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Aggregation-fragmentation and individual
dynamics of active clusters
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A remarkable feature of active matter is the propensity to self-organize. One striking instance

of this ability to generate spatial structures is the cluster phase, where clusters broadly

distributed in size constantly move and evolve through particle exchange, breaking or mer-

ging. Here we propose an exhaustive description of the cluster dynamics in apolar active

matter. Exploiting large statistics gathered on thousands of Janus colloids, we measure the

aggregation and fragmentation rates and rationalize the resulting cluster size distribution and

fluctuations. We also show that the motion of individual clusters is entirely consistent with a

model positing random orientation of colloids. Our findings establish a simple, generic model

of cluster phase, and pave the way for a thorough understanding of clustering in active

matter.

DOI: 10.1038/s41467-017-02625-7 OPEN

1 Univ. Lyon, Université Claude Bernard Lyon 1, CNRS,UMR 5306, Institut Lumière Matière, F-69622 Villeurbanne, France. Correspondence and requests for
materials should be addressed to C.C-B. (email: cecile.cottin-bizonne@univ-lyon1.fr)

NATURE COMMUNICATIONS |  (2018) 9:696 |DOI: 10.1038/s41467-017-02625-7 |www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-5807-9215
http://orcid.org/0000-0001-5807-9215
http://orcid.org/0000-0001-5807-9215
http://orcid.org/0000-0001-5807-9215
http://orcid.org/0000-0001-5807-9215
mailto:cecile.cottin-bizonne@univ-lyon1.fr
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Self-organization, the spontaneous emergence of spatial
structures, is a generic phenomenon occurring from atomic
to macroscopic length scales, both in inert1 and living

matter2. Even for the restricted class of physical systems at
thermodynamic equilibrium, very different behaviors are
encountered. The competition between short-range attraction
and long-range repulsion driving the microphase separation in
block copolymers3 or the clustering of proteins and colloids4,
leads to patterns that are essentially static. However, dynamic
self-assembly may also occur with objects that continuously break
and form, such as living polymers and wormlike micelles5. Sys-
tems maintained far from equilibrium by an energy flux are also
prone to self-organization, with the emergence of so-called dis-
sipative structures6, the instability patterns of continuous media
exemplified by the Rayleigh-Bénard convection cells.

The advent of active matter7,8 has opened new vista in the
already rich landscape of self-organization. Be they micro-tubules
bundles9, swarming bacteria2, birds or fishes10,11, active systems
usually involve a collection of discrete interacting self-propelled
entities. An essential feature is their propensity to exhibit
coherent dynamical structures2,9,12–16. One prominent instance
among those self-organized patterns is the cluster phase that
emerges in active particles suspension at low densities, and is
arguably its most ‘remarkable’17 but ‘mysterious’16 property. The
competition between self-propulsion and excluded volume is
sufficient to induce a self-trapping effect18–20, but cluster for-
mation may also involve attractive21,22, alignment23, phoretic16,24

or hydrodynamic25 interactions. The dynamics of the cluster
phase has multiple facets. Clusters not only exhibit translational
and rotational motions, but, in contrast to active systems such as
travelling crystals26 or colonial choanoflagellates27 that retain a

permanent structure while moving, they constantly collide, break,
and re-form.

In the past decade, bacteria have proven to be a system of
choice to uncover the properties of cluster phases. Whereas active
crystals28 and clusters trapped at the air–liquid interface25 have
both been reported for rotating bacteria, clustering in rod-shaped
bacteria has received the most attention. Experiments with
Bacillus subtilis involving up to a thousand individuals revealed a
wide distribution of cluster size, giant density fluctuations29, and
highly ordered, scale-invariant clusters30. Clustering of myx-
obacteria exhibits, at a critical cell volume fraction, a size dis-
tribution which is scale-free31. With the physics of active
Brownian rods extensively studied32,33, clustering in high density
systems with aligning interactions is now well understood. Sur-
prisingly, this is not true for systems at moderate density fea-
turing apolar clustering, where there is no preferred direction in
the motion of the clusters. If cluster formation has already been
identified18,34,35, much has been left unexplored as regards a
quantitative understanding. In fact, the size distribution—per-
haps the most basic quantity for the cluster phase—has been
measured in bacterial systems21,25,29 and simulations19,23,24,36–38,
but so far it has never been reported for the cluster phase of an
abiotic system.

