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Abstract
The hypotensive effects of melatonin are based on a negative correlation between melatonin levels and blood pressure in
humans. However, there is a positive correlation in nocturnal animals that are often used as experimental models in
cardiovascular research, and the hypotensive effects and mechanism of melatonin action are often investigated in rats and
mice. In rats, the hypotensive effects of melatonin have been studied in normotensive and spontaneously or experimentally
induced hypertensive strains. In experimental animals, blood pressure is often measured indirectly during the light (passive)
phase of the day by tail-cuff plethysmography, which has limitations regarding data quality and animal well-being compared
to telemetry. Melatonin is administered to rats in drinking water, subcutaneously, intraperitoneally, or microinjected into
specific brain areas at different times. Experimental data show that the hypotensive effects of melatonin depend on the
experimental animal model, blood pressure measurement technique, and the route, time and duration of melatonin
administration. The hypotensive effects of melatonin may be mediated through specific membrane G-coupled receptors
located in the heart and arteries. Due to melatonin’s lipophilic nature, its potential hypotensive effects can interfere with
various regulatory mechanisms, such as nitric oxide and reactive oxygen species production and activation of the autonomic
nervous and circadian systems. Based on the research conducted on rats, the cardiovascular effects of melatonin are
modulatory, delayed, and indirect.
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Introduction

The pineal gland synthesizes melatonin during the dark
phase of the day. Parts of the circadian system, including
the suprachiasmatic and paraventricular nuclei of the
hypothalamus and several neurotransmitters, such as
gamma-aminobutyric acid (GABA), significantly affect
melatonin synthesis. The removal of these hypothalamic
nuclei suppressed melatonin synthesis and the activity of
enzymes responsible for its synthesis in nocturnal rats [1, 2]
and diurnal golden hamsters [3]. In contrast, blocking
GABAergic neurotransmission in the rat hypothalamic
nuclei increased melatonin synthesis during the light phase
of the day [4].

Under normal conditions, elevated melatonin levels
negatively correlate with blood pressure in diurnal animals,
including humans. Therefore, researchers attributed hypo-
tensive effects to melatonin [5, 6]. In addition, many other
effects of melatonin have been discussed, such as its anti-
oxidant properties, immunomodulatory effects and sleep-
promoting effects. Melatonin levels decrease with age,
while the incidence of insomnia and hypertension increases
[7]. Moreover, hypertensive patients often have melatonin
deficiency [8]. This fact again supports the hypothesis that
melatonin could treat hypertension. Indeed, melatonin has
been advised for people with insomnia and hypertension.
Clinical trials have proven that, if administered in
controlled-release preparations (Circadin), melatonin lowers
blood pressure in patients with nocturnal hypertension [8].
Other clinical trials also confirmed the hypotensive effect in
patients with metabolic disorders [9]. However, melatonin
is not included in the American College of Cardiology/
American Heart Association and the European Society of
Cardiology/European Society of Hypertension guidelines
for the treatment of hypertension [10].
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In contrast to humans, there is a positive correlation
between melatonin levels and blood pressure in nocturnal
animals; plasma melatonin naturally rises during the dark,
active phase of the day, when there is also a natural increase
in blood pressure [11]. Nevertheless, the hypotensive effects
and mechanism of action of melatonin on the heart and
blood vessels are often investigated experimentally in
nocturnal animals (rats and mice), in which blood pressure
is often measured during the light (passive) phase of the day
by tail-cuff plethysmography (Fig. 1). Therefore, in this
review, we compare the hypotensive effects of melatonin
according to the blood pressure measurement model, tech-
nique and melatonin application. The second part describes
the most frequently discussed hypotensive mechanisms
through which melatonin may affect blood pressure,
including circadian regulation.

Experimental setup

Earlier experiments showed that removal of the
Sprague–Dawley rat pineal gland transiently (over 60 days)
increased blood pressure to more than 150 mmHg [12–14].
Therefore, it was hypothesized that the pineal gland has an
inhibitory effect on sympathetic activity and the activity of
the renin-angiotensin-aldosterone system [13]. The hypoth-
esis of the hypotensive effect of melatonin was also sup-
ported by the fact that administration of melatonin (drinking
water, 1 mg/ml, a daily dose of approximately 100mg/kg)
prevented a blood pressure increase in pinealectomized rats

[12]. Studies on the hypotensive effect of melatonin using
various techniques and animal models thus began.

