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Mutational and putative neoantigen load predict
clinical benefit of adoptive T cell therapy in
melanoma
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Adoptive T-cell therapy (ACT) is a highly intensive immunotherapy regime that has yielded

remarkable response rates and many durable responses in clinical trials in melanoma;

however, 50–60% of the patients have no clinical benefit. Here, we searched for predictive

biomarkers to ACT in melanoma. Whole exome- and transcriptome sequencing and

neoantigen prediction were applied to pre-treatment samples from 27 patients recruited to a

clinical phase I/II trial of ACT in stage IV melanoma. All patients had previously progressed

on other immunotherapies. We report that clinical benefit is associated with significantly

higher predicted neoantigen load. High mutation and predicted neoantigen load are sig-

nificantly associated with improved progression-free and overall survival. Further, clinical

benefit is associated with the expression of immune activation signatures including a high

MHC-I antigen processing and presentation score. These results improve our understanding

of mechanisms behind clinical benefit of ACT in melanoma.
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The clinical management of metastatic melanoma was
revolutionized by the advent of immunotherapies. Cellular
immunotherapy, namely adoptive T-cell therapy (ACT)

using tumor infiltrating lymphocytes (TILs), has demonstrated
very high objective response rates, and long-lasting complete
tumor regression in up to 20–25% of treated patients in clinical
trials1–4. However, ACT is a complex, costly, and highly intensive
treatment which to date is reserved to patients with good per-
formance status. About 50% of melanoma patients do not appear
to have any benefit from current ACT protocols. Therefore, the
development of reliable predictive criteria to identify these
patients is of high clinical importance. In addition, a deeper
understanding of mechanisms of primary resistance may guide
modification of the classical protocols to improve the efficacy of
ACT.

Intrinsic features of the TILs infused, such as the number of
tumor reactive T cells, their differentiation status as well as their
persistence in circulation, have been found to associate with
clinical benefit from ACT2, 3, 5, 6. However, these analyses cannot
be used to select patients to be treated as they are performed after
the ACT treatment is completed.

Novel molecular analyses are providing important insights on
which genomic and immunological characteristics are associated
with tumor progression and response to therapy. High mutational
and putative neoantigen load have been found to correlate with
clinical benefit from immune checkpoint blockade therapy in
lung cancer and melanoma7–11. Previous reports have identified
neoantigens as the target of T-cell responses both in patients
treated with ACT12–14 and immune checkpoint blockade15, 16.
Immune activation gene-expression signature defines a distinct
subtype in melanoma17, 18. Relative prevalence of pre-existing
CD8+/PD-1+/CTLA-4+ tumor infiltrating T cells appears to
correlate to response to anti-PD-119. Furthermore, high fre-
quency of circulating myeloid-derived suppressor cells (MSDCs)
correlates with poor response to anti-CTLA420, 21, whereas the
expression of cytolytic markers correlates with improved response
to anti-CTLA48.

These observations prompted us to investigate the impact of
tumor molecular alterations on response to ACT in melanoma
patients in a clinical phase I/II trial6, 22. We subjected the tumors,
which TILs were derived from, to whole-exome and RNA
sequencing. We show that clinical benefit is associated with high
mutational and predicted neoantigen load and elevated immune
signature, including a high MHC class I antigen presentation
score, while absence of benefit can be linked to downregulated
antigen processing and presentation machinery (APM).

Results
Patient cohort and tumor biopsies. To explore the underlying
biology of response to ACT in melanoma, we assembled a set of
27 patients enrolled in a clinical phase I/II trial of ACT (Clin-
icalTrials.gov Identifier: NCT00937625)6, 22 and analyzed tumor
samples obtained for the expansion of TILs, prior to ACT
initiation. The majority of tumor biopsies were obtained from
lymph node or subcutaneous metastases. All patients had pre-
viously been treated with and failed other immunotherapy, the
majority receiving both IL-2 and anti-CTLA4 treatment. Notably,
two patients had a mucosal primary melanoma and four had an
unknown primary tumor. Two patients received BRAF inhibitors
prior to biopsy and ACT, and three patients were on BRAF
inhibitor treatment when biopsy was obtained for ACT.
According to RECIST criteria there were five complete respon-
ders (CR), seven partial responders (PR), ten with stable disease
(SD) and five with progressive disease (PD). All patients had a
minimum follow-up of 37.2 months. Patients with clinical benefit

were defined as CR, PR or otherwise with an OS time of more
than 2 years (Table 1). Detailed clinical characteristics of this
cohort were previously reported in other publications6, 22.

