
ARTICLE

Improving lodgepole pine genomic evaluation using spatial
correlation structure and SNP selection with single-step GBLUP
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Modeling environmental spatial heterogeneity can improve the efficiency of forest tree genomic evaluation. Furthermore,
genotyping costs can be lowered by reducing the number of markers needed. We investigated the impact on variance
components, breeding value accuracy, and bias of two phenotypic data adjustments (experimental design and autoregressive
spatial models), and a relationship matrix calculated from a subset of markers selected for their ability to infer ancestry. Using a
multiple-trait multiple-site single-step Genomic Best Linear Unbiased Prediction (ssGBLUP) approach, four scenarios (2 phenotype
adjustments × 2 marker sets) were applied to diameter at breast height (DBH), height (HT), and resistance to western gall rust (WGR)
in four open-pollinated progeny trials of lodgepole pine, with 1490 (out of 11,188) trees genotyped with 25,099 SNPs. As a control,
we fitted the conventional ABLUP model using pedigree information. The highest heritability estimates were achieved for the
ABLUP followed closely by the ssGBLUP with the full marker set and using the spatial phenotype adjustments. The highest
predictive ability was obtained by using a reduced marker subset (8000 SNPs) when either the spatial (DBH: 0.429, and WGR: 0.513)
or design (HT: 0.467) phenotype corrections were used. No significant difference was detected in prediction bias among the six
fitted models, and all values were close to 1 (0.918–1.014). Results demonstrated that selecting informative markers, such as those
capturing ancestry, can improve the predictive ability. The use of spatial correlation structure increased traits’ heritability and
reduced prediction bias, while increases in predictive ability were trait-dependent.
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INTRODUCTION
While Marker-Assisted-Selection (MAS) provides a frameworks for
oligogenic traits (Muranty et al. 2014), Genomic Selection (GS) is a
proven tool for predicting the genetic merit of complex polygenic
traits of genotyped individuals by their genomic breeding value
(BV) (Meuwissen et al. 2001). Genomic Best Linear Unbiased
Prediction (GBLUP) is one of the most commonly used GS
methods. The GBLUP uses the genomic realized relationship
matrix (G-matrix) that describes the genetic relationships among
individuals calculated from genetic markers such as single-
nucleotide polymorphisms (SNPs) (Habier et al. 2013). While the
GBLUP is the most widely used statistical method in GS for forest
trees (e.g., Gamal El-Dien et al. 2015; Ratcliffe et al. 2015; Resende
et al. 2017; Lenz et al. 2020; Mphahlele et al. 2020), its main
limitation exists where evaluations (i.e., breeding values) are
restricted only to the genotyped individuals (Lourenco et al. 2020).
In situations where not all trees in a population are genotyped,

the single-step GBLUP GS approach (ssGBLUP) has been proposed
as an effective analytical method (Legarra et al. 2009; Misztal et al.
2009; Aguilar et al. 2010; Christensen and Lund 2010). This

approach considers both non-genotyped and genotyped indivi-
duals in a single genetic evaluation, combining the pedigree
relationship A-matrix of the non-genotyped individuals with the G-
matrix of the genotyped individuals in a blended relationship H-
matrix. The effectiveness of this approach has been shown by
improving the prediction of individual BVs through combining
phenotypes, genotypes, and pedigree information. The ssGBLUP
model has been successfully and routinely implemented in animal
breeding genomic evaluation, producing accurate and less biased
BV predictions compared to those relying on pedigree-based
information alone (e.g., Legarra et al. 2014). This strategy has the
added benefit of including historical phenotypic data without the
concerns of the availability of DNA samples, making ssGBLUP
attractive for forest tree breeding genetic evaluation where a
substantial number of offspring is used (Cappa et al. 2017, 2018;
Ratcliffe et al. 2017; Klápště et al. 2018, 2020; Thavamanikumar
et al. 2020; Ukrainetz and Mansfield 2020a).
It should be stated that most of the above-referenced studies

were limited to fitting models that accounted for classical
experimental designs and did not consider a spatial correlation
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structure component at the test sites. Forest trees are large and
long-lived organisms, occupying substantially larger areas com-
pared to most cultivated crop species, and are generally planted
on sites characterized by a high degree of heterogeneity (e.g.,
fertility, humidity, soil depth, aspect, or slope) (Cappa and Cantet
2007). The phenotypic measurements of trees grown in progeny
trials can thus be spatially correlated due to microenvironment
similarities. Given that the accuracy of BV predictions depends on
the random effects’ covariance structure, the dispersion para-
meters specification should consider the existence of a positive
spatial correlation in the environmental heterogeneity (Cappa
et al. 2017). A common class of a posteriori spatial models for
performing spatial adjustments in forest tree genetic evaluation
trials is the first-order autoregressive (AR1) models (Gilmour et al.
1997). Several authors have employed pedigree-based spatial
autoregressive individual-tree mixed models (e.g., Costa e Silva
et al. 2001; Dutkowski et al. 2006; Cappa et al. 2012) which
consistently increase the heritability and accuracy of predicted BV
estimates, when comparing to the a priori model that only
considers the experimental design effects (e.g., block effects),
phenotype, and pedigree information. Since the ssGBLUP
approach uses traditional BLUP mixed model equations, the
extension to an individual-tree mixed model with environmental
heterogeneity effects is straightforward (Cappa et al. 2017), and,
therefore, phenotypic, genomic, pedigree, and spatial information
can be integrated into the same analysis.
Since the ssGBLUP approach utilizes information from both

genotyped (G-matrix) and non-genotyped (A-matrix) individuals
(Misztal et al. 2009), the information produced by the former is
greatly affected by the quality and informativeness of the SNPs
used and their ability to accurately represent the true genetic
relationships. As a result, the amount of identity-by-descent
captured in the G-matrix is a determinant factor for the models’
predictability. This can be accomplished by effectively including
only those SNPs that maximize the Ancestry Informativeness
Coefficient (AIM) (Rosenberg et al. 2003). The AIM coefficient
identifies SNPs with high information regarding population
structure, thus a useful indicator of markers’ ability to infer
identity-by-descent (Rosenberg et al. 2003). To explore the impact
of a reduced number of selected SNPs on genetic parameter
estimation, and consequently, genomic selection predictive ability,
an optimized subset of SNPs can be selected according to their
AIM coefficient considering the half-sib family structure of the
present study population. To our knowledge, this is the first study
to investigate the potential benefit of the AIM SNP selection on
inferences (estimations of variance parameters) and on predic-
tions in genomic forest tree breeding.
Here, we demonstrate the capability of the ssGBLUP approach,

after accounting for the spatial correlation structure (i.e., environ-
mental heterogeneity), and the utilization of a G-matrix calculated
from an optimized subset of SNPs based on their AIM coefficient.
We validate the effectiveness of ssGBLUP with four open-
pollinated progeny trials of lodgepole pine (Pinus contorta var.
latifolia Douglas ex Louden) of the Region C breeding program in
central Alberta, Canada. Alberta has six lodgepole pine breeding
regions (FGRMS 2016), with each representing similar ecological
and climatic conditions. The Region C lies between 54.0°N and
55.3°N, 114.6°W and 117.0°W and encompasses an area of 1.2 M
ha with an elevation band range between 800 and 1200m. The
program´s main objective is to increase volume gain of reforested
stands while maintaining adequate genetic diversity and long-
term adaptive capability. Secondary objectives include improved
resistance to Endocronartium harknessii (western gall rust, WGR),
good tree form, and undiminished wood quality. These four
progeny trials are part of a large-scale tree genomic study
(Thomas et al. 2019) and provided 1490 trees (out of 11,188)
genotyped with 25,099 SNPs based on the genotyping-by-
sequencing (GBS) platform. GBS is a low-cost, high-throughput

