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Abstract

Genomic selection has become a reality in plant breeding programs with the reduction in genotyping costs. Especially in
maize breeding programs, it emerges as a promising tool for predicting hybrid performance. The dynamics of a commercial
breeding program involve the evaluation of several traits simultaneously in a large set of target environments. Therefore,
multi-trait multi-environment (MTME) genomic prediction models can leverage these datasets by exploring the correlation
between traits and Genotype-by-Environment (GXE) interaction. Herein, we assess predictive abilities of univariate and
multivariate genomic prediction models in a maize breeding program. To this end, we used data from 415 maize hybrids
evaluated in 4 years of second season field trials for the traits grain yield, number of ears, and grain moisture. Genotypes of
these hybrids were inferred in silico based on their parental inbred lines using single nucleotide polymorphisms (SNPs)
markers obtained via genotyping-by-sequencing (GBS). Because genotypic information was available for only 257 hybrids,
we used the genomic and pedigree relationship matrices to obtain the H matrix for all 415 hybrids. Our results demonstrated
that in the single-environment context the use of multi-trait models was always superior in comparison to their univariate
counterparts. Besides that, although MTME models were not particularly successful in predicting hybrid performance in
untested years, they improved the ability to predict the performance of hybrids that had not been evaluated in any
environment. However, the computational requirements of this kind of model could represent a limitation to its practical
implementation and further investigation is necessary.

Introduction

The Brazilian maize production is currently concentrated in

the second season, from February to June, representing
Supplementary information The online version of this article (https:// more than 66% of the production in .the 20]7/201.8 season
doi.org/10.1038/s41437-020-0321-0) contains supplementary (Conab 2019). The second season is an alternative crop
material, which is available to authorized users. rotation system in the Center-South region, with maize
grown mostly after soybean, contributing to a greater
profitability of the Brazilian agribusiness. However, this
ensuing season poses some challenges, such as greater
disease pressure and, especially, water deficiency stress.
Due to climate changes and the limitation of water resour-
ces, yield stability even under water stress is a highly
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conditions, but which are able to maintain good perfor-
mance even under conditions of water scarcity. The biggest
challenge faced by breeders remains in the fact that grain
yield is a quantitative trait, strongly influenced by envir-
onmental effects and showing low heritability under stress
conditions (Comstock 1978; Hallauer and Miranda Filho
2010). Therefore, to increase the experimental precision of
phenotypic evaluations under water deficiency, a large
number of replicates and adequate plot sizes are required
(Edmeades et al. 1999; Banziger et al. 2000). However,
phenotyping accounts for a large part of the cost of a plant
breeding program, limiting progress by restricting the
number of evaluated genotypes and the sizes of
experiments.

A large number of hybrids can be obtained from the
cross of a relatively small number of lines in a maize
breeding program (Technow et al. 2014). Due to the
financial unfeasibility of evaluating all these possible
hybrids in field trials, predicting hybrid performance
through genomic selection is an attractive alternative to
maize breeders. Since proposed by Meuwissen et al. (2001),
genomic selection models have been applied to a variety of
crops and became an important tool in maize hybrid
breeding (Bernardo 2009; Massman et al. 2013; Dias et al.
2018; Fritsche-Neto et al. 2018; Han et al. 2018). Besides
the opportunity to reduce costs and labor involved in field
trials, this approach allows an early and more efficient
selection, increasing genetic gains. These models were
initially proposed and applied in a univariate context, by
using a separate model for a single environment and a
single-trait. However, breeders commonly evaluate several
traits simultaneously in a large set of environments, because
elite genotypes should concentrate favorable alleles for
various traits of interest and perform well in different target
environments. As a prime consequence, the use of uni-
variate approaches might not meet the reality of breeding
programs that aim to estimate the magnitude of GXE
interaction and explore the genetic correlation between
important agronomic traits.