Mutational load is associated with outcome from ACT. The
mutational landscape of 27 pre-treatment melanoma tumors and
matched lymphocyte DNA was investigated by whole-exome
sequencing (WES). Three out of 27 pre-treatment samples failed
exome sequencing. We achieved a median coverage of 104×
(median tumor coverage 98×; median normal coverage 110×).
We detected a median of 286 somatic mutations in the 24 tumors
(range 23–2,200). Notably, the two mucosal melanomas had 157
and 246 somatic mutations, respectively. The association of
mutational burden and ACT responses is shown in Fig. 1. We
found a trend (P= 0.12, Kruskal–Wallis test) that clinical
responses defined by RECIST criteria were associated with
mutational load. Patients with CR (median= 618) had the highest
mutational load and patients with PD (median= 110) had the
lowest mutational load while patients with PR (median= 433)
and SD (median= 214) displayed intermediate mutational
load (Fig. 2a). Next, we divided the cohort in patients with
clinical benefit and no clinical benefit, defined as described in
Methods section. We found that patients with clinical benefit
harbored more somatic mutations (median= 496) as compared
to those without clinical benefit (median= 169), (P= 0.01,
Mann–Whitney test, Fig. 2b). In addition to examining muta-
tional load in relation to response as defined by RECIST criteria
and tumor regression, we also investigated mutational load in
relation to patient survival. As expected, there was a significant
difference in patient survival when comparing clinical benefit and
no clinical benefit (Supplementary Fig. 1, P= 2 × 10−7, Cox
regression). Patients were then stratified in three equally large
groups based on mutational burden. Indeed, patients with the
highest mutational burden (median 647, range 496–2200) had
superior survival and patients with the fewest (median 98, range
23–193) somatic mutations had the worst outcome, while patients
harboring intermediate (median 286, range 194–495) amount of
somatic mutations also had intermediate survival (Fig. 2c, d).
Patients belonging to the group with the highest mutational load
had a 1-year progression-free survival (PFS) rate of 63%, the
intermediate group 25%, and the low group had no patients with
more than one-year PFS (Fig. 2c). Hence, mutational load is a
strong predictive biomarker in ACT. Further confirmation that
mutational load is a predictive biomarker for immune therapy
came from Hugo et al.11 demonstrating that survival after PD1-
inhibition treatment is associated with mutational load. Overall,
our findings suggest that mutational burden may be a good
predictive biomarker for immunomodulatory agents in
melanoma.

Mutational and copy number patterns and benefit of ACT.
Several genes have been suggested to be driver genes in mela-
noma18. We addressed the role of mutations in these genes in
response to ACT (Fig. 3a). BRAF V600 mutation was found in
58% and NRAS Q61 mutation in 21% of all cases. Two cases had
NF1 missense mutations; however, these cases also carried a
BRAF V600 and an NRAS Q61 mutation, respectively. Five cases
lacked mutations in BRAF, NRAS, and NF1. Driver gene muta-
tions were fully clonal except for a TP53 mutation in one patient
(Fig. 3a). Gene mutation frequencies did not differ significantly
between clinical benefit and no clinical benefit groups. Previously,
mutation in the BRCA2 gene was found to be associated with
intrinsic resistance to PD1 inhibition11. Herein, we found two
cases with clinical benefit and one case without clinical benefit
harboring BRCA2 missense mutation (Fig. 3a). Hence, BRCA2
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mutation cannot explain poor response to ACT in our cohort.
While UV-radiation induced DNA damage was the dominant
source of mutations, the presence of additional mutational sig-
natures was suggested in a few patients (Supplementary Fig. 2).

