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Most theoretical studies on epistatic QTL mapping have shown that this procedure is powerful, efficient to control the false
positive rate (FPR), and precise to localize QTLs. The objective of this simulation-based study was to show that mapping epistatic
QTLs is not an almost-perfect process. We simulated 50 samples of 400 F2 plants/recombinant inbred lines, genotyped for 975
SNPs distributed in 10 chromosomes of 100 cM. The plants were phenotyped for grain yield, assuming 10 epistatic QTLs and
90 minor genes. Adopting basic procedures of r/qtl package, we maximized the power of detection for QTLs (56–74%, on
average) but associated with a very high FPR (65%) and a low detection power for the epistatic pairs (7%). Increasing the average
detection power for epistatic pairs (14%) highly increased the related FPR. Adopting a procedure to find the best balance
between power and FPR, there was a significant decrease in the power of QTL detection (17–31%, on average), associated with a
low average detection power for epistatic pairs (8%) and an average FPR of 31% for QTLs and 16% for epistatic pairs. The main
reasons for these negative results are a simplified specification of the coefficients of epistatic effects, as theoretically proved, and
the effects of minor genes since 2/3 of the FPR for QTLs were due to them. We hope that this study, including the partial
derivation of the coefficients of epistatic effects, motivates investigations on how to increase the power of detection for epistatic
pairs, effectively controlling the FPR.
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INTRODUCTION
Quantitative trait loci (QTL) mapping continues to be an
important method for studying the genetic architecture of
quantitative traits. QTLs are genomic regions that significantly
affect complex traits. Recently, most studies on epistatic QTL
mapping have used a multiple interval mapping (MIM) model
based on a frequentist approach. These investigations have
shown that epistasis regularly determines quantitative traits
(Goto et al. 2019; Xu et al. 2021; Yang et al. 2020), as
emphasized by Mackay (2014). However, most of the genotypic
variance is additive (Hill et al. 2008). Epistasis is the interaction
between non-allelic genes. In recent investigations, the
epistatic QTL mapping was based on 80–200 recombinant
inbred lines (RILs), using high to average single-nucleotide
polymorphism (SNP) density (one SNP/0.7–4.7 cM). The theore-
tical background for a multiple QTL model with epistasis was
developed in a series of studies that included theory and
evaluation of the method efficacy based on field and/or
simulated dataset (Boer et al. 2002; Carlborg et al. 2000;
Jannink and Jansen 2001; Kao et al. 1999; Sen and Churchill
2001; Yi and Xu 2002; Yi et al. 2003).
The MIM model is a multiple QTL model and its likelihood

function is a finite normal mixture (Kao et al. 1999). From the
analysis of field data of a backcross design, Kao et al. (1999)
observed that MIM identified more QTLs than composite
interval mapping and interval mapping. In addition, the
epistasis contributed 10–14% of the genotypic variance. Zeng
et al. (1999) emphasized that MIM can improve the power of
detection for minor QTL and the precision of estimating QTL

positions. For mapping multiple interacting QTLs, Carlborg et al.
(2000) proposed a weighted least-squares approach. On the
basis of a simulated F2 dataset assuming none to 16 QTLs and a
single pair of epistatic QTLs, they concluded that the genetic
algorithm can be effective for the simultaneous mapping of
multiple epistatic QTLs. The idea of a two-dimensional scan for
searching epistatic QTLs was presented by Sen and Churchill
(2001) using a Bayesian framework. From the analysis of field
data from a backcross design and based mainly on the two-
dimensional scan, the authors declared five QTLs explaining
3–13.5% of the phenotypic variance and two epistatic pairs
explaining 6 and 6.5%.
The one-dimensional maximum likelihood approach pro-

posed by Jannink and Jansen (2001) combines across- and
within-population information using three doubled-haploid
parents. The authors concluded that the method might double
the power to detect first-order epistasis. Boer et al. (2002)
proposed a penalized likelihood method for mapping epistatic
QTLs with a one-dimensional genome search. The analysis of a
simulated backcross dataset including three QTLs and all
epistatic digenic interaction effects showed that the inclusion
of the epistatic effects increased the QTL power of detection
but under an effective dimension of 3 for epistatic interactions.
Other Bayesian frameworks were proposed by Zuanetti and
Milan (2022), Balestre and de Souza (2016), Yi et al. (2003), and
Yi and Xu (2002).
Using simulated and field F2 data, Zuanetti and Milan (2022)

proposed the method of data-driven reversible jump (DDRJ) for
modeling epistasis and compared its efficacy with the usual
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reversible jump (RJ), QTLBim, MIM, and LASSO. DDRJ out-
performed the other methods in regard to the power of
detection and mapping precision without increasing the
number of false positive QTLs. Balestre and de Souza (2016)
proposed an RJ method for epistasis analysis. From the analyses
of a simulated F2 and an empirical F2:3 datasets, the authors
concluded that their method is effective to map epistatic QTLs.
Using three simulated backcross data, Yi et al. (2003) observed
no detection of false QTL under a no QTL model, a lower
number of detected QTLs when ignoring epistasis, and a high
power of detection for the epistatic QTLs. The genetic model
adopted by Yi and Xu (2002) includes the additive × additive,
additive × dominance, dominance × additive, and dominance ×
dominance epistatic effects. The analyses of three simulated
backcross datasets, assuming two to three QTLs and one, two,
and four epistatic effects, showed that fitting the epistatic
model improved the power of detection for QTL with no main
effect.
On the basis of the previously described methodological