Here we close this gap and report a comprehensive char-
acterization of the cluster phase of Janus active particles. We offer
a global description of cluster dynamics in a consistent frame-
work. Using systems with thousands of self-phoretic colloids, we
track the evolution of hundreds of clusters. We measure the size
dependence of fragmentation and aggregation rates, which allows
us to rationalize the cluster size distribution and their lifetime.
We also analyze the motion of individual clusters, and find that
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Fig. 1 Experimental observation and definition of active clusters. a Experimental set-up: sedimented Janus microswimmers immersed in a bath of H2O2 fuel.
b Snapshot of the cluster phase, scale bar: 40 μm. c Kinetic definition of clusters based on the detection of time persistent triangles of close-packed
particles and on the connected component of adjacent triangles (see text and Methods). d Series of snapshots (for t= 1, 5.4 and 13 s) of cluster-over-
cluster rolling motion. A geometric definition of clusters based on a distance-only criterion would identify a single aggregate
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our data is entirely consistent with a parameter-free model
assuming random orientation of colloids. Our results identify a
simple model of cluster phase and provides a sound basis and
methodology to tackle other instances of active clustering and
disentangle scenarios of cluster formation.

Results
Experimental clusters of Janus microswimmers. The well-
controlled experimental set-up, used previously to identify the
cluster phase34 and investigate sedimentation39 and active pres-
sure40, is described in the Method section and sketched in Fig. 1a.
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Fig. 2 Aggregation–fragmentation process in active clusters. a Sketch of the events considered without and with the monomer approximation (left and right
respectively). b–f Experimental data for activity v0= 8.6 μm s−1 and area fraction Φ= 9%. b Cluster size distribution in semilog scale evidencing the
exponential decay at large size. Symbols: experimental data and solid line: theoretical fit (see main text). The dashed lines show the effect of the 2%
relative uncertainty on κ, obtained upon assuming a 10% relative uncertainty on all data points for CSD and rates. Inset: same data in loglog scale to
emphasize the power law regime at small size. c Transition matrix showing the probability P N1jN0;Δtð Þ for a cluster of size N0 to have a size N1 after a time
lag Δt= τs= 0.05 s. d Aggregation and fragmentation rates for monomeric events. Symbols: experimental data and solid line: theoretical fit (see main text).
e Probability P N0jN0;Δtð Þ that a cluster of size N0 has the same size after a time Δt= 1, 2, 3, 5, 10, 20 and 40τs, from top to bottom. f Transition probability
P N1jN0;Δtð Þ for N0= 10 and 20, Δt= 5τs= 0.25 s and 40τs= 2 s. Blue circle: experimental data and black losange: prediction of Eq. (7)
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Briefly, sedimented Janus colloids of micrometric radius acol
propel themselves by self-diffusiophoresis41,42. Their velocity can
be chosen in the range v0 = 1–10 μm s−1 and is taken as a measure
of activity. The colloid density is set to low values, with an area
fraction Φ in the range 5–10%. In those conditions, the system
self-organizes in a cluster phase shown in Fig. 1b (Supplementary
Movie).

The observation field includes more than 2000 colloids, whose
dynamics is individually followed. Short-time motion is well
resolved by choosing a camera sampling rate τs = 0.05 s, which is
smaller than both the rotational diffusion τr ~ 8 s and the time acol/
v0 ~ 0.3 s for colloid motion over its own size. The complete
evolution of the system is recorded for 250 s, providing large data
for analysis. Note that even after a few hours, we detect no sign of
the macroscopic phase separation that is expected at higher volume
fraction43; for all purposes, the system appears in steady state.