The presence of genetic correlation between quantitative
traits implies that measures in one trait indirectly provide
information about other traits. From a breeding standpoint,
such information can be used to improve the predictive
ability of genomic selection, as reported in different species
(Marchal et al. 2016; Fernandes et al. 2018; Lyra et al.
2017; Lado et al. 2018). Multivariate genomic selection
models, known as multi-trait models, allow the information
between secondary traits to be explored through modeling
of the covariance between them. The main factors that have
been reported to contribute to increasing predictive ability
of multi-trait models are: traits highly correlated with the
trait of interest and low-heritability coefficients for the tar-
get trait, but high for the correlated trait (Calus and

Veerkamp 2011; Jia and Jannink 2012; Guo et al. 2014;
Dos Santos et al. 2016; Marchal et al. 2016; Lyra et al.
2017; Covarrubias-Pazaran et al. 2018). In maize, grain
yield is the trait of major interest and it is a direct function
of the following components: number of ears per plant,
number of rows of grain in the ear, number of grains per
row, ear length, ear diameter, average grain weight, and
grain depth (Jugenheimer 1976). Considering that such
secondary traits are less complex, present higher heritability
coefficients, and, ultimately, are highly correlated with grain
yield, they are feasible to perform indirect selection for
grain yield. Several studies reported higher predictive
abilities using models that consider high-heritability sec-
ondary trait information combined to grain yield (Hender-
son and Quaas 1976; Mrode and Thompson 2005; Malosetti
et al. 2008; Piepho et al. 2008).

In addition to the correlation between traits, the GXE
interaction is also a relevant issue to plant breeders. Bur-
guefio et al. (2012) were the first to accommodate GXE
interaction in the context of genomic selection. Following
this study, others also examined the possibility of increasing
the predictive ability in several crops by incorporating the
GxE interaction (Lopez-Cruz et al. 2015; Cuevas et al.
2016; Ferrdo et al. 2017; Sousa et al. 2017; Roorkiwal et al.
2018). Proper understanding of GXE interaction provides
valuable information and can help breeders to predict
completely untested combinations of hybrids and environ-
ments using cross-validation schemes.

The large amount of phenotypic data collected in
breeding programs across years is a valuable source of
information, of which genomic selection is recently taking
advantage. Nonetheless, the quality and unbalanced nature
of these historical data raise a new challenge to plant
breeders—how to optimally exploit this kind of data
(Gapare et al. 2018). Few studies have simultaneously
assessed MTME models for genomic selection (Mon-
tesinos-Lopez et al. 2016; 2018a, 2019b, 2019¢, 2019d;
Gomes Torres et al. 2018; Ward et al. 2019). Therefore, our
objectives were to: (i) evaluate the applicability of a MTME
model in the maize breeding context, (ii) compare the
results of using this model with its univariate counterparts,
and (iii) predict completely new and untested hybrids and
years. To this end, historical data from three traits from
second season maize hybrids was used.

Material and methods

Plant material

The genetic material consisted of 415 hybrids evaluated in
field trials for four years (2006-2009) in Campo Mourio,
Parand, Brazil. Of the 415 hybrids, 304 are single cross
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hybrids, 76 are triple cross hybrids, 19 are double cross
hybrids, and 16 are commercial checks. The experimental
design of the phenotypic trials from 2006 to 2008 was a
10 x 10 squared lattice design with two replicates, where
100 hybrids were evaluated. In the year 2009, 125 hybrids
were evaluated side-by-side in two trials. In each trial, 60
hybrids and four common checks were evaluated using an
8 x 8 lattice design with two replicates. The connection
across years was based in a few common checks (Table S1).

The evaluated traits were grain yield (GY), determined
by weighing all the grains in each plot, adjusted to 13% of
grain moisture and converted to tons per hectare (t/ha);
number of ears (NE), consisted of counting all ears in each
plot; and percentage of grain moisture (GM), assessed with
the Wintersteiger Classic Plot Combine automatic harvester
(Wintersteiger AG, Mettmach, Austria), which auto-
matically weighs each parcel and infers the moisture via
NIRS (near-infrared spectroscopy).

Phenotypic analysis

We computed the best linear unbiased estimation (BLUE)
for each trial and trait, using the following mixed model:

Vi = M4+ e+ gi + bj + ik (1)

where yj is the phenotype of the ith genotype in block j,
replicate k; u is the common intercept; ry is the fixed effect of
replicate k; g; is the fixed effect of the ith genotype; by is the
random effect of block j, in replicate k, such that
bix) ~ MVN(0,153); and & is a random non-genetic effect,
where & ~ MVN(0,I62); where MVN refers to the
multivariate normal distribution and I is an identity matrix.
Outliers were removed by deleting observations with residuals
that deviated more than four times the standard deviation.

