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Genomic loci that control the variance of agronomically important traits are increasingly important due to the profusion of
unpredictable environments arising from climate change. The ability to identify such variance-controlling loci in association studies
will be critical for future breeding efforts. Two statistical approaches that have already been used in the variance genome-wide
association study (vGWAS) paradigm are the Brown–Forsythe test (BFT) and the double generalized linear model (DGLM). To ensure
that these approaches are deployed as effectively as possible, it is critical to study the factors that influence their ability to identify
variance-controlling loci. We used genome-wide marker data in maize (Zea mays L.) and Arabidopsis thaliana to simulate traits
controlled by epistasis, genotype by environment (GxE) interactions, and variance quantitative trait nucleotides (vQTNs). We then
quantified true and false positive detection rates of the BFT and DGLM across all simulated traits. We also conducted a vGWAS using
both the BFT and DGLM on plant height in a maize diversity panel. The observed true positive detection rates at the maximum
sample size considered (N= 2815) suggest that both of these vGWAS approaches are capable of identifying epistasis and GxE for
sufficiently large sample sizes. We also noted that the DGLM decisively outperformed the BFT for simulated traits controlled by
vQTNs at sample sizes of N= 500. Although we conclude that there are still certain aspects of vGWAS approaches that need further
refinement, this study suggests that the BFT and DGLM are capable of identifying variance-controlling loci in current state-of-the-art
plant or agronomic data sets.
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INTRODUCTION
The world’s food baskets face an expanding amount of
unpredictable growing seasons due to the ongoing threat of
climate change (Ziervogel and Ericksen 2010). If a 4 °C increase in
global temperature is not prevented by 2100, there could be a
potential loss of $23 quadrillion to agriculture (Schillaci et al.
2019). Unfortunately, most crops are maladapted to highly
variable environments, where optimal growing conditions may
never be attained (Mulder et al. 2007). An idea that may lend itself
to accelerating the development of crops better suited for such
variable environments is canalization. Canalization is the hypoth-
esis that natural selection minimizes variation for certain traits in a
way that prevents major loci from being influenced significantly
by the environment or background genetic variance like epistasis
(Waddington 1942; Rönnegård and Valdar 2011). Artificial selec-
tion facilitates the decanalization of certain loci, which has allowed
domesticated crops to grow in novel environments (Kitano 2004).
However, these decanalized loci are disadvantageous if the
environment it was adapted to becomes unpredictable (Wad-
dington 1942). Collectively, the combination of decanalized loci
and unpredictable environments has resulted in such loci
controlling the variance of a targeted trait; that is, as a variance
quantitative trait locus (vQTL; Debat and David 2001). A classic
example of such vQTLs are genes that encode heat shock proteins,
which are involved with various environmental stressors, including

heat stress, ultraviolet radiation, cold tolerance, and biotic
stressors (Park and Seo 2015). Variance-controlling loci also arise
from epistatic gene action, where the marginal effects of one of
the epistatically interacting genes appear as a vQTL (see Forsberg
and Carlborg 2017 for a review).
The primary purpose of a variance genome-wide association

study (vGWAS) is to detect genetic loci that alter the variance of a
phenotype between different genotypes (Al Kawam et al. 2018).
While vGWASs have been conducted in plants and crops, its
utilization is still not widespread. To date, vGWASs have been
conducted for ionomic traits, including molybdenum content in
Arabidopsis thaliana and cadmium content in bread wheat
(Triticum aestivum) (Shen et al. 2012; Forsberg et al. 2015; Hussain
et al. 2020), as well as for oil-related traits in maize (Zea mays L.) (Li
et al. 2020). Unlike those used in a standard GWAS (denoted as a
mean GWAS or mGWAS), the statistical models used for a vGWAS
specifically assume unequal phenotypic variance at each geno-
typic state of a given locus, i.e., in the presence of variance
heterogeneity (Rönnegård and Valdar 2011). Variance-controlling
loci are connected to many different ideas within quantitative
genetics, including epistatic and GxE interactions (Struchalin et al.
2012; Rönnegård and Valdar 2011). One potentially important
advantage of using vGWAS for search for the presence of such
interactions is it could prioritize genomic regions likely to harbor
epistatic interactions, thereby reducing the severity of multiple
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testing correction (Struchalin et al. 2012; Pettersson and Carlborg
2015). The markers in these regions could then be directly tested
for the presence of epistasis or GxE interactions.
Many statistical analyses have been developed to test for

variance heterogeneity. From a biological perspective, the choice
of test and model can be divided into whether or not one
accounts for population structure, relatedness, and other covari-
ates (Rönnegård and Valdar 2012). Of the statistical tests that do
not account for such factors, Levene’s test and its median
modification, the Brown–Forsythe test (BFT), have been the most
popular (Brown and Forsythe 1974; Rönnegård and Valdar 2012).
Although they are useful as a quick diagnostic for identifying
variance-controlling loci, they cannot explicitly correct for
population structure, familial relatedness, or loci that control the
mean of a tested trait (called mQTNs or mQTLs) (Hong et al. 2017).
In contrast, models that allow for the inclusion of these factors as
covariates theoretically offer higher power to detect variance-
controlling loci. In particular, the double generalized linear model
(DGLM) (Lee and Nelder 1996) adjusts for potential confounding
between vQTLs, mQTLs, and population structure through the
inclusion of fixed-effect covariates. Excitingly, more sophisticated
versions of the DGLM also include random effects to account for
confounding due to familial relatedness (Lee and Nelder 2006;
Rönnegård and Valdar 2012).
Although statistical approaches seeking to estimate the effects