We next investigated DNA copy number changes in relation to
response to ACT. The fraction of genome altered was not
associated with clinical benefit after therapy (Fig. 3b). Of the
genes with known amplifications and deletions in melanoma, the
CDKN2A locus showed a considerable deletion frequency
(Fig. 3a). However, the cases with CDKN2A loss had diverging
RECIST outcome. Notably, deletions of the interferon (IFN) locus
located next to the CDKN2A gene have been shown to associate
with resistance to anti-CTLA4 treatment23. In this cohort, five
tumors in the clinical benefit group and three tumors in the no
clinical benefit group harbored deletions of the IFN locus, hence
there was no statistical difference between the groups (P> 0.6,
Fisher's Exact test), Acquired loss-of-function alterations in the
B2M gene, whose protein product beta-2-microglobulin is an
essential part of the MHC-I complex, has been identified in
relapse lesions following treatment with PD1 inhibitor24. In our

cohort, the B2M gene was heterozygously deleted in six patients
and four of these patients had a PFS <1 year (Fig. 3a). Three of
the six patients with B2M deletion had a clinical benefit from
ACT and two of these were objective responders according to
RECIST (Fig. 3a). Furthermore, no difference in B2M gene
expression was found between cases with or without B2M loss (P
= 0.30, t-test) suggesting that B2M is still functional in deleted
cases. Importantly, no case harbored B2M somatic mutation.
Moreover, no difference in DNA copy number gains at the HLA-
locus was identified and we only found one case of PD-L1 gene
amplification (Fig. 3a). Collectively, specific mutations or DNA
copy number alterations are not predictive of response to ACT.

Immune activation in patients who benefit from ACT. Previous
studies have defined transcriptional melanoma subgroups
expressing high levels of immune response associated genes17, 18.
Increased messenger RNA levels of such genes are associated with
an improved outcome in primary and stage III metastatic mela-
noma25, 26. Thus, it is tempting to speculate that such tumors may

Table 1 Patient characteristics of the analyzed cohort

Patient
ID

Previous systemic
therapya

Type of
lesionb

Type of
primary

RECIST Clinical benefit Treatment post ACTa WES
data

RNAseq
data

Pat1 IL-2 LN Unknown CR Clinical benefit None Yes
Pat2 IL-2, DC LN Skin PD No clinical

benefit
Tem Yes Yes

Pat3 IL-2, DC SC Unknown SD No clinical
benefit

Tem Yes Yes

Pat4 IL-2 LN Skin PD No clinical
benefit

None Yes Yes

Pat5 IL-2, Ipi, DC LN Skin CR Clinical benefit None Yes Yes
Pat6 IL-2, Tem, Ipi, DC LN Unknown PD No clinical

benefit
None Yes Yes

Pat7 IL-2 LN Skin CR Clinical benefit None Yes Yes
Pat8 IL-2, Ipi SC Skin SD Clinical benefit Pembro Yes Yes
Pat9 Ipi, IL-2 LN Skin PR Clinical benefit None Yes Yes
Pat10 IL-2, Ipi, Tem SC Skin PR Clinical benefit ACT, Ipi Yes
Pat11 IL-2, Ipi NA Skin PR Clinical benefit None Yes Yes
Pat12 Ipi, IL-2, BRAFi LN Skin PR Clinical benefit None Yes
Pat13 IL-2, Ipi LN Skin SD No clinical

benefit
BRAFi Yes Yes

Pat14 Ipi IM Skin CR Clinical benefit None Yes Yes
Pat15 Ipi, IL-2, BRAFi SC Skin PD No clinical

benefit
None Yes Yes

Pat16 IL-2, DC, Ipi, BRAFi LN Skin SD No clinical
benefit

Tem Yes

Pat17 IL-2, Ipi SC Mucosal PR Clinical benefit Tem Yes Yes
Pat18 IL-2, Ipi, Tem LN Mucosal SD No clinical

benefit
Nivo Yes Yes

Pat19 IL-2, Ipi, BRAFi SC Skin SD No clinical
benefit

Pembro, BRAFi, BRAFi/MEKi, Tem Yes Yes

Pat20 IL-2, Ipi, BRAFi IA Skin PR Clinical benefit ACT, Pembro, BRAFi, Tem, Sel,
KPT-330