investigations on epistatic QTL mapping, the general conclu-
sion is that this procedure is powerful, efficient to control the
false positive rate (FPR), and precise to localize QTLs. That is, the
power of detection for individual QTL and for epistatic pairs is
close to 100%, there are no false positive QTL or there is an
efficient control of the FPR, and the localization of the QTL is
very precise. Compared with the almost-perfect results from
most of the methodological studies, the investigations of Laurie
et al. (2014) and Wei et al. (2010) provide some more realistic
results as the influence of the trait heritability, the epistatic
heritability, and the type of epistasis on the detection power of
epistatic pairs. However, in both studies, there is also an almost-
perfect control of the FPR, and the QTL mapping is very precise.
It is surprising that an FPR close to zero (0.04) for both
individual and epistatic QTLs is associated with a high power of
detection, between 78 and 100%. It is also surprising that an
increase in the power of QTL detection, from 8–16% to 90–99%,
is associated with a decrease or an insignificant increase in
the FPR.
Using theoretical and empirical results, we show that these

almost-perfect results from simulated datasets are because of a
combination of simplified specification of the coefficients of
epistatic effects and no inclusion of minor genes. Thus, the
objective of this simulation-based study on the efficacy of epistatic
QTL mapping is to show that mapping epistatic QTLs is not an
almost-perfect process. Differently from the previous studies
based on simulation, we included 90 minor genes, defined the
most known digenic epistasis types, and generated the additive,
dominance, and four epistatic genetic values based on
Kempthorne (1954).

MATERIALS AND METHODS
Simulation
The simulated dataset was generated using the software REALbreeding
(available on request). The program has been developed using Xojo
(https://www.xojo.com/). REALbreeding has been used in studies related
to genomic selection (Viana et al. 2018), genome-wide association
study (Pereira et al. 2018), QTL mapping (Viana et al. 2017), linkage
disequilibrium (LD) (Andrade et al. 2019), population structure (Viana
et al. 2013b), heterotic grouping/genetic diversity (Viana et al. 2020),
and plant breeding (Viana et al. 2013a). It can also be used in research
in human genetics, animal genetics and breeding, population genetics,
and evolution. The program simulates individual genotypes for genes
and molecular markers, and phenotypes in three stages, using inputs
from the user. The first stage (genome simulation) is the specification of
the number of chromosomes, molecular markers, and genes, as well as
marker type and density. The second stage (population simulation) is
the specification of the population(s) and sample size or progeny
number and size. A population is characterized by the average

frequency for the genes (biallelic) and markers (first allele). The final
stage (trait simulation) is the specification of the minimum and
maximum genotypic values for homozygotes, the minimum, and
maximum phenotypic values (to avoid outliers), the direction and
degree of dominance, and the broad sense heritability. Thus, the
genetic effects are not sampled from a distribution. They are computed
using the information provided by the user. For each gene (QTL and
minor gene), the software computes the parametric (true) additive (A)
and dominance (D) genetic values. On the basis of Kempthorne
(1954, 1973), for each pair of epistatic genes (QTL-QTL, QTL-minor
gene, and minor gene-minor gene), the software computes the
additive × additive, additive × dominance, dominance × additive,
and dominance × dominance genetic values. Finally, it sums the
computed values to provide the genetic values for the trait.
The types of digenic epistasis are: complementary (G22= G21= G12=

G11 and G20 = G10= G02 = G01= G00; proportion of 9:7 in a F2, assuming
independent assortment), duplicate (G22 = G21= G20= G12 = G11=
G10= G02= G01; proportion of 15:1 in a F2, assuming independent
assortment), dominant (G22 = G21= G20= G12 = G11= G10 and
G02= G01; proportion of 12:3:1 in a F2, assuming independent
assortment), recessive (G22= G21= G12 = G11, G02 = G01, and G20=
G10= G00; proportion of 9:3:4 in a F2, assuming independent assort-
ment), dominant and recessive (G22= G21= G12= G11 = G20= G10= G00

and G02= G01; proportion of 13:3 in a F2, assuming independent
assortment), duplicate genes with cumulative effects (G22= G21= G12=
G11, and G20= G10= G02= G01; proportion of 9:6:1 in a F2, assuming
independent assortment), and non-epistatic genic interaction (G22=
G21= G12 = G11, G20= G10, and G02 = G01; proportion of 9:3:3:1 in a F2,
assuming independent assortment). Gij is the genotypic value for two
epistatic genes, where i and j (i, j= 2, 1, or 0) are the number of copies
of the gene that increases the trait expression.
The genotypic values for interacting genes are used to compute the

additive, dominance, and epistatic genetic values, on the basis of
Kempthorne (1954). Detailed description can be found in Viana and
Garcia (2022). In summary, the parametric values of the 36 parameters
for the nine genotypic values are obtained by solving the equations
β= (X′VX)–1 X′Vy, under the restrictions defined by Kempthorne (1954),
where X is the incidence matrix, V ¼ diagonalff ðnÞij g is the diagonal
matrix of the genotype probabilities (n is the number of selfings), and y
is the vector of the genotypic values (Gij) (i, j= 0, 1, and 2). The
genotype probabilities for the non-inbred population (as F2) are
presented by Viana (2004). The genotype probabilities for inbred
populations (as RILs) are presented by Viana and Garcia (2022)
(Supplementary information).