of variance-controlling loci have opened up many opportunities
for discovering new sources of quantitative trait variation,
detecting variance-controlling loci still poses challenges. For
example, the statistical power needed to detect a variance-
controlling locus often requires five times as many individuals
compared to the precision needed to detect a mean-controlling
locus (Lee and Nelder 2006; Rönnegård and Valdar 2012). This
suggests that there is a critical need to systematically study the
statistical performance of leading vGWAS approaches. Therefore,
the purpose of this study was to explore the factors that influence
the ability of the BFT and DGLM to detect vQTLs underlying plant
traits. We used publicly available whole-genome resequencing
data from the 1001 genomes diversity panel in Arabidopsis
thaliana (Alonso-Blanco et al. 2016) and the USDA-ARS North
Central Region Plant Introduction Station (NCRPIS) Panel in Zea
mays L. (Romay et al. 2013) to simulate traits controlled by
epistasis, GxE effects, or variance-controlling loci with various
effect sizes. We also analyzed explored the ability of these two
approaches to find variance-controlling loci associated with the
plant height data from Peiffer et al. (2014) that was measured in
the Goodman maize diversity panel (Flint‐Garcia et al. 2005).

MATERIALS AND METHODS
Genotypic data and filtering procedures
We conducted simulation studies using genotypic data from two plant
species with contrasting levels of linkage disequilibrium (LD) decay. The
first genotypic data set was a subset of 1087 accessions from the
Arabidopsis thaliana 1001 genomes diversity panel, available at https://
1001genomes.org/ (Alonso-Blanco et al. 2016). The 1001 genomes diversity
panel consists of germplasm mostly collected from Eurasia, North America,
and Northern Africa. These accessions were genotyped using whole-
genome resequencing, which produced 10,707,430 biallelic SNPs (Alonso-
Blanco et al. 2016). The second set of genotypic data consisted of 2815
lines from the NCRPIS diversity panel in maize (Romay et al. 2013). This
diversity panel was genotyped for 681,257 SNPs, as described in Romay
et al. (2013). This genotypic data set is publicly available at cbsusrv04.tc.
cornell.edu/users/panzea/download.aspx?filegroupid=6.
Both genotypic data sets were filtered with VCFtools (Danecek et al.

2011) to remove SNPs with more than 10% missing data or minor allele
frequency (MAF) below 5%. These data sets were then further filtered with
LD pruning utilizing PLINK (Purcell et al. 2007). The LD pruning parameters
for Arabidopsis were set to r2= 0.10, a window size of 200 SNPs, and a step
size of 20 SNPs. The LD pruning parameters for maize were loosely based
on the procedure done in Romay et al. (2013), which were r2= 0.20, a

window size of 100 SNPs, and a step size of 25 SNPs. This filtering process
described above was conducted independently in both species. The
resulting number of SNPs was 41,384 for Arabidopsis and 72,359 for maize.
To assess how sample size affects the performance of the tested

statistical methodologies, we considered two different sample size
scenarios for each species. The first scenario focused on employing all
individuals in both panels (i.e., N= 1087 for Arabidopsis and N= 2815 for
maize). In the second scenario, we randomly selected N= 500 individuals
from each panel using the sample() function in R (R Core Team 2022).

Simulation of traits controlled by variance- and mean-
quantitative trait nucleotides
We developed the approach described below to simulate traits controlled
by variance quantitative trait nucleotides (vQTNs) and/or mean QTNs
(mQTNs). Each of these simulated traits consisted of a unique configuration
of vQTNs, mQTNs, their effect sizes, and narrow-sense heritability. These
parameters were used in the following formula derived from Hill and
Mulder (2010) to obtain simulated trait values for each individual:

Pi ¼ Am;i þ χ ik σE þ Av;SDi
� �

; (1)

where Pi is the simulated phenotypic value of the ith individual, Am,i is the
collective genetic value from all simulated mQTNs for the ith individual, χi
is a standard normal random variable (i.e., N(μ= 0, σ2= 1)) sampled for the
ith individual, k is a constant described two paragraphs below that allows
for a certain degree of control over the narrow-sense heritability, σE is the
population standard deviation determined attributed to non-genetic
sources, and Av,SDi is the collective genetic value of all simulated vQTN
for the ith individual. The values of Am,i and Av,SDi are respectively
calculated as the sum of the observed numeric genotype value at each
mean and variance QTN, multiplied by the (respective) mean and variance
QTN effects for the ith individual. These simulations are conducted
assuming that the covariance between Am,i and Av,SDi is zero.
One major challenge for simulating traits controlled by vQTNs is the

specification of the desired heritability. Because the value of (σE+ Av,SDi)
changes for every individual, the value of the heritability will also change
for every individual. We, therefore, made ad hoc adjustments to Eq. (1) to
ensure at least partial control for a desired narrow-sense heritability (h2).
First, the value of σE was also set to 1, and then Am,i was centered and
scaled, so its sample mean and standard deviation were respectively 0 and
1. These steps were taken to facilitate the estimation of the k in Eq. (1).
We now describe the derivation of the procedure we used to estimate

the value of k. Consider the following modified formula for estimating
narrow-sense heritability h2 for traits controlled by vQTNs:

bh2 ¼ bσ2A
bσ2A þ k2 bσE þMdn Av;SDi

� �� �2 (2)

where bσ2A ¼ Var Amif g ¼ 1 because Am,i was scaled, bσE was set equal to σE
= 1 to facilitate calculations, and Mdn {Av,SDi} is the median value of Av,SDi
across all n individuals (i.e., all individuals in either the Arabidopsis or maize
data sets used for the simulations). Thus, solving Eq. (2) for k yields:

k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibσ2Abh2 � bσ2A
bσE þMdn Av;SDi

