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DNA methylation at enhancers identifies distinct
breast cancer lineages
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Breast cancers exhibit genome-wide aberrant DNA methylation patterns. To investigate how

these affect the transcriptome and which changes are linked to transformation or progres-

sion, we apply genome-wide expression–methylation quantitative trait loci (emQTL) analysis

between DNA methylation and gene expression. On a whole genome scale, in cis and in trans,

DNA methylation and gene expression have remarkably and reproducibly conserved patterns

of association in three breast cancer cohorts (n= 104, n= 253 and n= 277). The

expression–methylation quantitative trait loci associations form two main clusters; one

relates to tumor infiltrating immune cell signatures and the other to estrogen receptor sig-

naling. In the estrogen related cluster, using ChromHMM segmentation and transcription

factor chromatin immunoprecipitation sequencing data, we identify transcriptional networks

regulated in a cell lineage-specific manner by DNA methylation at enhancers. These networks

are strongly dominated by ERα, FOXA1 or GATA3 and their targets were functionally vali-

dated using knockdown by small interfering RNA or GRO-seq analysis after transcriptional

stimulation with estrogen.
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A lterations in DNA methylation patterns are considered to
be an early event in tumor development1 and have
emerged as a hallmark of many cancer types including

breast cancer2. Aberrant DNA methylation has been frequently
associated with clinical and histopathological features of breast
cancer patients, such as tumor stage, hormone receptor status,
survival time, or somatic mutations, as well as molecular
(PAM50) subtypes3–8. Noteworthy, estrogen receptor (ER)-posi-
tive breast tumors display more pronounced changes in their
DNA methylation landscape compared to adjacent normal tissue
than ER-negative tumors3, 6. However, it is still unclear how such
genome-wide DNA methylation alterations explain breast cancer
heterogeneity.

Transcription factors (TFs) are key proteins involved in the
regulation of gene transcription. They specifically bind to the
DNA at cis-regulatory regions local (promoters) or distal
(enhancers) to the transcription start sites (TSSs)9, 10. Functional
genomics experiments mapping TF binding sites confirmed the
importance of enhancer activity in regulating transcription11, 12.
In breast cancer, ERα13, 14, FOXA113, 15, and GATA316 are three
TFs contributing to the regulation of genes associated with
estrogen dependent tumor growth. A recent unsupervised study
of DNA methylation in human cells revealed that enhancer
regions are differentially methylated in a cell-type-specific man-
ner17. However, how DNA methylation at enhancers and tran-
scription factor binding sites affects breast cancer pathogenesis is
still poorly understood.

Aberrant CpG methylation at cis-regulatory regions-like pro-
moters is often associated with repression of the associated
gene18. However, a large portion of aberrantly methylated CpGs
in breast cancer are located in intergenic regions7. One of our
recent studies demonstrated that methylation of CpGs as far as
100 kb away from the TSS of a gene could be associated with its
expression5. Therefore, CpGs in intergenic or enhancer regions
may play an important role in the development of breast cancers
through the regulation of the expression of distant genes.

We apply for the first time genome-wide expression–methy-
lation quantitative trait loci (emQTL) analysis between DNA
methylation and gene expression, and discover that DNA
methylation at enhancers and ERα, FOXA1, and GATA3 binding
regions is a breast cancer subtype-specific phenotypic feature.
Our results reveal a hitherto unknown connection between the
epigenome, TF binding activity, and gene expression in breast
cancer. Our analysis also highlights the link between tumor-
infiltrating immune cells and the cancer cell epigenome.

Results
Identification and validation of 5meCpG–gene pairs by emQTL.
Significant correlations between the level of DNA methylation at
a CpG site and gene expression were investigated in a breast
cancer discovery cohort with matching genome-wide expression
and DNA methylation data (MicMa, n= 104). For CpGs with
interquartile range >0.1 (n= 189,026) and genes (n= 17,558), all
possible Pearson’s correlations between 5meCpG and gene
expression were tested for non-zero correlation. We identified
1,115,448 significant CpG–gene pairs (Bonferroni corrected
p-value< 0.05), of which 739,608 were validated in an indepen-
dent patient cohort with matching DNA methylation and
expression data (TCGA, n= 253). Of the non-validated 375,840
emQTL pairs in TCGA, 298,214 could not be tested due to either
missing methylation or expression values. Therefore, we found
that 90% of the testable MicMa-emQTLs were validated in
TCGA, which underlined that the observed correlations between
DNA methylation and gene expression were highly conserved
across the two cohorts. The validated associations involved the
expression of 2664 genes and the methylation at 27,561 CpGs. As

our analysis was not restricted to any distance parameter, CpGs
were associated to the expression of genes in cis (same chromo-
some) or in trans (different chromosome). A significant asso-
ciation between methylation and expression (CpG-gene pair) is
hereafter referred to as a expression-methylation Quantitative
Trait Loci (emQTL; see flowchart in Supplementary Fig. 1).

To further confirm the observed associations between DNA
methylation and gene expression, DNA methylation profiles were
generated for a new breast cancer cohort (OSL2, n= 330). This
data set of DNA methylation is available in GEO with accession
number GSE84207. The DNA methylation data was matched
to previously published expression data (GEO accession
number GSE5821519) to obtain 277 samples with matching
DNA methylation and gene expression. We performed the
emQTL analysis ab initio (i.e., tested all possible CpG–gene pairs)
and we rediscovered 95.5% of the total emQTL identified
from the MicMa and TCGA cohorts. The observed associations
(emQTLs) were conserved between three independent breast
cancer cohorts.

Identification of emQTL clusters. To elucidate the biological
relevance of the emQTL, we performed unsupervised clustering of
the Bonferroni corrected p-values of each 5meCpG–gene expres-
sion pairs. Two very strong and distinct bi-clusters (cliques) of
CpGs and genes became apparent: Cluster 1 (3401 CpGs and 160
genes) and Cluster 2 (3601 CpGs and 270 genes) (Fig. 1a).

Gene set enrichment analysis using the Molecular Signatures
Database v4.0 (MSigDB20) indicated that genes in Cluster 1 were
enriched in processes related to the immune system, while genes
in Cluster 2 were associated with estrogen response (Fig. 1b–c).
The high degree of absolute co-methylation and co-expression of
CpGs and genes in Cluster 1 and 2 further highlighted the
common regulatory role shared by the CpG-gene pairs in each
cluster (Fig. 1d).

emQTL-CpGs are enriched at enhancers and TF binding
regions. In order to investigate how these clusters of emQTLs,
with distinct biological functions, occur we further sought for
common transcriptional networks that may explain them.

