging from 10> to 10°g. In each replicate, the initial
densities were chosen to be (XF, XH', R'), with X a random
variable uniformly distributed in [0, 2]. By allowing the rate of
starvation to vary, we assessed extinction risk across a range of
values for ¢ and p between ca. 1078 and 107>, Higher rates of
extinction correspond to both large o if p is small, and large p if &
is small. In the former case, increased extinction risk arises
because of the decrease in the steady-state consumer population
density (Figs. 1, 3). In the latter case, the increased extinction risk
results from higher-amplitude transient cycles as the system nears
the Hopf bifurcation (Fig. 3). This interplay creates an “extinction
refuge”, such that for a constrained range of ¢ and p, extinction
probabilities are minimized.

We find that the allometrically constrained values of ¢ and p,
each representing different trajectories along the ontogenetic
curve (Fig. 2), fall squarely within the extinction refuge across a
range of M (Fig. 3a, b, white points). These values are close
enough to the Hopf bifurcation to avoid low steady-state
densities, yet distant enough to avoid large-amplitude transient
cycles. Allometric values of ¢ and p fall within this relatively small
window, which supports the possibility that a selective mechan-
ism has constrained the physiological conditions driving starva-
tion and recovery rates within populations. Such a mechanism
would select for organism physiology that generates appropriate ¢
and p values that minimize extinction risk. This selection could
occur via the tuning of body fat percentages, metabolic rates, and/
or biomass maintenance efficiencies. We also find that as body
size increases, the size of the low extinction-risk parameter space
shrinks (Fig. 3b), suggesting that the population dynamics for
larger organisms are more sensitive to variability in physiological
rates. This finding is in accordance with, and may serve as
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contributing support for, observations of increased extinction risk
among larger mammals*®,

Damuth’s law and body size limits. The NSM correctly predicts
that smaller species have larger steady-state population densities
(Fig. 4). Similar predictions have been made for carnivore
populations using alternative consumer-resource models*.
Moreover, we show that the NSM Erovides independent theore-
tical support for Damuth’s law?*>~>%, Damuth’s law shows that
species abundances, N, follow N'=0.01M~78 (gm™2). Figure 4
shows that both F' and H" scale as M, with # = 3/4, over a wide
range of organismal sizes and that F + H closely matches the best
fit to Damuth’s data. Remarkably, this result illustrates that the
steady-state values of the NSM combined with the derived
timescales naturally give rise to Damuth’s law. While the initial
metabolic studies supporting Damuth’s law provide arguments
for the value of the exponent>>?® (Supplementary Note 2), our
model predicts not only the exponent but also the normalization
constant dependencies by explicitly including the resource
dynamics and the parameters that determine growth and con-
sumption. These predictions are complementary to recent work
that also predicts the exponent and normalization constant of
density relationships from the detailed allometries of reproduc-
tion, capture area, conversion efficiency, and mortality within
predator—prey dynamic models*>’. It should be noted that
density relationships of individual clades follow a more shallow
scaling relationship than that predicted by Damuth’s law?3, In the
context of our model, this finding suggests that future work may
be able to anticipate these shifts by accounting for differences in
the physiological parameters associated with each clade.

With respect to predicted steady-state densities, the population
sizes of both F and H go to zero at a finite body size, where the
steady-state resources also vanish (Fig. 4). This behavior is
governed by the body size at which fMY l+uMs =1
(Supplementary Note 3) that causes the death rate to vanish,
u=0, and corresponds to (F', H, RN =(0, 0, 0). Just before this
point H" becomes large, in accordance with the asymptotic
behavior in Fig. 4. This point predicts an upper bound on
mammalian body size at M= 6.54 X 107 g. Moreover, M.y,
which is entirely determined by the population-level conse-
quences of energetic constraints, is within an order of magnitude
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Fig. 3 Probability of extinction for a consumer with a M=10%2g and b M =
10% g as a function of the starvation rate o and recovery rate p, where the
initial density is given as (XF', XH', R"), where X is a random uniform
variable in [0, 2]. Note the change in scale in b. Extinction is defined as the
population trajectory falling below 0.2x the allometrically constrained
steady state. The white points denote the allometrically constrained
starvation and recovery rates for consumers of each body size
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Fig. 4 Consumer steady states F' (green) and H™ (orange) as a function of
body mass along with the data from Damuth?>. Inset: resource steady state
R as a function of consumer body mass
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of the maximum body size observed in the North American
mammalian fossil record?’, as well as the mass predicted from an
evolutionary model of body size evolution®. We emphasize that
the asymptotic behavior and predicted upper bound depend only
on the scaling of body composition and are independent of the
resource parameters. The prediction of an asymptotic limit on
mammalian size parallels work on microbial life where an upper
and lower bound on bacterial size, and an upper bound on single-
cell eukaryotic size, is predicted from similar growth and
energetic scaling relationships®>!. It has also been shown that
models that incorporate the allometry of hunting and resting
combined with foraging time predicts a maximum carnivore size
between 7 x 10° and 1.1 x 10°g>>>3, Similarly, the maximum
body size within a particular lineage has been shown to scale with
the metabolic normalization constant™. This complementary
approach is based on the balance between growth and mortality,
and suggests that future connections between the scaling of fat
and muscle mass should systematically be connected with B,
when comparing lineages.