Yes Yes

Pat21 IL-2, Ipi SC Skin SD No clinical
benefit

BRAFi, Tem Yes Yes

Pat22 Ipi, IL-2 IA Skin SD No clinical
benefit

BRAFi, Tem, Pembro, Yes Yes

Pat23 IL-2, Ipi SC Skin CR Clinical benefit None Yes Yes
Pat24 IL-2, Tem SC Unknown PD No clinical

benefit
Ipi, Pembro Yes Yes

Pat25 IL-2, Ipi, BRAFi LN Unknown PR Clinical benefit Pembro Yes
Pat26 IL-2, Ipi LN Skin SD Clinical benefit Pembro, BRAFi, BRAFi/MEKi, Tem Yes Yes
Pat27 IL-2, Ipi Pleura Unknown SD No clinical

benefit
Pembro, Tem Yes Yes

aBRAFi BRAF inhibitor; DC Dacarbazine; Ipi Ipilimumab; MEKi MEK inhibitor; Nivo Nivolumab; Pembro Pembroluzimab; Sel Selinexor; Tem Temodal
bIA intra-abdominal; IM intra-muscular; LN lymph node; SC subcutaneous
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have an improved response to immunotherapy. Herein, we per-
formed RNA sequencing of 25 melanoma biopsies of the
27 samples obtained prior to ACT to determine transcriptional
features associated with response to ACT. First, we used the 1500
most variable genes and performed hierarchical clustering and
did not observe any clear correlation between response to ACT
and the cluster dendrogram (Supplementary Fig. 3). Next, we
classified all tumors using the IPRES signature previously shown
to be predictive of response to PD1-inhibition11. In total, we
found five IPRES-enriched cases in patients with no clinical
benefit and five IPRES-enriched cases without clinical benefit
(P= 1, Fisher's Exact test). OS rates were comparable for IPRES-
enriched and IPRES-not-enriched cases (P= 0.8, Cox regression,
Supplementary Fig. 4) thus suggesting that the IPRES signature is
not predictive of response to ACT.

We then compared the transcriptomes of tumors from patients
displaying clinical benefit to those with no clinical benefit. Gene
set enrichment analysis (GSEA) indicated the up-regulation of
immune system associated genes in patients with clinical benefit,
and in addition indicated a role for IFN-gamma signaling (GSEA,
fdr= 0). This was supported by gene ontology analysis using
DAVID27 (Supplementary Table 1). Tumors from patients with
no clinical benefit were found to have relatively high expression
levels of genes involved in the cell cycle (GSEA, fdr= 0, Fig. 4a).
Although, significant pathways in the GSEA included chromo-
some maintenance (fdr= 0) and meiotic recombination (fdr= 0)
it was dominated by cell cycle and proliferation related signatures
(Supplementary Table 1). Further analysis showed that the core
genes of the MHC-I antigen presentation pathway were strongly
correlated across the cohort and that the expression of several
antigen presentation genes was relatively high in tumors from
patients with clinical benefit. Thus, we constructed a gene-
expression score for the activity of MHC-I antigen presentation

(Fig. 4b, Supplementary Fig. 5) and observed that the samples
with the highest MHC-I score (top 25%) were all derived from
patients with excellent outcome albeit the PFS analysis was not
significant (Fig. 4c). These results suggest that up-regulation of
immune system associated genes and MHC class I dependent
antigen presentation is associated with ACT efficiency in
melanoma. To further dissect these findings, we again turned to
the Hugo et al. dataset but intriguingly could not find a strong
correlation of MHC-I antigen presentation genes (Supplementary
Fig. 6). Furthermore, we did not observe a difference in survival
based on MHC-I gene score activity in the anti-PD1 treated
cohort (Supplementary Fig. 6). Finally, we analyzed the
prognostic effect of the MHC-I gene score in the TCGA18 and
Cirenajwis et al.26 cohorts. In both cohorts the MHC-I genes were
tightly co-expressed and showed a prognostic effect in metastatic
melanoma (Supplementary Fig. 6).