Functional genomic location of the emQTL-CpGs. First, we
characterized the functional genomic location of CpGs in emQTL
using the ChromHMM segmentation of the human genome in
the breast cancer cell line MCF721. Enrichment in a functional
region was measured as a ratio between the frequency of emQTL-
CpGs found in a specific segment type over the expected
frequency of CpGs from the Illumina HumanMethylation450
array (Fig. 2a) or all hg19-CpGs (Supplementary Fig. 2A). We
found CpGs in emQTLs significantly enriched in predicted
enhancer regions (hypergeometric test p-value< 1 × 10−10). We
investigated whether emQTL-CpGs were enriched at MCF7
super-enhancers22, 23 and found emQTL and Cluster 2 CpGs
significantly enriched at super-enhancers using hypergeometric
test and the Illumina HumanMethylation450 as background
(p-values= 1.26e-20 and 3.31e-11 respectively). Cluster 1-CpGs
were not significantly enriched at super-enhancers. Notably, the
super-enhancer containing the highest number of emQTL-CpGs
encompassed the GATA3 gene and ERα binding regions,
which highlighted the interrelationship between enhancers and
TF-binding activity.

Enhancers are known to carry sequences (motifs) recognized
by cell-type specific TFs10. We therefore sought for motifs
enriched in the vicinity (±200 bp) of emQTL-CpGs. We found
distinct sets of motifs around the CpGs of Cluster 1 versus
Cluster 2 (Supplementary Tables 1 and 2). The most significantly
enriched motifs in Cluster 1 were associated with TFs involved
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in immune cell homeostasis such as RUNX124, FLI125 and
ERG26, 27. While sequences surrounding CpGs of Cluster 2
carried motifs associated with FOXA1 and GATA3, two TFs
playing a key role in breast cancer pathogenesis15, 16.

Enrichment of emQTL-CpGs at TF binding regions. We further
screened experimentally defined TF binding regions using 689
uniformly processed human ChIP-seq data sets from ENCODE28.
We found enrichment of TF-binding regions from blood cells
derived ChIP-seq data sets around the CpGs (±200 bp) defining
Cluster 1. The TFs were involved in immune processes such as
RUNX24 or PU.129. The CpG regions defining Cluster 2

overlapped significantly with FOXA1 and GATA3 binding
regions (ChIP-seq peaks) from breast cancer cell line experiments
(Supplementary Tables 3 and 4). These analyses of CpG regions
recapitulated the gene set enrichment analysis and emphasized
the distinct biological functions of Clusters 1 and 2.

Next, we focused on the TF binding regions obtained from the
MCF7 cell line and mined 71 ChIP-seq experiments from
ENCODE28 and 40 available at GEO retrieved from ReMap30; we
performed enrichment analyses using hypergeometric tests. We
observed that emQTL-CpGs were most strongly enriched at ERα,
FOXA1, and GATA3 binding sites and to a lesser extend at
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Fig. 1 Identification of expression-methylation QTL (emQTL) a Unsupervised clustering of (−log) p-values of the emQTL by Pearson’s correlation and
average linkage revealed two main clusters of CpG-gene pairs. Rows represent CpGs and columns represents genes. Yellow and light yellow spots show
highly significant associations between CpG methylation and gene expression. b Density plot showing the degree of absolute co-expression of genes and
co-methylation of CpGs in Cluster 1 (red) and Cluster 2 (blue). c, d Gene set enrichment analysis in Cluster 1 (c, n= 160) and Cluster 2 (d, n= 270) using
MSigDB (H and C5 databases). The height of the bars represents the level of enrichment measured as a ratio between the number of genes overlapping an
MSigDB H or C5 gene set over the expected frequency if such overlaps were to occur at random
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GREB1, FOS, DPF2, AHR, and ZNF217-binding regions
(Supplementary Fig. 2B and Supplementary Data 1). To further
assess the enrichment of Cluster 2 CpGs at TF binding regions,
we performed a permutation test (1000 permutations), in which
we randomly selected 3601 CpGs from the 450k array (number of
CpGs in Cluster 2) and calculated how many were in either
ERα31, GATA316, or FOXA115, 16 binding regions. None of the
randomly selected combinations of CpGs showed a similar
enrichment as the CpGs in Cluster 2 (p-value < 0.001).

We further investigated in which ChromHMM genomic
annotations Cluster 2 CpGs at FOXA115, 16, ERα31, GATA316,
and CTCF (as control) binding regions were located. The most
pronounced enrichment in TF binding regions was for CpGs in
Cluster 2 at ChromHMM predicted enhancers when compared to
the distribution of CpGs on the HumanMethylation450 array
(Fig. 2b) or all CpGs (hg19; Supplementary Fig. 2C). The hg19
locations of the Cluster 2 CpGs, their MCF7 ChromHMM
segmentation annotations, and TF binding regions are provided
in Supplementary Data 2.

All together, these results clearly show that CpGs in Cluster 2
are mainly found at enhancers containing FOXA1, GATA3, and
ERα-binding regions.

DNA methylation of CpGs in the estrogen-signaling emQTL.
Having found that genes in Cluster 2 were associated with
estrogen signaling, and that CpGs in Cluster 2 were located in
binding regions of ERα, FOXA1, and GATA3, we further inves-
tigated the level of DNA methylation of these CpGs in regard to
histopathological features and molecular classification of breast
cancer patients. We performed unsupervised clustering (Fig. 3a)
based on the level of DNA methylation of CpGs in Cluster 2 (n=
3601) of breast tumor samples from TCGA (n= 609). The level of
CpG methylation in Cluster 2 clearly distinguished between ER
positive and negative breast cancers (Fig. 3a). In addition, CpGs
were clearly separated in two sub-clusters: CpG-Cluster 2A and
CpG-Cluster 2B. CpGs in Cluster 2A were mainly found in
binding regions of ERα, FOXA1, and GATA3, and showed lower
methylation in ER positive compared to ER-negative breast
tumors. CpGs in Cluster 2B showed an inverse pattern of DNA
methylation, i.e., higher methylation in ER positive compared to
ER-negative tumors (Fig. 3a).

To further validate whether the specific DNA methylation
patterns in Cluster 2 were distinguishing patients according to ER
status and CpG locations according to TF binding regions, we
performed unsupervised clustering of the CpGs in Cluster 2 of
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Fig. 2 Genomic location of emQTL-CpGs according to ChromHMM and TF binding regions a Bar plot showing the enrichment of emQTL, Cluster 1 and
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breast tumor samples from OSL2 (272 samples; 3527 CpGs). The
results from the TCGA were recapitulated; the subset of CpGs in
Cluster 2 and in binding regions of ERα, FOXA1, and GATA3
had clear differences in methylation according to ER status,
and allowed separation of patients with ER positive versus
ER-negative disease (Fig. 3b).

