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Stress-induced plasticity of dynamic collagen
networks
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The structure and mechanics of tissues is constantly perturbed by endogenous forces

originated from cells, and at the same time regulate many important cellular functions

such as migration, differentiation, and growth. Here we show that 3D collagen gels, major

components of connective tissues and extracellular matrix (ECM), are significantly and

irreversibly remodeled by cellular traction forces, as well as by macroscopic strains. To

understand this ECM plasticity, we develop a computational model that takes into account

the sliding and merging of ECM fibers. We have confirmed the model predictions with

experiment. Our results suggest the profound impacts of cellular traction forces on their host

ECM during development and cancer progression, and suggest indirect mechanical channels

of cell-cell communications in 3D fibrous matrices.
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Our tissue is continually changing. At a fundamental level,
the main scaffold of our connective tissue, a matrix of
collagen fibers, is constantly remodeled by the cells living

therein1, 2. Either as a regular process of tissue homeostasis, or as
a response to inflammation and wounding, new collagen fibers
are synthesized3, while existing fibers are degraded4. These bio-
chemical interactions between the cells and the collagen matrix
are crucial to maintain the integrity of our living tissue5.

Cells also interact with the collagen matrix physically6 and
probe the nonlinear elasticity7, 8 and viscoelasticity9, 10 of the
extracellular matrix (ECM). The physical interactions, such as the
pushing forces from membrane protrusions and the pulling forces
from cell contraction, are generally considered to be small and to
reversibly deform the surrounding matrix. For example, a fun-
damental assumption of the widely employed three dimensional
(3D) traction force microscopy is that once cell-generated forces
are released, the matrix will bounce back to its non-stressed
configuration11, 12.

Remarkably, recent experiments have reported densified,
aligned collagen fibers between clusters of cancer cells13, 14. These
observations suggest that collective contraction between cell
clusters may cause large deformations in the ECM. It is ques-
tionable, therefore, if the assumptions of small and reversible
deformations still hold in the case of well-dispersed cells. In fact,
other workers have demonstrated the inelastic behaviors of col-
lagen networks15, 16 and irreversible alignment of ECM fibers
near single contracting cells17.

In this paper, we find a pair of breast cancer cells alone can
increase the local fiber density of reconstituted collagen matrices
by more than 150%. We will show that these large deformations
are irreversible, history dependent, and significantly change the

ECM micromechanics. The observed ECM remodeling is purely
mechanical, without the creation or degradation of fibers. To
provide a fundamental understanding of ECM plasticity, we have
devised a computational model, based on the dynamics of cross-
links and fiber entanglement. Instead of taking a mean-field
approach similar to that of Nam et al.18, we fully capture the
complex disordered network structure. Because biopolymer net-
works are strongly disordered networks and the disorder is
important in many important phenomena. Our model gives
agreement with cellular experiments, elucidates microscopic
details of force and energy distributions in disordered plastic
networks, and predicts rich bulk rheology beyond the widely
accepted viscoelasticity of a collagen matrix19–21. We have vali-
dated these predictions with experiments, and suggest a
mechanical mechanism that contributes to a dynamic, reconfi-
gurable ECM without the need for chemical modifications.