A mechanism for Cope’s rule. Metabolite transport constraints
are widely thought to place limits on biological scaling?”>> and
thereby lead to specific gredictions on the minimum possible
body size for organisms®®. Above this bound, a number of
energetic and evolutionary mechanisms have been explored to
assess the costs and benefits associated with larger body masses,
particularly for mammals. One important such example is the
“fasting endurance hypothesis”, which contends that larger body
size, with consequent lower metabolic rates and increased ability
to maintain more endogenous energetic reserves, may buffer
organisms against environmental fluctuations in resource avail-
ability®’. Over evolutionary time, terrestrial mammalian lineages
show a significant trend toward larger body size—Cope’s
rule’®32, It is thought that within-lineage drivers generate
selection toward an optimal upper bound of roughly 107 g%, a
value that is likely limited by higher extinction risk for large taxa
over longer timescales®®. These trends are thought to be driven by
a combination of climate change and niche availability>?; how-
ever, the underpinning energetic costs and benefits of larger body
sizes, and how they influence dynamics over ecological timescales,
have not been explored.

The NSM predicts that the steady-state resource density R'
decreases with increasing body size of the consumer population
(Fig. 4, inset), and classic resource competition theory predicts
that the species surviving on the lowest resource abundance will
outcompete others®®*=%°, Thus, the combined NSM steady-state
dynamics and allometric timescales (Eq. 7) predict that larger
mammals have an intrinsic competitive advantage given a
common resource.

However, the above resource relationships do not offer a
mechanism for how body size is selected. We directly assess
competitive outcome between two closely related species: a
resident species of mass M, and a competing species (denoted
by ') where individuals have a different proportion of body fat
such that M’ = M(1+y). For y <0, the competing individuals have
fewer metabolic reserves than the resident species and vice versa
for y > 0. For the allowable values of y (Methods), the mass of the
competitor M’ should exceed the minimal amount of body fat,
1+y>¢,, and the adjusted time to reproduce must be positive,
which, given Eq. 7, implies that 1 — &, "(1+y)" "> 0. These
conditions imply that y € (—fuM?~!,1/e; — 1) where the upper
bound approximately equals 0.05 and the lower bound is mass-
dependent. The modified mass of the competitor leads to altered
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Fig. 5 Competitive outcomes for a resident species with body mass M vs. a
closely related competing species with modified body mass M’ =M(1 + y).
The blue region denotes proportions of modified mass y resulting in
exclusion of the resident species. The red region denotes values of y that
result in a mass that is below the starvation threshold and are thus
infeasible. Arrows point to the predicted optimal mass from our model
Mopt =1.748 x 107, which may serve as an evolutionary attractor for body
mass. The black wedge points to the largest body mass known for
terrestrial mammals (Deinotherium spp.) at 1.74 x 107 g3

rates of starvation 6(M’), recovery p(M’), and the maintenance of
both starving 6(M’) and full consumers S(M’) (see Methods for
derivations of competitor rates). Importantly, &,, which deter-
mines the point along the growth curve that defines the body
composition of starved foragers, is assumed to remain unchanged
for the competing population.

To assess the susceptibility of the resident species to competitive
exclusion, we determine which consumer pushes the steady-state
resource density R to lower values for a given value of y, with the
expectation that a population capable of surviving on lower-
resource densities has a competitive advantage®®. We find that for
M <1.748 x 107 g, having additional body fat (y > 0) results in a
lower steady-state resource density (R”<R'), such that the
competitor has an intrinsic advanta;e over the resident species
(Fig. 5). However, for M > 1.748 x 10’ g, leaner individuals (y < 0)
have lower-resource steady-state densities.