Unlike all previous investigations18,19,22,23,25,36–38,44, our
definition of clusters is not purely geometric, but kinetic. One

incentive for the change is the situation depicted in Fig. 1d: two
clusters in close vicinity each endowed with their own rotating
motion. They would be subsumed in a single cluster with the
usual geometric criterion based only on a threshold distance.
Other problematic situations include clusters grazing each other
or colliding while maintaining their integrity, and single particles
wandering at the cluster periphery without actually being
incorporated. Our cluster detection algorithm seeks to reproduce
the ability of the naked eye to delineate objects. In short (see
details in Methods), elementary triangles are introduced on the
basis of a Delaunay triangulation and a distance criterion, but
only if they fulfill a persistence time τp = 0.5 s. Clusters are then
identified as the connected component of elementary triangles
sharing one edge (Fig. 1c). Note that as a result, dimers can not
exist, an assumption corroborated by direct observation. An
immediate benefit of the new definition of clusters is a weak
dependence on threshold distance, whereas a purely geometric
definition is much more sensitive to this choice. Our clusters are
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Fig. 3 Translational dynamics of individual clusters. a Two overlaid snapshots of a cluster showing its translational and rotational motions. The time interval
is 10.15 s. b Sketch of the cluster model relating the colloids orientation to the global cluster velocities v and Ω: random orientation model (α= π) and
perimeter model (α< π). c, d PDF for the translational velocity modulus vN of a cluster of size N, for fixed activity v0= 3.1 μm s−1 and various cluster sizes,
and for a fixed cluster size (N= 12) and different activities. Symbols: experimental data and solid lines: theoretical fits according to Eq. (8), yielding σvN . e, f
Variance and mean square of translational velocity as a function of size and activity (inset). Symbols: experimental data for different activities (same as d);
solid line: random orientation model Eq. (8); dashed line: perimeter model for the highest activity v0= 8 μm s−1
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compact, unlike the ramified clusters found previously in
simulations36,37, and to a very good approximation, they behave
as rigid bodies. Their instantaneous motion is therefore entirely
characterized by their translational and rotational velocities.

Aggregation–fragmentation dynamics. We first focus on the
most basic feature of a cluster phase, the Cluster Size Distribution
(CSD) CN, a typical result of which is shown in Fig. 2b. Though
our definition of clusters is different, we find as in previous
works21,25,36–38,44, that a power law combined with an expo-
nential cut-off CN ¼ N�γexp �N=Ncð Þ gives a satisfactory
description of data, and yields an exponent γ = 1.85± 0.15
(Fig. 2b, inset). We note however that the range of the power law
regime is too limited for a clear-cut evidence, and that the γ
exponent has not received a clear interpretation. Data also indi-
cate that at large cluster sizes, above Nc = 35, the CSD approaches
an exponential decay, a feature less studied so far.

We now seek a microscopic understanding of the CSD, relying
on aggregation–fragmentation kinetic models. This framework
has a long history dating back to Smoluchowski and a range of
applications from polymer chemistry to Saturn’s rings45,46.
Though more general formulations are possible, we restrict from
the outset to aggregation or fragmentation events that are binary:

½N� þ ½M�
AN;MCNCM

"
FN;MCNþM

½N þM�: ð1Þ

As illustrated in Fig. 2a (left), two clusters of size N and M merge
with rate AN,MCNCM, while the reverse fragmentation process
occurs with rate FN,MCN+M. At this stage, the complexity of the
problem is apparent. On one hand, obtaining the steady-state
distribution from the full hierarchy of kinetic equations is a
formidable task45. On the other hand, if Nmax is the maximal
cluster size, the number of rates that needs to be determined is on
the order of N2

max.
Considerable simplification occurs by introducing the ‘mono-

mer approximation’: not all binary events are considered, but
only those involving a monomer47. As illustrated in Fig. 2a
(right), clusters then grow or decrease in size through the
exchange of individual colloids. Our justification for such an
approximation is based on the transition matrix P N1jN0; τsð Þ,
computed from experimental data and shown in Fig. 2c. The
element of coordinates (N0, N1) is the probability that a cluster of
initial size N0 has size N1 after one time step τs. Looking at
off-diagonal terms, one can see that the kinetics is dominated by
±1 and ±2 events. Remembering that dimers do no exist,
doublets additions or subtraction actually correspond to a pair of
monomeric events. As a consequence, the monomer events
typically contribute to 90% of events, and account for the vast
majority of aggregation–fragmentation events. Discarding
entirely the non-monomeric processes, the kinetic equations
then reduce to