Recently, Tirosh et al.28 performed single-cell RNA sequencing
of cancer and immune cells derived from metastatic melanoma
tumors and generated single immune cell signatures. In order to
elucidate the composition of the immune cell infiltrate and
potential role of individual immune cell types in response to ACT
in melanoma, we applied these signatures to our data. For further
comparison we applied these signatures to the TCGA data as well.
Here, we found T- and B-cell signatures associated to survival in
stage IV melanomas (Supplementary Fig. 7). However, when
applying the signatures to the ACT data we found no association
between any particular immune cell type and clinical benefit
(Fig. 4d) and furthermore no association to survival was observed
(Supplementary Fig. 8). Similarly, we found no association of
single immune cell markers (Fig. 4d) or ratios thereof
(Supplementary Fig. 9) to clinical benefit. These analyses indicate
that immune cell infiltration was favorable for ACT outcome,
rather than the presence of a specific immune cell type.
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Fig. 1 Mutational load and clinical features of the cohort. Tumors are ordered according to mutational load and compared to clinical features. RECIST
categories: CR complete response; PD progressive disease; PR partial response; SD\ stable disease
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Intriguingly, both T-cell exhaustion markers and IFN-signaling
genes showed a trend towards up-regulation in tumors from
patients with clinical benefit, with the majority of the genes not
reaching significance. Genes demonstrating some association to
clinical benefit included CTLA4, HLA-C, and TAP2 (P< 0.05, t-
test) however there were several genes displaying borderline
association including JAK2, PDL1, HLA-B, HLA-DRB1, and B2M
(Fig. 4d). The role of these pathways that control T-cell activity
will have to be explored in a larger dataset. Melanoma cell lineage
signatures, defined by MITF and AXL scores28, as well as cAMP-
signaling associated genes, previously linked to MAPKi resistance
in melanoma29, were equally expressed in tumors from patients
with and without clinical benefit (Fig. 4d), suggesting that the
activity of melanoma cell intrinsic programs does not influence
clinical efficacy of ACT. Finally, we wanted to explore the
relationship between tumor-immune gene-expression signatures
and mutational load. We used the T-, B-cell and macrophage
signatures by Tirosh et al28 however we did not find any
correlation between expression signatures and mutational load
(Supplementary Fig. 10). Consequently, no correlation was found
between the MHC-I gene-expression score and mutational load
(Supplementary Fig. 10). Collectively, tumor-immune micro-
environmental processes rather than melanoma lineage tran-
scriptomic signatures are associated with ACT efficacy in
melanoma. Such tumor-immune signatures are independent of
mutational load.

Predicted neoantigen load is associated with benefit of ACT.
Melanoma is one of the most neoantigen rich cancer forms30. The

association of high predicted neoantigen load and favorable
outcome following immune checkpoint inhibition therapy has
been reported in NSCLC and melanoma8–10. We sought to
address the relationship between putative neoantigen load and
clinical benefit from ACT in patients who previously progressed
on immune therapy. We identified a median of 96 predicted
neoantigens in the 23 tumors (range 6–709). Of these, 31 (37%)
were expressed (range 4–183) as assessed by variant allele read
counts from RNA sequencing data (Fig. 5a). Interestingly, BRAF
V600E mutation was predicted to form a neoantigen when pre-
sented by HLA-A0301 or HLA-A1101. Similarly, NRAS Q61K/L/R
mutations were predicted to generate neoantigens in the presence
of certain HLA-A alleles. We assessed whether putative neoan-
tigen load was associated with clinical benefit in our study.
When dividing the cohort by RECIST-defined response, median
predicted neoantigen count followed response, with patients
achieving CR having a median of 85 expressed predicted
neoantigens, PR–32, SD–20, and PD only 13 predicted neoanti-
gens (Fig. 5b). Furthermore, tumors obtained from patients with
clinical benefit harbored a median of 58 expressed predicted
neoantigens, while those with no benefit only had 18 (Fig. 5c).
Finally, we assessed whether tumor neoantigen load correlated
with patient outcome. Patients with the lowest predicted neoan-
tigen load (median 8, range 4–18) had worst survival as compared
to patients with the highest (median 85, range 57–183) predicted
neoantigen load and intermediate (median 31, range 19–56)
amount of predicted neoantigens (Fig. 5d). Importantly, predicted
expressed neoantigen burden correlated strongly with mutational
load (Pearson correlation 0.98). In conclusion, predicted
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neoantigen load is associated with clinical benefit from ACT in
melanoma.