Animal models

The most common animal models in which the hypotensive
effects of melatonin are studied in vivo are rats and, to a
lesser extent, mice and sheep (Table 1). In rats, the effects
of melatonin on blood pressure are often studied in spon-
taneously hypertensive rats (SHRs), normotensive Wistar
rats, or Wistar rats with induced hypertension. In SHRs, a
significant decrease in blood pressure was often observed
after melatonin application compared to untreated SHRs
[15]. In normotensive Wistar rats, the hypotensive effect of
melatonin was more [16, 17] or less [18] pronounced.
However, some studies did not observe the hypotensive
effects of melatonin in normotensive rats [15, 19, 20]. In
contrast, after melatonin administration (a single dose,
10 mg/kg, i.p., 30-min blood pressure measurement), blood
pressure in adult rats increased significantly compared to
that in the control subgroup [21].

Another standard experimental model is the mouse.
Melatonin production varies between mouse strains; while
some strains (i.e., CBA) have robust melatonin rhythm,
others (i.e., C57B1) show almost no rhythm [22]. Melatonin
has been reported to contribute to better cardiovascular
outcomes in mice, mostly due to its antioxidant properties
[23]. Under certain experimental conditions, hypotensive,
vasoprotective, and cardioprotective effects of melatonin
have been shown [24–26]. In a mouse model of gestational
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hypertension, melatonin suppressed systolic blood pressure
in pregnant mice [27]. Among other rodents, the vasopro-
tective effects of melatonin have also been studied in
hamsters [28], but research has focused more on the beha-
vioral effects of melatonin [29]. Finally, pregnant ewes
were also given melatonin to study the prenatal develop-
ment of the cardiovascular system [30, 31]. Since the effects
of melatonin on blood pressure and the cardiovascular
system are mostly studied in rats, we decided to focus on
this animal model.

Tail-cuff vs. telemetry

The hypotensive effects of melatonin in rats are often mea-
sured by noninvasive tail-cuff plethysmography (Table 1).
Tail-cuff plethysmography is an indirect method of measur-
ing blood pressure commonly used by researchers, but this
method has limitations compared to telemetry [32]. During
plethysmography measurements, the animals are handled and
immobilized, which elicits a stress response and thus
increases blood pressure [33]. The tail artery has a relatively
low blood flow in rats under resting conditions. Therefore, to
amplify the measured signal, it is necessary to warm the
animal; thus, the tail artery dilates. However, heatstroke is
another stressor that affects blood pressure [34].

The effects of melatonin on blood pressure have been
studied to a lesser extent using telemetry recording (Table 1),
which allows stress-free long-term recording of blood pres-
sure in freely moving rats [32]. Telemetric measurements
showed that blood pressure and heart rate had a marked
circadian (approximately 24-h) pattern with a clear increase
during the active (dark) phase of the day in normotensive
Wistar [35] and Sprague–Dawley rats [36] as well as in
hypertensive Ren-2 transgenic rats (mREN2)27 (TGRs;
applies only for heart rate) [36] and SHRs [37] but also in
mice [38]. Light suppresses melatonin synthesis at night,

with even very dim light (1–2 lx) reducing plasma melatonin
concentrations at night, accompanied by a decrease rather
than an increase in blood pressure during the dark phase of
the day in rats [35, 39]. Similar data were observed in tele-
metrically measured rats exposed to a constant light intensity
of 100–200 lx [40]. In contrast, when blood pressure was
measured by tail-cuff plethysmography, constant light
(250–300 lx; or undefined) increased blood pressure in rats
[41, 42]. Earlier work has also shown that SHRs respond to
pharmacological agents with more pronounced blood pres-
sure and heart rate changes when measured by plethysmo-
graphy compared to telemetry. It has been suggested that
there is a relationship between stress intensity during phy-
siological measurement and measured blood pressure [37].

Administration

Melatonin is often administered to experimental rats directly
in drinking water, with the concentration being adjusted
according to the animal’s daily intake (Table 1) [25, 43].
However, the application of melatonin in drinking water has
its limitations: (1) nonspecific dosing and availability of
water with melatonin during the entire 24-hour period,
although it is assumed that rats and mice have reduced
motor activity and water intake during the light (passive)
phase of the day [44]; and (2) the cumulative daily dose of
melatonin in drinking water often reaches a remarkably high
concentration, such as 50–100 mg/kg [15, 16, 45, 46]. The
literature reports that repeated exceedance (more than 1 mg,
orally) of the physiological dose of melatonin may alter the
sensitivity of melatonin receptors [47].