genotyping technology that employs restriction enzymes to
reduce genome complexity, thus does not require prior genomic
information, making it suitable for non-model species such as
forest trees (Ratcliffe et al. 2015). Chen et al. (2013) successfully
demonstrated the suitability of GBS for SNP discovery in white
spruce (Picea glauca (Moench) Voss) and lodgepole pine. In a
recent study, Ukrainetz and Mansfield (2020b) used a fixed
content SNP array for lodgepole pine and have experienced a low
SNP recovery rate (19,584 out of 51,213 SNPs) caused by SNP
calling difficulties while using the loblolly genome as a reference;
even though they recovered a number of good quality SNPs that
were adequate for their genomic selection study.
Overall, this study aims to provide evidence for the betterment

of genetic variance component estimates, and consequently,
improved genomic BV prediction of two growth attributes (total
height and diameter at breast height) and resistance to WGR
through an integrated approach that jointly considers spatial
analysis and the informativeness in the genomic data. The main
objectives of this study are to: (1) assess the performance of a
multiple-trait multiple-site ssGBLUP approach for four large
lodgepole pine open-pollinated progeny test trials, (2) evaluate
the impact of utilizing phenotypes spatially adjusted by classical
design versus autoregressive spatial analysis, and (3) produce and
evaluate a G-matrix from a reduced number of SNPs that
maximize ancestry information. Additionally, we compared the
variance components and the efficiency, in terms of predictive
ability and control of bias, of the conventional individual-tree
model with pedigree-based relationship matrix (ABLUP) and the
genomic ssGBLUP approach.

MATERIALS AND METHODS
Genetic material, trial description, and traits evaluated
We utilized the lodgepole pine Region C breeding program, initiated in the
early 1980’s, and owned and managed by Blue Ridge Lumber (BRL), a
Division of West Fraser Ltd., for study. The Region C breeding program
consists of a commercial seed orchard producing seeds for reforestation
and four progeny test sites planted in 1982 with open-pollinated (OP)
seedlings. The test sites were chosen to represent a variety of site
conditions present within the region. It is one of the most important
lodgepole pine improvement program in the province in terms of seed
use. The results of this study will inform the next generation of selections
for the establishment of BRL’s second-generation seed orchard(s). The
breeding program is composed of 224 OP families. Seed sources for these
families were collected from phenotypically superior selected parents from
five natural stands (i.e., provenances; Deer Mountain, Inverness River, Judy
Creek, Swan Hills, and Virginia Hills) within Region C breeding region.
Candidate parent trees were phenotypically selected for superior growth,
stem straightness, health, branching, and crown traits (Dhir 1983).
Additionally, this testing program included eight bulk seedlots collected
from natural stands located within Regions B1, an adjacent low elevation
lodgepole pine program, and C. Progeny testing trials were planted with 1-
year-old containerized seedlings (Spencer-Lemaire Hillson container,
volume 175mL) on four test sites (Judy Creek: JUDY, Virginia Hills: VIRG,
Swan Hills: SWAN, and Timeau: TIME) (Table 1). Each progeny trial was
planted as a “set in reps” design with five replications (blocks), 21 sets per
replication, and trees within sets were planted in 4-tree row plots at a 2.5 ×
2.5 m spacing (John and Sadoway 2019 and Table 1). The sets (19 out of
21) are composed of two or three groups of four families originating from
the same single stand. Two additional control sets consisting of four bulk
seedlots each, were also included on each site. All trial sites were fenced to
keep out ungulates and each trial had a single border row planted of
lodgepole pine seedlings around the perimeter.
The entire Region C progeny trial population was assessed for two

growth attributes (total height: HT and diameter at breast height: DBH) and
one disease attribute, resistance to western gall rust (WGR). Both HT and
DBH were assessed at age 30 years (DBH30 and HT30). In a previous study
of lodgepole pine growing in Alberta, Rweyongeza (2016) reported high
tree height age-age correlations between age 30 and long rotation ages of
50 (0.904) and 120 (0.805), demonstrating the robustness of early age
height assessments. Resistance to WGR was assessed at age 36 (WGR36)
using a qualitative scoring system with seven discrete categories ranging
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from no gall symptoms (category 1) to deceased (category 7). Given that
there were very few trees in categories 3, 5, and 7 across trial sites, these
categories were merged with the original categories 2, 4, and 6,
respectively, resulting in four-category resistance ratings. The four-
category WGR36 ratings were further transformed into a continuous
normal score (NSWGR36) following Gianola and Norton (1981). After all
data cleaning, 11,188 phenotyped trees were used in the analysis (Table 2).

Sample selection and genotyping by sequencing (GBS)
To sample the extent of genetic variability present in the progeny trial
population (N= 224 OP families), 40 OP families were selected for SNP
genotyping to represent the range in height variation. This selection was
achieved using prior family rankings for tree height BVs. From these
rankings, 15 families were chosen from high and low breeding value groups
and 10 families were chosen from the medium breeding value group
(Supplementary Fig. S1). The selection of families within these three
breeding value groups, and individuals within families was random,
however, consideration was also given to maintain a balanced experimental
design (i.e., representation of families in all testing environments). Each site
was represented by the same 40 OP families, with a target sampling of ~10
individual trees per OP family per site (n= 1600). An additional 35 potential
forward selected trees, previously identified based on height BVs, were also
included for sequencing. These 35 trees were from an additional 28 OP
families, resulting in 1635 trees sequenced from a total of 68 OP families.
In the spring of 2017, freshly flushed needles were collected from the

1635 trees, kept in coolers and transported within 48 h to the University of
Alberta for immediate storage at −80 °C until DNA extraction. After
transport on dry-ice, genomic DNA was extracted at the Alberta Innovates
(aka, InnoTech Alberta) facility in Vegreville, Alberta, using DNeasy 96 Plant
Kit (Qiagen), and the quality of DNA extraction was assessed to ensure the

required minimal 30 µl of DNA at 30-100 ng/µL for genotyping-by-
sequencing (GBS). After extraction, DNA was shipped on dry-ice to the
Institute of Biotechnology, Cornell University, for genotyping following
Elshire et al. (2011) and Chen et al. (2013) with restriction enzyme Pst-1
(CTGCAG). Due to the lack of a lodgepole pine genome reference assembly,
SNP determination was carried out with the reference-free UNEAK pipeline.
In total, 1554 samples from the 2017 field collection passed the DNA

quality control and proceeded with GBS genotyping. After filtering for
sequencing quality, 69.4% of the 6181 million sequencing raw reads were
retained; and, a total of 9,133,021 read tags for Pst-1 were constructed
using all the reads that passed quality control, with a minimum read count
greater than 20. Aligning sequencing reads to the read tags generated
170,166 SNP markers. A final set of 1490 trees and 25,099 SNPs was
obtained based on filtering the SNP data set for less than 30% missing data
proportion and a minor allele frequency equal to or greater than 1%.
Owing to the lack of a reference assembly genome and no genomic
positions for the SNPs, missing data were then imputed using the mean
observed allele at each locus.

Pedigree correction
Using the available 25,099 SNP markers for the sampled 68 OP families we
validated the pedigree for records verification. Pedigree correction was
done using a custom R-script and was based on the comparison of
expected (pedigree) versus observed (molecular) additive genetic relation-
ships. A customized R-script identified dubious pairs of samples by setting
bounding thresholds on observed pairwise relationship coefficients for
relationship groups for half-sibling of <0.10 or >0.375. For pedigree
validation, the identified dubious pairs were then manually inspected, and
the offending sample was reassigned to the appropriate maternal family.
For paternal assignment, sample pairs with observed pairwise relationship

Table 1. Location, sites characteristics, date of planting, and experimental design data for each of the four lodgepole pine progeny test trial sites in
central Alberta (Canada).