To test the independent effect of predicted neoantigen load and
the MHC-I score we used a multivariate Cox regression model.
Using log10-transformed predicted neoantigen count and MHC-I
gene-expression score values as variables, both were found to be
independent predictors of OS (P= 0.007 and P= 0.01, respec-
tively, Cox regression). Collectively, these results demonstrate
that predicted neoantigen load is associated with OS and is
independent of tumor-immune micro-environmental gene-
expression signatures.

Discussion
The high response rates with long-term complete tumor regres-
sions make ACT a highly promising therapeutic modality in
metastatic melanoma. Currently, ACT is being developed in
several other forms of solid tumors including sarcomas31, cervi-
cal-32, ovarian-33, renal-34 and gastrointestinal cancers35. In an
attempt to increase the efficacy of ACT, various adjustments to
the classical treatment protocol and combinations with other
therapeutics are under investigation in multiple trials (source:
clinicaltrials.gov). However, although there is an unmet need for
patient stratification prior to ACT, patients with melanoma are

currently not preselected for ACT clinical trials based on tumor
characteristics, since these have not been comprehensively stu-
died in relation to response to ACT.

Here, we report the results from a comprehensive genomic
analysis of tumor samples from a phase I/II clinical trial of ACT
in melanoma. Our data provide compelling evidence that a high
mutational and predicted neoantigen tumor load is associated
with improved clinical outcome following ACT. The same phe-
nomenon was previously reported to associate with the outcome
of patients with melanoma or lung cancer, following treatment
with immune checkpoints inhibitors7–10, highlighting the
importance of neoantigens in response to immunotherapy.
Since melanoma and lung cancer have the highest average
mutational load of all tumor types36, this phenomenon probably
reflects an increased likelihood of forming neoantigens that will
elicit T-cell reactivity, thereby explaining why unselected mela-
nomas also show the highest clinical response rates following
current checkpoint-immunotherapy37. Importantly, all patients
enrolled in the current study had failed on prior immu-
notherapies such as intravenous IL-2 and/or anti CTLA-4 anti-
bodies, and mutational load still was significantly associated with
clinical benefit from ACT. Although, these results are intriguing
larger studies are a necessity to refine thresholds of mutational
load as well as further validation of mutational load as
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a predictive biomarker. In addition, in this study we analyzed the
same biopsies used to manufacture TILs for infusion. In order to
fit into common clinical settings, it might be desirable to know in
advance the likelihood of a given individual patient to benefit
from ACT. Thus further validation of these biomarkers
with genomic analyses performed on earlier tumor biopsies,
e.g., obtained before enrollment in ACT protocol, is needed.
Importantly, the potential use of such predictive biomarkers
would fit into current clinical paradigms because, after the
introduction of checkpoint- and BRAF- inhibitors, ACT is no
longer considered as a first line therapy in melanoma because of

toxicity and complexity. Therefore, performing such genomic
analyses early in the metastatic disease may leave ample time to
identify patients that potentially will benefit from ACT as salvage
therapy.

Presentation of tumor-antigens through the MHC class I APM
pathway is required for tumor-recognition from cytotoxic CD8 +
T cells38. Previous case reports have shown acquired loss of MHC
class I antigen presentation, e.g., through loss of B2M in mela-
noma metastases, suggesting importance of T-cell mediated
immune response at advanced stages of disease39, 40. Here, a high
expression of MHC class I APM genes was associated to clinical
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benefit. Four out of six patients with a heterozygous loss of the
B2M gene had a very poor PFS; however three patients with B2M
loss had a clinical benefit of ACT. This indicates that there may
be B2M-independent mechanisms for T-cells to recognize the
tumor cells and that B2M loss alone is not a good predictive
marker for ACT response. Intriguingly, analyses of previously
published patient cohorts revealed that MHC class I APM
pathway genes were not co-expressed, and did not predict
response to PD1 inhibition in melanoma11. While all patients in
the present study had received and failed immunotherapies prior
to ACT, there is no record of previous immunotherapy in the
cohort from Hugo et al.11. This observation might reflect
immunological editing of tumors induced by prior immu-
notherapies in some patients. Taken together, these findings
suggest that functioning of the MHC class I APM above a certain
threshold level is a necessary condition to respond to immu-
notherapies based on T-cell attack. One important implication is
that loss of an efficient MHC class I APM may prevent the

beneficial effects of the same immunotherapies, but further stu-
dies should clarify whether this can be used as an entry criterion
for ACT protocols and/or other immunotherapies.