Dataset
REALbreeding crossed two contrasting inbred lines, assuming genes in
association, and generated the populations F1, F2, and F3. The number of
simulations of the segregant generations was 50. The sample size for the F2
and F3 were 400 and 4000 (400 progeny of size 10). The F2 plants were
genotyped and phenotypes, and the F3 plants were phenotyped. We
assumed genotyping for 975 SNPs distributed in 10 chromosomes of
100 cM. The number of SNPs per chromosome ranged from 93 to 100, and
the average density was an SNP/cM. We simulated grain yield (g/plant)
assuming 10 epistatic QTLs and 90 minor genes (7–10 per chromosome).
We allocated one QTL in chromosome 1 (Q1), two QTLs in chromosomes 3
(Q2 and Q3), 5 (Q4 and Q5), and 7 (Q6 and Q7), and three QTLs in
chromosome 9 (Q8–Q10). The minimum distance between linked QTLs
was 20 cM. The epistatic pairs were Q1–Q5, Q2–Q4, Q3–Q8, Q6–Q7, and
Q9–Q10. Thus, we defined two epistatic pairs in the same chromosome
and three epistatic pairs in distinct chromosomes. We assumed seven
scenarios of the same type of epistasis and an admixture of the distinct
types. The trait broad sense heritability was 60%. The QTL heritabilities
varied from approximately 1–13%, depending on the generation and
epistasis type (7% on average). In general, one to four QTLs showed
heritability between 1 and 5% (low), four to five QTLs had heritability
between 6 and 9% (intermediate), and two to three QTLs showed
heritability in the range 10–13% (high). The scenario of no epistasis
included six QTLs with heritabilities in the range of 6–8%. Thus, for both
scenarios, the average QTL heritability was 7%.
We also generated 50 simulations of a RIL population derived from

the same parents, using a single seed descent process. The sample size
was 400. Because we kept the trait heritability at 60%, the QTL
heritabilities increased, ranging from approximately 2–22%, depending
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on the epistasis type (10% on average). Finally, we also processed the
analysis of the RIL dataset, assuming a sample size of 600 and an
admixture of epistasis types.

Efficiency of the epistatic QTL mapping
The dataset was processed using the R package qtl version 1.48.1
(Broman et al. 2003). We performed a two-dimension scan for the two-
QTL model. The output for the epistatic QTLs from a two-dimension
scan depends on five LOD thresholds. These LOD thresholds are for
testing the full two-locus model versus the null (no QTL) model, the
two-locus additive model versus the null model, interaction, the full
two-locus model versus a one-locus model, and the two-locus additive
model versus a one-locus model (Broman and Sen 2009). Because
Broman and Sen (2009) declare that we are inclined to ignore the
maximum LOD for interaction (Mi(j, k)), we processed the data using and
ignoring Mi(j, k). Because a permutation test based on the expectation-
maximization method is extremely time-consuming, we used 1000
permutations for the single-QTL model (one-dimension scan) but 100
permutations for the two-QTL model. For computing QTL detection
power, FPR, and mapping precision (bias in the QTL positioning), we
used a REALbreeding tool (eQTL summary). A declared QTL was assumed
as a true QTL when the bias between its estimated and actual positions
was lower than 20 cM. Because epistatic QTL mapping is more complex
to interpret than non-epistatic QTL mapping, we first processed
preliminary analyses using the single- and two-QTL models, the F2
and F2:3 designs, and two sample sizes (200 and 400), based on the first
simulation data assuming no epistasis and an admixture of epistasis
types. The main questions to be answered were: (1) do the two-QTL
models provide a more effective analysis relative to the single-QTL
model when there is epistasis? (2) does the F2:3 design provide a more
effective analysis relative to the F2 design? and (3) does increasing the
sample size significantly improve the epistatic QTL mapping?

RESULTS
On the basis of the results from the preliminary analysis (Table 1),
we realized that: (1) the two QTLs model provides a more effective
analysis relative to the single-QTL model when there is epistasis;
(2) the F2:3 design did not provide a more effective analysis
relative to the F2 design; and (3) increasing the sample size
significantly improves the epistatic QTL mapping. Under no
epistasis and higher sample size, note that the power of detection

for QTLs with heritability between 6 and 8% was 0.67. The higher
FPR (0.20) is attributable to the threshold of 3.9. The FPR would be
zero by using a threshold of 4.9 (26% higher). The bias was only
1 cM, on average. Assuming an admixture of epistasis types, note
that fitting the two-QTL models to the F2 or F2:3 data of 400
genotyped plants provided the best results concerning power and
FPR. Thus, for assessing the efficacy of the epistatic QTL mapping,
we used the F2 data with 400 plants. Under this scenario, the
thresholds assuming 100 and 250 permutations were essentially
the same. An impressive negative result was a very high FPR under
epistasis.
The differences between the parents’ genotypic values and

the magnitude of the F2 genotypic variance were lower
assuming duplicate epistasis and higher under non-epistatic
genic interaction (Table 2). Comparing with the scenario of no
epistasis, where the ranges for the parents and the F2 genotypic
variance were 120 g/plant and 367.7 (g/plant)2, respectively,
note that epistasis significantly decreased the difference
between parents and the F2 genotypic variance. This is
impressive considering that it was assumed only 10% of
epistatic genes.
Regardless of the epistasis type, ignoring the maximum LOD

for interaction (Mi(j, k)) maximizes the power of QTL detection
irrespective of the QTL heritability (Table 2). The average power
of QTL detection for low, intermediate, and high heritability
QTLs were 56, 67, and 74%, respectively. However, even taking
into account the Mi(j, k) obtained by permutations, the FPR was
very high, in the range of 60–70%, approximately (65% on
average). The high FPR is attributable mainly to the minor
genes. The average FPR ignoring the false declarations in
chromosomes with no QTL was 45% (range between 40 and
50%). Thus, we can estimate an average FPR of 23% (range of
15–30%), ignoring minor genes. But minor genes cannot be
ignored. Note that taking into account or ignoring Mi(j, k), the
power of detection for epistatic pairs is generally zero (average
value of only 7%). Only under duplicate and duplicate genes
with cumulative effects, ignoring Mi(j, k), we observed one or
two epistatic pairs with power greater than or equal to 50%.
Interestingly, for these three pairs, only one pair involved high
heritability epistatic QTLs. Thus, we did not observe a positive

Table 1. Power of QTL detectiona, FPRa, and average bias (cM) in the positioning of the true QTLs from the analyses of the first simulation data, using
the single- and two-QTL models, the F2 and F2:3 designs, and two sample sizes (200 and 400), assuming no epistasis (No) and an admixture of
epistasis types (Ad) and defining thresholdsb at 5% from 1000 (single-QTL model) or 100 (two QTLs model) permutations.