The observed switch in susceptibility as a function of y at
Mope=1.748 x 107 g thus serves as an attractor, such that the
NSM predicts organismal mass to increase if M <M,, and
decrease if M > M. This value is close to but smaller than the
asymptotic upper bound for terrestrial mammal body size
predicted by the NSM, and is remarkably close to independent
estimates of the largest land mammals, the early Oligocene
Indricotherium at 1.5 x 107 g and the late Miocene Deinotherium
at =1.74 x 10’ g’!. Additionally, our calculation of M,y as a
function of mass-dependent physiological rates is similar to
theoretical estimates of maximum body size’’, and provides
independent theoretical support for the observation of a
“maximum body size attractor” explored by Alroy?’.

An optimal size for mammals at intermediate body mass was
predicted by Brown et al.>” based on reproductive maximization
and the transition between hungry and full individuals. By
coupling the NSM to resource dynamics as well as introducing an
explicit treatment of storage, we show that species with larger
body masses have an inherent competitive advantage for size
classes up to Mgy =1.748 x 107 based on resource competition.
Moreover, the mass distributions in ref. > show that intermediate
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mammal sizes have the greatest species diversity, in contrast to
our efforts, which consider total biomass and predict a much
larger M, Compellingly, recent work shows that many
communities can be dominated by the biomass of the large®’.
While the state of the environment as well as the competitive
landscape will determine whether specific body sizes are selected
for or against®?, we propose that the dynamics of starvation and
recovery described in the NSM provide a general selective
mechanism for the evolution of larger body size among terrestrial
mammals.

Discussion

The energetics associated with somatic maintenance, growth, and
reproduction are imoportant elements that influence the dynamics
of all populations'’. The NSM incorporates the dynamics of
starvation and recovery that are expected to occur in resource-
limited environments. We found that incorporating allometrically
determined rates into the NSM predicts that (i) extinction risk is
minimized, (ii) the derived steady states quantitatively reproduce
Damuth’s law, and (iii) the selective mechanism for the evolution
of larger body sizes agrees with Cope’s rule. The NSM offers a
means by which the dynamic consequences of energetic con-
straints can be assessed using macroscale interactions between
and among species.

Methods
Mechanisms of starvation and recovery. To understand the dynamics of star-
vation, recovery, reproduction, and resource competition, our framework partitions
consumers into two classes: (a) a full class that is able to reproduce and, (b) a
hungry class that experiences mortality at a given rate and is unable to reproduce.
For the dynamics of growth, reproduction, and resource consumption, past efforts
have combined the overall metabolic rate, as dictated by body size, with a growth
rate that is dependent on resource abundance and, in turn, dictates resource
consumption (see refs. 22 for a brief review of this perspective). This approach has
been used to understand a range of phenomena including a derivation of onto-
genetic growth curves from a partitioning of metabolism into maintenance and
biosynthesis>®>% and predictions for the steady-state resource abundance in
communities of cells®?. Here, we leverage these mechanisms, combined with several
additional concepts, to define our NSM.

We consider the following generalized set of explicit dynamics for starvation,
recovery, reproduction, and resource growth and consumption

Fd = ﬂmade + PmadeHd/k N D-( - %)Fd

Hi =0(1—%)Fs — ppyRaHa/k — uHa,

Rd =aRd(1_R_g)_ ?
b (]

where each term has a mechanistic meaning that we detail below (we will denote
the dimensional equations with the subscript 4 before introducing the
nondimensional form that is presented in the main text). In the above equations, Y
represents the yield coefficient®®%” that is the quantity of resources required to
build a unit of organism (gram of mammal produced per gram of resource
consumed) and P is the specific maintenance rate of resource consumption
(g resource - sL. g organism_l). If we pick F4 and Hy to have units of
(g organisms - m™2), then all of the terms of Ry, such as M#Hd, have units of
(g resource - m~2- s71), the typical units of net primary productivity (NPP), a
natural choice for Ry. This choice also gives Rq as (g m~2) that is also a natural unit
and is simply the biomass density. In these units, a (s7!) is the specific growth rate
of Ry, C is the carrying capacity, or maximum density, of Ry in a particular
environment, and k is the half-saturation constant (half the density of resources
that would lead to maximum growth).