We further compared the level of DNA methylation in tumor
tissues to adjacent normal tissue for CpGs in both Cluster 2A and
Cluster 2B (Figs. 3c-d). We found that compared to normal, CpGs
in Cluster 2A were specifically hypomethylated in ER positive
tumors (Fig. 3c, Kruskal–Wallis test, p-value= 1.39 × 10−70), while
CpGs in Cluster 2B were hypermethylated in ER positive tumors
(Fig. 3d, Kruskal–Wallis test, p-value= 3.21 × 10−66). These results
suggest that the specific methylation patterns of CpGs in Cluster 2
are features acquired during carcinogenesis.

Expression of genes in the estrogen-signaling emQTL cluster.
The unsupervised clustering of expression of genes in Cluster 2
allowed almost perfect separation of ER positive samples and
ER-negative samples in two patient cohorts (OSL2 and TCGA;
Fig. 4a, b, respectively). We identified two gene sub-clusters with
differential expression according to ER status (Gene-Cluster 2A
and Gene-Cluster 2B).

In order to identify the epigenetic regulation of expression
strictly in cis, we investigated to which extent the genes in Cluster 2
were located nearby (±10 kb window) with CpGs of the same
Cluster. We found that 32% of the genes in Cluster 2 were paired
locally (i.e. were within 10 kb window) with at least one CpG of the
Cluster, suggesting a local regulation of Cluster 2 genes through
DNA methylation of enhancers carrying TF binding regions for
FOXA1, GATA3 and ERα. The CpGs with low methylation in ER
positive disease (Cluster 2A-CpGs) were mainly paired locally with
genes with high expression in ER positive patients (Gene-Cluster
2A; Fig. 4c, Kruskal-Wallis test, p-value= 1.88 × 10−62). Vice versa,
the CpGs with low methylation in ER-negative disease (Cluster 2B-
CpGs) were mainly paired locally with genes with high expression
in ER-negative patients (Gene-Cluster 2B; Fig. 4d, Kruskal-Wallis
test, p-value= 1.33 × 10−49).

DNA methylation at ERα, FOXA1 and GATA3 binding
regions. We found CpGs in Cluster 2 significantly enriched at
binding regions for ERα, FOXA1 or GATA3, we investigated the
interplay between TF binding, DNA methylation, and expression
of the target genes of these TFs. The DNA methylation of ERα,
FOXA1, and GATA3 binding regions was lower in ER
positive tumors (Fig. 5a-c, Kruskal–Wallis test, p-value equal to
6.64 × 10−70, 1.55 × 10−69 and 3.06 × 10−69, respectively). As
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Fig. 5 DNA methylation of ERα, FOXA1 and GATA3 binding regions and expression of their target genes in Cluster 2. a–c Average DNA methylation of
CpGs in Cluster 2 and ERα a, FOXA1 b and GATA3 c binding regions defined by ChiP-seq peaks. Boxplots represent the average DNA methylation of these
CpGs in ER positive (blue, n= 418), ER-negative tumors (red, n= 124) and adjacent normal tissue (green, n= 97). The average methylation of the Cluster2-
CpGs in a TF binding site was significantly lower in ER positive patients compared to ER-negative and adjacent normal tissue. d–f Average gene expression
of TF target genes in Cluster 2. d Estrogen (GRO-seq), e FOXA1 (siRNA) and f GATA3 (siRNA). Boxplots represent the average expression of the TF target
genes in ER positive tumors (blue, n= 406), ER-negative tumors (red, n= 117) and adjacent normal tissue (green, n= 61). The average expression was
significantly higher in ER positive tumors compared to ER-negative and adjacent normal tissue. Kruskal–Wallis test p-values are denoted
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expected, the level of methylation of these CpGs was also lower in
Luminal A and Luminal B versus Normal-like and Basal-like
breast cancer subtypes (Supplementary Fig. 3A–C). To investigate
whether low methylation of CpGs in TF binding regions was a
cancer specific feature of ER positive breast cancer, we compared
the tumor methylation levels to those of non-cancerous tissues.
We found the level of DNA methylation at TF binding regions
systematically lower in ER positive tumors when compared to
adjacent normal tissue (Fig. 5a–c). As adjacent normal tissue to

tumors does not always reflect the physiologically normal breast32

we compared the methylation levels between tumors and healthy
breast tissue from reduction mammoplasty (GSE601855). We
found that 82.5, 84.7, and 87.9% of the CpGs in Cluster 2 and in
binding regions of ERα, FOXA1, and GATA3, respectively, were
significantly demethylated in ER positive disease when compared
to normal tissue (difference in median methylation at least 0.1
(10%) and nominal p-value< 0.05; examples in Supplementary
Fig. 4A–C).
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Fig. 6 Enhancer-promoter interaction and impact of TF binding on target gene expression. a Bar plot showing the enrichment of emQTL in ChIA-PET Pol2
loops for Cluster 1, Cluster 2, Cluster 2A and Cluster 2B. The height of the bars represents the level of enrichment measured as a ratio between the
frequencies of emQTL (CpG–Gene pairs) found in the head and tail of Pol2 loops, over the expected frequency if such overlaps were to occur at random.
Statistically significant enrichments (hypergeometric test, p-value< 0.05) are marked with an asterisk. b Example of overlap of emQTL (red arcs) and
ChIA-PET Pol2 loops (blue arcs). Also shown are the location of ERα, FOXA1 and GATA3 binding regions. c, d dCas9 and ERα ChIP were performed in
control (−gRNA and dCas9) or transfected MCF7 cells (gRNA E5 and dCas9), to assess the binding of each protein at enhancer or promoter. Statistically
significant differences (t-test; two tails, p-value< 0.05) are marked with an asterisk. The data are presented as mean of three of independent replicates± s.d.
e mRNA levels of PGR were measured in control (-gRNA and dCas9) or transfected MCF7 cells (gRNA E5 and dCas9) by real-time PCR. Statistically
significant differences (t-test; two tails, p-value< 0.05) are marked with an asterisk. The data are the mean of three of independent replicates± s.d