Genetic model Statistical model Design Sample Threshold(s) Power FPR Bias

No Single QTL F2 200 3.77 0.50 0.25 2.4

400 3.88 0.67 0.20 1.3

F2:3 200 3.69 0.83 0.00 2.5

400 3.87 0.67 0.20 0.6

Ad Single QTL F2 200 3.69 0.10 0.67 4.4

400 3.68 0.40 0.56 8.0

F2:3 200 3.89 0.10 0.80 20.2

400 3.76 0.10 0.87 20.2

Two QTLs F2 200 8.9; 7.1; 6.0; 6.2; 3.6 0.50/0.00 0.61/0.00 5.6

400 9.2; 7.1; 5.9; 6.7; 4.0 0.60/0.00 0.67/0.00 8.3

9.1; 7.0; 5.8; 6.3; 3.9c 0.60/0.00 0.67/0.00 8.3

F2:3 200 9.6; 7.4; 6.5; 6.7; 3.7 0.40/0.00 0.75/0.00 7.1

400 9.3; 7.0; 5.9; 6.4; 4.1 0.60/0.00 0.67/0.00 7.2
aThe values after / refer to the power of detection/FPR for epistatic QTLs.
bThe five LOD thresholds are for testing the full two-locus model versus the null (no QTL) model, the two-locus additive model versus the null model,
interaction, the full two-locus model versus a one-locus model, and the two-locus additive model versus a one-locus model.
c250 permutations.
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association between the power of epistatic pairs and QTL
heritability. As expected, due to the low power of detection for
epistatic pairs, we observed a low FPR for epistatic pairs
(maximum of 15%).
We analyzed the increase in the power of detection for the

epistatic pairs by decreasing the Mi(j, k) obtained by permutations
but filtering in the file of maximum LODs. But the results were
disappointing (Table 2). The average power doubled (14%), but
only one to three out of the five epistatic pairs showed
approximate power of at least 10% (this means that only one in
ten similar pairs would be declared), and the FPR was very high
(85 to 97%, with one exception). Finally, we investigated the best
balance between the power of QTL detection and FPR for both
QTLs and epistatic pairs. That is, we tried to minimize the FPR by
keeping a reasonable power of detection. Again, we filtered in the
file of maximum LODs from the analysis ignoring Mi(j, k), by
specifying a high threshold for the full two-locus model versus a
one-locus model. The consequences of keeping an FPR of up to
30% for both QTLs and epistatic pairs were a significant decrease
in the power of detection, proportional to the QTL heritability. The
average power of detection for the low, intermediate, and high
heritability QTLs were 17, 22, and 31%, respectively, and the
average power of detection for epistatic pairs was 8%.
In regard to mapping precision, we observed an average bias in the

positioning of the true declared QTLs in the range of 1.1, for duplicate
genes with cumulative effects, and 6.0 cM, for duplicate epistasis
(Table 2), for the best balance between the power of detection and
FPR. The problems of very high FPR for individual QTLs and very low
power of detection for epistatic pairs were also observed in a RIL
population, even increasing the sample size to 600 (Table 3).

Comparing with the results from F2, the analysis of the RILs provided,
on average, a slightly lower QTL power of detection of approximately
−7%, regardless of the maximum LOD for interaction. The average
FPR was 67%, irrespective of the Mi(j, k) too. Using RILs did not
increase the power of detection of epistatic pairs as well as the
mapping precision. The average power of detection for epistatic pairs
ranged from 0 to 18% and the bias in the positioning the epistatic
QTLs increased 2 and 5%, ignoring and taking into account Mi(j, k).
Again, regardless of the epistasis type, 60–100% of the epistatic pairs
were not declared. Those pairs mapped showed low average power
of detection, 19%. The value for F2 was 37%. No significant advantage
was obtained by increasing the sample size to 600.

DISCUSSION
The results from this simulation-based study show that mapping
epistatic QTLs is a challenge. Regardless of the epistasis type, the
basic procedures of r/qtl maximized the QTL power of detection, by
ignoring Mi(j, k), but associated with a very high FPR of
approximately 60–70%. Furthermore, the lack of power to detect
epistatic pairs is also disappointing. In F2, under complementary,
recessive, dominant and recessive, and non-epistatic genic interac-
tion, no epistatic pair was detected. For the other epistasis types
and admixture of types, only one to two out of five epistatic pairs
showed a power of at least 10%, approximately, with no clear
association between power and the interacting QTL heritabilities
(48.7% on average). Broman and Sen (2009) emphasized that they
“are inclined to ignore Mi(j, k)” in the rule (8.3) and that they “place
greater reliance on the numeric summaries from summary.scantwo”.
This procedure alone, however, did not clearly provide the best

Table 3. Average genotypic value and genotypic variance (GV) in the RIL population, thresholdsa at 5% from 100 permutations using data from
simulation 1, average power of QTL detection for the low (L), intermediate (I), and high (H) heritability QTLs and for the epistatic pairs (E), FPRb, and
bias (cM) in the positioning of the true QTLs, from the analyses of the RIL data assuming seven epistasis typesc and an admixture of epistasis
types (Ad).