� �� �2
vuuut (3)

where all terms are as previously described. Thus, for each simulation
setting, the value of k from Eq. (3) was used in Eq. (1) to obtain simulated
trait values for every individual.
Two R functions were used to simulate these traits. Additive mQTNs,

which contribute to Am,i in Eq. (1), were simulated using the create_-
phenotypes() function in the simplePHENOTYPES R package (Fernandes
and Lipka 2020). We then developed our custom R function that was
roughly based on the Python code from Dumitrascu et al. (2019) to obtain
the remaining necessary values in Eqs. (1)–(3) to simulate the phenotypic
values Pi. To facilitate the deployment of our simulation pipeline to future
studies, we made it available through simplePHENOTYPES v1.4 (create_-
phenotypes(…, model= “V”)) (https://github.com/samuelbfernandes/
simplePHENOTYPES).

Description of all settings considered in simulation study
We conducted a comprehensive study that simulates traits controlled by
either (1) no QTN, (2) epistasis, (3) GxE, or (4) a combination of vQTN and
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mQTN (using the approach described in the previous section). Conse-
quently, our simulation studies were subdivided into four respective
scenarios summarized in Table 1. Across all scenarios, a total of 64 unique
settings (i.e., combinations of input parameters) of traits were simulated. At
each setting, a total of 100 replicate traits were simulated.
To enable a rigorous assessment of false positive rates of the tested

vGWAS approaches, the “Null” scenario (as depicted on Table 1) consisted
of traits with broad-sense heritability (H2) set to H2= 0 and zero QTNs.
Consistent with the hypothesis that epistasis is responsible for vQTLs
(Forsberg and Carlborg 2017), the “Epistasis” scenario simulated traits
controlled by three epistatically interacting pairs of loci. For each pair, the
epistatic effect was defined as the effect corresponding to the product of
additively-encoded explanatory variables at each locus (i.e,. the additive-
by-additive effect, iaa, defined in Cordell 2002). For each individual, the
genetic values from each of the epistatically interacting loci were added
up, and the resulting simulated trait value was the sum of these genetic
values plus a normally distributed random variable with population mean
0 and population variance determined from the broad-sense heritability of
the trait. To enable an assessment of the impact of heritability on the
results, we kept the effect sizes of each of these epistatic QTN constant at
0.75, and the targeted MAF of all SNPs selected to be QTNs was 0.10. We
then simulated traits at two different broad-sense heritabilities, namely H2

= 0.3 and H2= 0.8.
For the “GxE” scenario we used the “partial pleiotropy” setting in

simplePHENOTYPES (Fernandes and Lipka 2020) to simulate one trait in
two environments that was controlled by two environment-specific
mQTNs. The first of these mQTNs was at the same randomly selected
marker for each environment, but had contrasting additive effect sizes,
specifically 0.2 in the first environment (called Environment A) and 0.8 in
the second environment (Environment B). The second of these mQTNs
were at different randomly selected markers for each environment, and
was assigned an additive effect size of 0.5. All simulated QTNs had MAFs of
~0.3. The narrow-sense heritabilities of both traits were set at h2= 0.7.
Upon completion of simulating this trait in two environments, each
individual had two trait values: one from Environment A (YA), and one from
Environment B (YB). However, a single phenotypic value was needed for
each individual for downstream analyses. Thus, for each individual we used
the difference between trait values YA−YB as the response variable in the
subsequent statistical analysis.
Finally, we used the findings from previously published vGWAS and

vQTL studies conducted in Arabidopsis and maize (Shen et al. 2012; Li et al.,
2020; Forsberg et al. 2015) as a basis for the “vQTN” scenario. Collectively,
the various parameters we explored in this scenario (summarized in
Table 1) enabled us to study the impact of narrow-sense heritability, MAF
of vQTNs, and the effect sizes of vQTNs on the performance of the various
GWAS approaches we explored. Detailed information about the actual
SNPs that were randomly selected to be QTNs across all settings are
presented in Supplementary File 1.