Melatonin has also been administered subcutaneously
(5 mg/kg/day) [48], intraperitoneally (1 mg/kg, final con-
centration 1 mg/ml) [36] or microinjected into hypothalamic
areas of the brain [49]. Compared to melatonin intake in
drinking water, injection is limited by the time of

Fig. 1 Positive and negative
correlation of melatonin (MEL)
levels and blood pressure (BP)
in humans and laboratory
animals such as rats or mice.
ABPM ambulatory BP
monitoring
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administration, which must be considered in the context of
circadian blood pressure variability. Melatonin is injected
either in the light (passive; 10:00 to 15:00) phase of the day
when endogenous melatonin levels are low [21] or at the
beginning of the dark (active) phase of the day [36].
Administration of the melatonin receptor agonist piromelatine
(5–50mg/kg) at the beginning (18:00) of the dark phase of
the day caused a decrease in blood pressure (tail-cuff ple-
thysmography) at both 9:00 and 21:00 in SHRs but not
normotensive Wistar rats depending on the dose and week of
application [50]. Single-dose intraperitoneal administration of
melatonin (1 or 10mg/kg, tail-cuff plethysmography) during
the light (10:00–15:00) phase of the day had the opposite
effect, and blood pressure increased in 3-, 15- and 22-month-
old Wistar rats compared to control animals [21]. Thus, both
the time of application and blood pressure measurement
should be considered. However, melatonin injection also has
disadvantages, such as phase advance of wheel-running
activity in mice [51] and synchronization of rat circadian
rhythms in constant dark. Synchronization of circadian
rhythms was observed, especially with repeated application of
melatonin at the beginning of the subjective active phase of
the day in rats [52]. In humans, the administration of mela-
tonin (1.5mg) has been shown to alter locomotor activity and
dependent cardiovascular parameters [51].

In addition to the route and time of administration, the
duration of melatonin application is also important (Table 1).
Significant effects on blood pressure were observed after long-
term application of melatonin in drinking water at concentra-
tions of 10mg/kg/day and 10mg/100ml from 3 to 8 weeks
compared to age-matched untreated rats [15, 46]. In Wistar
rats, after 2–4 weeks of melatonin treatment (melatonin in
drinking water), a decrease in blood pressure of approximately
20mmHg was observed [53, 54]. A longer treatment period
has a similar hypotensive outcome;[55] thus, for Wistar rats,
the first 3 weeks were likely to be more critical in terms of
experiment length. In SHRs, a shorter period of melatonin
treatment (melatonin in drinking water) led to a decrease in
blood pressure averaging 20mmHg [15, 56, 57]. In contrast,
prolonged melatonin administration led to a more pronounced
drop in blood pressure, reaching approximately 25–40mmHg
[16, 45, 46, 57]. However, it should be noted that the rats in
these experiments were not of the same age, did not have the
same etiology of hypertension, and blood pressure measure-
ments were not taken at the same time of day.

Hypotensive mechanisms of melatonin

Melatonin receptors

The hypotensive effects of melatonin may be mediated
through specific membrane G-coupled MT1 and MT2

receptors inhibiting adenylyl cyclase activity (IUPHAR/BPS
Guide to Pharmacology) [58]. Melatonin also affects ion
channels, for example, large-conductance Ca2+-activated K+

(BKCa) channels, through both the [Gq – phospholipase C –

Ca2+] and [Gi – cyclic adenosine monophosphate – protein
kinase A] pathways [59]. Earlier work on the caudal artery
suggested vasoconstriction via MT1 and vasorelaxation via
MT2 receptors [60]. However, the contraction of the caudal
vessel also depends on the concentration of melatonin; at
concentrations below 10–7M, the contraction potency is more
robust than at higher concentrations (10–7–10–5 M) [61].
Because melatonin receptors in the caudal arteries are thought
to mediate the thermoregulatory response [60], the opposite
vasoactive effect of melatonin MT1 and MT2 receptors may
not be present in other vessels of the cardiovascular system.