Epistasis RIL GV Sample Thresholds Power FPR Bias

L I H Ed

Co 116.5 73.8 400 6.3; 4.9; 4.0; 5.1; 3.3 0.16 0.35 0.36 0.04/0.00/0.00/0.00/0.02 0.69/0.04 6.4

6.3; 4.9; 0.0; 5.1; 3.3 0.72 0.52 0.60 0.04/0.00/0.00/0.00/0.02 0.68/0.04 7.5

Du 107.3 97.4 400 6.8; 5.1; 4.4; 5.2; 2.9 0.16 0.43 0.11 0.04/0.00/0.00/0.00/0.00 0.69/0.04 6.4

6.8; 5.1; 0.0; 5.2; 2.9 0.72 0.55 0.68 0.04/0.00/0.00/0.00/0.00 0.68/0.04 7.6

Do 115.9 74.8 400 6.4; 4.8; 4.3; 5.3; 3.2 0.98 0.37 0.21 0.24/0.30/0.00/0.00/0.00 0.68/0.00 3.7

6.4; 4.8; 0.0; 5.3; 3.2 1.00 0.64 0.47 0.24/0.30/0.00/0.00/0.00 0.69/0.00 5.4

Re 118.0 77.3 400 6.5; 4.7; 3.9; 4.9; 3.4 0.74 0.44 0.22 0.20/0.00/0.00/0.00/0.00 0.64/0.02 4.7

6.5; 4.7; 0.0; 4.9; 3.4 0.92 0.56 0.55 0.20/0.00/0.00/0.00/0.00 0.67/0.02 5.7

DR 112.8 77.4 400 6.4; 4.9; 4.2; 5.4; 3.4 0.42 0.15 0.51 0.00/0.00/0.00/0.02/0.02 0.68/0.00 4.9

6.4; 4.9; 0.0; 5.4; 3.4 0.86 0.42 0.80 0.00/0.00/0.00/0.02/0.02 0.67/0.00 6.2

Dg 116.4 73.3 400 6.3; 4.7; 4.0; 5.4; 3.2 0.12 0.28 0.60 0.00/0.00/0.00/0.00/0.92 0.64/0.00 4.6

6.3; 4.7; 0.0; 5.4; 3.2 0.46 0.56 0.73 0.00/0.00/0.00/0.00/0.92 0.65/0.00 6.2

Ne 114.6 62.1 400 6.5; 4.9; 4.3; 4.9; 3.3 0.10 0.37 0.44 0.00/0.00/0.00/0.00/0.00 0.69/0.00 6.9

6.5; 4.9; 0.0; 4.9; 3.3 0.64 0.63 0.58 0.00/0.00/0.00/0.00/0.00 0.69/0.00 7.4

Ad 110.8 72.4 400 6.5; 4.7; 4.2; 5.0; 3.1 0.02 0.21 0.55 0.00/0.00/0.00/0.00/0.08 0.68/0.02 6.2

6.5; 4.7; 0.0; 5.0; 3.1 0.56 0.47 0.67 0.00/0.00/0.00/0.00/0.08 0.67/0.02 6.8

600 6.2; 4.8; 4.1; 5.0; 3.0 0.14 0.27 0.63 0.00/0.00/0.00/0.00/0.22 0.67/0.00 5.7

6.2; 4.8; 0.0; 5.0; 3.0 0.42 0.51 0.70 0.00/0.00/0.00/0.00/0.22 0.68/0.00 6.5
aThe five LOD thresholds are for testing the full two-locus model versus the null (no QTL) model, the two-locus additive model versus the null model,
interaction, the full two-locus model versus a one-locus model, and the two-locus additive model versus a one-locus model (Broman and Sen 2009); the 2nd
row thresholds ignore the LOD for interaction in the rule (8.3) of Broman and Sen (2009).
bThe values after / refer to the FPR for epistatic pairs.
cCo= complementary, Du= duplicate, Do= dominant, Re= recessive, DR= dominant and recessive, Dg= duplicate genes with cumulative effects, and
Ne= non-epistatic genic interaction.
dIxH, IxL, HxH, IxH, and HxH for Co, Do, Dg, Ne, and Ad, IxI, IxL, IxI, IxI, and HxH for Du, IxI, IxL, HxI, HxI, and HxH for Re and DR.
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balance between power and FPR for QTLs and epistatic pairs. We
stress that this negative general result is not due to the use of r/qtl.
We also analyzed the first simulation data using Windows QTL
Cartographer (Wang et al. 2011), performing the sequential search
proposed by Laurie et al. (2014), and QTL IciMapping (Meng et al.
2015), observing similar results to those provided by r/qtl. The
problem could be a simplified specification of the coefficients of
epistatic effects implemented in the software available.
Any software for QTL mapping process the phenotypic and

molecular datasets from code specified under quantitative genetics
theory. For F2 data, the genotypic value for two non-epistatic genes is
G=ma+mb+ θaaa+ θbab+ γada+ γbdb=M+ A+D, where, for
each gene, m is the mean of the homozygotes, θ= 1 and γ= 0 if
AA or BB, θ= 0 and γ= 1 if Aa or Bb, and θ=−1 and γ= 0 if aa or
bb, a is the deviation between the genotypic value of the
homozygote of greater expression and m, d is the dominance
deviation (Falconer and Mackay 1996). The interval mapping is based
on the conditional probabilities of the QTL genotypes in an interval
flanked by two molecular markers. For example, if there is a QTL in a
given interval, the average genotypic value for the individuals with
SNP genotype mn (for the first SNP) op (for the second SNP) is
Gmnop=M+ [P(QQ│mnop) – P(qq│mnop)]a+ P(Qq│mnop)d, where
P(QQ│mnop), P(qq│mnop), and P(Qq│mnop) are the conditional
probabilities (Haley and Knott 1992). Because all software use correct
modeling for the additive and dominance deviations, the QTL
mapping of non-epistatic QTLs is really a powerful process that
provides effective control of the FPR and precise positioning of the
true declared QTLs, irrespective of the statistical approach (Viana
et al. 2017).
However, correctly modeling epistasis in QTL mapping is a