We can formally nondimensionalize this system by the rescaling of F= fF,
H=fH4, R=qRg, and t=stg, in which case our system of equations becomes

F =1 [hnacF + p 2 H = 0 (1= £) ]

=1 [o(1= &)F ~ pr i H — uH], (3)

» Dmax R Amax
R=1 [aR(l - q%) 4 [(Q,qu+PH)H+ (T}erF)FH.
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If we make the natural choice of s=1, g=1/C, and f=1/Ygk, then we are left
with
F = JF+&RH —o(1 — R)F,
H =o0(1—-R)F—&RH — uH, (4)
R =aR(1—R) — (pR+ 8)H — F

where we have dropped the subscripts on Ay and pyax for simplicity, and & = C/k,
8= YukPy/C, and ff = Yﬂkil‘)‘,‘:‘ + PF} /C. The above equations represent the
system of equations presented in the main text.

Analytical solution to the NSM. Equation (1) has three fixed points: two trivial
fixed points at (F, H, R )=(0, 0, 0) and (0, 0, 1), and one nontrivial, internal fixed
point at

FF =(c—14) e all® (u+&p)

ApB+yuo(Pu+A(5+p))) ?
. ol p(p+Ep)
H* =(c-2) A(A/)B:ru:(/;l;:ﬁf(éw))) ) ©
R =(c-A)k.

where A= (Aép + o) and B= (Bué + A& — Au). The stability of this fixed point is
determined by the Jacobian matrix J, with J; = 0X; /0Xj, when evaluated at the
internal fixed point, and X is the vector (F, H, R). The parameters in Eq. 1 are such
that the real part of the largest eigenvalue of J is negative, so that the system is
stable with respect to small perturbations from the fixed point. Because this fixed
point is unique, it is the global attractor for all population trajectories for any initial
condition where both the resource and consumer densities are nonzero.

Metabolic scaling relationships. The scaling relation between an organism’s
metabolic rate B and its body mass M at reproductive maturity is known to scale as
B=B,M", where the scaling exponent # is typically close to 2/3 or 3/4 for
metazoans*”-%%, and has taxonomic shifts for unicellular species between =1 in
eukaryotes and 7= 1.76 in bacteria®®.

Several efforts have shown how a partitioning of B between growth and
maintenance purposes can be used to derive a general equation for both the
growth trajectories and growth rates of organisms ranging from bacteria to
metazoans>%30%6%70_ This relation is derived from the simple balance condition
Bym' = Epn + Byym 3037650970 yhere E, is the energy needed to synthesize a
unit of mass, By, is the metabolic rate to support an existing unit of mass, and m is
the mass of the organism at any point in its development. This balance has the
general solution®%%71

where, for 17 < 1, M= (By/By) /1~ is the asymptotic mass, a= Bo/Ep, and my is
mass at birth itself varying allometrically. We now use this solution to define the
timescale for reproduction and recovery from starvation (Fig. 2; see ref. ¢4 for a
detailed presentation of these timescales). The time that an organism takes to reach
a particular mass eM is given by the timescale

7)

_ 1=n 1-n

7(e) =In [l (m0/1\7/1) } M ,
1—eln a(l—n)

where we define values of € below to describe a variety of timescales, along with the
rates related to z. For example, the rate of reproduction is given by the timescale to
go from the birth mass to the adult mass. The time to reproduce is given by Eq. 7 as
t,=1(¢;), where ¢, is the fraction of the asymptotic mass where an organism is
reproductively mature and should be close to one (typically &, = 0.95%). Our
reproductive rate, 4, is a specific rate, or the number of offspring produced per time
per individual, defined as F = AF. In isolation, this functional form gives the
population growth F(t) = Foe* that can be related to the reproductive timescale by
assuming that when t=1;, it is also the case that F=vF,, where v is the number of
offspring produced per reproductive cycle. Following this relationship, the growth
rate is given by A=In(v)/t;, which is the standard relationship70 and will scale as
A« M~ for M >> mq and any constant value of ¢,36376>6°,

The rate of recovery p=1/t, requires that an organism accrues sufficient tissue
to transition from the hungry to the full state. Since only certain tissues can be
digested for energy (e.g., the brain should not be degraded to fuel metabolism), we
define the rates for starvation, death, and recovery by the timescales required to
reach, or return from, specific fractions of the replete-state mass (Table 1). We
define m,=¢,M, where ¢, <1 is the fraction of replete-state mass where
reproduction ceases. This fraction will deviate from a constant if tissue composition
systematically scales with adult mass. For example, making use of the observation
that body fat in mammals scales with overall body size according to Mg, = foM" and
assuming that once this mass is fully digested and the organism starves, this would
imply that e,=1 — foM"/M. It follows that the recovery timescale, ¢, is the time to
go from mass m = g,£,M to m=¢,M (Fig. 2). Using Egs. 6 and 7, this timescale is
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given by simply considering the growth curve starting from a mass of my = &,6,M,
in which case

M
a(l—n)

, =In {1 - (8"61{),,1 7”} 8)

1—¢,

where @' = By /E], accounts for possible deviations in the biosynthetic energetics
during recovery. It should be noted that more complicated ontogenetic models
explicitly handle storage, whereas this feature is implicitly covered by the body fat
scaling in our framework.