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00510-x ARTICLE

NATURE COMMUNICATIONS |8:  1379 |DOI: 10.1038/s41467-017-00510-x |www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Functional identification of TF target genes. Targets of FOXA1
and GATA3 were experimentally identified following knockdown
of FOXA1 or GATA3 by siRNA in MCF7 cells. Following RNA
sequencing of control and knockdown cells, differentially
expressed genes were considered either FOXA1 or GATA3 tar-
gets. ERα target genes were obtained by analysis of Global Run-
On sequencing (GRO-seq33), which is a method to identify genes
that are being transcribed in MCF7 cells exposed or not to
estrogen. Differentially expressed nascent transcripts were
assigned target of estrogen and ERα. This set of experiments
showed that 67% of the genes in Cluster 2 were targets of ERα,
FOXA1, or GATA3. These target genes showed significantly
higher expression in ER positive tumors (Fig. 5d–f,
Kruskal–Wallis test, p-value equal to 2.64 × 10−54, 9.81 × 10−59

and 9.26 × 10−53, respectively). Expression of these target genes
was also higher in Luminal A and Luminal B versus Normal-like
and Basal-like breast cancer subtypes (Supplementary Fig. 5A–C).
We experimentally demonstrated that a large proportion of the
genes in Cluster 2 were targets of ERα, FOXA1, or GATA3
confirming the strong link between Cluster 2 and estrogen
signaling.

Functional validation of cis emQTL in Pol2 loop. To further
assess the link between DNA methylation at enhancers and the
expression of target genes, we used ChIA-PET Pol2 data sets,
which enable us to identify experimentally defined long-range
chromatin interactions genome-wide through Pol2 binding. We

observed that Cluster 2A-CpGs (CpG in ERα, FOXA1 or GATA3
binding regions) in emQTL with Cluster 2A-genes (TF target
genes) were significantly enriched at Pol2-ChIA-PET loops
(Hypergeometric test, p-value< 0.05; Fig. 6a). This provided
further evidence for a functional regulation of the expression of
the target genes through DNA mehylation of enhancers con-
taining TF binding regions. Overlap between a ChiA-PET Pol2
loop and an emQTL involving a CpG at enhancer and PGR
expression is shown in Fig. 6b.

We further experimentally assessed whether ERα binding at
the enhancer identified in the 3′UTR region of PGR was
functionally involved in the regulation of PGR expression. In
MCF7 breast cancer cell line, we inhibited the binding of ERα
through the simultaneous expression of dCas9 and a gRNA
specifically recognizing PGR enhancer. First, we validated the
specificity of the gRNA by analyzing the binding of dCas9 by
ChIP-PCR at the enhancer (Fig. 6c). The results showed that
dCas9 specifically bind at the enhancer and not at the PGR
promoter. The binding of dCas9 at the targeted enhancer was
associated with a significant reduction of ERα binding (10%
versus control, t-test, p-value< 0.05; Fig. 6d) and also with a
significant reduction of PGR mRNA expression (7% versus
control, t-test, p-value< 0.05; Fig. 6e).

We identified an overlap between Pol2 loops and in cis Cluster
2A-emQTL, and validated the impact on gene expression of TF
binding at distal enhancer through an experimental approach
using dCas9.
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Fig. 7 Circos plots showing the genomic location of all CpGs in emQTL with ESR1, FOXA1 and GATA3. Circos plot representing all associations between
CpGs and ESR1 (a, d), FOXA1 (b, e), and GATA3 (c, f). Red lines represent negative associations a–c and blue lines represent positive correlations d–f. The
outer ring indicates whether a CpGs is located in an enhancer determined by MCF7 ChromHMM annotation and the inner ring whether it is located in a
binding region of the respective TF determined by ChIP-seq peaks
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cis and trans emQTL of ERα, FOXA1 and GATA3 expression.
As stated above, one third of the genes in Cluster 2 were locally
paired with the DNA methylation of a CpG in cis. Indeed,
emQTL analysis identified CpGs in promoters (as predicted by
ChromHMM) whose DNA methylation may regulate proximal
genes. Prime examples are ESR1, FOXA1, and GATA3 themselves,
whose expressions were significantly associated (Pearson corre-
lation) with the DNA methylation of CpGs in their promoters
(Supplementary Fig. 6; ESR1: cg00601836, r= −0.638; FOXA1:
cg27143688, r= −0.635; GATA3: cg04213746, r= −0.638).
The DNA methylation of these CpGs showed stronger
inverse correlation with the respective gene expression
than conventional near-to-TSS regions (± 3 kb) (ESR1 TSS,
r= −0.517; FOXA1 TSS, r= −0.300; GATA3 TSS, r= −0.129).
This suggests that emQTL could successfully identify the most
prominent in cis-regulatory regions whose DNA methylation
impact on gene expression.

However, the expression of these three TFs was also in emQTL
with CpGs in trans. In order to investigate the biological
relevance of in trans emQTL we further investigated the genomic
location of the CpGs in emQTL with these TFs. We found that
the CpGs in inverse correlation (negative emQTL) with the
expression of ESR1, FOXA1, or GATA3 were enriched at MCF7
enhancers and at the respective TF binding region (Fig. 7a–c; red
circos plots). Conversely, CpG in positive emQTL with ESR1,
FOXA1, or GATA3 were mainly found in heterochromatic
regions (Fig. 7d–f; blue circos plots). We have thus revealed a
pathway specific inverse relationship between the degree of
expression of a TF in breast cancer and the level of methylation of
its binding regions genome-wide as an important phenotypic
feature distinguishing different breast cancer lineages.

Cluster 1 reflects tumor infiltration by lymphocytes. Unlike
genes in Cluster 2, genes in Cluster 1 did not segregate breast
cancer patients according to PAM50 subtype or ER status. The
gene set enrichment analysis (Fig. 1b), the motif (Supplementary
Table 1) and the ENCODE ChIP-seq (Supplementary Table 3)
enrichment analyses of Cluster 1 clearly indicated that genes and

CpGs in Cluster 1 were associated with immune processes. We
further investigated the possible role of immune cell infiltration in
the formation of Cluster 1. We used the algorithm Nanodissect34

to quantify the level of lymphocyte infiltration in TCGA and
OSL2 breast cancer samples based on gene expression data.
Unsupervised clustering based on the expression of genes in
Cluster 1 segregated the patients according to the level of lym-
phocytes infiltration in the tumor (Fig. 8a: TCGA; 8B: OSL2). To
validate this in silico observation, we inspected paraffin embed-
ded tumor tissue of our discovery cohort (MicMa) and scored
68 samples for tumor inflammation based on the quantity of
infiltrating immune cells. We found that the expression of the
genes in Cluster 1 was highly correlated with the tumor inflam-
mation score (Kruskal-Wallis test, p-value= 0.000182; Fig. 8c).