challenge to overcome. The genotypic value for two interacting
genes is G=ma +mb+ θaaa + θbab + γada+ γbdb+ I=M+ A+
D+ I, where I is the epistatic effect (a specific value for each
one of the nine genotypes). Partitioning the epistatic effect
based on Kempthorne (1954), we have a much more
complex situation: Gijkl ¼ Mþ α1i þ α1j þ α2k þ α2l þ δ1ij þ δ2kl þ
ðα1α2Þik þðα1α2Þjk þ ðα1α2Þil þ ðα1α2Þjl þ ðα1δ2Þikl þ ðα1δ2Þjkl þ
ðδ1α2Þijk þðδ1α2Þijl þ ðδ1δ2Þijkl ¼ Mþ Aþ Dþ AAþ ADþ DAþ
DD, where α is the average effect of a gene, δ is the dominance
value, and (αα), (αδ), (δα), and (δδ) are the additive × additive,
additive × dominance, dominance × additive, and dominance ×
dominance effects, respectively. Assuming two epistatic QTLs in
two intervals, the 81 parametric average genotypic values in F2
are complex to derive since the SNP genotype probabilities
depend on the gamete probabilities regarding four SNPs and
two QTLs. Only in this way could the correct coefficients for the
epistatic effects be derived. In all the previous theoretical
studies on epistatic QTL mapping there is a simplified
specification of the coefficients of epistatic effects. Yi et al.
(2003), Boer et al. (2002), Zeng et al. (1999), and Kao et al. (1999)
assumed that the coefficient of the epistatic effect is the
product of the coefficients of the effects, multiplied by an
indicator variable, to define if the QTLs are epistatic or not.
When modeling individual epistatic effects, the same general
rule was assumed (Kao and Zeng 2002; Yi and Xu 2002). That is,
the coefficient of the additive x additive effect, for example, was
defined as the product between the coefficients for the two
deviations (correctly attributed). However, as demonstrated in
the Appendix, even assuming that the SNPs in the first interval
have independent assortment (because independence or free
recombination (1/2)) relative to the SNPs in the second interval,
the coefficients for the epistatic effects do not follow this
product rule. The same result was theoretically proved by Weir
and Cockerham (1976), for the components of the genotypic
variance in inbred populations, under LD. We were also
surprised by the disappointing results from RILs. In this
generation, the most significant component of the genotypic

variance is the additive variance, higher than the additive ×
additive variance. The other epistatic components have a low
magnitude, even with a high percentage of epistatic genes
(Viana and Garcia 2022). Thus, even in RILs, there is a problem of
theoretically modeling the epistatic effects.
Concerning the differences between this study and the previous

investigations on the efficacy of mapping epistatic QTLs, including
Laurie et al. (2014) and Wei et al. (2010), our results show that
ignoring the effects of minor genes when computing the genotypic
values explains the lower FPR previously observed. This study
showed that approximately 2/3 of the FPR was due to minor genes.
Furthermore, in the previous studies, there is generally a simplified
specification of the epistatic effects when generating the simulated
genotypic values. Most previous studies on the efficacy of epistatic
QTL mapping ignored the types of epistasis and sampled epistatic
effects from a Normal distribution, assuming I∼N(0, σ2I ). Only Wei
et al. (2010) and Carlborg et al. (2000) considered five to six epistasis
types. In regard to high-order epistasis, the epistasis type specifica-
tion for three or more genes is complex, except for complementary
and duplicate (for three epistatic genes, proportions of 27:37 and
63:1, respectively, in an F2 generation, assuming independent
assortment). On the basis of Kempthorne (1954), the computation
of the parametric genetic effects relative to three epistatic genes
depends on the F1 gamete probabilities, where, for example,
P(ABC)= (1–rab)(1–rbc)/2, assuming no interference. However, Maki-
Tanila and Hill (2014) showed that the majority of the epistatic
variance is due to two-locus interactions.
In the simulation-based studies on epistatic QTL mapping of

Zuanetti and Milan (2022) and Balestre and de Souza (2016), the
authors did not include minor genes and adopted the same
product rule to specify the coefficients of the epistatic effects.
However, their results also show that mapping epistatic QTLs is
not an almost-perfect process. From a single simulated dataset,
the DDRJ method proposed by Zuanetti and Milan (2022)
provided a power of detection of 50% for the main QTLs and
40% for the epistatic pairs. The FPR for epistatic pairs achieved
78%. The authors also concluded that RJ, MIM, and LASSO
showed a greater rate of false positives and/or a lower power of
QTL detection, especially when estimating epistatic effects.
Furthermore, because MIM was affected by the model selection
criterion, the method may overestimate or underestimate the
number of QTLs. The RJ method proposed by Balestre and de
Souza (2016) provided a power of detection of 31% for the main
QTLs and 14% for the epistatic pairs, associated with FPRs of 20
and 25%, respectively. The average bias was 6.1 cM.
The number of applied studies involving epistatic QTL mapping