Trial JUDY VIRG SWAN TIME

Location Judy Creek Virginia Hills Swan Hills Timeau

Latitude (°N) 54°24’ 54°28' 54°40' 54°41'

Longitude (°W) 115°34’ 115°51' 115°30' 115°18'

Elevation (m) 1097 1127 1033 1064

Soil texture Clay loam Salty loam Silty loam Sandy loam

Planting date 03-08/06/1982 31/05-02/06/1982 8-11/06/1982 14-18/06/1982

Number of replicates 5 5 5 5

Number of sets 21 21 21 21

Number of rows 48 48 52 52

Number of columns 120 108 120 108

Initial number of trees 4655 5032 5016 5040

Number of families 224 224 224 224

Table 2. Summary statistics of the studied lodgepole pine families including the number of genotyped and non-genotyped individuals and trait
means (Mean) and standard deviation (SD) for diameter at breast height (DBH30) and total height (HT30) at age 30 years, and western gall rust at age
36 years based on the original 1–4 scale assessment (WGR36).

Number of records (%) Mean (SD)

DBH30 HT30 WGR36

(cm) (m) (Scale 1–4)

Total offspring in the population 11,188 16.27 (2.83) 10.54 (1.27) 2.29 (1.25)

Genotyped offspring 1490 (13%)a 16.86 (2.85) 10.88 (1.19) 1.90 (1.11)

Trees from parents with genotyped offspring 3467 (31%)a 16.52 (2.83) 10.70 (1.32) 2.12 (1.23)

Total of parents 242 – – –

Mothers with at least one genotyped offspring 67 (28%)b – – –

Fathers with at least one genotyped offspring 16 (7%) b
– – –

aPercentage of total offspring 11,188.
bPercentage of total number of parents 242.
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coefficients >0.375 were identified and manually inspected, then paternal
contribution was assigned appropriately in the pedigree. Supplementary
Fig. S2 shows the comparison of observed pairwise relationship
coefficients using the uncorrected and corrected pedigrees for the two
SNP subsets (25K and 8K, see next SNP selection section).
In total, pedigree records for 162 samples were modified or corrected.

These changes mostly stemmed from the identification of 4 phantom
mothers and 16 pollen donors (fathers). The corrected pedigree showed
the 1490 trees originating from 83 parents (63 of the original mothers plus
4 new phantom mothers plus 16 new fathers) with a range of 1–41
genotyped trees per mother (and from 0 to 12 per site). The under-
represented families are those of the additional previously identified
forward selections. The total number of phenotyped trees with at least one
genotyped half-sib was 3467 (out of 11,188 total progenies tested in the
four trials) (i.e., 30.99%) (see Table 2 for the summary). The phenotype
distributions for the DBH30, HT30, and WGR36 traits of genotyped and
non-genotyped trees are in Fig. 1. The genotyped trees follow the same
distribution as non-genotyped trees for the three traits with similar mean
and standard deviation (Table 2).

SNP selection
Following Rosenberg et al. (2003) and with advice from Dr. Jaroslav Klápště
(personal communication), a customized R-script was developed to
calculate the Ancestry Informativeness Coefficient (AIM) (Eq. (4); Rosenberg

et al. 2003) for each SNP using the half-sibling genetic family structure of
the genotyped population and by including only families with at least 5
progeny. The R code used for the calculation of the ancestry informative
coefficients is given as Supplementary Material (R_code S1).
A sensitivity analysis was then performed by adding increments of 1000

SNPs from 1000 to a maximum of 25,099 (e.g., 1000, 2000, 3000,…, 25,099)
according to the descending AIM coefficient value. For each 1000 SNPs
increment (n= 26 increments), the additive realized relationship matrix (G-
matrix) (VanRaden 2008, see below) was estimated for all genotyped trees.
A subset of 8000 SNPs (8K) was selected for use in this study based on
minimizing the difference between the average pairwise half-sib relation-
ships in G-matrix, according to the corrected pedigree (above), versus the
expectation for an additive half-sib relationship (0.25). Results from this
sensitivity analysis are illustrated in Supplementary Fig. S3.

Statistical analysis
Due to spatial heterogeneity within trials, as well as for reasons of
computational efficiency, the statistical analyses were conducted in two
stages. First, each trait was analyzed separately in each site using a
pedigree-based classical a priori design model (Design) and an a posteriori
spatial model with a first-order autoregressive residual (co)variance
structure (AR1×AR1) (Cappa et al. 2019). The Akaike Information Criterion
(AIC) was employed for model selection to determine the appropriateness
of Design and AR1×AR1. The spatial effects from the Design and AR1×AR1

Fig. 1 Phenotype frequency distribution. Frequency histograms of diameter at breast height (DBH30) and total height (HT30) at age 30
years, and western gall rust normal score at age 36 years (WGR36, based on the observed original scale 1–4) for the entire lodgepole pine
population (gray, genotyped trees; black, non-genotyped trees).
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models for the traits DBH30, HT30, and NSWGR36 in the four studied sites,
are illustrated in Supplementary Fig. S4 and the AIC is in Supplementary
Table S1.
The single-trait single-site analysis was based on the following pedigree-

based individual-tree mixed (Design) model:

y ¼ Xβþ Zssþ Zppþ Zbbþ Zaaþ e (1)

where y is the vector of individual-tree observations, β is the vector of fixed
effects for replicates and genetic groups formed according to provenance; s is
the vector of random set nested within replications effects distributed as
s � Nð0; Iσ2s Þ, where σ2s is the set nested within replication variance; p is the
vector of random plot effects distributed as p � Nð0; Iσ2pÞ, where σ2p is the
plot variance; b is the vector of random bulk seedlot effects distributed as
b � Nð0; Iσ2bÞ, where σ2b is the bulk seedlot variance; a is the vector of random
effects that represents the genetic effects (or breeding values) distributed as
a � N 0;Aσ2a

� �
where A is the average numerator relationship matrix derived

from the pedigree information (Henderson 1984), and σ2a is the additive
genetic variance. Finally, e is the vector of random residuals distributed as
e � Nð0; Iσ2eÞwhere I is the identity matrix, and σ2e is the residual variance. For
the spatial model (AR1×AR1), the residual vector e was partitioned into
spatially dependent (ξ) and independent (η) residuals. Therefore, the residual
(co)variance matrix can be expressed as σ2ξ AR1ðρcolÞ � AR1ðρrowÞ½ � þ σ2ηI,
where σ2ξ is the spatially dependent variance, σ2η is the spatially independent
variance, AR1ðρÞ is the first-order autoregressive correlation process, ρcol and
ρrow are autocorrelations parameters for columns and rows, respectively, and
⨂ denotes the Kronecker product. The X, Zs, Zp, Zb and Za denote the
incidence matrices for their respective effects.
In the second stage, the phenotypic data adjusted with the design and

spatial effects are obtained for each tree and trait and at each site by
subtracting the estimated replication, set, and plot effects (design
phenotype adjustment). The spatial phenotype adjustment also included
the autoregressive residual effects (ξ, model (2)). After adjusting
phenotypes, the pedigree information was used in the ABLUP analyses.
Further, the genotypic data from the full SNP set (25K) and the subset of
SNPs (8K) jointly with the adjusted phenotypes (design and spatial) and
the pedigree information, were used with the single-step GBLUP (ssGBLUP)
analyses. Therefore, the following multiple-trait multiple-site individual-
tree ABLUP was employed:
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where y is the vector of design or spatially adjusted phenotypes for each i
trait (i=DBH30, HT30, and NSWGR36) and j site (j= JUDY, VIRG, SWAN,
TIME); β is the vector of fixed effects for provenance for each trait-site
combination; a is the random vector of genetic effects distributed as
a � N 0; Σ0 � Að Þ, where Σ0 is the (co)variance matrix of genetic effects for
each combination of the three traits (i.e., DBH30, HT30, and NSWGR36) and
the four sites (JUDY, VIRG, SWAN, TIME) with dimension 12 × 12, and A is the
numerator relationship matrix (Henderson 1984) containing the additive
relationships among all trees: 242 parents without records plus 11,188
offspring with data in y. Finally, e is the vector of random residuals distributed
as e � Nð0; R0 � IÞ where R0 is the residual (co)variance matrix for each
combination for the three traits and four sites with dimension 12 × 12. We
assumed an unstructured (co)variance matrix for the genetic effects (Σ0).
However, for the residual (co)variances (R0), we assumed residual (co)variance
between traits within site, but given that the sites were assessed separately,
residual (co)variance between traits across sites is assumed to be zero. The
matrices Xij and Zij related the design or spatial adjusted phenotypes to the

means of the provenances β0ij
h i

, and the genetic effects in a0ij
h i

. The symbol ‘

indicates the transpose operation.
In the ssGBLUP approach, the A-matrix of the previous mixed model (2)

was replaced by the combined pedigree- and marker-based relationship
matrix H of the same dimension as the pedigree-based matrix. The inverse
of the relationship matrix that combines pedigree and genomic
information (H−1) was derived by Legarra et al. (2009), Misztal et al.
(2009), Aguilar et al. (2010), and Christensen and Lund (2010), and
calculated for each G-matrix as:

H�1 ¼ A�1 þ 0 0

0 λðG�1 � A�1
22 Þ

� �
(3)

where λ scales the differences between genomic and pedigree-based
information, G−1 is the inverse of the genomic-based relationship matrices,
and A�1

22 is the inverse of the pedigree-based relationship matrix for the
genotyped individuals only (the subscript 2 represent the genotyped
individuals). The weighting factor λ was set to 0.95 for all ssGBLUP models.
The G-matrix was estimated following the first method proposed by
VanRaden (2008):

G ¼ WW 0

2
P

k
pkð1� pkÞ (4)

where, W is the centered matrix of SNP covariates, and pk is the current (or
observed) allele frequency of the genotyped trees for marker k. The
G-matrix was scaled to have the same diagonal and off-diagonal averages
as the corresponding A22-matrix, according to Christensen et al. (2012)
(Eq. (4)).
The narrow-sense individual heritability, h2, was estimated as:

ĥ2 ¼ σ̂2aij= σ̂2aij þ σ̂2eij

� �
, where σ̂2aij is the estimated genetic variance for

the ith trait and jth site, and σ̂2eij the estimated residual variance for the ith

trait and jth site from the multiple-trait multiple-site model (2). The genetic

correlation, r, was estimated as: r̂ ¼ σ̂aij=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ̂2aii σ̂

2
ajj

q
, where σ̂2aii and σ̂2ajj are the

genetic variances for the traits or sites i and j, respectively, and σ̂aij is the
estimated covariance between traits or sites i and j from the multiple-trait
multiple-site model (2).
Heat map of the pair-wise relationship coefficients among the 1490

genotyped lodgepole pine trees (Supplementary Fig. S5) and estimation of
provenance fixed effects (i.e., BLUE) for the three studied traits and the
ABLUP and ssGBLUP evaluation models fitted (results no shown), revealed
that differences attributable to provenance origins were not important.
Family structure presented by the small squares around the diagonal
elements with ~40 individual trees (from 29 to 41) is clearly demonstrated
in the Supplementary Fig. S5.
The two ABLUP and the four ssGBLUP evaluation models (details in

Table 3) were fitted in R (www.r-project.org) with the function remlf90
from the package breedR (Muñoz and Sanchez 2020), using the
Expectation-Maximization (EM) algorithm followed by one iteration with
the Average Information (AI) algorithm to compute the approximated
standard errors of the variance components (Chateigner et al. 2020). The
remlf90 function in the R-package breedR is based in the REMLF90 (for the
EM algorithm) and AIREMLF90 (for the AI algorithm) of the BLUPF90 family
(Misztal et al. 2018). The program preGSf90, also from the BLUPF90 family
(Misztal et al. 2018), was used to create the inverse of the different H-

Table 3. Description of the different genetic evaluation models based
on ABLUP and ssGBLUP. Factors included in the model are indicated by
a “+” and factors not included in the model are indicated by a “−”.

Modela Phenotype adjustment Information used in
the relationship
matrixd

Design
effectsb

Spatial
effectsc

Pedigree 25K 8K

ABLUPd + − + − −

ABLUPs + + + − −

ssGBLUPd_25K + − + + −

ssGBLUPs_25K + + + + −

ssGBLUPd_8K + − + − +

ssGBLUPs_8K + + + − +
aABLUP and ssGBLUP evaluation models fitted using the design (d) and the
autoregressive (s) models to generate spatial adjusted phenotypes. The
ssGBLUP models are followed by a number denoting number of SNPs
included in the set of SNPs.
bDesign effects include replication, set nested within replications, and plot
effects.
cSpatial effects also includes the autoregressive residual effects.
dRelationship matrix from: Pedigree= pedigree information, 25K= 25,099
SNPs, 8K= 8000 SNPs with the highest information regarding population
ancestry using the Ancestry Informativeness Coefficient (AIM, Rosenberg
et al. 2003).
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matrices from the respective G-matrices calculated with the full 25K and
the 8K subset of SNP markers, and then used to fit the ssGBLUP models (2)
with the breedR package. The linkage disequilibrium (LD) between pairs of
GBS-derived SNPs were calculated as the squared correlation statistic using
also the program preGSf90 from the BLUPF90 family (Misztal et al. 2018).

Model comparisons
We evaluated the two ABLUP and the four ssGBLUP models for both
predictive ability and prediction bias by 10-fold cross-validation, where one
subsample was used as the validation set, and the remaining nine samples
as the training set. All trees with phenotypic data were in the training
population at least once. The variance components were fixed to the
respective variance components calculated with all the available trees with
phenotypic data in the cross-validation analysis. The predictive ability was
determined as the Pearson correlation between the observed breeding
values from the full data set (i.e., using all the available 11,188 trees with
phenotypes) and those breeding values of the validation set predicted
from the respective ABLUP and ssGBLUP evaluation method (Table 3),
multiplied by the square root of the narrow-sense heritability of each trait
calculated using the pedigree-based information for all available trees
(Legarra et al. 2008).
The prediction bias was calculated by the regression coefficient between

the observed breeding values from the full data set and those predicted
with each ABLUP and ssGBLUP model (Table 3). A regression coefficient
equal to one is considered to have no bias, while a regression coefficient
greater or smaller than one indicates deflated or inflated predictions,
respectively.
Predictive ability and prediction bias are only reported for the

genotyped trees from the validation set for all site-trait combinations
examined. An analysis of variance (ANOVA) using a linear model with fixed
effect for site and Least Significant Difference (LSD) multiple comparison
tests were performed at a significance level α= 0.05, to test the
significance of the difference in predictive ability and prediction bias
between the ABLUP and ssGBLUP approaches performed for each trait.
Programs from the BLUPF90 family (Misztal et al. 2018) were used for

cross-validation analyses. A custom R-script was written to automate the
cross-validation analysis.