Results
Cell traction forces induce plastic ECM deformations. We have
studied the time-dependent 3D ECM remodeling by cell pairs
with quantitative imaging. Figure 1a, b shows an example where
two breast cancer cells (MDA-MB-231) are embedded in a type-I
collagen gel (see also Supplementary Movies 1, 2). Immediately
after the gelation process completes, the cells start to generate
traction forces which deform the local ECM, while the
morphologies of the cells remain rounded. Using confocal
reflectance imaging, we find that the matrix microstructure is
most significantly remodeled between the cells, a region we will
refer to as a collagen bundle. A collagen bundle consists of
aligned, and densified collagen fibers (Fig. 1b) connecting the cell
pair. We find that the formation of collagen bundles is robust,
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Fig. 1 Cell traction forces irreversibly induce the formation of collagen bundles. a Reconstructed streamlines showing the spatial-temporal profile of the
cell-induced matrix deformation. The deformation field from frame to frame is calculated via reflectance particle image velocimetry22. Color code (blue to
red) is linearly proportional to maturation time 0−30min). b Confocal reflection image of the collagen matrix showing a collagen bundle (arrow) between
two MDA-MB-231 cells. c Collagen bundles simultaneously form between multiple cell pairs. Red: GFP-labeled MDA-MB-231 cells. Green: reflectance
image of collagen fibers. d The relative reflectance intensity ΔF/F of collagen bundles compared to the background. e ΔF/F of collagen bundles after
disrupting the cell traction forces by Cytochalasin-D treatment. In d, e, ~30 cell pairs are sampled for each maturation time. The thick black lines, box edges
and whiskers represent the median, first/third quartiles, and lower/upper 5% values, respectively. ANOVA and Fisher’s least significant difference
procedure is used to evaluate the difference of ΔF/F corresponding to different maturation times. *p< 0.05, **p< 0.01. Differences between non-labeled
pairs are not significant. f Fraction of permanent collagen bundles Fperm as a function of maturation time. Scale bar: 20 μm
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and generally present between all cell pairs which are within
80 μm distance. (Fig. 1c, Supplementary Methods, and Supple-
mentary Figs. 1, 2).

In order to quantify the level of ECM remodeling, we
characterize the collagen bundles by their relative reflectance
intensity with respect to the matrix far from the bundles ΔF/F
(Methods section). Most collagen bundles are 50−150% brighter
than the average background intensity, and are significantly
brighter than the background fluctuation (ΔF=F � 2 δF

F , where δF
is the standard deviation of the background intensity as detailed
in Supplementary Methods and Supplementary Fig. 1. See also
Supplementary Fig. 3 for the characterizations of fiber alignment).
Therefore the collagen bundles are distinct from the naturally
occurring density fluctuations of the collagen gel23.

We find that the relative intensity of a bundle increases with its
maturation time, which we count from when the collagen gel is
formed. Both single bundle continuous imaging and the statistics
of snapshots of multiple bundles confirm that ΔF/F reaches a
plateau after an hour (Fig. 1d).

A common assumption in cell mechanics is that once a traction
force is released, the matrix will relax to its original stress-free
state. Indeed, when the cell traction forces are released by
Cytochalasin-D treatment, the relative intensity of the collagen
bundles decreases, particularly for those with short maturation
times. However, removing the mechanical stress does not fully
remove the collagen bundles. Instead, a significant amount of
residual strain remains in the regions of collagen bundles (Fig. 1e,
Supplementary Fig. 4). We consider a collagen bundle to be a

permanent one if its relative intensity is significantly higher than
the background (ΔF=F>3 δF

F ) even after treating the cells with
Cytochalasin-D. By counting more than 80 cell pairs, we find that
the fraction of permanent collagen bundles, indicative of the
plasticity of ECM deformations, increases with maturation time
(Fig. 1f) to nearly unity.

To further demonstrate the mechanical origin of collagen
bundles, we have developed a microstretching device, which
generates local mechanical deformation in 3D collagen matrix
similar to a cell pair (Supplementary Methods, Supplementary
Fig. 5, and Supplementary Movies 3, 4). When extensional stress
is applied for a short period of time, the matrix will almost fully
recover to its original configuration. When the dwell time is
increased, regions of densified fibers persist even after the stress
is released. These observations suggest that formation of collagen
bundles and the history-dependent plastic ECM remodeling
have a purely mechanical origin. Indeed, we find extensive bundle
formation even after inhibiting matrix metalloproteinase (Sup-
plementary Methods and Supplementary Fig. 6).

Computational modeling of ECM plasticity. We hypothesize
that the observed plasticity of the collagen matrix is a result of the
irreversible dynamics of cross-links and fiber entanglement. To
test the hypothesis, we have developed a computational model
based on a diluted triangular lattice. We treat the collagen matrix
as an athermal network of fibers that resist bending and
stretching24–27. Using experimentally derived stretching and
bending moduli of fibers28, and the coordination number of the
network29, we construct a minimal representation of the matrix.
The linear and nonlinear elasticity of this model has been
extensively studied. It is known that in the linear regime, the
elastic energy is dominated by bending energy of the fibers,
because the network has less connectivity than at the central-force
isostatic point25, 26. As the model is deformed beyond the
linear elasticity regime, the elastic energy becomes stretching
dominated, and the shear modulus increases by more than an
order of magnitude (strain-stiffening), in good agreement with
observations of various biopolymer gels27, 28, 30–32.