Competing GWAS models and tests
We considered two different statistical approaches used in previous plant
publications to conduct vGWAS, namely the BFT and the DGLM (Shen et al.
2012; Forsberg et al. 2015; Hussain et al. 2020; Li et al. 2020). In general, the
BFT is used in vGWAS to test for variance homogeneity (Brown and
Forsythe 1974; Shen et al. 2012). For each locus, the BFT evaluates: H0:
Population variances of traits are equal at all genotypes vs. Ha: Population

variances of traits are different for at least one genotype, and uses the
corresponding test statistic:

F ¼ N �mð ÞPm
j¼1 njðy�:j � y�::Þ2

m� 1ð ÞPm
j¼1

Pnj
i¼1 ðy�ij � y�:jÞ2

(4)

where N is the total number of accessions, nj is the number of accessions in
the jth genotypic group, m is the number of genotypes at the tested
genetic marker, and:

y�ij ¼ yij � eyj�� �� (5)

In (5), yij is the phenotypic value for the ith individual with the jth
genotype and eyj is the median phenotypic value of individuals with
genotype j. Under H0, the BFT statistic in (4) follows an F distribution with
degrees of freedom equal to m− 1, N−m (Shen et al. 2012). The BFT was
performed using the brown.forsythe.test() function from the vGWAS R
package (Shen et al. 2012). Because the BFT does not allow explicit
inclusion of covariates to account for false positives arising from
population structure and familial relatedness, it often serves as a quick
diagnostic test to see if the trait of interest has any underlying vQTLs.
Furthermore, the BFT is robust to phenotypic departures from normality
(Dumitrascu et al. 2019; Hussain et al. 2020).
The DGLM belongs to a family of generalized linear models, which

relaxes the assumption of normality of phenotypic residuals for more
flexible modeling. Specifically, the DGLM consists of two linear predictors
that model the relationship between a response variable and (1)
explanatory variables controlling its population mean (Eq. (6)), and (2)
explanatory variables controlling its population variance (Eq. (7)). The
component of the DGLM controlling the population mean is written as
follows:

Yi ¼ μm þ
Xq
k¼1

Xikβk þ sijamj þ εi (6)

where Yi is the observed phenotypic value of the ith individual, μm is the
intercept; Xik the value of the kth principal component from a principal
component analysis (PCA) of the markers (Price et al. 2006) observed in the
ith individual (the first q= 4 and q= 3 principal components were
included in the models used in Arabidopsis and maize, respectively); βk is
the regression coefficient for the kth principal component; sij is the value of
the jth SNP encoded as 0, 1, 2 for the ith individual; amj is the additive
effect size of the jth SNP; and εi � Nð0; σ2εi Þ. In the “vQTN” scenario
presented in Table 1, sj was set equal to the mQTN and amj was its effect
size; in all other settings, these two terms were omitted from the model
because no mQTNs were simulated. The component of the DGLM
controlling the population variance of the ith individual σ2εi is written as
follows:

log σ2εi

� 	
¼ μv þ sijavj (7)

where σ2εi is the residual variance for the ith individual; μv is the intercept; sij
is the value of the observed SNP value encoded 0, 1 and 2 at the jth marker
for the ith individual; and avj is the effect size of the jth marker.
To test for a significant association between the jth marker and the

variance of the tested trait, we used the Wald test (Agresti 2003) to test H0:

Table 1. Parameters considered in the simulation study.

dScenario nQTN Species Heritability Targeted MAF Sample size Allelic effect

Null 0 Maize; Arabidopsis 0.00 N/A 500; Maximum N/A

Epistasisa 3 epistatic QTNsa Maize; Arabidopsis 0.30; 0.80 0.10 500; Maximum 0.75 for all 3 QTNs;

GxE 2 mQTNs in 2 environments Maize; Arabidopsis 0.70 0.30 500; Maximum Env.1: 0.2b, 0.5c

Env.2: 0.8b, 0.5c

vQTN 1 mQTN
1 vQTN

Maize; Arabidopsis 0.63; 0.33 0.10; 0.40 500; Maximum mQTN: 0.25
vQTN: 0.1; 0.5; 0.9

Across all scenarios, a total of 64 unique configurations of these parameters were simulated.
QTN quantitative trait nucleotides, MAF minor allele frequency, GxE genotype by environment, mQTN mean QTNs, vQTN variance QTNs.
aEach epistatic effect consists of the additive-by-additive effect of two randomly selected single nucleotide polymorphisms.
bThis environment-specific mQTN was simulated at the SNP in both environments, but the effect sizes differed in each environment.
cThis environment-specific mQTN was simulated at different SNPs in each environment.
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avj= 0 vs. Ha: avj ≠ 0, which follows an asymptotic χ21 distribution under H0.
Thus, under H0, the mean component of the DGLM remains as presented
in Eq. (6), while the component presented in Eq. (7) is reduced to:

log σ2εi

� 	
¼ μv (8)

where all terms are as previously described.
As described in Corty and Valdar (2018), the DGLM framework is

flexible in that it allows one to test for either the presence of a vQTN (i.e.,
test for H0: avj= 0, where avj is described in Eq. (7)), presence of an mQTN
(i.e., test for H0: amj= 0, where amj is described in Eq. (6)), or for the
presence of both (i.e., test for H0: avj= 0 and amj= 0) at the jth marker.
For the sake of a direct comparison between the ability of the DGLM and
the BFT to identify vQTNs, we assume that the user has already ran an a
priori GWAS scan and that any peak-associated mQTNs were fitted into
the mean component of the DGLM, as presented in Eq. (6). Thus, the
multiple testing correction, described in detail in the next section, was
applied equally to both the BFT and the DGLM. Because our analysis of
DGLM is only testing for the presence of vQTNs, the stringency of
multiple testing will not be as severe as prior applications of the DGLM
(e.g., Corty and Valdar 2018) that tested for the presence of either vQTNs,
mQTNs, or both. To perform DGLM, we used the R code from Hussain
et al. (2020), which came from the dglm R package (Dunn et al. 2020). The
PCAs for population structure were obtained using GAPIT version 4.0
(Lipka et al. 2012).
As a counterpoint to both the BFT and DGLM, we also conducted a