Melatonin receptors have also been localized in the
endothelium and tunica adventitia of the rat aorta [62, 63],
where melatonin is thought to protect the vessel from
inflammation and oxidative damage [63]. Melatonin MT1

receptors have been found in resistance vessels in the
endothelial and smooth muscle layers and the surrounding
perivascular adipose tissue and were shown to attenuate
vascular vasocontractility after melatonin administration
in vitro [24, 64]. Zhao et al. found MT2 receptors in rat
mesenteric vessels and pointed to the association of BKCa

channel activation with vessel relaxation [65]. Similarly, in
rat cerebral vessels, melatonin-mediated vasorelaxation by
activating BKCa channels in myocytes probably affects the
MT1/MT2 receptor – phospholipase C – protein kinase C
pathway indirectly [66]. In addition to blood vessels, mel-
atonin receptors have also been detected in the hearts of
mice and rats [67–69]. In the mouse myocardium, under
pathological conditions, MT2 but not MT1 receptor levels
increased [69]. With increasing age in rats, the expression of
both types of receptors in the heart decreased, with a more
pronounced decrease in MT1 receptors [68]. Thus, different
parts of the cardiovascular system have a different dis-
tribution of melatonin receptors. Moreover, melatonin
receptors also occur in the form of heteromers and may thus
determine the effect of melatonin [70].

Due to its lipophilic nature, melatonin readily crosses the
cell membrane independently of the presence of membrane
receptors. Therefore, the potential hypotensive effects of
melatonin can also be attributed to its interference with a
relatively wide range of regulatory mechanisms (Fig. 2).

Endothelial-dependent vasodilatation

The endothelium is an inner single-cell layer of blood
vessels. Based on various chemical and mechanical stimuli,
it synthesizes vasoactive substances that cause vasocon-
striction or vasodilation, thereby regulating blood flow,
resistance, and pressure. The major players with which
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melatonin can interact and thus affect blood pressure
include nitric oxide (NO), prostaglandin I2, endothelium-
derived hyperpolarizing factor, and endothelin-1 [71]. Other
endothelium-derived factors concerning melatonin are less
studied and usually correlate with NO changes [72].
Therefore, one of the most studied vasodilatory mechanisms
that melatonin interferes with is NO [20, 73]. Administra-
tion of melatonin to normotensive Wistar rats with
L-NAME (N (gamma)-nitro-L-arginine methyl ester; NO
synthase inhibitor)-induced hypertension caused a less
pronounced decrease in blood pressure compared to that of
SHRs, with increased endothelial NO synthase activity in
the left ventricle of the heart and kidneys but also a decrease
in total collagen in the left ventricle of the heart. Thus, the
hypotensive effects of melatonin may be associated with the
NO system [17, 18, 20]. Melatonin is also thought to
increase NO bioavailability. However, high doses of mel-
atonin in L-NAME-induced hypertension reduced NO
bioavailability [74]. In rats exposed to intermittent hypoxia,
melatonin increased endothelial NO synthase protein

expression in the aorta to the same level as in control nor-
moxic rats [75]. Melatonin thus reduced peripheral vaso-
constriction induced by hypoxia, and this effect was NO
dependent [31]. In sheep exposed to prenatal hypoxia, the
effects of melatonin on hemodynamic parameters were
associated with both NO-dependent and NO-independent
pathways, with no changes associated with the oxidative
stress marker 3-nitrotyrosine or vascular morphological
changes [30].

Antioxidant properties

Melatonin also reduces oxidative stress by 1) increasing the
activity of other antioxidant enzymes and 2) acting directly
as a scavenger of radicals. Mitochondria, the major source
of reactive oxygen species (ROS), generate energy by the
oxidation of substrates in the process of mitochondrial
respiration. If mitochondria are damaged and dysfunctional,
electron leakage from the electron transport chain increases.
The subsequent formation of ROS causes oxidative stress,