The relationship between this two-dimensional (2D) model
and a real 3D biopolymer networks has been examined in several
recent papers25, 33, 34. In particular, in ref. 34 lattice models are
compared to off-lattice versions. The result of all these studies is
that the main features of the elastic behavior are faithfully
captured, though there may be differences in details, particularly
in the nonlinear regime.

In contrast to previous models that assume static network
connections, we consider the cross-links between fibers to be
dynamic: when the force loaded on a cross-link exceeds a
threshold, two fibers will have a probability to detach and
reconnect to lower the elastic energy, or a branching fiber has a
probability to peel apart further at the branching point, which we
call sliding. In addition, we consider the merging of adjacent
fibers within a critical distance, which can be either due to fiber
entanglement or chemical bond formation. Both sliding events
and merging events are intrinsically irreversible and contribute to
the plasticity of the model network (Supplementary Methods and
Supplementary Fig. 7).

We first test if the model reproduces the observed properties of
our collagen bundles. Because experiments observe mostly
rounded cells (Supplementary Fig. 2), we model contractive cells
as circles embedded in the network and isotropically shorten all
fibers inside the circle by the fraction β. The contracted cell size α
in proportion to the matrix pore size has been chosen to be
consistent with experimental measured cell radius (17.2± 2.6 μm)
and pore size (3.0± 0.7 μm).
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Fig. 2 Simulation of collagen bundle formation by contracting cell pairs.
a The network configuration in an elastic model (without any sliding or
merging events). b The network configuration predicted by our plastic
model. c The relative increase of fiber density ΔF/F of collagen bundles
compared with the background at varying cell−cell distance. Here the cell
−cell distance α is normalized by the cell size α. Red: plastic deformation
with sliding events. Blue: pure elastic response of the network. At any given
distance, the results from elastic (T= 0min) and plastic (T= 15 min) are
statistically distinct (t-test, p= 0.0007, N= 8). d The irreversibility of a
collagen bundle depends on both cell contractility (β) and maturation time
Td. Here the irreversibility is characterized by ΔF/F after the cell traction
force is released. The cell−cell distance is fixed at d= 7a. Error bars in c, d:
mean± SD, obtained from eight different realizations
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At T= 0 (immediately after cell contraction), the network
configuration is determined by minimizing the elastic energy and
no sliding or merging events are allowed to occur (Fig. 2a). Every
half-minute thereafter, we allow all possible sliding events to
occur deterministically and all merging events to occur with
probability Pmerging. This approach is based on the assumption
that the time scale of sliding events is much faster than that of
merging events (Supplementary Methods). After roughly 15 min
of maturation time, sliding causes the fibers to continuously
flow into the central region between the cells, as we observe in the
formation of collagen bundles (Fig. 2b).

To quantitatively compare the simulation results and
experiments, we calculate ΔF/F by measuring the relative increase
of fiber density in the bundle region. As shown in Fig. 2c, sliding
events significantly increase the fiber density in the bundle as
compared with purely elastic deformations. On the other hand,
the fiber alignment, as characterized by the nematic order, is not
sensitive to the sliding events (Supplementary Fig. 8). Simulation
shows that ΔF/F decreases with cell−cell distance, which is also
consistent with the experiment (Supplementary Fig. 2 and also
Supplementary Fig. 9 for elongated cell shapes).

Note that our computational cells contract by the large fraction
β, whereas in our experiment (and in many others) the observed
cell area does not change much in the process. This paradox is
only apparent: we are not modeling the plasma membrane of the
cell (which determines the observed area) but rather the motion
of the points where the cell is attached to the surface. These
points do contract strongly due to the action of motor
proteins inside the cells. Further, we use a continuous disk of

attachment rather than discrete points. This is also not a real
problem: we are interested in deformations of the matrix at
distances large compared to the spacing between adhesions.
There is no difference between discrete and continuous adhesion
in this regime. Another indication of this fact is that our results
our do not change much for elongated cells (Supplementary
Fig. 9).