has increased. However, because most of them do not include any
information on candidate genes (ontology and level of expression)
and gene networks, the investigations do not prove that each
declared QTL and epistatic pair are true declarations. Tadmor-Levi
et al. (2019) and Li et al. (2018) observed QTLs with significant
epistatic effects but with one or both interacting QTLs with no
significant additive effects. Goto et al. (2019) found 15 pairs of
epistatic QTLs from 27 main-effect QTLs, for chicken body weight.
Regarding maize grain yield and five related traits, Yang et al.
(2020) found 49 QTLs and 24 epistatic pairs. For rice grain yield
and seven related traits, Chen et al. (2021) found 37 QTLs and 47
epistatic pairs. However, Xu et al. (2021) mapped only two QTLs
with significant epistatic effects and Hu et al. (2021) did not find
epistatic QTLs using MIM.
Concluding, on the basis of Kempthorne (1954) to simulate

the components of the genotypic values assuming 10 epistatic
QTLs and 90 minor genes, we show that mapping epistatic QTLs
is a challenge. The basic procedures for the most important
software available provided average power of detection for
QTLs in the range of 40–65%, associated with low power for the
epistatic pairs and a very high FPR for QTLs. Increasing the
average power for epistatic pairs highly increased the related
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FPR. Adopting a procedure to find the best balance between
power and FPR, there was a significant decrease in the power of
QTL detection, associated with a low average power for
epistatic pairs and an average FPR of 31% for QTLs and 16%
for epistatic pairs. Under the best balance, the procedure is
precise for positioning QTLs, showing an average bias of 3.5 cM.
The main reasons for these negative results are a simplified
specification of the coefficients of epistatic effects, as theore-
tically proved, and the effects of minor genes since 2/3 of the
FPR for QTLs were due to them. However, on the basis of the
great flexibility of the software available, we have confidence
that breeders can achieve a superior balance between power
and FPR when processing field data. Finally, we hope that this
study, including the partial derivation of the coefficients of the
epistatic effects, motivates investigations on how to increase
the power of detection for QTLs and epistatic pairs, effectively
controlling the FPR.

DATA AVAILABILITY
The dataset is available at https://doi.org/10.6084/m9.figshare.19242855.
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APPENDIX: THE COEFFICIENTS OF THE EPISTATIC EFFECTS IN
F2 GENERATION
Assume that there is a QTL in two intervals with the independent assortment (due
to independence or free recombination; Q1/q1 and Q2/q2). Assume also
association for the two QTLs and the four flanking SNPs (A/a, B/b, C/c, and D/d)
in the F1 (AQ1BCQ2D/aq1bcq2d). Assuming no interference, the F1 gamete
probabilities in relation to the first QTL and their flanking markers are well known,
given by:

PðAQ1BÞ ¼ P111 ¼ Pðaq1bÞ ¼ P000 ¼ ð1� raq1Þð1� rq1bÞ=2

PðAq1bÞ ¼ P100 ¼ PðaQ1BÞ ¼ P011 ¼ raq1ð1� rq1bÞ=2

PðAQ1bÞ ¼ P110 ¼ Pðaq1BÞ ¼ P001 ¼ ð1� raq1Þrq1b=2

PðAq1BÞ ¼ P101 ¼ PðaQ1bÞ ¼ P010 ¼ raq1rq1b=2

Defining by R the F1 gamete probabilities in relation to the second QTL and their
flanking markers, we have, for example,

PðQ1Q1Q2Q2jAABBCCDDÞ ¼ PðAAQ1Q1BBÞPðCCQ2Q2DDÞ
PðAABBÞPðCCDDÞ ¼ P2111R

2
111

P21:1R
2
1:1

The expectation of the genotypic values for the F2 individuals with SNP genotype
AABBCCDD is

EðGjAABBCCDDÞ
¼ PðQ1Q1Q2Q2jAABBCCDDÞ½m1 þm2 þ a1 þ a2 þ 4ðαQ1αQ2Þ
þ 2ðαQ1δQ2Q2Þ þ 2ðδQ1Q1αQ2Þ þ ðδQ1Q1δQ2Q2Þ� þ ¼
þ Pðq1q1q2q2jAABBCCDDÞ½m1 þm2 � a1 � a2 þ 4ðαq1αq2Þ
þ 2ðαq1δq2q2Þ þ 2ðδq1q1αq2Þ þ ðδq1q1δq2q2Þ�
¼ m1 þm2 þ α1a1 þ α2a2 þ δ1d1 þ δ2d2 þ I2222

where

α1 ¼ P2111�P2101
P21:1

¼ ð1�raq1Þ2ð1�rq1bÞ2�r2aq1r
2
q1b

ð1�raq1�rq1bþ2raq1rq1bÞ2

¼ ð1�raq1Þ2ð1�rq1bÞ2�r2aq1r
2
q1b

ð1�rabÞ2

δ1 ¼ 2P111P101
P21:1

¼ 2raq1ð1� raq1Þrq1bð1� rq1bÞ
ð1� rabÞ2

α2 ¼ R2111 � R2101
R21:1

¼ ð1� rcq2Þ2ð1� rq2dÞ2 � r2cq2r
2
q2d

ð1� rcdÞ2

δ2 ¼ 2R111R101
R21:1

¼ 2rcq2ð1� rcq2Þrq2dð1� rq2dÞ
ð1� rcdÞ2

and I2222 is the average epistatic value for the SNP genotype,
given by

I2222 ¼ ð 1
P1:1R1:1

Þ4½P111R111ðαQ1αQ2Þ þ P111R101ðαQ1αq2Þ þ P101R111ðαq1αQ2Þ
þ P101R101ðαq1αq2Þ�
þ ð 1

P1:1R21:1
Þ2fP111½R2111ðαQ1δQ2Q2Þ þ 2R111R101ðαQ1δQ2q2Þ

þ R2101ðαQ1δq2q2Þ�
þ P101½R2111ðαq1δQ2Q2Þ þ 2R111R101ðαq1δQ2q2Þ þ R2101ðαq1δq2q2Þ�g
þ ð 1