RESULTS
Model fit and variance components
Our evaluation of the model fit revealed that the ssGBLUP model
using 25K SNPs had a slightly lower AIC (i.e., better fit) (66,700 for
design (ssGBLUPd_25K) and 65,200 for spatial phenotype adjust-
ments (ssGBLUPs_25K)) than the ssGBLUP model with 8K SNPs
(66,708 for design (ssGBLUPd_8K) and 65,204 for spatial phenotype
adjustments (ssGBLUPs_8K)). However, the ABLUP models showed
the lowest AIC values for block (66,673) and design (65,171)
phenotype adjustments.
Overall, for the three studied traits, the ABLUP produced slightly

higher heritability estimates compared to the ssGBLUP (0.24 vs.
0.23 for DBH30, 0.30 vs. 0.29 for HT30 and 0.51 vs. 0.49 for
NSWGR36) (Table 4). The DBH30 trait showed heritability estimates
ranging from 0.22 to 0.28 for ABLUP and from 0.19 to 0.26 for
ssGBLUP. While, slightly higher heritability estimates were
obtained for HT30 across sites, with values ranging from 0.22 to
0.40 for both ABLUP and ssGBLUP models. However, the
heritability estimates for NSWGR36 were highest for both ABLUP
(range: 0.45–0.57) and ssGBLUP (range: 0.39–0.55) models.
The phenotype data adjustment by autoregressive spatial

effects generally displayed a consistent reduction in the residual
variance compared to the design adjustment, with the most
obvious reduction found in the trait with the stronger spatial
pattern of environmental variation (Supplementary Table S1 and
Supplementary Fig. S4), HT30 (averaged across sites 0.83 vs. 0.95
for the full set of 25K SNPs and 0.85 vs. 0.97 for the 8K subset,
Table 4). However, both phenotype adjustments, spatial and
design, resulted in very similar estimates of additive variances.
Consequently, the narrow-sense heritability within sites estimated
from the spatial phenotype adjustment were higher than those
estimated from the design adjustment for both sets of markers

(Fig. 2a and Table 4). Averaging across sites, the highest increase
in heritability (10.28%) for the spatial phenotype adjustment
respect to the design, was achieved for HT30 from the 8K SNP
subset (0.30 vs. 0.27, respectively) follow by 25K SNP set (0.31 vs.
0.29, respectively, (8.70%)) (Table 4). The lowest increase in
heritability (0.51%) was achieved for the NSWGR36 trait with 25K
SNP set (0.498 vs. 0.495, respectively for the spatial and design
phenotype adjustments). There was only one exception to this, for
NSWGR36 and the 8K SNP subset, where the heritability from the
spatial adjustment showed slightly lower estimates compared to
the design adjustment (averaged across sites 0.47 vs. 0.48,
respectively, (3.11%)).
Regarding the impact of the number of SNP markers used to

calculate the realized genomic relationships, we found that the
ssGBLUP model with the full set of 25K SNPs showed higher
heritability estimates with respect to the ssGBLUP model obtained
from the AIM analysis (8K), for the two phenotype adjustment
methods (Fig. 2b and Table 4). For instance, averaging across sites,
the highest increase in heritability (6.96%) for the full set of SNPs
(25K) respect to the 8K subset, was achieved for the trait HT30
with the design phenotype adjustment (0.29 vs. 0.27, respectively),
while the lowest increase (2.53%) was achieved for the NSWGR36
trait with the design phenotype adjustment (0.50 vs. 0.48,
respectively). These higher heritability estimates are a result of
higher additive genetic variance and lower error variance of the
ssGBLUP model using all available SNPs compared with those
based on a subset of 8K SNPs (Table 4).

Genetic correlations
Within sites, genetic correlation estimated between DBH30 and
HT30 using the ssGBLUP model were high (range: 0.435–0.717)
(Supplementary Table S2). In contrast, negative genetic correla-
tions were found between growth traits (DBH30 and HT30) and
NSWGR36, with an average of −0.388 for DBH30 and −0.294 for
HT30 (Supplementary Table S2). Our results suggest that selection
for faster-growing trees could potentially improve WGR genetic
resistance, or selection for pest resistant trees does not seem to
adversely affect growth. Furthermore, between sites genetic
correlations estimated with ssGBLUP were high for DBH30 (range:
0.678–0.891) and NSWGR36 (range: 0.813–0.955), and moderate to
high for HT30 (range: 0.556–0.788) (Supplementary Table S3) with
only slightly differences with those estimated from the ABLUP
models (range: 0.606–0.837 for DBH30, 0.849–0.950 for NSWGR36,
and 0.574–0.779 for HT30), indicative of nonsignificant genotype
by environmental interactions across sites for these traits. The
lowest genetic correlation between sites (average across models
equal to 0.647) were observed for the HT30 trait with those pairs
involving the JUDY site, probably caused for the high mortality in
this site (survival at 30 years 58%) due to early competition for
insufficient weed control.

Predictive ability and genomic breeding values bias
Overall, the results showed that the maximum predictive ability
(PA) was reached using the G-matrix from the 8K subset of
ancestry informative SNPs for HT30 using the design adjustment,
and for DBH30 and NSWGR36 with the spatial phenotype
adjustment (Table 5). The lowest PA was found when all the
SNPs (25K) were used compared to the 8K, with either design
(0.414 vs. 0.423 for DBH30) or spatial (0.451 vs. 0.464 for HT30 and
0.492 vs. 0.513 for NSWGR36) phenotype adjustment. With respect
to the lowest PA obtained (i.e., when all the 25K SNPs were used),
the maximum improvement in the PA values were statistically
significant and in the order of 3.71% for DBH30 (0.414 for
ssGBLUPd_25K vs. 0.429 for ssGBLUPs_8K), 3.43% for HT30 (0.451 for
ssGBLUPs_25K vs. 0.467 for ssGBLUPd_8K), and 6.81% for NSWGR36
(0.481 for ssGBLUPd_25K vs. 0.513 for ssGBLUPs_8K). Although not
statistically significant, the phenotypic data with a spatial
adjustment provided higher PA than with the design adjustment
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(0.418 vs. 0.414 for the 25K SNPs and 0.429 vs. 0.423 for the 8K
SNPs for DBH30, and 0.492 vs. 0.481 for the 25K SNPs and 0.513 vs.
0.509 for the 8K SNPs for NSWGR36), except for HT30 where a
slight reduction in PA was observed (0.451 vs. 0.453 for the 25K
SNPs and 0.464 vs. 0.467 for the 8K SNPs) (Table 5). Averaging
across sites, all 8K SNPs ssGBLUP models and three studied traits
had higher predictive ability than those estimated with the
pedigree-based ABLUP model for the respective design and
spatial phenotype adjustments (Table 5).
The regression coefficients of genomic breeding values were

used as a measure of prediction bias (PB) for ABLUP and ssGBLUP
models. Table 5 shows that all calculated PB values were close to
one (range: 0.918–1.014), indicative of unbiased predictions of our
four ssGBLUP models. For example, the regression coefficients
averaged across the four sites and the four ssGBLUP approaches
ranged from 0.970 to 0.987 (DBH30), from 0.997 to 1.014 (HT30),
and from 0.918 to 0.965 (NSWGR36). Although no evidence of
significant bias was detected, the ssGBLUP models using 8K SNP
showed a higher bias, except for DBH30 (Table 5). In general, the
spatial correction had less bias than the prediction from the
design phenotype adjustment (across trait and SNP sets the
averaged absolute deviation from 1 was equal to 0.027 and 0.036,
respectively). Therefore, the spatial phenotype adjustment
reduced the bias of the genomic ssGBLUP approaches. The
ssGBLUP model with the least bias was ssGBLUPs_25K (across sites

and trait the averaged absolute deviation from 1 was equal to
0.022). However, the PB values were still lower for the ABLUP
model with design (ABLUPd) and spatial (ABLUPs) phenotype
adjustments (across sites and trait the averaged absolute
deviation from 1 was equal to 0.010 and 0.016, respectively,
Table 5).