GWAS at each replicate using a standard GWAS model. Specifically, we
used GAPIT version 4.0 (Lipka et al. 2012) to fit the unified mixed linear
model (MLM; Yu et al. 2006) at each SNP and at each replicate trait
considered in this study. Within each species, the same PCs that have been
previously described were included in the model to account for
subpopulation structure, and the method of VanRaden (2008) was used
in the filtered marker sets in each species to obtain additive genetic
relatedness (i.e., kinship) matrices to account for familial relatedness.
The ensuing analyses using both of these statistical approaches were

conducted on a Dell Precision Tower 3240 with 64.0 GB RAM. While the BFT
was ran on a single core, DGLM was ran on four cores using the foreach R
package.

QTN detection rates for competing models
To assess whether or not the vGWAS methodologies can correctly
identify markers as associated with our simulated traits, we evaluated
the true and false positive QTN detection rates using the Benjamini and
Hochberg (1995) procedure to control the false discovery rate (FDR) at
5%. A statistically significant SNP was labeled as a true positive if it was
within a 250 kb window of a simulated vQTN for maize and within
100 kb window of a simulated vQTN in Arabidopsis. Likewise, a
statistically significant SNP was labeled as a false positive if it was
outside of these windows. We defined the true positive rate as the
proportion of times we detected at least one true positive per
replication out of 100 replications. Similarly, the false positive rate is
defined as the proportion of times we detected at least one false
positive per replication out of 100 replications. True and false positive
detection rates were further scrutinized by calculating 95% confidence
intervals using the method of the Clopper and Pearson (1934) in the
PropCIs R package (Scherer and Scherer 2018). For each setting, all SNPs
selected to be vQTNs were removed prior to calculating the true and
false positive detection rates.
We also developed an approach similar to one presented in Gage et al.

(2018) that used receiver operating characteristic (ROC) curves (Metz 1978)
to evaluate the ability of the three GWAS approaches to differentiate
between true and false positives. For all settings except for those under the
“Null” scenario, we randomly selected ten replicate traits. For each replicate
trait, we used the genome-wide p values from each of the three GWAS
approaches to obtain corresponding ROC curves, where cases were
considered to be all SNPs within the aforementioned physical windows of
each QTN, and the remaining SNPs outside of these windows were
considered to be controls. Thus, for a given replicate trait, a separate ROC
curve was obtained for each of the three GWAS approaches. For each
resulting ROC curve, we calculated the area under the ROC curve (AUC);
values of AUC greater than 0.5 suggest that the corresponding statistical
model is capable of discriminating between cases and controls. Finally, for
each GWAS approach used in each setting, we reported the median AUC
value across the ten replicates.

Analysis of plant height data in a maize diversity panel
We performed a vGWAS using both the BFT and DGLM on plant height
best linear unbiased predictors from Peiffer et al. (2014). Briefly, this trait
was measured on 279 individuals from the Goodman maize diversity panel
(Flint‐Garcia et al. 2005) grown in ten different locations. To implicitly
control for population structure and familial relatedness, we performed a
two-step approach as described in previous vGWAS publications (Shen
et al. 2012; Forsberg et al. 2015; Li et al. 2020; Zhang and Qi 2021). This
approach first runs the unified MLM (Yu et al. 2006) with PCs (for this
analysis, we used the first five PCs) and the VanRaden (2008) kinship matrix
in TASSEL 5.0 (Bradbury et al. 2007) for the first step. The resulting residuals
from this step were used as the response variable in our ensuing analyses.
The genotypic data for this analysis consisted of a subset of 48,880 SNPs
from the Illumina SNP50 chip (Cook et al. 2012). For both the BFT and
DGLM, we used the Benjamini and Hochberg (1995) to control for the
genome-wide false discovery rate at 5%. To visualize the loci identified for
the BFT, DGLM, and MLM, circular Manhattan plot was created using the
Cmplots R package (Yin 2018).

RESULTS
False positive detection rates in the “Null” setting suggest BFT
and DGLM adequately control for false positives
We ran the “Null” scenario to verify that the observed false
positive rates for the BFT and DGLM were similar to what we
would expect based on statistical theory (Fig. 1). We also
calculated 95% confidence intervals for these false positive rates
using the method described by Clopper and Pearson (1934). All of
these CIs contained the targeted FDR of 0.05.

High true positive detection rates were obtained for highly
heritable epistatic QTNs, especially at larger sample sizes
When the heritability of the simulated epistatic QTNs were high
(H2= 0.80), both the BFT and DGLM tended to detect SNP pairs
contributing to epistatic QTNs for all combinations of species and
sample sizes, although these true positive detection rates notably
lower for maize at N= 500 (Fig. 2). In contrast, both vGWAS
approaches yielded extremely low detection rates of the pairs of
SNPs contributing to the epistatic QTNs when the broad-sense
heritability of the epistatic QTNs was low (H2= 0.30). In general, both
vGWAS approaches tended to detect the epistatic QTNs at similar
rates in Arabidopsis, while the DGLM tended to yield either similar (at
N= 2815) or higher (at N= 500) true positive detection rates than
the BFT in maize. The epistatic QTNs were identified by the MLM at
relatively consistent high rates only when they were simulated in
maize with sample size N= 2815 and heritability of H2= 0.8. The