We further characterized the CpGs in Cluster 1, and found
either positive (CpG-Cluster 1B) or negative (CpG-Custer 1A)
correlations to the expression of genes in Cluster 1 (Supplemen-
tary Fig. 7). Cluster 1B-CpGs were often found at ERα, FOXA1,
and GATA3 binding regions, which associated with an overall
enrichment of CpGs in Cluster 1 at these three TFs binding
regions. This enrichment was lower than the one observed in
Cluster 2 (Supplementary Fig. 8 and Supplementary Fig. 2B).
Average DNA methylation in Cluster 1A and Cluster 1B was
highly dependent of lymphocyte infiltration. DNA methylation in
Cluster 1A decreased with increasing lymphocyte infiltration,
while in Cluster 1B DNA methylation increased with the level of
lymphocyte infiltration (Supplementary Fig. 9A, B). We further
investigated whether the differential levels of methylation in
Cluster 1A and Cluster 1B were related to intratumor hetero-
geneity and gradual mixture of various cell types in the biopsies.
Tumor purity was estimated using InfiniumPurify35 and 450k
methylation data. We found that tumor samples with higher
levels of lymphocyte infiltration (Nanodissect) also showed
significantly lower tumor purity (Supplementary Fig. 9C). This
confirmed that samples with high lymphocyte infiltration, also
showed lower percentage of cancer cells. Therefore, DNA
methylation signals measured in tumors with high infiltration
(low purity) is more susceptible to be influenced by a mixture of

ER
PR
Lympho

–5

0

5

Lympho

Moderate
High
Severe

ER/PR
Negative
Positive

ER
Lympho

−4

−2

0

2

4

Moderate

Inflammation

High
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Expression of genes in cluster 1
(n = 160 )

p = 0.000182

Low

A
ve

ra
ge

 e
xp

re
ss

io
n

Low Severe

a b

c

Fig. 8 Cluster 1 highlights a link between DNA methylation and lymphocyte infiltration. Unsupervised clustering of expression levels of the 160 genes in
Cluster 1 from a the TCGA cohort (N= 528) and b the OSL2 cohort (N= 272). Annotations of the column indicate the level of lymphocytes infiltration,
ER and PR status. Levels of lymphocyte infiltration were calculated from a set of genes expressed by lymphocyte characterized by the algorithm
Nanodissect34. c 68 tumor tissue samples were scored as low (n= 30), moderate (n= 22), high (n= 13) or severe (n= 3) inflammation by a pathologist
based on the level of immune cell infiltration found in each tumor. Boxplot representing average expression of genes in Cluster 1 (n= 160) according to
inflammation score. Kruskal–Wallis test p-value is denoted

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00510-x ARTICLE

NATURE COMMUNICATIONS |8:  1379 |DOI: 10.1038/s41467-017-00510-x |www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


cancer cells, adjacent normal tissue, stroma, and infiltrating
immune cells.

Cluster1-CpG DNA methylation of breast cancer cell lines
(GSE94943) resembled the methylation of tumors with low
infiltration. Tumors with higher lymphocyte infiltration showed
intermediate methylation levels between breast cancer cell lines
and immune cells. This holds true for both Cluster 1A and
Cluster 1B and supports that the observed methylation level in
tumors with higher infiltration may be attributed to higher
numbers of immune cells. In fact, T cells (GSE7914436), B cells
(GSE6845637), leukocytes (GSE6927038), and monocytes
(GSE6845637) all show low methylation of CpGs in Cluster 1A
and high DNA methylation of CpGs in Cluster 1B, oppositely of
to the methylation level of breast cancer cell lines (Supplementary
Fig. 9A, B).

Subtype-specific emQTL analysis. From the data presented
above it is evident that the emQTLs in Cluster 2 (the estrogen
signaling cluster) are at large a result of the reciprocal methyla-
tion/expression pattern in ER positive (Luminal) compared to
ER-negative (Basal) tumors. To confirm this we performed the
emQTL analysis for each PAM50 subtype separately. To be able
to retrieve sufficient samples with matching DNA methylation
and expression data for each subtypes, we used RNA-seq data
from the TCGA cohort (Luminal A: n= 236; Luminal B: n= 137;
Her2 enriched: n= 49; Basal-like: n= 92; Normal-like: n= 44).
We identified more associations for Luminal A (4,689,557),
Luminal B (1,647,259), and Basal-like (2,036,164) subtypes, than
for Her2 enriched (21,161) and Normal-like (178) subtypes.
Performing the analysis within each PAM50 subtype, we were
able to identify approximately 50% of the Cluster 2-emQTL genes
in Luminal A and Luminal B and less than 6% in the other
subtypes. Cluster 1 was on the other hand rediscovered in all
subtypes (except Normal-like), identifying more than 95% of the
Cluster 1-genes in Luminal A, Luminal B, and Basal-like; and
60% in Her2 enriched. These data are shown in Supplementary
Table 5.

Discussion
Through identification of all possible Pearson’s correlations
between DNA methylation and expression in breast cancer,
without restriction on distance or chromosome location, we
identified two very distinct key gene regulatory networks known
to be involved in breast cancer pathogenesis. The first gene reg-
ulatory network was wired by ERα, FOXA1, and GATA3 through
an intricate relationship between DNA methylation of their
binding regions at enhancers and the expression of their target
genes. The second gene regulatory network was related to
immune infiltration. When performing emQTL analysis in a
subtype-specific manner we identified Cluster 1 within each
subtype, however Cluster 2 was only fully discovered when all
subtypes were included. These observations are in line with the
fact that Cluster 1 did not recapitulate the PAM50 classification
and is related to immune infiltration and intratumoral hetero-
geneity. Conversely, in Cluster 2, the intertumoral heterogeneity
between ER positive and ER-negative tumors is the cause for the
observed associations between DNA methylation and gene
expression. Indeed, Cluster 2 was more strongly associated with
PAM50 classification and pinpoints enhancers differentially
methylated between ER-positive and ER-negative tumors, con-
taining ERα, GATA3, and FOXA1 binding regions.