Fig. 2 Melatonin binds to its MT1 and MT2 receptors, which are differentially distributed in the cardiovascular system and interfere with a
relatively wide range of regulatory mechanisms. NO nitric oxide, ROS reactive oxygen species
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damaging not only the mitochondria but also surrounding
tissues, including the heart and blood vessels (for more
detail, see review) [76]. Melatonin has been proven to
protect mitochondria from damage by several mechanisms
that improve mitochondrial function and maintain mito-
chondrial integrity (for more detail, see review) [77]. Other
sources of ROS in the cardiovascular system are xanthine
oxidase, NADPH oxidase and NO synthase. The formation
of ROS activates the cell’s antioxidant defense, which
includes an increase in the activity of several antioxidant
enzymes [76]. Administration of melatonin to SHRs
increased glutathione peroxidase activity in plasma and
erythrocytes without changing superoxide dismutase activ-
ity. No changes in antioxidant enzyme activity were
observed in Wistar rats [78]. The effects of melatonin on
antioxidant enzyme activity and expression also depend on
the etiology of hypertension. In all cases, melatonin ulti-
mately reduced oxidative stress in hypertensive animal
models with L-NAME-induced hypertension [74], SHRs
[16], and rats exposed to hypoxia prenatally [31] or in
adulthood [75] and altered the structural properties of blood
vessels [79] and the heart [18, 53, 80]. In hypertensive rats,
a decrease in oxidative stress and ROS in the brain pro-
moted the involvement of melatonin in central blood pres-
sure regulation [78] in areas involved in the autonomic and
reflex regulation of cardiovascular activity [81].

The autonomic nervous system

The combined decrease in blood pressure and heart rate
after melatonin administration also indicates a central
inhibitory effect of melatonin on the sympathetic nervous
system [82]. Microinjection of melatonin into the anterior
hypothalamic area reduced the amount of glutamate and
increased GABA release in the rostral ventrolateral medulla,
the area that regulates peripheral sympathetic activity [83].
It is thought that the effects of melatonin on blood pressure
may also be mediated through sympathetic and baroreflex
regulation, as melatonin receptors have been found in
paraventricular nuclei [84] and the area postrema [85, 86].

SHRs, which have increased sympathetic nervous system
activity, increased plasma catecholamine concentration and
β-adrenergic receptor density, especially in the developing
heart, are a suitable model for studying the relationship
between melatonin and the autonomic nervous system
[87, 88]. Following phenylephrine administration, blood
pressure increased in SHRs treated and not treated with
melatonin, with the heart rate decreasing significantly only
in melatonin-treated rats. The same decrease in blood
pressure was observed in melatonin-treated and nontreated
SHRs in response to sodium nitroprusside. Heart rate
increased more in melatonin-treated rats than in melatonin
nontreated rats. The effect of melatonin on the baroreflex

response was not observed in normotensive rats [78]. In
another experiment, melatonin improved the dose-
dependent chronotropic response of the heart to iso-
proterenol in SHRs, while melatonin had no effect on
normotensive Wistar rats. In addition, in SHRs, melatonin
normalized the β1/β2 adrenergic receptor ratio by decreasing
β2-adrenergic receptor density and increasing β1-adrenergic
receptor density compared to nontreated SHRs [56]. Mela-
tonin also decreased plasma catecholamines in SHRs
[31, 56, 78] without affecting the reflex release of nor-
epinephrine and adrenaline after the induction of hypoten-
sion [78]. The action of melatonin on catecholamines is
primarily mediated through inhibition of the effect on the
sympathetic fibers innervating the adrenals, as a result of
which plasma levels of adrenaline (-60%) and noradrenaline
(-30%) are significantly reduced in SHRs after melatonin
injection [89].

Prenatal hypoxia also increases sympathetic activity and
blood pressure in adult rats [39, 90]. Prenatal administration
of melatonin has been shown to prevent the increase in plasma
catecholamines in a dose-dependent manner [31], thereby
reducing adrenergic activation, increasing cholinergic stimu-
lation [31, 81], and improving baroreflex activity [81] in adult
rats exposed to prenatal hypoxia. Experiments have shown
that melatonin, in addition to its effects on the regulatory
mechanisms of blood pressure in adulthood, also has a sig-
nificant effect on programming in the prenatal period.

The renin-angiotensin-aldosterone system

Melatonin administration reduced plasma renin levels in
SHRs [82, 89]. However, when melatonin was administered
to TGRs, a model of hypertension with increased renin-
angiotensin-aldosterone system activity, no decrease in blood
pressure was observed [91]. In L-NAME-induced hyperten-
sion, a decrease in the plasma concentration of the renin-
angiotensin-aldosterone system components was observed,
and melatonin administration did not alter this, although a
partial decrease but not normalization in blood pressure was
observed [20, 53]. In contrast, treating L-NAME-induced
hypertension with an angiotensin-converting enzyme inhi-
bitor (captopril) reduced blood pressure significantly in
Wistar rats compared to only L-NAME-treated Wistar rats
[73]. Experiments have shown that melatonin effects on
blood pressure depend on the etiology of hypertension, and
these effects can probably be mediated without affecting the
renin-angiotensin-aldosterone system directly [53, 91].