Fig. 1 False positive detection rates for the null setting at a false
discovery rate of 0.05. The X-axis represents the sample size of each
diversity panel. The Y-axis is the proportion of replications where a
false positive is detected at least once. The error bars depict 95%
confidence intervals, calculated using the method from Clopper and
Pearson (1934). The dotted red horizontal line depicts the targeted
false discovery rate of 0.05. Each panel represents the species
indicated in the title. BFT Brown–Forsythe test, DGLM double
generalized linear model.
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results from the analysis of the ROC curves and corresponding
median AUC values (Supplementary Table 1) support the findings
presented in Fig. 2. Thus, these results suggest that the two tested
vGWAS approaches are capable of detecting pairwise epistasis, but
these epistatic signals need to be highly heritable.

vGWAS approaches yielded high true positive detection rates
of GxE signals only at the largest evaluated sample size
The BFT and DGLM could detect true positive signals from
simulated GxE effects at non-negligible rates at only the largest
sample size we evaluated, namely at N= 2815 in maize (Fig. 3). At
this sample size, both of these approaches yielded similar true
positive detection rates at the QTN that was simulated at the same
genomic position, but with different effect sizes, in both
environments. However, at the two environment-specific QTNs,
the BFT yielded higher true positive detection rates than the
DGLM (Fig. 3D). At this sample size in maize, we also observed that
the BFT detected the QTNs at rates either greater than or similar to
those from the MLM. The results from the ROC curves and
corresponding median AUC values were consistent with the true
positive rates presented in Fig. 3, especially with respect to
noticeably higher median AUC values in maize at N= 2815
(Supplementary Table 1). Collectively, these results suggest that
the BFT and DGLM are capable of identifying a GxE signal at
reasonably high detection rates, but a large sample size (at least N
= 2815) is needed.

DGLM was capable of identifying vQTNs at smaller sample
sizes of N= 500
Across both of the evaluated species and narrow-sense herit-
abilities, we observed that the true positive detection rates of the

DGLM tended to monotonically increase with the effect sizes of
vQTNs, particularly for those with MAFs of ~0.4 (Fig. 4). This trend
was observed for such vQTNs across all of the evaluated sample
sizes. In contrast, the BFT consistently yielded low true positive
QTN detection rates at N= 500. Although not as pronounced as
the DGLM, we also observed that the true positive detection rates
of the BFT tended to monotonically increase with vQTN effect
sizes at certain settings. While approximately similar trends in true
positive detection rates were observed in maize across the two
vQTN MAF settings, notably lower true positive detection rates
were observed for both vGWAS approaches in Arabidopsis for
vQTNs with MAFs of ~0.1. We also observed that the DGLM results
were more consistent across the two evaluated narrow-sense
heritabilities than the BFT. As expected, the simulated vQTLs were
not detected by the MLM, which makes sense considering the
MLM assumes that the variances between genotypic groups are
equal. Similar trends were noted in the analysis of the ROC curves
(Supplementary File 1 and Supplementary Table 1), in particular
with median AUCs for the BFT and DGLM tending to mono-
tonically increase with sample size, MAF, and vQTN effect size.
Overall, these results suggest that the DGLM is capable of
outperforming the BFT at sample sizes of N= 500.

BFT and DGLM identified significantly associated markers for
plant height
The BFT and DGLM both identified statistically significant
associations for plant height in the Goodman diversity panel at
a genome-wide FDR of 5% (Fig. 5A), while no statistically
significant associations were found using the unified MLM.
Interestingly, three statistically significant associations located on
chromosomes 1, 2, and 8 were identified by both the BFT and

Fig. 2 True positive detection rates under the “Epistasis” scenario. True positive detection rates for the simulated traits under the “Epistasis”
scenario settings at a false discovery rate of 0.05 for A Arabidopsis at a sample size of N= 500, Bmaize at a sample size of N= 500, C Arabidopsis
at a sample size of N= 1087, and Dmaize at a sample size of N= 2815. In each panel, two sets results are presented: one for the simulated trait
with broad-sense heritability of set to H2= 0.30, and one for those with H2= 0.80. On each figure, the X-axis represents the pair of SNPs
contributing to the three epistatic quantitative trait nucleotides (QTNs; e.g., “2a” denote the first SNP contributing to the second epistatic
QTN). The Y-axis is the proportion of replications where a true positive is detected at least once. The error bars depict 95% confidence
intervals, calculated using the method from Clopper and Pearson (1934). BFT Brown–Forsythe test, DGLM double generalized linear model,
MLM unified mixed linear model.
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DGLM (Fig. 5A). The quantile-quantile plots presented Fig. 5B
suggest that the –log(p values) from the DGLM are more inflated
than those from the BFT and MLM.

DISCUSSION
We used both simulated and real traits to evaluate the ability of
two vGWAS approaches, namely the BFT and the DGLM, to
identify epistasis, GxE, and variance-controlling loci. At the
maximum sample size evaluated (N= 2815), both vGWAS
approaches frequently identified highly heritable epistatic and
GxE signals. For simulated traits that were controlled by vQTNs, we
observed that the DGLM yielded substantially higher true positive
detection rates than the BFT at sample sizes of N= 500.
Collectively, these results provide a potential benchmark for
how the BFT and DGLM are expected to perform when deployed
to vGWAS in plants. Such an assessment is essential because the
more widespread use of vGWAS in plants could substantially
facilitate breeding for uniformity of trait values across various
environmental conditions.