Our model also allows us to systematically examine the
irreversibility of the collagen bundles. To this end, we have varied
the contractility (β) and maturation time Tm, and measured the
density increase in the bundle region as compared to the average
background density ΔF

F after cell traction is released. As shown in
Fig. 2d, the irreversibility of ECM builds up as a function of
maturation time Tm. Intriguingly, the sliding events and merging
events play separate roles. The former mainly contributes to the
enhanced fiber concentration before releasing cell traction forces,
and the later mainly contributes to the irreversibility of collagen
bundle formation (Supplementary Fig. 8).

Microscopic reconfigurability impacts the bulk mechanics.
Although the collagen bundles are localized structural features in
the fibrous network, we expect their mechanistic origin, namely
the sliding and merging events may have a profound impact on
the bulk properties of the collagen matrix. To examine this effect,
we studied the history-dependence of the relaxation dynamics of
the model networks under macroscopic shear deformation. In
particular, we held the matrix at an initial shear strain of 20% for
a dwell time of Td to allow plastic reconfiguration. We then
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Fig. 3 Bulk relaxation kinetics of collagen matrices. a The normalized elastic energy per fiber 〈H〉 over the course of relaxation of a model network.
Black: sum of bending and stretching energy. Red: bending energy. Blue: stretching energy. All three curves are normalized by the total energy per fiber at
t= −20min. The network is sheared to 20% at t= −20min, and released at t= 0. Inset: The network configuration after 20min of relaxation (t= 1200 s).
The fibers are color-coded according to the bending energy per unit length of each fiber Hb, normalized by the ensemble average 〈Hb〉. b Simulated strain
decay kinetics with 20% initial strain and varying dwell times Td= 1, 2, 6, 10, 16, and 20min. The dashed lines are fits to a single exponential. c Experiments
show strain relaxation kinetics ε(t)−ε(∞) depend on the initial strain, and at small initial strains, the relaxation follows a single exponential function. Here ε
(∞) is approximated by the strain measured after 15min of relaxation, Supplementary Fig. 16 for results with extended relaxation time. d Experiments show
strain relaxation kinetics depends on the dwell time Td. Colors of the symbols (blue to green) correspond to the increasing dwell time of 1, 2, 4, 7, 10, 15,
and 20min. Red lines are fit to double-exponential functions ε(t)= a exp(−t/τv) + b exp(−t/τp) + εr. Here τv is independent of dwell time Td, τp, and εr are
allowed to vary with Td. Inset: zoom-in to the initial phase of the relaxation. e The plastic time scale τp as a function of dwell time Tm. f The residual strain εr
as a function of dwell time Td. Error bars in e, f are means and standard deviations from eight different samples
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released the boundary stress and monitored the strain relaxation
as a function of time ε(t).

Once the network is released the shear strain drops from
ε0= 20% to a non-zero value ε(0+) due to purely elastic
relaxation. Because we do not consider viscosity effects in our
model, this initial drop happens instantaneously. In a real
collagen matrix, viscoelasticity due to the collagen-solution
interaction and filament entanglement necessarily exist. However
it is known that the viscoelasticity time scale is below 1min and
much shorter than the plasticity time scale we discuss here35, 36.
Thus we ignore viscoelasticity in our modeling and only focus on
plastic events including sliding and merging.

Interestingly, we find that during the dwell time the stretching
energy decays much faster than the bending energy, implying
transitions from stretching-dominated states to bending-
dominated states through sliding events. After 20 min of dwell
time, the network is dominated by bending energy, and
approaches a finite value asymptotically (Fig. 3a). A snapshot of
the network after 20 min of relaxation suggests a highly
heterogeneous distribution of bending energy after the system is
relaxed plastically (Fig. 3a inset). We find the subsequent decay of
strain follows a single exponential function ε(t)= (ε(0+)−εr)exp
(−t/τp) + εr for t> 0 and that the decay is slower with increasing
dwell time, Td, (Fig. 3b). Because longer dwell time, Td, allows the
network to reduce the number of high-stress bonds through
sliding events, we expect a negative correlation between Td and
1/τp, the rate of plastic relaxation. Indeed, we find that both τp
and the asymptotic residual strain εr increase with the dwell time
(see also Supplementary Figs. 10–12). Together, these model
results predict that the collagen matrix may exhibit history-
dependent strain relaxation, and that the relaxed state is a
permanent reconfiguration of the original matrix.