A recent study showed that DNA methylation at enhancers
and ERα binding sites may participate in ER positive breast
cancer resistance to anti-estrogen treatment39, and in addition,
ERα binding regions have been suggested to be altered by DNA

methylation with effects on gene expression40. These studies
underline the importance of DNA methylation at enhancers and
TF binding regions in breast cancer pathogenesis. Our study
clearly identified regulatory regions whose methylation status
associate with different breast cancer lineages. Cluster 2A con-
tained CpGs in binding regions for ERα, FOXA1, and GATA3
with significantly lower DNA methylation in ER positive com-
pared to ER-negative breast cancer. This may associate with the
activity of these specific TFs and estrogen dependent tumor
growth. We also demonstrated that enhancers bearing binding
regions of ERα, FOXA1, and GATA3 were demethylated in ER
positive tumors when compared to adjacent normal tissue and
healthy breast tissue (reduction mammoplasty). The epigenetic
regulation of these regions may be an early event during normal
breast cell transformation into estrogen dependent tumor cells or
reflect the DNA methylation of the cell from which the tumor
originate41.

emQTL-CpGs were significantly enriched in distal regulatory
regions often overlapping with ChromHMM-MCF7 enhancers
and super-enhancers22, 23. These enhancers may be representative
of ER positive breast cancer enhancers; however tumors may
harbor very different biology. As CpGs in Cluster 2A are enriched
in MCF7 enhancers, super-enhancers and ERα, FOXA1, and
GATA3 binding regions, they might represent conserved distal
regulatory regions across ER positive disease. In addition to being
putative fundamental drivers of ER positive carcinogenesis, DNA
methylation levels at key TF binding sites or enhancers constitute
interesting regions for further investigation as predictive and
prognostic biomarkers in breast cancer. The role of genetic
polymorphisms (SNPs) in further modulating emQTLs and thus
contributing to susceptibility and cancer progression is of utmost
interest for further studies.

The CpGs in binding regions of ERα, FOXA1 and GATA3
were grouped in CpG-Cluster 2A, while the CpGs in Cluster 2B
showed an inverse pattern in DNA methylation, i.e., low DNA
methylation in ER-negative compared to ER positive patients.
Therefore, the regions associated with CpG-Cluster 2B may be
bound by other TFs important for ER-negative breast cancer. The
lack of publically available ChIP-seq data mapping genome-wide
the regions bound by ER-negative TFs hindered our eventual
discovery of ER-negative TF regions affected by DNA methyla-
tion. Our preliminary search for TF motifs in the regions sur-
rounding CpGs in Cluster 2B (±200 bp) indicated that TFs part of
the Ets family may bind in these genomic regions and may be
drivers of this breast cancer lineage.

Our approach of integrating genome-wide DNA methylation
and expression data pinpoints important regulatory regions in
breast cancer. The same approach may be applied to other phy-
siological or pathological processes to identify epigenetically
regulated enhancers, TF binding regions and can promote the
discovery of new TFs associated with the process of interest.

A link between inflammation and epigenetic changes in tumor
cells has recently been suggested; aberrant DNA methylation
can occur in cells exposed to inflammation, and the genes
epigenetically deregulated correlate with risk of disease
development42–44. Therefore, different types of activated immune
cells infiltrating breast tissues may drive specific epigenetic
modifications, which in turn will play a role in cancer cell
homeostasis. We found that the expression of the genes and the
methylation of CpGs of Cluster 1 correlated with the level of
lymphocyte infiltration in the tumor. Infiltration of immune cells
has been associated with different prognosis and response to
treatment independently of breast cancer subtypes45, 46. Our
emQTL analysis represents an interesting approach to identify
how the inflammatory tumor environment can affect the epi-
genome of the breast tumor cells. A more detailed analysis of the

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00510-x

10 NATURE COMMUNICATIONS | 8:  1379 |DOI: 10.1038/s41467-017-00510-x |www.nature.com/naturecommunications

www.nature.com/naturecommunications


DNA methylation affected by lymphocyte infiltration in Cluster 1
is an interesting avenue to explore the crosstalk between immune
and tumor cells via the epigenome.

Through genome-wide integration of DNA methylation and
gene expression data, our emQTL analysis successfully identified
two gene regulatory networks altered by DNA methylation. The
level of methylation at enhancers with transcription factor
binding regions for ERα, FOXA1 and GATA3 appeared central in
the regulation of TF target genes involved in tumor response to
estrogen. Our study highlights the role of DNA methylation at
these regulatory regions in giving rise to different breast cancer
phenotypes.

Methods
Patient material. Molecular data from two patient cohorts were publicly available
and used in this study. The MicMa breast cancer cohort was collected in Oslo,
Norway and has been previously described47. Informed consent has been obtained
from all participants and the study was approved by the local ethical committee (S-
97103). The DNA methylation data from this cohort was generated using the
Illumina HumanMethylation450 as previously described5, and is available in GEO
with accession number GSE60185. The gene expression data was generated using
Agilent whole genome 4 × 44 K oligo array as previously described48, and is
available in GEO with accession number GSE19783.

The breast cancer cohort of TCGA has been described previously49, and the
DNA methylation (level 3) and gene expression data (level 3) were downloaded
from the TCGA Data Portal (https://tcga-data.nci.nih.gov). For both data types,
probes with more than 50% missing values were removed, and further missing
values were imputed using the function pamr.knnimpute (R package pamr) with
k= 10.

The OSL2 breast cancer cohort19 is a consecutive study collecting material from
breast cancer patients with primary operable disease in several hospitals in south
eastern Norway. Inclusion of patients started in 2006 and is still on-going. The
study was approved by the Norwegian Regional Committee for Medical Research
Ethics (approval number 1.2006.1607, amendment 1.2007.1125), and patients have
given written consent for the use of material for research purposes. All
experimental methods performed are in compliance with the Helsinki Declaration.
Tumor tissue was cut into pieces and mixed before distribution to RNA and DNA
extraction. Following this procedure, RNA and DNA originate from the same
tissue composition. DNA from tumor tissue was isolated using the Maxwell ® 16
(Promega) instrument and the Maxwell® 16 tissue DNA Purification Kit
(Promega). The DNA was eluted in 200–600 µl TE buffer (pH 8.5) and stored at
−20 C. The mRNA expression data and PAM50 classification from the OSL2
cohort are available in GEO with accession number GSE5821519.

DNA methylation analysis. The DNA methylation levels of more than 450,000
CpG sites were interrogated for 330 patient tumors from the OSL2 cohort using
Illumina Infinium HumanMethylation450 microarray as previously described5, 50.
Preprocessing and normalization involved steps of probe filtering, color bias cor-
rection, background subtraction and subset quantile normalization as previously
described. The DNA methylation data (both raw data and preprocessed data) is
available in the GEO database as a Series record with accession number GSE84207.

Statistical and bioinformatic analyses. All analyses were performed in the R
software51 unless otherwise specified.