The broad-sense and narrow-sense heritability were
computed based on model (1), but considering the genotype
effects as random. Also, in order to compute the narrow-
sense heritability we assumed that g ~ MVN(0, Ho}),
where H represents the relationship matrix of additive
effects. We then estimated the heritability based on the
following equation:

W= % (2)
(oG + o)

where 67 is the total genetic variance component and the
additive variance component for the broad-sense and
narrow-sense heritability, respectively, and 62 is the residual
variance component. The BLUEs and heritability coeffi-
cients were estimated using the ASREML-R package version
3.0 (Butler et al. 2009) in the R environment v.3.5.1 (R
Development Core Team 2019).
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Genotypic data

A collection of 1060 maize inbred lines from the Embrapa
Maize and Sorghum breeding program, Brazil was geno-
typed. Of this total, 228 lines are parents of the hybrids used
in this study. We performed DNA extraction from young
leaves based on the cetyltrimethylammonium bromide
method (Saghai-Maroof et al. 1984). DNA samples were
quantified using the Fluorometer Qubit® 2.0, following the
manufacturer’s instructions (Life TechnologiesTM, Carls-
bad, CA, USA). Samples were also evaluated on 1%
agarose gel in Tris-acetate-EDTA buffer, stained with
GelRed™ (Biotium, Fremont, CA, USA) and recorded
under UV light in the Imager Gel Doc L-PIX (Loccus
Biotecnologia, Cotia, SP, Brazil).

Genotyping-by-Sequencing (GBS) was carried out at the
Genomic Diversity Facility at Cornell University (Ithaca,
NY, USA) using the standard GBS protocol (Elshire et al.
2011) with the ApeKI restriction enzyme. The inbred lines
were genotyped in two different batches: first, we geno-
typed eight libraries of 96 samples each, with one HiSeq
2500 sequencing lane per library; next, we genotyped one
library of 384 samples with NextSeq500 in a single lane.
Tags were aligned to the B73 reference genome (AGPv3)
(Law et al. 2015) using the Bowtie2 aligner (Langmead and
Salzberg 2012). Then, SNPs were called using the GBSv2
Discovery Pipeline, available in the software TASSEL V.
5.2.28 (Glaubitz et al. 2014). We applied filters for Minor
Allele Frequency (MAF) less than 5%, inbreeding coeffi-
cient less than 0.8 and removed indels and non-biallelic
markers. Heterozygous loci were treated as missing data.
Subsequently, we performed imputation of missing data
using Beagle software version 4.1 (Browning and Browning
2016). Because Beagle can introduce heterozygous geno-
types, we carried out an additional filtering step by
removing heterozygous loci. Finally, from the genotypes of
the 228 parental lines we inferred, in silico, the genotypes of
257 single cross hybrids.

H matrix

The hybrids used in this study were originated from 296
inbred lines that belong to three different heterotic groups:
Dent (116 lines), Flint (126 lines), and another group
herein denominated group C (54 lines). Pedigree informa-
tion was available for all 415 hybrids, but only 257 of those
were (indirectly) genotyped. In this situation, the use of the
single-step approach, where the pedigree relationship
matrix A and the genomic relationship matrix G are com-
bined into one matrix called H, is a practical way to
combine these two sources of information (Legarra et al.
2009; Misztal et al. 2009; Aguilar et al. 2010; Christensen
and Lund 2010).
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The genomic relationship matrix G was computed fol-
lowing the method described by Yang et al. (2010). The
pedigree relationship matrix A was computed based on
Henderson’s recursive method described in Mrode and
Thompson (2005). We implemented the H matrix using the
two scaling factors, T and o, as proposed by Misztal et al.
(2010) and Tsuruta et al. (2011):

R ° (3)
e 0 (:G™'—wAy)

We further evaluated the effect of these factors on the
accuracies of genomic prediction models. Using the
approach presented by Martini et al. (2018), we searched for
the optimal values of T and ® by evaluating 420 combina-
tions, varying both parameters on grids defined by the
intervals [—1, 1] for @ and [0.1, 2] for 7, in steps of size
0.10 in both cases. To evaluate the performance of each
parameter combination, we constructed 420 different H
matrices, one for each combination of the scaling factors,
and used these to estimate the breeding values using the
single-step procedure for each single-trait single-environ-
ment (STSE) model fitted. The G, A, and H matrices were
obtained using the R package AGHMATRIX (Amadeu et al.
2016).

Genomic prediction models

The genomic prediction model used in this study was the
GBLUP (Genomic Best Linear Unbiased Prediction)
(VanRaden 2008) and its multivariate version (Calus and
Veerkamp 2011). We fitted the univariate and multivariate
models via a Bayesian approach, as detailed below.