We have confirmed the above theoretical predictions by
studying the shear strain relaxation kinetics of a collagen matrix
using a parallel plate rheometer. Since both viscoelastic and
plastic dynamics are present, we begin by studying the relaxation
from small initial strains. In this case stress is also small and we
expect few sliding events and mostly viscoelastic relaxation.
Indeed, we find that up to ε0< 5%, the strain kinetics can be well
characterized by a single exponential function with a time scale
τv≈ 30 s, presumably determined by viscoelasticity of the matrix
(Fig. 3c). However, when the initial strain approaches a threshold
(≈10%, Supplementary Fig. 13) of linear elasticity, or beyond, a
single exponential is no longer sufficient. Under such conditions,
we expect the relaxation to be dominated by viscoelasticity at
short time scales and plasticity at longer time scales.

Indeed, as shown in Fig. 3d, when collagen matrices relax from
20% initial strain, the relaxation kinetics fit well with double-
exponential functions ε(t)= a exp(−t/τv) + b exp(−t/τp) + εr. Here
τv= 29.6 s is independent of the dwell time Td (Supplementary
Fig. 14), and matches well with the viscoelastic time scale
obtained from small strain relaxation kinetics in Fig. 3c.
Consistent with our model assumption, τp is well separated from
τv by an order of magnitude. In addition, we have confirmed that
both τp and εr increase monotonically with longer dwell time
Td (Fig. 3e, f), as predicted by the model (see also Supplementary
Figs. 15–17 for additional tests with collagen and fibrin gels).

Cell-induced plastic deformations remodel the ECM micro-
mechanics. After demonstrating the effects of microscopic plas-
ticity on the structural remodeling of collagen ECM at both
cellular and macroscopic scales, we have also examined the
accompanying changes in the ECM mechanical properties. We
first study the micromechanical signatures of collagen bundles
created by cell pairs37. To this end, we have embedded probe

microparticles in collagen matrices together with MDA-MB-231
cells. After more than 3 h of mauration time, we released the cell
traction forces with Cytocytochalasin-D, leaving only the plastic
deformations. Using holographic optical tweezers38, we measured
the directional compliance J(θ) from probe particles within 80 μm
of collagen bundles. Here θ represents the direction along which
small optical forces (~pN) are applied. J(θ) is defined as
JðθÞ ¼ 6πa Δdθ

Fθ
, where a is the particle radius, Δdθ and Fθ are the

particle displacement and optical force in the θ direction
respectively (see also Supplementary Fig. 18). For linear elastic
materials, J(θ) equals to the elastic compliance.

The characteristics of J(θ) show that the presence of collagen
bundles significantly contributes to the micromechanical hetero-
genity in the ECM. Figure 4a shows typical measurements around
a collagen bundle (green line) between two MDA-MB-231 cells
(white outlines). For each of the five probe particles, we measured
the directional compliance at 30° increments in θ, and the
resulted directional compliance J(θ) was fitted with an ellipse
(compliance ellipse) using J as a polar distance. The aspect ratio
of the compliance ellipse quantifies the local mechanical
anisotropy.