Genome-wide correlation analysis. Correlation between the level of DNA
methylation of single CpGs and gene expressions was tested assuming as null
hypothesis zero correlation against non-zero correlation, using the Pearson cor-
relation statistics (function eMap1, R package eMap)52. 189,026 CpGs with
interquartile range of methylation values above 0.1, were included in the analysis.
In the discovery cohort (MicMa) the correlation of the DNA methylation of these
CpGs was tested for all gene expressions (17,558), resulting in more than three
billion tests. An association was considered significant if a Bonferroni corrected p-
value was below 0.05 (nominal p-value < 1.51e−11). Validation was performed by
reanalyzing the significant associations from the discovery cohort in the validation
cohort (TCGA); associations were confirmed when the Bonferroni corrected
p-value was below 0.05 (nominal p-value < 6.12e−8). Only confirmed associations
were included in further analyses.

Hierarchical clustering of emQTL. Hierarchical clustering was performed on the
significant p-values from the genome-wide correlation analysis. Genes and CpGs
with at least one significant association were included in the analysis. The CpG-
CpG distance matrix and gene-gene distance matrix were computed using Pearson
correlation (function cor) and the clustering was performed with average linkage
(function hclust).

Hierarchical clustering of methylation and gene expression. Hierarchical
clustering of CpG DNA methylation or gene expression was performed using the R
package pheatmap53 with Euclidean distance and average linkage.

Circos plots. Plots to visualize epigenomic connections were generated using
Circos version 0.67-754.

Motif enrichment analysis. TF motif enrichment analysis was performed using
the findMotifsGenome.pl script from HOMER V4.7.2 (http://homer.salk.edu/
homer/chipseq/) with default parameters55. Motif enrichment analysis was per-
formed ± 200 bp around CpGs.

ChIP-seq peaks and ChIA-PET loops enrichment analysis. We obtained the
ChIP-seq peak regions in the narrowPeak format for the 689 uniformly processed
ENCODE ChIP-seq experiments from the UCSC genome browser at http://
hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/
wgEncodeAwgTfbsUniform/ (as of April 12th 2013). The enrichment between
regions surrounding (± 200 bp) CpGs in Cluster 1 or Cluster 2 and ChIP-seq peak
regions for each experiment was computed using the mergePeaks tool from
HOMER. For the specific analyses of MCF7 TF ChIP-seq data sets, we retrieved
hg19 ENCODE ChIP-seq peak regions in the bed narrowPeak format from the
ENCODE data portal (https://www.encodeproject.org) and ChIP-seq peak regions
from GEO from the ReMap catalog (http://tagc.univ-mrs.fr/remap/30). Overlaps
between CpGs in emQTL, Cluster 1, and Cluster 2 and ChIP-seq peak data sets
were obtained using the bedr R package v.1.0.3 (https://CRAN.R-project.org/
package=bedr). We assessed the enrichment using the hypergeometric tests
(phyper R function) with all Illumina Infinium HumanMethylation450 BeadChip
CpGs as background (Supplementary Data 1). Supplementary Fig. 2B was con-
structed using data sets showing a hypergeometric log10 p-value < −100 with the
Intervene tool56 to obtain a SVG figure further edited for colors using inkscape
(https://inkscape.org/en/). We retrieved ChIA-PET pol2 loops in the MCF7 cell
lines from ENCODE57, an emQTL (CpG-Gene pair) was considered to be in a
ChIA-PET loop if the CpG and the TSS of the gene were in corresponding genomic
interval defining Pol2 loops. Enrichment was calculated using the hypergeometric
tests (phyper R function) with all Illumina Infinium HumanMethylation450
BeadChip CpGs as background.

ChIP-seq data reprocessing and analysis. ChIP-seq data were acquired from
publicly available sources. The accession numbers are as follow: ChIP-seq of ESR1
(GSM798423, GSM798424, GSM798425), FOXA1 (GSM986065 and carroll-lab.
org.uk/FreshFiles/Data/Data_Sheet_3/MCF7_FOXA1%20binding.bed), GATA3
(GSM986068, GSM986070, GSM986072). If already aligned bed files and/or called
peaks using MACS were not available: data were reprocessed. Raw reads were
aligned to human reference genome (hg19) with Novoalign v2.08.02 default
parameters (http://www.novocraft.com/products/novoalign/). Reads with quality
≤ 20 were considered as low quality and excluded from further analyses. Peaks
associated with a specific TF were identified versus respective input background
data set using MACS 1.4.1 20110622 and default parameters58. In further analysis a
CpG was considered to be in a TF binding regions if it was found in any of the
peaks associated with the ChIP-seq of this TF.

Genomic segmentation and annotation. The ChromHMM segmentation of the
MCF7 genome was obtained from Taberlay et al.21. Based on ChIP-seq data of key
histone modifications (H3K4me1, H3K27ac, H3K4me3, H3K27me3) and reg-
ulatory factors (CTCF, RNAPol II), a multivariate hidden Markov model annotate
the MCF7 genome into nine distinct chromatin states: heterochromatin, repressed,
transcribed, enhancers, enhancers + CTCF, CTCF, promoters + CTCF, promoters
and promoter_poised. However, in downstream analysis some annotations were
collapsed into one as follow: Enhancer = ‘Enhancer’ and ‘Enhancer + CTCF’ and
Promoter= ‘Promoter’, ‘Promoter + CTCF’ and ‘Poised Promoter’.

Gene set enrichment analysis. Gene set enrichment analysis was performed using
the Molecular Signatures Database v4.0 (MSigDB;20) H and C5 collections.
Enrichment was assessed by hypergeometric testing as implemented in the R stats
package.