Single-trait single-environment model (STSE)

Using the STSE model the genomic estimated breeding
values (GEBV) were obtained for each of the three traits
evaluated, separately for each of the four environments, as
follows:

yi=u+Git+e (4)

where y; is the previously obtained BLUE of the ith
genotype (i=1, ..., n), where n indicates the number of
hybrids evaluated in the environment at hand; u is the
intercept; G; is the random effect of the ith genotype, such
that G; ~ MVN(O, Haﬁ), az
component; and ¢; is a random non-genetic effect, with
& ~MVN(0, Ioz), & is the residual variance component. H
represents the relationship matrix of additive effects and I is
an identity matrix for the residual effects.

is the genetic variance

Multi-trait single-environment model (MTSE)

Combining information of the three evaluated traits, sepa-
rately in each of the four environments, we obtained the
GEBYV using the multi-trait single-environment (MTSE)
model:

Yie = Ue + Gic + €ic (5)

where y;. is the BLUE of the ith genotype for trait ¢ (c =1,
..+, 3); u. 1s the intercept for trait c¢; Gj. is the random effect of
the ith genotype for trait ¢, G;. ~ MVN(O0, aﬁH ® X.); and
&; is a random non-genetic effect, £;, ~ MVN(0, 6’1 ® R,).
In this model, X, is the variance-covariance (VCOV) matrix
for the additive genetic effects of the three traits, with
dimension 3 x 3. R, represents the VCOV matrix for the
residual effects of the three traits, also with dimension 3 x 3.
We assumed an unstructured form for the genetic X, and
residual R, VCOV matrices, which allows the assumption of
heterogeneity of variance and presence of a specific genetic
correlation for each combination of trait and environment. It
is important to note that trait main effects are still estimable,
despite not being explicitly included in the model formula,
for a detailed explanation see Ward et al. (2019) and Isik
et al. (2017).

Single-trait multi-environment model (STME)

Through the single-trait multi-environment (STME) model,
we obtained the GEBV separately for each of the three traits,
but jointly modeling the four environments (years), as follows:

Yi = # + Gij + & (6)

where y; is the BLUE of the ith genotype, in the jth
environment (j=1,...,4); w; is the intercept in the jth
environment; Gy is the random effect of the ith genotype, in
the jth environment, with G; ~ MVN(0, aéH ® Z;); and
g; is a random non-genetic effect, such that
&j ~ MVN(0, 6’I® R;). X is the VCOV matrix for the
additive genetic effects in the j environments, with
dimension 4 x4. R; represents the VCOV matrix for the
residual effects in the j environments, with dimension 4 x 4.
We again assumed an unstructured form for the genetic X
and residual R; VCOV matrices and implicitly modeled the
environment main effects.

Multi-trait multi-environment model (MTME)

In our most complex model, for MTME genomic selection,
we jointly modeled all traits and environments, in order to
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obtain the GEBV for each trait in each environment:
Yije = Hjc + Gije + €gic (7)

where yj;. is the previously obtained BLUE of the ith
genotype, in the jth environment, for trait c; u; is the
intercept in the jth environment, for trait ¢; Gy, is the
random effect of the ith genotype, in the jth environment,
for the trait ¢, Gy ~ MVN(O, 6§H®ch); and g5 is a
random non-genetic effect, £ ~ MVN(0, 6’1 ® Rye). Z;
represents the VCOV matrix for the additive genetic effects
in the four environments for the three traits, with dimension
12x12. In this case, this matrix models variances and
covariances for all combinations of traits and environments.
Similarly, R represents the VCOV matrix for the residual
effects in each trait x environment combination, with
dimension 12 x 12. We assumed an unstructured form for
the genetic and residual VCOV matrices and implicitly
modeled the trait and environment main effects.

Cross-validation schemes

To assess the performance of each model we used the
predictive ability as measured by cross-validation. To this
end, we implemented three different schemes. In our first
cross-validation scheme (hereinafter denoted as CVy), the
complete pool of individuals was randomly split in five
folds, such that four of them were used as a training set,
while the remaining group was used as a testing set. This
procedure was repeated five times, using a different set of
individuals as the testing set each time. Therefore, at the end
of the process GEBVs were calculated for all individual.
This CVy scheme was applied to models 4, 5, 6, and 7 as
described above. In order to compare the models applied to
single-environments with those applied to multi-environ-
ments, we also evaluated the CVg scheme using the same
training/testing partition of single-environment models to
the multi-environment ones.