To better visualize the spatial pattern of the micromechanics,
in Fig. 4a we overlaid the confocal reflection image with the
measured directional compliance (magenta dots) and their
elliptical fits (red dashed lines). The compliance is scaled linearly
into a closed curve centered around each probe particle (the
scaling factor is indicated by the bottom right circle). We find the
particle on the collagen bundle gives a highly an isotropic local
compliance, with approximately twice more compliance in the
direction perpendicular to the bundle than parallel. This is
expected because collagen bundles consist of aligned fibers whose
bending elasticity is softer compared with stretching. Moving
away from collagen bundle, the micromechanical compliance
becomes increasingly isotropic. This is evident from Fig. 4a, and
is also confirmed by sampling multiple bundles. Figure 4b shows
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Fig. 4 The micromechanics of collagen ECM in the vicinity of cell-induced
collagen bundles after traction forces are released. a The confocal reflection
image and directional compliance given by five probe particles around a
collagen bundle in a typical experiment. The compliance is scaled linearly
into real space such that an isotropic response of 0.5 Pa−1 would be plotted
as a ring with the size of the bottom right circle. Magenta dots:
experimentally measured directional compliance. Red circles: the
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lines: outlines of MDA-MB-231 cells after Cytocytochalasin-D treatment.
Green line: the location of collagen bundle. Scale bar: 50 μm. b The aspect
ratios of the compliance ellipses at varying particle-to-bundle distances d.
Symbols of different colors correspond to results measured around
different bundles. We divide all the data into three groups d< 25 μm,
25≤ d< 50 μm, and 50≤ d< 75 μm. Error bars represent the mean and
standard deviations of each group. ANOVA analysis shows that the aspect
ratios close to the collagen bundles (d< 25 μm) are significantly higher
than the values further away
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the aspect ratios of the compliance ellipses at various particle-to-
bundle distances d. Close to collagen bundles (d< 25 μm), the
aspect ratio is significantly higher than the values measured
further away (25≤ d< 50 μm and 50≤ d< 75 μm) from the
bundles.

Discussion
We have demonstrated that traction forces from cell pairs are
capable of locally remodeling 3D collagen ECM into densified,
aligned fiber bundles. Rather than being small perturbations to
the ECM, as typically assumed for the cell traction forces, fiber
density in the bundle region increases dramatically (by as much
as 150%), which is comparable with previous observations of
ECM remodeling by clusters of cells13, 14. The micromechanics of
the ECM is also significantly modified, with greater mechanical
anisotropy close to the collagen bundles. These results suggest
that collagen ECM is highly susceptible to mechanical remodeling
by the cells.

While the formation of collagen bundles would occur for
reversible elastic deformations, either linear or nonlinear31, we
find that collagen bundles persist even after cell traction forces are
removed. Therefore the collagen bundles are cell-induced per-
manent deformations of the ECM, which is only possible if the
collagen matrix is plastic. To understand the implications of ECM
plasticity, we devised a computational model based on irreversible
sliding and merging of fibers under stress in a model network.
Our model not only reproduces the irreversible structural
remodeling by cell traction forces, but also agrees with bulk
rheological measurements on collagen gels.

While sliding and merging events produce good agreement
with experiment, we could also consider other sources of ECM
plasticity. Each collagen fiber consists of several weakly bound
parallel fibrils. Stretching of fibers causes sliding between fibrils,
which permanently lengthen the fiber. Intrafibrillar sliding has
been shown to contribute the history-dependent elasticity of
collagen gels, particularly when the gels are probed under repe-
ated stress-relaxation cycles39. Although fiber lengthening is likely
to occur in our experiments, it does not explain the densified and
aligned collagen bundles between cells, nor would it lead to
residual strains after bulk shearing. However, the collagen matrix
used in our study is a network of fibers that interact
non-covalently. Weak interactions, such as hydrogen bonds and
electrostatic interactions allow force-dependent unbinding and
rebinding between collagen fibers18, which is similar to the sliding
events we have proposed here. These dynamic bonds have been
shown to contribute to the plasticity of collagen matrix in vitro, as
well as for isolated mouse tissues17. Interestingly, while it was
found that higher strain magnitude leads to faster stress relaxa-
tion in collagen matrix18, we show that the strain relaxation is
slowed down by longer dwell time. This apparent contrast
highlights the complex strain-stress relation of collagen matrices,
a very direct consequence of plasticity.

As the major component of connective tissues, and a semi-
flexible, subisostatic polymer network, the collagen matrix
demonstrates nonlinear elasticity which can be controlled by
external stress or strain27. This mechanical reconfigurability is
further expanded by the stress-activated plasticity reported here.
We expect future studies will take advantage of these effects to
establish collagen matrix as a mechanically programmable
material which has excellent biocompatibility40, 41. The plasticity
of collagen matrix also implies a new mode of 3D cell-cell
interaction in tissues: the collagen bundle from a pair of cells
poses microstructural guidance to nearby cells through contact
guidance42–44; and at the same time creates micromechanical
guidance to nearby cells through durotaxis45, 46. Such interactions

are non-local and long-lasting, and we expect them to have direct
impact on the multicellular dynamics in various physiological
processes such as cancer metastasis, wound healing and embryo
development47.