Prospects on the ability of BFT and DGLM to assist in
identifying epistasis and GxE
Because of strong evidence in the literature that both epistasis
and GxE could underlie the statistical associations identified in
vGWAS (Struchalin et al. 2012; Rönnegård and Valdar 2011), two of
our simulation scenarios explicitly simulated these two sources of
genomic variability. The results from these two scenarios suggest
that the DGLM and BFT are capable of finding highly heritable
epistatic and GxE signals at the largest evaluated sample size
(N= 2815 in maize). An even more exciting result was that for the
highly heritable epistatic QTNs at sample sizes of N= 500, both
the vGWAS approaches yielded high detection rates in

Arabidopsis, while the DGLM yielded modestly high true positive
detection rates in maize.
The fact that we were able to identify these epistatic and GxE

loci suggest that vGWAS approaches could assist in the detection
of epistasis or GxE effects underlying agronomically important
traits. As described in Struchalin et al. (2012), the large number of
possible interacting loci to be tested when searching for epistasis
or GxE results in a heavy multiple testing correction burden. To
overcome this, a preliminary vGWAS scan could be conducted to
highlight specific genomic markers likely to harbor these sources
of genomic variability. Given our results, we expect vGWAS
approaches to be successful in identifying highly heritable
epistatic and GxE effects for sample sizes of at least N= 2815. If
such loci were to be detected using vGWAS studies, they can then
be directly tested for epistasis and/or GxE effects in a follow-up
analysis, where the multiple testing correction would be
substantially reduced because only the markers identified using
vGWAS are analyzed.

Prospects on the ability of the BFT and DGLM to identify vQTN
One consistent result we observed in both species was that the
DGLM yielded higher true positive detection rates than the BFT at
sample sizes of N= 500 and MAF= 0.4. This suggests that a
sample size of 500 could be sufficient for the DGLM to identify
non-rare variance-controlling loci. In addition to varying the
sample size and species in the “vQTN” scenario, we also evaluated
the performance of these two vGWAS approaches across two
targeted vQTN MAFs, effect size, and narrow-sense heritabilities.
Not surprisingly, we observed that the true positive vQTN
detection rates of both models tended to increase monotonically
with their simulated effect sizes. We also noted that higher true
positive detection rates tended to be observed for vQTNs with the
higher targeted MAF= 0.4, which again was consistent with our

Fig. 3 True positive detection rates under the “GxE” scenario. True positive detection rates for the simulated traits under the “GxE” scenario
settings at a false discovery rate of 0.05 for A Arabidopsis at a sample size of N= 500, B maize at a sample size of N= 500, C Arabidopsis at a
sample size of N= 1087, and D maize at a sample size of N= 2815. On each figure, the X-axis represents the QTN, and a description of the
which environment(s) in which they were simulated are detailed in the corresponding X-coordinate label. The Y-axis is the proportion of
replications where a true positive is detected at least once. The error bars depict 95% confidence intervals, calculated using the method from
Clopper and Pearson (1934). BFT Brown–Forsythe test, DGLM double generalized linear model, MLM unified mixed linear model.
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expectations prior to conducting this study. However, higher than
expected true positive detections were observed in maize for
vQTNs with targeted MAF= 0.10. Taken together with the less
favorable true positive detection rates in Arabidopsis for vQTNs
with targeted MAF= 0.10, these results suggest that vGWAS could
be used to identify genomic regions likely to harbor rare vQTNs
under certain circumstances. Therefore, we recommend that
future studies investigate the impact of LD decay and marker
technologies on the ability to identify rare vQTNs. Although there
were certain settings at h2= 0.63 where the BFT outperformed the
DGLM, the latter approach yielded more stable true positive
detection rates across the two evaluated narrow-sense heritabil-
ities. This result suggests that the DGLM is more robust than the
BFT for controlling the influence of the simulated mQTN on the
overall simulated trait variance, and further underscores our
recommendation of the DGLM as the preferred vGWAS approach.

Limitations of our simulation studies
Although useful for simulating traits with similar genetic
architectures of real traits, the approach we implemented to
account for the narrow-sense heritability in the “vQTN” scenario
was ad hoc. We recommend that future studies focus on
accounting for broad-sense heritabilities, as this would enable
more user-control over the total phenotypic variance attributable
to genetic effects. Another limitation of our study is that we

explored only one configuration of modeling the relationship
between vQTNs and a trait. Specifically, the configuration we used
in (1) is based on the standard deviation additive model (Hill and
Zhang 2004; Hill and Mulder 2010). Other vQTN quantitative
genetics models, such as reaction norm model from Hill and
Mulder (2010) or the other forms of epistasis discussed in Cordell
(2002), could be used to simulate more scenarios where vQTNs
could arise.