To determine the starvation rate, o, we are interested in the time required for an
organism to go from a mature adult that reproduces at rate 4, to a reduced-mass
hungry state where reproduction is impossible. For starving individuals, we assume
that an organism must meet its maintenance requirements by using the digestion of
existing mass as the sole energy source. This assumption implies the metabolic
balance mE,, = —Bmm or m = —a’'m/M"~", where E,, is the amount of energy
stored in a unit of existing body mass, which differs from E,,, the energy required
to synthesize a unit of biomass. Given the replete mass, M, of an organism, the
above energy balance prescribes the mass trajectory of a nonconsuming organism:
m(t) = Me~“*/M"™"  The timescale for starvation is given by the time it takes m(£)
to reach &,M, which gives

M
t, = — P In(e,). 9)

!

The starvation rate is then 6= 1/t,, which scales with replete-state mass as
—M"In(1 — fuM? /M)™". An important feature is that o does not have a simple
scaling dependence on A, which is important for the dynamics that we later discuss.

The time to death should follow a similar relation, but defined by a lower
fraction of replete-state mass, m, = &,M where &, < &,. Suppose, for example, that
an organism dies once it has digested all fat and muscle tissues, and that muscle
tissue scales with body mass according to Musc= uME. This gives
& =1 — (foM” + uoM*) /M. Muscle mass has been shown to be roughly
proportional to body mass’? in mammals and thus &, is merely &, minus a
constant. The time to go from starvation to death is the total time to reach &,M
minus the time to starve, or t, = 7M1”’1n(sﬂ)/a’ —tg, and p=1/t,.

Parameter values and estimates. All of the parameter values employed in our
model have either been directly measured in previous studies or can be estimated
from combining several previous studies. Below, we outline previous measurements
and simple estimates of the parameters.

Metabolic rate has been generally reported to follow an exponent close to 7=
0.75%3795, We make this assumption in the current paper, although alternate
exponents, which are known to vary between roughly 0.25 and 1.5 for single
species®, could be easily incorporated into our framework. The exponent not only
defines several scalings in our framework, but also the value of the metabolic
normalization constant, By, given a set of data. For mammals, the metabolic
normalization constant has been reported to vary between 0.018 W g™07> and
0.047 (W g707%; refs. 6395, where the former value represents basal metabolic rate
and the latter represents the field metabolic rate). We employ the field metabolic
rate for our NSM model that is appropriate for active mammals (Table 1).

An important feature of our framework is the starting size, m,, of a mammal
that adjusts the overall timescales for reproduction. This starting size is known to
follow an allometric relationship with adult mass of the form mq = n,M" where
estimates for the exponent range between 0.71 and 0.94 (see ref. 7 for a review).
We use my=0.097M%%2 74 that encompasses the widest range of body sizes”>.

The energy to synthesize a unit of biomass, E,,, has been reported to vary
between 1800 and 9500 (J g_1)63_65 in mammals with a mean value across many
taxonomic groups of 5774 (J g™1)%4. The unit energy available during starvation, E/,
could range between 7000 (J g‘l), the return of the total energy stored during
ontogeny to a biochemical upper bound of E'=36,000 (J g™*) for the energetics of
palmitate®7>, For our calculations, we use the measured value for bulk tissues of
7000 which assumes that the energy stored during ontogeny is returned during
starvation®.

For the scaling of body composition, it has been shown that fat mass follows
Mgy = fuM?, with measured relationships following 0.018M"'2> 7, 0.02M1° 77, and
0.026M"14 78 'We use the values from”” that falls in the middle of this range.
Similarly, the muscle mass follows Musc= uoM? with 1, =0.383 and ¢=1.007%.