In the multi-environment context, as described above for
models 6 and 7, we evaluated two different cross-validation
schemes in order to take advantage of the correlated infor-
mation between environments, according to the ideas pre-
sented by Burguefio et al. (2012). First, we aimed to
measure the ability of the model to predict the performance
of hybrids that had not been evaluated in any environment
(hereinafter denoted as CV1). In CV1 we randomly
assigned the hybrids to a 5-fold cross-validation scheme,
but in this case ensuring that hybrids in the testing set had
not been evaluated in any environment. Alternatively, to
assess the ability of the model to predict performance based
on data from different years we assigned years to folds
(such scheme is hereinafter denoted as CV2). In CV2 we
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had as many folds as years. Therefore, when analyzing the
ith fold, hybrids from the ith year were assigned to the
testing set and all the hybrids from other years were used as
the training set.

In all cross-validation schemes, the predictive abilities
were estimated by Pearson’s correlation coefficient between
the GEBV and the corresponding BLUE.

Computational implementation

All genomic prediction models were implemented in the
McMcGLMM R-package (Hadfield 2010). A total of 30000
MCMC samples were generated, assuming a burn-in period
and sampling interval (thin) of 6000 and five iterations,
respectively. In particular, for all models we assumed vague
priors drawn from an inverse-Wishart distribution. To this
end, we set the following hyperparameters: nu = 0.002 and
V = diag(n)/n, where n is the number of trait-environment
combinations. The use of the so-called non-informative
priors ensures that posterior distributions reflect mainly the
information from the data and, therefore, that the effect of
the prior on the posterior estimate is minimized. We validate
this assumption by following guidelines set forth in (Wilson
et al. 2010). Specifically, we tested different hyperpara-
meters for the prior distributions, in order to check whether
our results were robust regardless of the specified prior.

To check the convergence of the models we used the
Geweke criteria (Geweke 1992) implemented in the copa
R-package (Plummer et al. 2006), as well as the visual
inspection of trace plots of the chains. All code used to
implement the genomic prediction models is available at the
following repository: https://github.com/amanda-avelar-
oliveira/MTME, as well as in the supplementary material
(File S1).

Results
H matrix

Based on the evaluation of the 420 combinations of t and ®
scaling factors for each STSE model fitted, we found
common optimal values of T=0.1 and o= —0.8. It is
important to note that the maximum predictive ability did
not substantially differ between the parameter combinations
tested; for example, they ranged from 0.33 to 0.42 for GY
in 2006.

The heatmap of the H matrix across hybrids grown in
different years and common checks showed that the patterns
between years differed considerably, with hybrids grown in
2008 being less correlated with the others (Fig. 1). We
stress that 2008 was the year with less hybrids (34) for
which genotypic information was available (Table S1).
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Fig. 1 Heatmap of the H matrix across hybrids cultivated in dif-
ferent years and common checks. A total of 415 hybrids were
evaluated from 2006 to 2009. Each colored cell represents the rela-
tionship between a pair of hybrids.

Table 1 Phenotypic mean, broad-sense, and narrow-sense heritability
coefficients for each trait and year evaluated.

Trait Year Phenotypic mean Broad-sense h®> Narrow-sense h?

GY 2006 5.62 0.51 0.18
2007  3.80 0.59 0.26
2008  5.58 0.56 0.41
2009  8.04 0.52 0.28
NE 2006 40.19 0.36 0.03
2007 34.02 0.13 0.07
2008 34.6 0.32 0.11
2009 39.45 0.55 0.21
GM 2006 31.88 0.77 0.67
2007 25.63 0.91 0.91
2008  29.05 0.70 0.50
2009 16.43 0.85 0.80

Grain yield (GY) in t/ha, number of ears (NE) per plot, and grain
moisture (GM) in percentage.

Among the 11 checks, nine were exclusive to a single
environment, and only four were genotyped (Table S1). We
can also observe a pattern of lower relatedness between the
checks (Fig. 1).

Genetic parameters

Broad-sense and narrow-sense heritability coefficients var-
ied considerably between traits (Table 1). Overall, the

2006

~
o
o
~

2006

2007

2008

Grain yield (GY)

2009

2006 |0.