Areas for future research
While the BFT and DGLM are two commonly used statistical
methodologies for vGWAS, the results from our analysis of plant
height in maize suggest that they may not adequately control for
population structure and familial relatedness (Fig. 5B). Thus, we
recommend the consideration of more sophisticated statistical
approaches for vGWAS. Two examples are the hierarchical
generalized linear model (HGLM) (Lee and Nelder 1996) and
double hierarchical generalized linear model (DHGLM) (Lee and
Nelder 2006). These models account for familial relatedness by
including the individuals as a random effect and setting their
variance-covariance to be proportional to an additive genetic
relatedness matrix. Although the associated computational com-
plexity of fitting these two models rendered them impractical to
evaluate in our simulation studies, they have been previously
evaluated in wheat (Hussain et al. 2020) and animal breeding

Fig. 4 True positive detection rates under the “vQTN” scenario. True positive detection rates for the simulated traits under the “vQTN”
scenario settings at a false discovery rate of 0.05 for A Arabidopsis and B maize. On each panel, the results are subdivided into heritability (h2),
sample size (N), and targeted minor allele frequency of the QTN (MAF). On each figure, the X-axis depicts the effect size of the vQTN, and Y-axis
is the proportion of replications where a true positive is detected at least once. The error bars depict 95% confidence intervals, calculated
using the method from Clopper and Pearson (1934). BFT Brown–Forsythe test, DGLM double generalized linear model, MLM unified mixed
linear model.
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(Rönnegård et al. 2010). Given that the DGLM and HGLM in
Hussain et al. (2020) both identified the same loci associated with
cadmium content in wheat, we would expect that the HGLM and
DHGLM to yield similar true positive detection rates for traits that
are not associated with familial relatedness. We recommend that
future work focuses on increasing the computational efficiency of
the HGLM and DHGLM so that their ability to identify vQTNs could
be studied in a manner similar to that which is presented in
this work.
One noteworthy aspect of several prior vGWAS investigations is

that the search for variance-controlling loci was conducted
separately from a mean GWAS scan (e.g. Hussein et al. 2020; Li
et al. 2020; Córdova-Palomera et al. 2021). However, Corty and
Valdar (2018) demonstrated that models like the DGLM can be used
in a single GWAS to test for associations with the mean of a trait,
the variance of a trait, or both. Although this results in a 2x- to 3x-
increase in the severity of the multiple testing burden (Corty and
Valdar 2018), the use of models like the DGLM to search for both
mean and/or variance-controlling loci in a single GWAS scan is
advantageous because it reduces the possibility of, for example, not
identifying a mean-controlling locus because only a vGWAS scan
was conducted. We therefore encourage future vGWAS studies to
use models like the DGLM to their fullest extent by testing for
mean-controlling loci in addition to variance-controlling loci.
The inbreeding species considered in our simulation studies,

Arabidopsis, has not been subjected to as much artificial selection
compared to what would be expected in crops (Izawa 2007;
Woodward and Bartel 2018). Thus, future simulations should
consider an inbreeding crop species such as sorghum (Sorghum
bicolor L. Moench) or rice (Oryza sativa L). Additionally, our
decision to simulate traits similar to those where vQTN have
already been identified resulted in our simulated traits resembling

metabolic traits with tractable genetic architectures. However, a
recent report in maize showed that vQTNs are also present in
plant architectural and phenology traits (Zhang and Qi 2021).
Thus, the practicality and utility of the BFT and DGLM to identify
variance-controlling loci in crops could be more comprehensively
explored if a wider range of genetic architectures were studied in
future work. In any case, peak-associated markers from a vGWAS
could be used for breeding applications. For example, if one wants
to constrain the range of possible trait values in a challenging
environment, they could potentially select on alleles from peak-
associated markers in a vGWAS that reduces the variance of that
trait. Finally, recent advances in genome-wide association study
(GWAS) approaches, such as that described in Li et al. (2022), can
detect and directly quantify the effects of QTN-by-environment
and QTN-by-QTN interactions. This may provide another new
approach for identifying variance-controlling loci in GWAS.

CONCLUSION
The ability of vGWAS approaches to identify variance-controlling
loci needs to be thoroughly scrutinized before they can become
more commonplace in quantitative genetics analysis in plants. We
conclude that DGLM is preferred over the BFT for practical use in
plant vGWAS because of its observed performance at sample sizes
of N= 500. The ability of both vGWAS approaches to identify
epistasis and GxE is encouraging, and future simulation studies
should focus on other quantitative genetics parameters and
additional statistical models in more plant species. To facilitate
such future exploration of vGWAS approaches, the computational
approaches we used to simulate traits controlled by vQTN are now
publicly available free of charge in the simplePHENOTYPES R
package (Fernandes and Lipka 2020).

Fig. 5 Genome-wide association study (GWAS) of plant height in the Goodman maize diversity panel. A Circular Manhattan plots
summarizing the results from the unified mixed linear model (innermost circle), the Brown–Forsythe test (middle circle), and the double
generalized linear model (outermost circle). The X-axis is the physical position of the SNPs along the maize genome, and the Y-axis is the −log
(p values) from each of the three GWAS models. B Quantile-quantile (Q-Q) plots showing the expected −log(p values) under H0: No association
at tested marker on the X-axis and the observed −log(p values) on the Y-axis. MLM unified mixed linear model (middle column), BFT
Brown–Forsythe test (top-right column), DGLM double generalized linear model (bottom-right column).
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DATA AVAILABILITY
The genotypic data, simulated trait data, ROC curves, and code to simulate traits are
available at https://github.com/mdm10-code/vGWAS_arabidopsis_maize.
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