The circadian system

In humans, several studies point to the beneficial effect of
melatonin in restoring the nondipping blood pressure profile
associated with decreased melatonin levels [5, 92, 93].
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Melatonin is thought to act on the suprachiasmatic nuclei
through its receptors [94] and reaches the suprachiasmatic
nuclei via the cerebrospinal fluid [95, 96]. The application
of melatonin to rat brain sections caused a phase advance of
the electrical activity of the suprachiasmatic nuclei [97].
However, no direct effect on the expression of clock genes
in the suprachiasmatic nuclei was observed [98]. Similarly,
in vivo pinealectomy did not alter the function of the
suprachiasmatic nuclei in Djungarian hamsters [99] or rats
[100]. This is consistent with observations in melatonin-
proficient C3H mice and melatonin-deficient C57BL/6
mice, whose circadian rhythms do not differ fundamentally
but respond differently to the light pulse during the sub-
jective night (for more detail, see review) [101].

The removal of the suprachiasmatic nuclei suppresses not
only the circadian profile of cardiovascular parameters in
normotensive and hypertensive rats [36] but also the circa-
dian rhythm of melatonin synthesis, with its maximum
levels during the dark phase of the day reaching one-fifth of
that in animals with intact suprachiasmatic nuclei [2, 4].
Additionally, the disruption of suprachiasmatic nuclei
activity by phase shifts [102], dimmed night light [35] and
constant light [103] caused a significant decrease in mela-
tonin. Administration of melatonin to normotensive Wistar
rats at the beginning of the subjective night partially restored
the heart rate but not the blood pressure rhythm [103].
Similar effects were observed after phase administration of
melatonin (i.p., onset of light and dark phase of the day, 2.5
or 5 mg/kg) according to telemetry measurements in nor-
motensive Wistar rats [19]. No change in blood pressure was
observed in either the light or dark phase of the day. Heart
rate decreased after melatonin administration, only in the
dark phase of the day and after administration of 2.5 mg/kg,
not 5 mg/kg [19]. On the other hand, administration of a
melatonin agonist to rats with suprachiasmatic nucleus
lesions did not restore the lost circadian profile of cardio-
vascular parameters. Conversely, the melatonin antagonist
did not suppress the circadian variability of cardiovascular
parameters in Sprague–Dawley rats or TGRs [36]. In addi-
tion, in TGRs with an inverse blood pressure profile to heart
rate and locomotor activity, no difference in melatonin levels
was observed [104], and melatonin administration did not
improve the circadian blood pressure profile [91]. Other
publications have shown that animals with intact supra-
chiasmatic nuclei exposed to constant dark became entrained
to melatonin injections, but in rats with suprachiasmatic
nucleus lesions, the application of melatonin did not affect
blood pressure circadian variability [26, 97, 105, 106].
Therefore, the central effect of melatonin appears to be
dependent on functional suprachiasmatic nuclei and circa-
dian system arrangements in mammals, but feedback is
significantly less involved in the central circadian pacemaker
regulation compared to that in fish, reptiles, and birds [107].

Conclusion

The hypotensive effects of melatonin are often tested
experimentally in nocturnal animals (rats and mice), which
show positive correlations between melatonin plasma con-
centrations and blood pressure. In rats, the hypotensive
effects of melatonin depend on the strain, the technology
and timing of blood pressure recording, and the route, time
and duration of melatonin administration. The most
appropriate combination for testing the hypotensive effects
of melatonin seems to be to measure blood pressure tele-
metrically and to administer melatonin during the dark
phase of the day, ideally in water, thus minimizing animal
handling and unwanted synchronization. Although melato-
nin receptors in the heart and blood vessels have been
detected, it is not entirely clear whether and to what extent
they mediate hypotensive effects. Therefore, several studies
have associated the hypothetical properties of melatonin
with its antioxidant properties or interaction with other
cardiovascular system regulatory mechanisms. Based on
research conducted on rats, the cardiovascular effects of
melatonin are modulatory, delayed, and indirect.
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