DISCUSSION
The present study aimed to jointly utilize spatial analysis and SNP
selection with the ssGBLUP approach, to improve the (co)variance
component estimation and predictive ability and to reduce the
genomic prediction bias of three economically important traits in
lodgepole pine. As a control, the performance of the ssGBLUP
models was also compared to the conventional pedigree-based
ABLUP model. We found that the highest heritability estimates,
associated with the highest genetic and lowest residual variances,
were achieved for the ABLUP model using the spatial phenotype
adjustments followed closely by the ssGBLUP model based on the
full SNP set (25K) and also using the spatial phenotype
adjustments. Meanwhile, the highest predictive ability was
obtained by using the 8K SNP subset when either the spatial
(DBH30 and NSWGR36) or design (HT30) phenotype corrections
were used. Additionally, no significant difference was detected in
the prediction bias among the six models fitted as these values
were all close to 1, indicating an unbiased prediction.
Recent studies on forest tree species revised by Grattapaglia

et al. (2018) have shown that GBLUP and ssGBLUP GS approaches
were successfully applied in many breeding programs focused on
improving wood quality and growth traits, such as total height
and diameter at breast height assessed in this lodgepole pine
population, which are seen as complex Mendelian traits controlled
by a large number of genes of small-effects. However, compared
to BLUP-based GS approaches, Bayesian predictive GS models
such as BayesCπ were more accurate in predicting simple
Mendelian traits (e.g., resistance to biotic stresses) regulated by
few genes of large-effects (i.e., oligogenic traits). For instance,
Ukrainetz and Mansfield (2020b) found comparable predictions
accuracies between BayesC and GBLUP in lodgepole pine for
different polygenic growth (tree height) and wood quality traits
when there was relatedness (0.81 for Bayes C and 0.83 for GBLUP)
or unrelatedness (0.27 for BayesC and 0.29 for GBLUP) between
the training and validation populations. However, Bayesian-based
GS approaches were effective in predicting fusiform rust disease
incidence with high accuracy in Pinus taeda L (loblolly pine), a trait
controlled by a few major quantitative trait loci (Resende et al.
2012; Shalizi et al. 2021). In contrast, in Picea abies (Norway
spruce), Lenz et al. (2020) showed that BayesCπ did not lead to
improvement of the predictive ability compared with methods
assuming that all genes had small effects (GBLUP) for white pine
weevil (Pissodes strobi) highlighted the evidence of a polygenic
control of this insect resistance trait. Polygenic control seems also
reasonable for WGR given that it is influenced by many physical as
well as chemical factors, but efforts to examine whether some
larger gene effects are detectable for WGR need to be realized.
The development of modern genomic tools such as machine
learning algorithms could be capable to converge all these
different GS techniques (Cortés et al. 2020).
For oligogenic traits, marker Assisted Selection (MAS) offers an

alternative to GS approaches, i.e., when small number of QTLs of
large effect that account for a large percentage of the variation in
the selected trait (e.g., 30% or more; Muranty et al. 2014).
However, there are only very few examples of MAS application in
forest trees (Bernatzky and Mulcahy 1992). Recently, Shalizi et al.
(2021) identified three SNP loci with large effects on fusiform rust
disease outcome in a set of clonally replicated full-sib families of
Pinus taeda, explaining 54% of the trait´s genetic variation.
However, as the authors stated, these markers should be further

Fig. 2 Average relative variation in the narrow-sense heritability
estimates. Average relative variation in the narrow-sense heritability
from the ssGBLUP models with spatial phenotype adjustment over
those estimated with the design adjustment for the full SNP set (Full
SNP set (25K)) and highest ancestry-informative SNP subset
(Ancestry-Informative SNP subset (8K)) (a), and with a G-matrix
calculated using the highest ancestry-informative SNP subset over
those estimated with the full SNP set for the design (Design) and
spatial (Spatial) phenotype adjustments (b) for the three traits
studied. See text for traits´ abbreviations.
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validated in an independent study to be considered for MAS.
Moreover, given that MAS generally introduces one gene at the
time, it is not suitable for simultaneously managing the
recombination of many genes (Muranty et al. 2014). Consequently,
the rare application of MAS in forest tree species is associated with
the polygenic nature of most quantitative genetic traits (as the
analyzed traits of this lodgepole pine population), highlight
considering the GS approaches, which are based on capturing
the whole-genome effect, as a realistic way in lodgepole pine and
other tree species.
The ssGBLUP GS method extends the genomic enabled

predictive ability to all pedigree connected trees across trials
(Grattapaglia et al. 2018), even to those trials with few genetic
connections (Callister et al. 2021), this is particularly relevant
advantage for large progeny trial networks commonly deployed in
forest tree breeding (Paludeto et al. 2021). The ssGBLUP GS
approach has been applied in forest trees to improve the
theoretical accuracy or predictive ability of breeding values using
the single-trait (Cappa et al. 2017; Paludeto et al. 2021) and
multiple-trait (Ratcliffe et al. 2017; Cappa et al. 2018; Mphahlele
et al. 2021) models. Furthermore, using a multiple-site ssGBLUP
model, Ukrainetz and Mansfield (2020a) showed an improved
predictive ability within environments for individual growth and
wood quality traits in a lodgepole pine population. Callister et al.
(2021) also concluded that the multiple-site ssGBLUP model
significantly improved the prediction accuracy of parents and
genotyped trees for steam volume data (and wood quality) in a
Eucalyptus globulus population conformed by 48 (and 20) sites
spread across three regions of southern Australia. Multiple-traits
multiple-sites GBLUP and ssGBLUP models simultaneously use the
information from multiple traits and environments to capture the
correlations among traits (attributable in part to pleiotropy) and
their interrelationships with environmental factors, and allows for
an extension for dominance and epistatic interaction genetic
effects. The role in predicting phenotypes of the pleiotropic and
epistatic interactions has been recognized in forest trees species
(Holliday et al. 2013; Gamal El-Dien et al. 2016; Chhetri et al. 2019;
Klápště et al. 2020); however, these studies are still scarce.
Specifically, pleiotropic and epistatic interactions for growth and
disease traits are not well known in forest tree species. However, a
parallel study, using the same lodgepole pine population assessed
for 15 productivity and climate-adaptability traits that include the
three traits of the present study, showed that a multi-trait
genome-wide association (GWA) analysis identified many more
significant associations than single-trait GWA analysis for growth
and WGR resistant traits, potentially revealing pleiotropic effects of
individual genes. The current study is one of the first to address
the applicability of GS in forestry that simultaneously consider
multiple-traits and multiple-sites in an individual tree mixed
ssGBLUP model. Although the application of GS approaches in
lodgepole pine is in its infancy (Ukrainetz and Mansfield
2020a, 2020b), our results showed that environmental hetero-
geneity and genetic covariance among traits and test environ-
ments, used for the estimation of variance components and
phenotype prediction, can be accounted for concurrently.
The advantage of using spatial autoregressive models has been

seen in a number of studies in forestry. With using only
phenotypes and pedigree (ABLUP model), these studies found a
consistent reduction in the error variance and an increase in
heritability using the classical, a priori design models (e.g., Ye and
Jayawickrama 2008; Cappa et al. 2019b). To elucidate, in a first-
generation Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco)
progeny trial, Ye and Jayawickrama (2008) showed that, on
average, 14–34% of the residual variance could be attributed to
spatial heterogeneity, and accounting for such variance resulted in
an increase in the heritability estimates. Similarly, in the current
study, our results support the use of jointly applying spatial
adjustment with pedigree-based (ABLUP) and GS approaches

(ssGBLUP) for long rotation lodgepole pine growing in highly
heterogeneous environments in central Alberta’s boreal forests
(70–90 years) (Supplementary Fig. S4).
Our results generally showed slightly lower heritability esti-

mates from the ssGBLUP compared to ABLUP (Table 4), and
confirm previous studies that suggested inflated heritability
estimates from the pedigree-based ABLUP analyses caused by
an overestimation of additive variance. For instance, Ratcliffe et al.
(2017) using an open-pollinated Picea glauca (Moench) Voss
population, and utilizing a varying proportion of genotyped trees
in the ssGBLUP, showed higher heritability estimates for total
height and wood density from ssGBLUP than those estimates from
ABLUP. Ukrainetz and Mansfield (2020a) using an open-pollinated
lodgepole pine population, showed that ABLUP had the highest
heritability estimates for wood density compared to ssGBLUP.
Mphahlele et al. (2021) also studying an open-pollinated popula-
tion of Eucalyptus grandis, observed higher heritability estimates
from ABLUP for dimeter and tolerance to Leptocybe invasa gall
wasp and fungal stem diseases Botryosphaeria dothidea and
Teratosphaeria zuluensis, compared to those estimates from
ssGBLUP.
In addition to the betterment of heritability estimates identified