In this study, although general activation of the immune
response was significantly associated with clinical benefit from
ACT, we did not observe association of specific immune cell type
markers (e.g., T cell, B cell, macrophage, and regulatory T cell) or
various ratios thereof, including cytolytic activity41, to clinical
benefit. Taking into account previous reports showing that T-cell
infiltration17 and T-cell expression signature42 are positive
prognostic factors in immunotherapy naïve patients, as we also
demonstrate in the TCGA cohort, this may reflect the effect of
prior immunotherapies on immune cell infiltration, as these
signatures were not predictive of survival in the current cohort of
patients treated with ACT. While loss of MITF is associated to
resistance to MAPK inhibition43, expression of MITF and AXL
was not associated to clinical benefit from ACT in our data;
therefore, melanoma cell features such as lineage and
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differentiation may play a minor role in defining response to
immunotherapy. Finally, up-regulation of cell cycle genes appears
to be an adverse predictive factor of ACT in melanoma, in line
with previous findings of poor prognosis associated with pro-
liferation in melanoma17, 25, 26. Intriguingly, our results further
demonstrated that predicted neoantigen load and tumor-immune
gene-expression signatures are independent predictors of survival
in this ACT treated cohort. This suggests that a composite bio-
marker of neoantigen load and immune signatures should be
explored for prediction of response to immunotherapy in
melanoma.

In conclusion, our findings reveal tumor molecular features
associated with response to ACT that warrant further investiga-
tion. If confirmed by independent studies, they can be used to
guide the application of ACT in melanoma and, potentially, other
solid tumors where ACT is currently under development.

Methods
Patient cohort and material. All patients of this study were enrolled in the clinical
trial NCT009376256, 22, where the efficacy of ACT followed by attenuated doses of
interleukin-2 was investigated. All patients signed a written consent form. All
patients had stage IV melanoma and had received prior systemic therapy. Response
was assessed according to RECIST 1.0. In the cohort of 27 patients enrolled in the
trial the median overall survival (OS) was 22.8 months. Further, for the purpose of
statistical analyses, the cohort was divided into clinical benefit and no clinical
benefit; all patients with tumor response according to RECIST (PR or CR) or OS of
at least 2 years were defined as patients with clinical benefit. Two years was selected
as cutoff because of the median OS of 22.8 months. Only two patients in the clinical
benefit group had an OS of less than 2 years, however both patients had an
objective tumor response according to RECIST. Clinical data are summarized in
Table 1. Altogether, pre-treatment tumor samples from 27 patients could be
analyzed. Following data were missing from pre-treatment samples: gene-
expression data: patients 10 and 12; copy number and mutation data: patients 1, 16,
and 25. For survival analysis, the database was locked on June 27th 2017 (Sup-
plementary Data 1).

Nucleic acid extraction and sequencing. Tumor DNA and RNA were extracted
using AllPrep DNA/RNA Mini Kit (Qiagen) from snap frozen or frozen in DMSO
tumor fragments. Normal DNA was derived from PBMCs or TILs using QIAamp
DNA Mini Kit (Qiagen). Tumor and normal DNA was subjected to WES library
preparation using SureSelect Target Enrichment System for Illumina Paired-End
Sequencing Library Protocol (Agilent Technologies) with Clinical Research Exome
(CRE) capture oligo panel (Agilent Technologies). Barcoded WES libraries were
pooled and sequenced on HiSeq 2500 (Illumina) in paired-end mode. RNA
sequencing was performed as previously described44.