P21:1R1:1
Þ2fR111½P2111ðδQ1Q1αQ2Þ þ 2P111P101ðδQ1q1αQ2Þ

þP2101ðδq1q1αQ2Þ�
þR101½P2111ðδQ1Q1αq2Þ þ 2P111P101ðδQ1q1αq2Þ
þP2101ðδq1q1αq2Þ�g
þ ð 1

P21:1R
2
1:1
ÞfP2111½R2111ðδQ1Q1δQ2Q2Þ

þ 2R111R101ðδQ1Q1δQ2q2Þ þ R2101ðδQ1Q1δq2q2Þ�
þ 2P111P101½R2111ðδQ1q1δQ2Q2Þ þ 2R111R101ðδQ1q1δQ2q2Þ
þR2101ðδQ1q1δq2q2Þ�
þ P2101½R2111ðδq1q1δQ2Q2Þ
þ 2R111R101ðδq1q1δQ2q2Þ þ R2101ðδq1q1δq2q2Þ�g

Note that the coefficients of the a and d deviations are those presented by Haley and
Knott (1992). Kempthorne’s assumptions are (since p1= p2= 1/2):
(i) restrictions for the AA effects: 1) (αQ1 αQ2)+(αQ1 αq2)= 0; 2) (αq1 αQ2)+(αq1 αq2)= 0; 3)
(αQ1 αQ2)+(αq1 αQ2)= 0; and 4) (αQ1 αq2)+(αq1 αq2)= 0.
(ii) restrictions for the AD effects: 1) (αQ1 δQ2Q2)+(αQ1 δQ2q2)= 0; 2) (αQ1 δQ2q2)+(αQ1
δq2q2)= 0; 3) (αq1 δQ2Q2)+(αq1 δQ2q2)= 0; 4) (αq1 δQ2q2)+(αq1 δq2q2)= 0; 5) (αQ1 δQ2Q2)+(αq1
δQ2Q2)= 0; 6) (αQ1 δQ2q2)+(αq1 δQ2q2)= 0; and 7) (αQ1 δq2q2)+(αq1 δq2q2)= 0 (six out of the
seven are independent).
(iii) restrictions for the DA effects: 1) (δQ1Q1 αQ2)+(δQ1q1 αQ2)= 0; 2) (δQ1q1 αQ2)+
(δq1q1 αQ2)= 0; 3) (δQ1Q1 αq2)+(δQ1q1 αq2)= 0; 4) (δQ1q1 αq2)+(δq1q1 αq2)= 0; 5)
(δQ1Q1 αQ2)+(δQ1Q1 αq2)= 0; 6) (δQ1q1 αQ2)+(δQ1q1 αq2)= 0; and 7) (δq1q1 αQ2)+(δq1q1
αq2)= 0 (six out of the seven are independent).
(iv) restrictions for the DD effects: 1) (δQ1Q1 δQ2Q2)+(δQ1Q1 δQ2q2)= 0; 2) (δQ1Q1
δQ2q2)+(δQ1Q1 δq2q2)= 0; 3) (δQ1q1 δQ2Q2)+(δQ1q1 δQ2q2)= 0; 4) (δQ1q1 δQ2q2)+
(δQ1q1 δq2q2)= 0; 5) (δq1q1 δQ2Q2)+(δq1q1 δQ2q2)= 0; 6) (δq1q1 δQ2q2)+(δq1q1
δq2q2)= 0; 7) (δQ1Q1 δQ2Q2)+(δQ1q1 δQ2q2)= 0; 8) (δQ1q1 δQ2Q2)+(δq1q1 δQ2Q2)= 0;
9) (δQ1Q1 δQ2q2)+(δQ1q1 δQ2q2)=0; 10) (δQ1q1 δQ2q2)+(δq1q1 δQ2q2)= 0; 11) (δQ1Q1
δq2q2)+(δQ1q1 δq2q2)=0; and 12) (δQ1q1 δq2q2)+(δq1q1 δq2q2)= 0 (nine out of the 12
are independent).
Using the restrictions, I2222 can be expressed as follows:

I2222 ¼ 4ðP111P1:1
ÞðR111R1:1

Þα1α2ðαQ1αQ2Þ þ 2ðP111P1:1
Þα1ð1� 2δ2ÞðαQ1δQ2Q2Þ

þ 2ðR111R1:1
Þð1� 2δ1Þα2ðδQ1Q1αQ2Þ � ð1� 2δ1Þð1� 2δ2ÞðδQ1Q1δQ2Q2Þ

Thus, the coefficients for the additive × additive, additive × dominance, dominance ×
additive, and dominance × dominance effects are not given by the product of the
coefficients of the additive and dominance effects. Assuming incomplete linkage
between the SNPs B/b and C/c (0 < rbc < 1/2), we have

PðQ1Q1Q2Q2jAABBCCDDÞ ¼ PðAQ1BCQ2DÞ2
PðABCDÞ2 ¼ P2111 ½2ð1�rbc Þ�2R2111

P21:1 ½2ð1�rbc Þ�2R21:1
¼ P2111R

2
111

P21:1R
2
1:1

since PðAQ1BCQ2DÞ ¼ PðAÞ:PðQ1jAÞ:PðBjQ1Þ:PðCjBÞ:PðQ2jCÞ:P
ðDjQ2Þ ¼ ð1=2Þ:ð1� raq1Þ:ð1� rq1bÞ:ð1� rbcÞ:ð1� rcq2Þ:ð1� rq2dÞ
¼ P111:ð1� rbcÞ:2R111. Assuming complete linkage (rbc= 0), the
probability is the same, but there will be 32 and not 64 gametes
for the F1.
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