(Table 4), we investigated the effectiveness of spatial corrections
on the phenotypes for predictive ability (PA). In the two SNP
datasets evaluated, the ssGBLUP approaches with the spatial
autoregressive structure to correct the phenotypic data, resulted
in a modest, albeit non-significant, increase in the PA of DBH30
and NSWGR36 compared to the simplest design adjustment, but a
marginal reduction (also non-significant) for HT30 (Table 5).
Previous studies applying GS in crop breeding have proposed
adjusting continuous spatial effects to increase PA by fitting
spatial coordinates expressed as either classification variables,
covariables (Lado et al. 2013), or first-order autoregressive
covariance structures (Bernal-Vasquez et al. 2014; Ward et al.
2019; Mao et al. 2020; Tsai et al. 2020). However, these studies
used only genotyped individuals (i.e., GBLUP models). Lado et al.
(2013) used different row-column and moving-means models to
adjust a spatial trend in phenotypic data of 384 wheat genotypes
and concluded that correction of spatial variation is essential to
increasing the PA in genomic selection models. Comparably, in
Tsai et al. (2020), the PA for wheat and barley yield improved by
combining a multi-trait response and spatial effects in the model.
On the contrary, although corrections for spatial variation
increased across-environment trait heritability estimates by 25%,
Ward et al. (2019) found little effect on model PA in wheat yields.
Mao et al. (2020), using two empirical datasets of maize and wheat
and a simulation, recently showed adjusting for spatial effects
improved genotypically superior plants’ selection. Nonetheless,
prior to our current research, only two studies have directly
investigated the efficiency of including spatial analysis in genomic
prediction with ssGBLUP in forest trees (Cappa et al. 2017; Klápště
et al. 2020), where Cappa et al. (2017) brought forth the first study
that applied competition or spatial analysis using ssGBLUP and
showed increased heritability estimates and theoretical accuracies
of predicted breeding values. However, these two previous studies
considered the theoretical accuracies of predicted breeding values
of trees with phenotype information and from the current
generation (Cappa et al. 2017), and they did not include any
comparison with the conventional phenotype adjustment of the
field experimental design (Klápště et al. 2020).
Our results showed, for the two phenotype adjustments and the

three studied traits, that using the ancestry informative SNP
subset (8K) provided higher PA than using the full 25K SNP set
(Table 5). Moreover, when we compared the PA obtained from the
8K subset selected according to their ancestry information with
other three 8K SNP subsets selected according to the population
statistic Fst scores (Ling et al. 2021) and two association statistics
from a single-step multiple-trait multiple-site genome-wide
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association analysis (ssGWAS): SNPs ranked by the largest to the
smallest effects in absolute value averaged across the four sites,
and the smallest to largest p values averaged across the four sites,
the results showed higher PA for the ancestry-informative SNP
subset than those 8K SNPs subsets selected according to their
population and association statistics (Fig. 3 and Supplementary
Table S4). Therefore, these results showed the higher ability of the
ancestry-informative 8K SNP subset to capture realized related-
ness than those 8K SNP selected using population (Fst scores) or
association statistics (absolute marker effects or p values). As
shown Thistlethwaite et al. (2020) in Douglas-fir, these findings
also support the fact that the predictive performance is mainly
driven by the markers ability to capture realized relatedness and
not the linkage disequilibrium (LD) between SNP marker loci and
putative QTLs underlying the trait. Based on these empirical
results, we propose that it is possible to concurrently reduce the
number of SNP markers while improving the PA for complex traits
in a long-lived tree species. In summary, we suggest that
strategies like AIM SNP selection can be used when establishing
the genotyping platform required for the broad adoption of

genomic selection. Specifically, the choice of SNP markers to
include on genotyping arrays requires careful consideration since
the genotyping cost per sample is proportional to not only the
number of SNPs on the array, but also to how much genetic
relatedness the selected SNP could potentially capture (Meuwis-
sen et al. 2013). The SNPs identified by the AIM selection can be
used as a starting point to identify high-quality SNPs that
accurately capture individual genealogical relationships as well
as population structure, while also accounting for Mendelian
variation between siblings, and delivering high predictive ability
for complex traits in non-model organisms.
Several forest tree breeding studies have previously documen-

ted the benefits of using selected marker subsets to improve PA in
GS analyses for the genotyped trees (i.e., GBLUP) (Resende et al.
2012; Tan et al. 2017; Chen et al. 2018). Resende et al. (2012)
reduced the number of SNPs using the marker effect ranked in
decreasing order by their absolute values in a Pinus taeda (loblolly
pine) population. Two interesting scenarios about predictive
ability emerged from Resende et al. (2012). For 13 out of the
studied 17 traits, the correlation reached an asymptote with a

Fig. 3 Across sites predictive ability (PA) average for each studied trait (DBH30, HT30, and NSWGR36) in the lodgepole pine population
by increasing the number of markers from 500 (0.5K) to 8000 (8K) SNPs (out of 25K) selected using the largest population statistic Fst
scores (Fst), the largest absolute estimated effects (Marker_effect), and the lowest association statistic p-value (p-value). Black lines
indicate the average of the predictive ability for the respective DBH30, HT30, and NSWGR36 traits, and estimated from the 8K subset of
markers selected for their ability to infer ancestry (solid line, ssGBLUPs_8K model), from the full marker set (25K) (dotted line, ssGBLUPs_25K
model) and from the conventional pedigree-based model (dashed line, ABLUPs). See text for traits´ abbreviations, and Table 3 for models´
abbreviations.
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subset from 820 to 4790 SNPs; however, maximum PA was
reached with smaller marker subsets (110–590 SNPs) and
decreased with the addition of more markers for disease-
resistance-related traits, wood density, and crown width, lending
evidence for a simpler genetic architecture for these traits.
Likewise, Tan et al. (2017) increased the number of SNPs sampled
at random and also showed that only a slight improvement in the
PA was achieved when more than 5K SNPs (out of 41K) were used
for all growth and wood quality traits studied in their Eucalyptus
hybrid population. Further, Chen et al. (2018), using the two
sampling strategies (i.e., randomly and largest positive SNP marker
effects), showed the predictive ability reached a plateau with the
top 4K SNPs (out of 100K) that had the highest positive marker
effects for height in Norway spruce (Picea abies).
Given the results described above, further consideration of trait-

specific SNP selection could be recommended to supplement the
SNP selection in addition to the AIM marker selection. Preliminary
results using additional SNPs, i.e., over the ancestry-informative 8K
SNP subset (e.g., 11K and 14K), and ranked according to their p
values and explained variance based in a ssGWAS analysis,
suggests that no improvement was detected in PA when more
markers with a large effect and variance were included, once the
highly informative markers for ancestry inference are already
included in the SNP subset. For example, for DBH30, the averaged
PA of the ssGBLUP model using spatial adjustment and either the
11K or 14K SNP subsets were 0.428 and 0.427, respectively, and
were not statistically different from the 8K subset (0.429).
In addition, the impact of use lower number of SNPs (<8K) on

the predictive ability was studied using five SNPs subsets (500,
2000, 4000, 6000, and 8000) and the three different strategies of
SNPs selection based on population (Fst scores) and associations
(absolute marker effects and their p values) statistics. When the
number of SNPs ranked according to their Fst scores, absolute
marker effects or p values decreasing from 8K to 0.5K, the PA of
the genomic breeding values increased by ~8.2% for the growth
traits and 22.2% for NSWGR36 (average across selection methods)
(Fig. 3 and Supplementary Table S4). As discussed previously,
several studies in forest trees species have showed that lower
numbers of SNPs provided a PA of genomic breeding values
greater (Resende et al. 2012) or equivalent to those observed