½N� þ ½1�
ANC1CN

"
FNþ1CNþ1

½N þ 1�; ð2Þ

with AN and FN the aggregation and fragmentation rates for a
cluster of size N. The CSD is governed by the master equation

_CNðtÞ ¼ AN�1C1CN�1 � ANC1CN þ FNþ1CNþ1 � FNCN : ð3Þ

Imposing a condition of detailed balance, which requires the
equality of forward and backward rates in Eq. (2),

FN+1CN+1 =ANC1CN, yields the exact solution for the steady state

CN ¼
YN
m¼2

Am�1

Fm

" #
CN
1 ; ð4Þ

with C1 fixed by normalization. This simple formula applies
whatever the N-dependence of AN and FN.

It remains to determine the rates, the essential inputs of an
aggregation–fragmentation kinetic model. Although investigated
in two recent simulation studies37,44, they were never measured in
experiments so far. As regards their dependence in cluster size,
simple expectations exist (see refinements in refs. 37, 48).
Assuming monomers move ballistically and aggregate whenever
they collide, the aggregation rate is proportional to the cross-
section. For compact clusters and large size, one thus expects
AN ~N1/2. In the simplest picture of fragmentation events,
perimeter colloids are treated as independent and leave the
cluster when pointing outward, leading again to FN ~N1/2. The
aggregation and fragmentation rates as deduced from experi-
mental data are plotted in Fig. 2d, together with the expressions

C1AN ¼ κAðN � 2Þ1=2; FN ¼ κFN
1=2: ð5Þ

Note that AN vanishes for N = 2, consistent with the fact that
dimers do not exist. Combining Eqs. (4) and (5), we obtain the
cluster size distribution

CN

C3
¼

YN
m¼4

C1Am�1

Fm

� �
¼ κN�3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN � 1ÞðN � 2Þ=6p ; ð6Þ

where κ = κA/κF. A two-parameter fit of the three data sets (C1AN,
FN and CN) yields κA = 0.50± 0.005 s−1 and κF = 0.52± 0.005 s−1.
The overall satisfactory agreement visible in Fig. 2b, d calls for
two comments. First, the

ffiffiffiffi
N

p
dependence of rates is consistent

with data, providing support for the basic picture of monomer
arrivals and departures, although data range is arguably too
limited for a critical test of power law exponent. Second, Eqs. (5)
and (6) do capture the small size behavior, which is not a genuine
power law, and the tail, which is asymptotically exponential. Note
that for completeness, Fig. 2b also displays the envelope
associated with relative uncertainties on κ. Due to the exponential
dependence, significant statistical spread remains despite very
small 2% uncertainties, but it has to be appreciated in view of
other predictions obtained from the rates alone as we show now.

The CSD is an important feature of the cluster phase, but as a
global steady quantity, it tells nothing about how the size of
individual clusters fluctuates in time. We get insight on this
matter by coming back to the transition matrix P N1jN0;Δtð Þ:
four ‘cross-sections’ are illustrated in Fig. 2f for two cluster sizes
and two time intervals. We propose a simple theoretical
expectation for the transition matrix by assuming that the
arrivals and departures of colloids are two independent Poisson
processes, with rate C1AN and FN, respectively. If we neglect the
size dependence of rate (valid for N1 ’ N0), the change in cluster
size is the difference between two Poisson variables and thus
obeys a Skellam distribution49,