MCF7 culture. The breast cancer cell line MCF7 was obtained from American
Type Culture Collection (ATCC, Manassas, VA). The cells were plated and grown
for 24 h in DMEM containing phenol red and supplemented with 10% serum, 2
mM L-glutamine, 50 U/ml penicillin and 50 μg/ml streptomycin (all from Life
Technologies GmbH). For hormone deprivation experiments, cells were grown for
three days in DMEM without phenol red (Life Technologies GmbH) and sup-
plemented with 5% charcoal stripped heat-inactivated FBS (HyClone), 2 mM l-
glutamine, 50 U/ml penicillin and 50 μg/ml streptomycin. At day three, cells were
stimulated with vehicle (ethanol) or 100 nM estradiol (Sigma–Aldrich).
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Gro-seq analysis. Global run-on and library preparation for sequencing was
performed as previously described in59 with minor modifications. Nuclei isolation
was performed 40 min after stimulation and 5 × 106 nuclei were used for each run-
on reaction, 2 biological replicates were produced for both vehicle and estrogen
treatments. Br-UTP was incorporated into on-going transcription by run-on
reaction which was performed at 30 degree for 5 min. Total RNA was extracted
with TRIzol Reagent (Life Technologies) and fragmented with RNA Fragmentation
Reagent (Life Technologies). Fragmented RNA was purified with P-30 column
(Bio-Rad, Hercules, CA, USA), which was followed by T4 polynucleotide kinase
(PNK; New England Biolabs) treatment to dephosphorylate the 3′ end of RNA
fragments. Br-UTP labeled RNA was enriched twice with anti-BrdU beads (Santa
Cruz Biotech) and precipitated overnight. PolyA tailing was done using E.coli Poly
(A) Polymerase (New England Biolabs), followed by reverse transcription with
oNTI-223-index: /5Phos/5′-GATCGTCGGACTGTAGAACTCTGAAC/iSp18/
TCAGACGTGTGCTCTTCCGATCTTTTTTTTTTTTTTTTTTTTVN-3′, which
allows custom barcoding. Exonuclease I (New England Biolabs) was used to
remove excess oligo after reverse transcription. DNA-RNA duplex was purified
with ChIP DNA Clean & Concentrator Kit (Zymo Research Corporation) followed
by RNAse H treatment. cDNA was circularized with Circligase II (Epicenter) and
amplified with oNTI-201: 5′-AATGATACGGCGACCACCGACAGGTTCA-
GAGTTCTACAGTCCGACG-3′ and oNTI-200: 5′-CAAGCAGAAGACGGCA-
TACGAGATXXXXXXGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT-3′
(XXXXXX is barcode used for specific sample) for 12–14 cycles. Final PCR product
was purified by running 10% TBE gel and cleaned up. Libraries were sequenced on
Illumina Genome Analyzer HiSeq 2000 according to the manufacturer’s
instructions.

GRO-seq data processing and data analysis. GRO-seq data was first trimmed
from the 3′-end to remove PolyA tail with homerTools (Homer 4.8) followed by
quality filtering with FASTX Toolkit (minimum 97% of base pairs should have
quality scores higher than 10). Trimmed and quality-filtered data was aligned to
human genome hg19 with Bowtie. Differential expression analysis was performed
with edgeR, thresholds for analysis were p-value < 0.05, RPKM > 0.5 and log fold
change >1 or <−1.

siRNA analysis. All siRNA experiments were at a final concentration of 50 nM.
Transfections were conducted using Lipofectamine 2000 (Invitrogen). For the
microarray expression experiment we used the siRNAs directed against FOXA1
against non-targeting siRNA. The microarray data from GATA3 siRNA experi-
ments were available at GSE3962316.

Inhibition of ERα binding at enhancer. pdCas9-PuroR plasmid expressing both
dCAS9 and sgRNA was purchased from Addgene (Addgene number #71667).
sgRNAs targeting the selected enhancer identified through emQTL analysis were
designed by using the CRISPR Design webtool: http://crispr.mit.edu/ (sequence:
TTGGAGTTGACCTCATTCCAAGG). sgRNA was synthesized by oligo annealing
and cloned into expressing vectors via BbsI sites using BpiI/BbsI (Thermo Scien-
tific, Waltham, Massachusetts, USA) and T4 DNA ligase (NEB, Ipswich, Massa-
chusetts, USA). Plasmids expressing both dCAS9 and sgRNAs were transfected
into MCF7 cells with Lipofectamine 3000 (Thermo Scientific, Waltham, Massa-
chusetts, USA) following the manufacturer´s protocol. For gene expression ana-
lysis, cells were selected with puromycin (1 μg/ml) for 48 h after 48 h of
transfection. Analysis of dCAS9 binding was performed using ChIP protocol as
described previously60. Cells were fixed with 1% formaldehyde for 10 min and then
quenched with 125 mM of glycine. Cells pellets were washed with PBS and lysed
with lysis buffer. DNA fragmentation was done by using Bioruptor sonicator
(Diagenode) (15–20 cycles on and off 30 s). Chromatin was incubated overnight at
4 °C with ChIP-grade CAS9 or ERα antibodies (Active Motif, 61757 for CAS9;
Santa Cruz Biotechnology, Inc, sc-543x for ERα). 5 µg of each antibody per ChIP
assay (1:300 dilution in volume) and equal amounts of ChIP-Grade Protein A&G
Agarose Beads were added (Life technologies). The beads were washed and DNA
was eluted by reverse crosslinks overnight at 65 °C. Enriched target sequences were
analyzed with qPCR with the primer pair: PGR_enh_1_F: 5′-CATTCTGGGAC-
TAGGCCAGC-3′ and PGR_enh_1_R: 5′-ATTCCAAGGCAGAGCTCAGG-3′

In silico nanodissection. The algorithm Nanodissect (http://nano.princeton.
edu34) was used for prediction of lymphocyte infiltration. The breast collection data
(May 2013), which contains 17940 genes measured on 622 arrays, was inspected for
genes specifically expressed in lymphocytes (standard genes; n= 476; available
online and defined from expert literature review) and not expressed in mammary
gland (n = 777) or mammary epithelium (n= 79). The genes with more than 65%
probability to be positive lymphocyte-specific standard genes as opposed to
mammary gland or epithelium were further used in downstream analysis to score
each TCGA and OSL2 samples for the level of lymphocyte infiltration. The average
expression of the set of standard genes in a sample reflected lymphocyte infiltration
and was used to divide samples of the cohorts in four groups according to quartiles.

Pathological assessment of lymphocyte infiltration. Vascular invasion,
inflammatory cell infiltrate and necrosis, including relation of tumor cells/tumor

stroma, were evaluated on slides stained with hematoxylin and eosin as previously
described61. Using a simple microscope, subjective categorization of inflammatory
cell infiltrate into the categories of “low”, “intermediate-low”, “intermediate-high”
and “high” was performed based on the frequency of mononuclear inflammatory
cell infiltration observed in invasive the tumor.

Data availability. The DNA methylation data from the MicMa breast tumor
cohort and normal breast tissue from reduction mammoplasty is available in GEO
with accession number GSE60185. The gene expression data from the MicMa
cohort is available with accession number GSE19783. The newly generated DNA
methylation data for the breast cancer cohort OSL2 (n= 330) is available in GEO
with accession number GSE84207, and the mRNA expression data from the OSL2
cohort is available in GEO with accession number GSE58215. DNA methylation
several cell lines were used in this study and are available in GEO: breast cancer cell
lines (GSE94943), T cells (GSE79144), B cells (GSE68456), leukocytes (GSE69270)
and monocytes (GSE68456). The microarray data from GATA3 siRNA experi-
ments are available in GEO with accession number GSE39623. The ChIA-PET Pol2
data is available through the ENCODE project with accession number
ENCSR000CAA. MCF7 GRO-seq data are available at GEO with the accession
number GSE99508.
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