using all SNPs available (Lenz et al. 2017; Tan et al. 2017; Chen
et al. 2018). As discussed Lenz et al. (2017), the fact that higher PA
of predicted genomic breeding values can be obtained by using a
reduced number of SNP with largest effects, compared to GS
models estimated with all markers, could imply that part of the
short-range LD could be picked-up when a reduced numbers of
large-effect markers are utilized to build the G-matrices. Alter-
natively, these small number of markers could have the ability to
better account for the realized relationship between related (and
unrelated) trees. Despite that the 8K ancestry-informative SNP
subset capturing the historical pedigree much better than other
8K SNPs selected by population and associations statistics, other
selection strategies to optimize SNP sets could be potentially
useful to reduce the genotyping efforts and GS cost in this
lodgepole pine population and should be evaluated further.
The current study employed a reference-free SNP calling

method, with the main research objective focusing on genetic
parameter estimation and predictive analyses. Although the
current SNP build might not provide the needed capacity for
estimating LD at the physical level, we studied the relationships
between the markers’ interdependence and predictability through
genetic correlations of SNPs. For the entire 25,099 GBS-derived
SNP set, the percentage of pairs with LD > 0.9 was 3.08% (Fig. 4).
However, when conducting variable selection for most predictable
SNPs, a much greater proportion of SNP markers were found in
correlation (e.g., 57.5% of SNPs with significant marker effects
found in LD > 0.9; details, see Fig. 5). It is, therefore, notable that
SNPs with greater predictability might be in correlation, statisti-
cally. Whether or not they underlie the variations within the same
pathways and determine the importance of population genetic
and demographic parameters that govern trait variability, remains
to be addressed when a genome assembly is available.
For the 500 selected SNPs based on the largest absolute

estimated effects, the SNP subset and method with the highest PA
(Fig. 3 and Supplementary Table S4), we examine the impact of
the training/validation (TS/VS) size on PA. Following Tan et al.
(2017), we divided all 1490 trees into six different size groups with
a TS/VS ratio of 1:1, 2:1, 3:1, 4:1, 5:1, and 9:1, with the
corresponding size of 745/745, 993/497, 1118/373, 1192/298,
1242/248 and 1341/149 trees. Our results showed that the PA

Fig. 4 Distribution of pairwise linkage disequilibrium (LD) values greater than 0.10 between pairs of the 25,099 (25K) SNP set calculated as the
squared correlation statistic.
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improved with the increasing sizes of the TS for all the studied
traits (Fig. 6). The maximum PA values were achieved with TS/VS
ratio of 9:1, indicating that this 9:1 ratio is the optimal for this
lodgepole pine population. However, given that the PA increased
without reaching a plateau, we expect further increase of the PA
of genomic predictions with much larger training population size.
The increment of PA as the size of the training set increased
supports earlier GBLUP studies using either simulated (Grattapa-
glia and Resende 2011) and empirical (Tan et al. 2017; Calleja-
Rodriguez et al. 2020) data sets in forest tree species. For larger
training population, larger diversity is captured and more robust
prediction would be obtained (Arenas et al. 2021).
Although ssGBLUP approaches that included all available

marker information (25K) increased the proportion of variance
explained, i.e., higher individual-tree heritability estimates,
ssGBLUP based on the ancestry-informative 8K SNP subset
showed a greater PA. That is, the estimated heritability did not
provide a good indication of what one would expect for the
prediction of PA. Using simulation and real human data from
related and unrelated individuals, de los Campos et al. (2013) also
reported that the estimates of genomic heritability did not follow
the same patterns as those of PA. These authors suggested that

this lack of concurrence might be due to a contrasting situation in
the entries of the derived G-matrix: some of the elements (related
off-diagonal elements and diagonal elements) accurately repre-
sent the true covariance function, while others from off-diagonal
elements (distant relatives and pairs of unrelated individuals) do
not describe the patterns of realized genetic relationships at
causal loci well. In addition, as they pointed out, variance
components estimators are functions of diagonal and off-
diagonal elements of G-matrix whereas the predictive ability is
mainly determined by the off-diagonal entries of G-matrix and,
therefore, these two tasks (inference vs. prediction) are driven, in
part, by different forces (de los Campos et al. 2013). Our
contrasting results on heritability estimates and PA reported here
for this lodgepole pine population could be explained by these
factors, especially when considering that the proportion of pairs of
expected unrelated genotyped trees is very large (1,083,733)
compared to the half-sib related trees (25,572); i.e., only 2.36% of
all pairwise relationship coefficients for the genotyped trees are
half-sib.

CONCLUSION
Despite best efforts in the original design of these progeny trials
installed over 30-years ago, analytical tools available today can
greatly enhance the genetic parameter estimation and breeding
value predictions that can be gleaned from these efforts through
the combined analysis of phenotypic, spatial, and genomic
information. Mature progeny trials are necessary to develop
robust genomic selection models, and their importance cannot be
underestimated in moving adoption of these new technologies
forward. This study showed that using of an autoregressive
structure for correcting spatial variability led to increases in trait
heritability estimates (from 0.51 to 10.28%). Though slightly
decreased in heritability estimates (from 2.53 to 6.96%), the use of
the strategically selected ancestry-informative 8K SNP subset can
significantly improve predictive ability with either the design or
spatial phenotype adjustment. For example, combining spatial
adjustment and the 8K SNP subset analysis resulted in a 3.71%
and 6.81% increase in the predictive ability for DBH30, and
NSWGR36, respectively, compared to the use of design phenotype
adjustment and the full 25K SNP set. These empirical results
suggest incorporating SNP selection with AIM coefficients when
considering enabling technologies, such as the establishment of a
species-wide SNP array or more cost-effective target SNP
genotyping approaches (Nagano et al. 2020; Zhang et al. 2020).
Further, although the use of spatial autoregressive structure
increased trait heritability and reduced prediction bias, the
increases of predictive ability depend on the trait analyzed.
Covering ~30% of Earth’s land surface, forest ecosystem

provides innumerable agricultural, ecological and societal bene-
fits, while playing a critical role in global biogeochemical cycles

Fig. 5 Distribution of pairwise linkage disequilibrium LD values greater than 0.10 between pairs of the 500 (0.5K) selected SNPs based on the
Fst scores (Fst), the largest absolute estimated effects (Marker_effect), and the lowest p-values (p-value) calculated as the squared correlation
statistic.

Fig. 6 Across sites predictive ability (PA) average derived from
500 (0.5K) selected SNPs based on the largest absolute estimated
effects for each studied trait (DBH30, HT30, and NSWGR36) in the
lodgepole pine population by increasing the number of trees in
the training population. Estimates were obtained across six
training/validation sets (TS/VS) sizes in numbers of individuals (x-
axis): 745/745, 993/497, 1118/373, 1192/298, 1242/248 and 1341/
149. See text for traits´ abbreviations.
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and climate regulation (Bonan 2008). However, climate-induced
forest mortality has become an emerging global phenomenon
(Anderegg et al. 2015). And as an example, the ongoing outbreak
of mountain pine beetle that began in 2001 has killed over 10
million hectares of mature lodgepole pine in Alberta and British
Columbia (Westfall and Ebata 2012). Fueled by the ongoing
drought pressure, species range of lodgepole pine is expected to
shrink to only 17% of its current distribution in about 60 years
(Coops and Waring 2011). The slow reaction time of 80–120 years
to develop “genetic options” has made traditional trait-driven tree
improvement an unfeasible solution. Our results attest to this
powerful transition to genomics technologies (Bohra et al. 2020;
Varshney et al. 2021). To this end, we reckon immediate adoption
of agrigenomics approaches in forestry and in its regulatory
agencies to manage the genomic adaptation in the face of climate
challenges (Qaim 2020).

DATA AVAILABILITY
Genotyping-by-sequencing (GBS) raw reads used in this study have been deposited
in NCBI SRA BioProject - PRJNA715165. Information of the lodgepole pine trials
including pedigree and phenotypic data are available in the GitHub repository:
https://github.com/RESFOR/quantitative_genetics_R/blob/main/data_multi-
trait_multi-site.txt.
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