P N1jN0;Δtð Þ ¼ e�ðλþμÞ λ

μ

� �ΔN
2

I ΔNj j 2
ffiffiffiffiffi
λμ

ph i
; ð7Þ

with λ = C1ANΔt, μ = FNΔt, ΔN =N1 −N0, and Im the modified
Bessel function of order m. While this expression does not apply
for the smallest sizes and neglects the non-monomeric events that
may affect the largest clusters, it gives a very decent description of
data for intermediate sizes, both at short and long time (Δt = 0.25
and 2 s) and without any free parameter (Fig. 2f). A
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complementary view is provided by looking at the probability
that the cluster size is the same after a time lapse Δt. The
experimental data P N0jN0;Δtð Þ is plotted in Fig. 2e for a range of
time intervals, and Eq. (7) again captures the main trends. Taken
together, our results provide a simple framework which allows to
describe in a consistent manner both the microscopic measure-
ment of rates and the resulting CSD and lifetime of active clusters.

Translational and rotational motions of individual clusters.
Beyond their evolution in size, the clusters also exhibit a rich
dynamics resulting from the underlying activity of constituent
particles. At any time, each cluster has instantaneous translational
and rotational velocities v and Ω (Fig. 3a, b and Methods). We
report in Figs. 3c–f and 4a–d an exhaustive characterization, both
as a function of cluster size (N = 3, 8, 12, 25, 39–41) and colloid
activity (v0 = 1.8, 2.8, 3.5, 5.1, 8.6 μm s−1). We provide not only
the mean-squared velocities v2h i and Ω2h i but exploiting the large
statistics gathered, we are in a position to obtain the full prob-
ability density functions (PDFs). For all experimental conditions,
those PDFs turn out to be very well described by a Gaussian
(Figs. 3c, d and 4a, b). Accordingly, they can be entirely char-
acterized by their variance, as obtained from Gaussian fit. As
visible in Figs. 3e, f and 4c, d, clear scaling in cluster size emerge
for both the translational and rotational velocities, with, respec-
tively, a N−1 and N−2 dependence for the variance.

To understand the cluster motions, we now introduce a simple
model that extends previous arguments21,25,28 and involves only a
minimal set of three assumptions. First, the propulsive drive and
viscous resistance opposing motion are the same for all colloids,
whether isolated or part of a cluster. Second, the clusters behave

as rigid bodies, an assumption consistent with their experimental
definition. Third, the colloid orientations are random and
isotropically distributed.

This random orientation model is easily tractable, since the
propulsion force fN that drives a cluster of size N is a sum of
independent variables, which for sufficiently large size, is
Gaussian. If we call f0 the force that an active colloid with
spontaneous velocity v0 can exert on a fixed obstacle, and
remember that while the swimmer orientation is three-dimen-
sional, only the projection in the plane of motion actually
contributes to the dynamics, we find the variance
f 2N
� � ¼ ð2=3ÞNf 20 . On the other hand, the cluster friction is
simply ξN =Nξ0, where ξ0 = f0/v0 is the friction coefficient of a
single colloid. The resulting PDF of translational velocities for a
cluster of size N (see Supplementary Note 1 for full derivation) is
then

P vNð Þ ¼ 2vN
σ2vN

exp � v2N
σ2vN

" #
; σ2vN ¼ v2N

� � ¼ v20
N
: ð8Þ

The case of rotational motion can be treated along the same line
through the distribution of driving torques generated by each
colloid, if we assume that the cluster has the shape of a disk (see
Supplementary Note 1). The model predicts again a Gaussian-
distributed rotational velocities with variance

σ2ΩN
¼ Ω2

N

� � ¼ ϕ
v0
aN

	 
2
; ð9Þ

with ϕ the packing fraction of colloids in clusters and a the
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Fig. 4 Rotational dynamics of individual clusters. a, b PDF for the rotational velocity ΩN of a cluster of size N, for fixed activity v0= 3.1 μm s−1 and various
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effective colloid radius—center-to-center distance—inside clus-
ters. In the following, we take ϕ ¼ π=ð2 ffiffiffi

3
p Þ ’ 0:91 and the

measured value a = 1.6 μm.
The predictions of the random orientation model agree

surprisingly well with our entire set of experimental data. It
rationalizes not only the Gaussian shapes of PDFs but as shown
in Fig. 3c,d (resp. Fig. 4a,b), provides a quantitative agreement for
translational (resp. rotational) velocity distribution. The experi-
mental dependency of the velocity variances on cluster size N or
particles activity v0 are fully captured by Eqs. (8) and (9).
Remarkably, this perfect matching is obtained without free
parameter.