Methods
Sample preparation and imaging. Cell-embedded collagen gels are prepared by
diluting and neutralizing high concentration type-I collagen solution (10 mg/ml,
Corning) with NaOH, cell suspension, growth medium, and 10X PBS into
1.5 mg/ml. The neutralized solution is immediately placed in a tissue culture
incubator (NuAire) to polymerize at 37 °C for 40 min, then the maturation time
starts to count.

To image the fluorescently labeled MDA-MB-231 cells cultured in collagen gel,
we use a laser point-scanning confocal microscope (Leica SPE) equipped with an
stage-top incubator (ibidi). Both fluorescent and reflection channels are imaged
with either 20X or 40X oil immersion lenses as described previously22. To image
collagen bundles of various maturation times, the samples are placed in the tissue
culture incubator until the time to image. It usually takes less than 10 min to locate
the collagen bundles under the microscope. Therefore there is an added uncertainty
of ~10 min in the maturation times in the plots of Fig. 1.

To release cell traction force, we dilute Cytochalasin-D (Sigma-Aldrich) with
PBS to a 1:1000 ratio and add directly to the 3D culture samples. We allow 2 h to
complete the treatment before washing the sample with growth medium.

Confocal image analysis. All confocal images are analyzed using NIH ImageJ and
homemade Matlab scripts. More detailed procedures are described in Supple-
mentary Methods.

Measurement and fitting of the bulk relaxation kinetics. To measure the bulk
relaxation kinetics of the collagen gel, we prepare the gel between the two parallel
plates of a AR-G2 stress-controlled rheometer (TA Instruments) at 37 °C and
concentration of 1.5 mg/ml. Liquid seal and Peltier chamber are used to ensure the
gelation condition and prevent evaporation. The plates are stainless-steel, and
surface treated with CellTak (Corning) to ensure binding to the collagen. To
measure the dependence of strain relaxation on dwell time, the dwell time starts
from 1min and gradually increases to 20 min for each given sample. The initial
strains are applied by shearing the sample at 1% per second, until reaching the
desired strain magnitudes. For each dwell time, we allow 15min of relaxation
before bringing back the sample to 20% strain. To account for the cumulative effect
of the residual strains, we re-calibrate the system after each relaxation cycle by
setting the previously relaxed configurations as strain zero states. We have also
tested for each dwell time using different samples (Supplementary Fig. 15).

To fit the relaxation kinetics, we use the Matlab nonlinear curve fitting package.
More details are given in Supplementary Methods.

Computation. The total energy is minimized by using a conjugate gradient algo-
rithm. The parameters for the triangular lattice-based model are: bond occupation
probability p= 0.60, network size S= 60 × 60 for cell experiments and S= 40 × 40
for bulk rheology, bending stiffness κ= 10−3 and stretching stiffness k = 1 unless
stated otherwise. The fiber concentration of collagen bundles F is equal to the total
number of bonds in region of bundle (ROB) divided by ROB area. F= 3p/2S, where
S ¼ ffiffiffi

3
p

=4 is the area of an undeformed triangle unit. The relative intensity increase
is defined as ΔF/F= (Fb−F)/F. The network has free boundary conditions for
simulations of cell experiments. The bonds connected to the cell surface are capable
of freely sliding along the cell surface. For bulk rheology, the network has fixed
boundary conditions on the top and bottom and periodic boundary conditions on
the left and right at 20% deformed state. The top boundary condition is changed to
zero-stress after releasing the network. For details of sliding and merging events,
Supplementary Methods. The simulation codes written as MATLAB scripts can be
obtained from the authors upon reasonable request.

Data availability. Confocal images not included in the manuscript can be found at:
https://doi.org/10.6084/m9.figshare.5279956.v1. All other data are available from
the authors upon reasonable request.
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