WES data analysis. WES analysis including alignment, post-alignment processing,
and variant calling from WES data was performed as described previously44.
Briefly, reads were mapped to the human reference genome (hg19) with decoy
using Novoalign (Novocraft Technologies), and duplicate fragments were marked
using the MarkDuplicates functionality of Picard tools. Local realignment and base
quality score recalibration were done using GATK. For variant calling, MuTect45

version 1.1.4 (default settings) and VarScan46 version 2.2.8 were used; for VarScan
somatic, minimum variant allele frequency in the tumor was set to 10%; following
recommendations from VarScan developers, somatic single-nucleotide variants
(SNV) calls were further filtered to remove potential false positives; finally only
high confidence calls were retained. For SNV, consensus of the two callers was
retained, while indels were derived using VarScan only. For variant annotation and
translation into protein sequence, Annovar47 was used; only mutations within the
coding sequence (CDS) regions of the genes were retained. Mutation data can be
found as Supplementary Data 3. Statistical analyses of total mutational load are
based on all mutations found in a particular sample. DNA copy number data were
generated using Contra48 version 2.0.3, and data were segmented using GLAD49.
DNA copy number data derived from WES data can be found as Supplementary
Data 2. Subclonality of mutations in the form of ‘cancer cell fraction’ was obtained
using ABSOLUTE50 version 1.0.6, with the setting copy_num_type= total and
without a minimum mutation allele frequency; the top model was selected.
Mutational signatures were derived using the R package deconstructSigs51 with the
reference signatures signatures.cosmic36.

HLA typing and neoantigen prediction. For HLA typing, sequencing libraries
were prepared from normal DNA using Illumina TruSight HLA Sequencing Panel
according to manufacturer’s instructions (Illumina) and sequenced on a MiSeq
instrument (Illumina). In addition, HLA type was derived from WES data of
normal (non-tumor) samples using bwakit (https://github.com/lh3/bwa/tree/

master/bwakit) or Omixon Target HLA (Omixon). Potential HLA class I restricted
neoantigens were predicted using a custom pipeline comprising modified pVAC-
Seq52. This early perl based version of pVAC-Seq was not able to generate pre-
dictions for indels. NetMHC version 4.0 was used for peptide-MHC affinity pre-
dictions; mutated peptides with binding affinity below 500 nM were retained;
pVAC-Seq sequencing depth based filter was not applied. Neoantigens supported
by minimum 2 variant RNA reads were considered expressed. In this study, we
have only used MHC class I predictions.

Expression signatures. RNAseq data were processed as previously described53

using TopHat254 and Cufflinks55 v2.1.1. Isoform FPKMs were summed up to
obtain gene-level expression. Data were quantile-normalized and log-transformed
by log2(data + 1). Genes were median-centered and reduced to protein-coding
genes defined by the HGNC. SAM analysis56 was used to rank genes based on
differential expression scores, DAVID27 was used for GO-term analysis, and GSEA
with C2, C6, and C7 gene lists was used for GSEA57. Single-cell signatures and
melanoma lineage signatures were from Tirosh et al.28. The MHC-I APM displayed
high correlation of gene expression. In particular, HLA-A, HLA-B, HLA-C, TAP1,
TAP2, NLRC5, PSMB9, PSMB8, and B2M were highly correlated, and further
termed the “core”MHC-I set (Supplementary Fig. 5). The mean expression of these
core genes is the MHC-I score and was then divided in quartiles across patients to
test the association with OS. For the MHC-I score quartiles, the resulting bins were:
4th quartile [−2.98,−0.493], 3rd quartile (−0.493,0.196], 2nd quartile (0.196,0.728],
and 1st quartile (0.728,2.16]. The MHC-I score was subsequently applied to the
TCGA18 and Cirenajwis et al. cohorts26. To stratify the patients we again used the
MHC-I score quartiles determined in the respective data sets. We applied the
IPRES signatures to our cohort as specified in Hugo et al.11. Briefly, 21 of 22
validated IPRES signatures were available, whereof 15 gene sets were available from
Broad MSigDB (http://software.broadinstitute.org/gsea/msigdb/) and six gene sets
were available from Supplementary Data from Hugo et al.11. The gene set variation
analysis (GSVA) scores were calculated from uncentered gene-expression data;
GSVA scores were transformed to z-scores and the mean z-score of the signatures
was obtained58. A cutoff of >0.35 was applied as described in Hugo et al.11 for a
sample to be called “IPRES-enriched”.

Data availability. RNAseq data have been deposited at Gene Expression Omnibus
with accession number GSE100797. Clinical annotation data, DNA copy number
data, and somatically called mutations are available as Supplementary Data 1–3,
respectively. All other remaining data are available within the article and Supple-
mentary Information Files, or available from the authors upon request.
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