Typically, the value of £= C/k should roughly be 2. The values of p, 4, o, and u
are all simple rates (note that we have not rescaled time in our
nondimensionalization) as defined in the main text. Given that our model
considers transitions over entire stages of ontogeny or nutritional states, the value
of Y must represent yields integrated over entire life stages. Given an energy density
of Eg=18,200 (J g™!) for grass,” the maintenance value is given by Pr=B,M>4/
MEj, and the yield for a full organism will be given by Yz=MEq4/B; (g individual g
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grass 1), where B; is the lifetime energy use for reaching maturity given by

4

B, = /Bgm(t)”dt.

0

(10)

Similarly, the maintenance resource consumption rate for hungry individuals is
Py = Bo(e,M)**/(e,M)Eq, and the yield for hungry individuals (representing the
cost on resources to return to the full state) is given by Yy = ME4/B, where

t

/ Bym(t)"dt.

7(es€z)

B, = (11)

Taken together, these relationships allow us to calculate p, 8, and f.

Finally, the value of a can be roughly estimated by the NPP divided by the
corresponding biomass densities. From the data in Ref. 8, we estimate the value of
a to range between 2.81 x 10710 (s71) and 2.19 x 1078 (s71) globally. It should be
noted that the value of « sets the overall scale of the F' and H” steady states along with
B for each type. As such, we use a as our fit parameter to match these steady states
with the data from Damuth?®. We find that the best fit is a=9.45 x 107 (s~!) that
compares well with the calculated range above. However, two points are important
to note here: first, our framework predicts the overall scaling of F and H
independently of a and this correctly matches data, and second, both the
asymptotic behavior and slope of F' and H' are independent of a, such that our
prediction of the maximum mammal size does not depend on a.

Rate equations for competitors with modified body mass. A resident popula-
tion with mass M competes for resources with a closely related species with an
altered mass M'= M(1 + y) where y varies between ¥, <0 and yp., > 0, where
x <0 denotes a leaner competitor and y > 0 denotes a competitor with additional
reserves of body fat. Importantly, we assume that the competing and resident
individuals have the same quantity of nonfat tissues. For the allowable values of y,
the adjusted mass should exceed the amount of body fat, 1+ y > ¢,, and the
adjusted time to reproduce must be positive, which given our solution for z(¢) (Eq.
7), implies that 1 — &} (1 + y)'7">0. Together, these conditions imply that
2 € (=fuM"L,1/¢; — 1) where the upper bound approximately equals 0.05.
Although the starved state of competing organisms remains unchanged, the rate
of starvation from the modified full state to the starved state, the rate of recovery
from the starved state to the modified full state, and the maintenance rates of both
will be different, such that ¢’ = 6(M’), p'= p(M'), ' = f(M’), and &' = 5(M’"). Rates of
starvation and recovery for the competing population are derived by adjusting the
starting or ending state before and after starvation and recovery, leading to the
following timescales:

_ M &
by = =% ln(ﬁl),

— M) M
b = ln(l—(u()ﬁrl))m a1t

The maintenance rates for the competing population require more careful
consideration. First, we must recalculate the yield Y, as it must now be integrated
over life stages that have also been slightly modified by the addition or subtraction
of body fat reserves. Given an energy density of Eq=18,200 (J g™') for grass®’, the
maintenance value of the invading population is given by Pr=By(1 + ;()MS/ 41 +y)
ME4, and the yield for a full organism will be given by Yz = (1 + y)MEy/B; (g
individual g grass ~!) where B} is the lifetime energy use for the competing
population reaching maturity given by

(12)

ty

B, = /Bom(t)”dt.

0

where

) "

M
ty = n —
a(l=m  \1—(e2(1+x)""
Note that we do not use this timescale to determine the reproductive rate of the

competitor—which is assumed to remain the same as the resident population—but
only to calculate the lifetime energy use. Similarly, the maintenance for hungry
individuals Pf; = By(e,(1 +;()M)3/4/(.5'(,(1 + x)M)E4 and the yield for hungry
individuals (representing the cost on resources to return to the full state) is given by
Yy = (1+ y)MEq4/B, where

ty

B,= / Bym(t)"dt.

(eqe2)

(15)
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Finally, we can calculate the maintenance of the competitors as

& =PyYy/¢

P = (4 + Pi) Y/ )

To determine whether or not the competitor or resident population has an
advantage, we compute R*(M) and R*(M’ = M(1 + )) for values of y € (=fuM""},
1/e; — 1), and the competing population is assumed to have an advantage over the
resident population if R*(M') < R*(M).

Data availability. Previously published data from Damuth (available in ref. 2°)
were used for comparison with the model, and published parameter values are
given in Table 1.
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