Discussion
We now examine the resulting insights on the internal mechan-
isms governing cluster formation and cohesion, and to do so, we
reconsider in turn the three assumptions underlying our model of
active cluster.

Our data set and analysis support the idea that the motile
strength f0 for individual Janus colloid is the same for particles in
a cluster or alone. This is in contrast with bacterial systems, where
the crowding may hinder the flagella’s motion or efficiency
resulting in a reduced motility within the clusters21,28. If not a
priori obvious, this environment-independent motility may be a
benefit of our experimental design, where a two-dimensional
layer of sedimented colloids is immersed in a three-dimensional
fuel bath. Such set-up optimally preserves a constant chemical
feed irrespective of the surface environment.

Even if a few large clusters are observed to break apart, the
overwhelming majority of clusters behave as rigid and cohesive
objects. This suggests the presence of an attractive force fa
between colloids. Our observations put constraints on its
strength: if fa � f0, its influence would be negligible, whereas if
fa � f0, irreversible aggregation into a macroscopic condensed
domain would ensue. This implies that fa and f0 have the same
order of magnitude. Now, we note that when the activity is
increased five-fold, there is no discernible change of behavior,
suggesting that fa may increase with activity and that the attrac-
tion may be phoretic in nature. This is a new hint of the existence
of an intrinsic interaction between Janus swimmers resulting
from chemical cloud generated by neighbors, as previously sug-
gested for our system40.

Though entirely consistent with the data, the success of the
random orientation is surprising at first sight. Indeed, the self-
trapping mechanism for clusters formation implies that perimeter
colloids point mostly inwards16, as suggested by direct observa-
tion in another system18. To see how those effects should affect
the cluster velocities, we propose a refinement of the model. The
idea is to split the cluster particles in two sub-populations: a core,
which obeys the random orientation assumption and a perimeter,
where possible orientations are constrained. For concreteness, the
allowed orientations are still uniform but restricted to the range
[−α, α] around the direction of the center (Fig. 3b). For this
“perimeter model”, the mean-squared cluster velocity is now
(Supplementary Note 2)

v2N
� � ¼ v20

N
Φb þ Φp

4
ð5þ cosαÞsin2 α

2

	 
� �
; ð10Þ

where Φb =Nb/N is the fraction of bulk particles in a cluster of
size N, and Φp = 1 −Φb. In practice, a simple approximation is
Φb ¼ ð1� 2

ffiffiffiffiffiffiffiffiffiffi
ϕ=N

p Þ2ΘðN � 4Þ with ϕ the packing fraction
defined in Eq. (9) and Θ the Heaviside function. This expression
arises from the large cluster limit to which the Heaviside cutoff is
incorporated to ensure that the smallest clusters are perimeter-

only objects. The case of rotational velocities can be treated in a
similar fashion (Supplementary Note 2).

With perimeter colloids pointing inwards and their contribu-
tion tending to cancel each other, the perimeter model predicts a
reduction in cluster velocities. The effect is most pronounced at
low α and small size, where the perimeter contribution dom-
inates. To avoid fitting parameter at this semi-quantitative stage,
we set α to its simplest and most natural value of π/2. The
resulting prediction for mean square velocities consistently falls
below the data (not shown), and compared to the random
orientation model, agreement rather deteriorates. The only pos-
sible exception is the translational velocity at highest activity v0 =
8.6 μm s−1, where the departure from the random orientation
model might be ascribed to perimeter effects (Fig. 3f). As regards
the rotational velocities, the predictions of the perimeter model
for α = π/2 coincide with the random orientation model (recov-
ered with α = π), and no further support can be drawn from
Fig. 4d. Overall, this simple perimeter model—which in parti-
cular does not account for possible attraction between particles—
appears less satisfactory than the random orientation model,
which provides the simplest and most consistent description of
our data. As a final note, we remark that we applied Occam’s
razor again when discarding entirely hydrodynamic interac-
tions25,38,50. At no point did the need arise to introduce their
effect.

In conclusion, by exploiting high-statistics experiments, we
have thoroughly characterized the cluster phase of spherical Janus
microswimmers, providing an elementary but complete descrip-
tion of the system. While a near perfect alignment is observed for
clusters of active polar matter29,30, a simple random orientation
model perfectly accounts for the individual dynamics of our
clusters. Furthermore, a simple approach for the aggregation and
fragmentation mechanisms gives an excellent description of the
cluster size distribution and lifetime. Since our modelling involves
only straightforward ingredients, we believe it will constitute a
sound basis upon which more sophisticated treatments can be
built, thus helping to develop a generic framework for the
description of active clusters.

Looking forward, two directions emerge for future work. First,
regarding the influence of density: no obvious change could be
detected within the restricted interval considered here, but it
remains to explore a wider range to probe the validity of the
monomer assumption and to delineate the cluster phase bound-
aries. Second, a grand challenge is to disentangle the generic and
specific aspects of cluster formation. In particular, we can ask to
what extent the cluster properties depend on the type of inter-
actions between particles. A complete answer will require not
only a full characterization of the cluster phase as done here but
also a detailed view of the propulsion mechanisms and interac-
tions in synthetic active matter51. It will be important to shed
light on the relations or differences between our living clusters
and patterns observed numerically for phoretically active col-
loids16. From recent examples of phoretic and magnetic inter-
actions16,52, it is already apparent that a rich phenomenology can
be found in the cluster phase, which appears as a promising
frontier of active matter.

Methods
Experimental set-up. Gold colloids of nominal radius acol = 1.1 ± 0.1 μm were
synthesized53 and half-coated with Platinum to form Janus microswimmers when
immersed in hydrogen peroxide (H2O2) solutions34,40,41. Due to their high density
ρ ’ 11 g cm−3, the colloids immediately sediment onto the flat bottom of the
experimental cell to form a bidimensional layer of active particles, whose area
fraction Φ is determined experimentally (Fig. 1a). Such a configuration of active
Janus particles immersed in a bulk solution loaded with H2O2 fuel ensures a
continuous and constant activity of the microswimmers over periods exceeding
half an hour for which stationary-state properties can be extensively investigated.
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By tuning the H2O2 concentration c in the range [10−4, 10−2] v/v%, it is possible to
vary the self-propulsion velocity of the colloids v0. In practice, the latter is
experimentally determined in each experiment and varies from 1 to 10 μm s−1. The
area fraction can not be finely controlled but is within the range 5–10%.

Cluster definition. We define triangles of closest neighbors using Delaunay tri-
angulation and only keep triangles with all sides smaller than 3.4 μm. We also add a
time constraint: triangles must respect the spatial condition during τp = 0.5 s to be
kept. Triangles are defined as adjacent if they share one edge (two particles). The
clusters are computed as the connected components of adjacent triangles (see
Fig. 1c).

Translational and rotational velocities. For a cluster of N particles with indivi-
dual velocities vi and positions ri with respect to the cluster center-of-mass, we
define the translational velocity v as the mean velocity of the particles inside the
cluster v ¼ 1

N

PN
i¼1 vi. To obtain the rotational velocities Ω, we first compute the

angular momentum σ ¼ PN
i¼1 ri ´ vi and the moment of inertia I ¼ PN

i¼1 r
2
i , and

obtain the rotational velocity Ω from σ =ΩI.

Data availability. All the relevant data are available from the authors on request.
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