2007

2008

Number of ears (NE)

2009

035 0.22 -0.29|-0.17 0.34
2006
2007

2008

Grain moisture (GM)

2009

-1 08 -06 -04 -02 0 0.2 04 06 0.8 1

Fig. 2 Genetic correlations estimated based on the multi-trait
multi-environment (MTME) model. Cells indicate the Pearson
pairwise correlation coefficient between combinations of traits and
years. Colors represent positive (blue) and negative (red) correlations.

heritabilities were higher for GM and lower for NE, ranging
from 0.70 to 0.91 and 0.13 to 0.55, respectively. For GY the
broad-sense heritability did not show large variation among
years, ranging from 0.51 in 2008 to 0.59 in 2007. However,
we observed larger variation between years for the narrow-
sense heritability, from 0.18 in 2006 to 0.41 in 2008. The
lowest narrow-sense heritability for NE was seen in 2006,
with a coefficient of 0.03. The differences between broad-
and narrow-sense heritabilities were less pronounced for
GM, with no observed difference in 2007 (h*> = 0.91). The
phenotypic means also varied considerably between years,
ranging from 3.80 to 8.04, 34.02 to 40.19, and 16.43 to
31.88, for GY, NE, and GM, respectively.

Genetic correlations estimated based on the full MTME
model showed that correlations varied noticeably across
years, for each of the three traits (blocks closer to the
diagonal in Fig. 2). For GY, 2009 showed lower correlation
coefficients, presenting negative correlations with years
2007 (—0.55) and 2008 (—0.11). Genotype effects in 2006
were negatively correlated with all others for NE. In gen-
eral, the GM was the trait with lowest correlation between
years, particularly for 2006 and 2009. However, the years
2007 and 2008 showed the highest correlation (0.56)
compared to the other traits.

Overall, we observed a large number of near zero and
negative values of genetic correlation between traits. Also,
the correlations between traits varied considerably across
years. GY and GM were more positively correlated, with
the largest correlation between GY in 2007 and GM in 2008
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Fig. 3 Predictive abilities 1.04
obtained with the CVR cross-
validation scheme. The traits
evaluated were grain yield (GY),
number of ears (NE) and grain
moisture (GM), using single-
trait single-environment (STSE)
and multi-trait single-
environment (MTSE) models.
Diamonds correspond to the
mean predictive abilities.

L

o
[

Predictive ability

0.0

Trait/Model
GY/STSE

B GY/MTSE
NE/STSE
B3 NE/MTSE
GM/STSE
B GM/MTSE

2006

(0.87). On the other hand, GY and GM presented the largest
negative correlation in 2006 (—0.7).

As might be expected, the genetic correlations estimated
based on the full STME models were higher than those
obtained with the full MTME model (Figs. S1-S3). Overall,
GM and GY showed high and positive correlations, except
between 2008 and 2009 for GM and between 2007 with
2006 and 2009 for GY. On the other hand, NE presented
some high and negative correlations, reaching —0.94
between 2007 and 2009. When comparing the correlations
between traits estimated based on the full MTSE models,
we observed that the year 2008 presented the lowest cor-
relations (Figs. S4-S7).

Genomic prediction

Predictive abilities varied considerably when comparing
STSE and MTSE models (Fig. 3). The MTSE models were
always superior to the STSE, usually showing substantial
differences. Only in 2007, for NE, the use of multivariate
model resulted in a slightly superior predictive ability (0.26
vs. 0.32). Within each trait, the predictive abilities differed
greatly across years. For example, values for NE ranged
from 0.26 in 2007 to 0.48 in 2009 and 0.32 in 2007 to 0.92
in 2009 for the STSE and MTSE models, respectively.
For the ME models using the CVg cross-validation
scheme (Fig. 4), we observed that the predictive abilities
were lower than those observed with the SE models (Fig. 3).
Only for GY did the MTME model outperform the STME
model in terms of predictive ability, but we note that both
values were low (0.07 for STME and 0.15 for MTME). For
GM the difference between STME and MTME was low, but
the variance was higher in the MTME scenario. On the
other hand, NE showed higher variance and predictive
ability with the STME model (0.36) compared to the
MTME model (0.28). When we used the same training/
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testing partition of single-environment models to fit multi-
environment models, we observed that the multi-trait
models outperformed all the others (Fig. 5). However, in
some cases the MTME models were inferior to the MTSE.
Besides that, specifically for NE in 2006 the MTME model
was inferior to all others, including the ST models.

The prediction of non-evaluated hybrids using the cross-
validation scheme CV1 showed similar predictive abilities
for GY when compared to the cross-validation scheme
CVg. However, for NE and GM the multi-trait models also
outperformed the single-trait ones when using the cross-
validation scheme CV1 (Fig. 6).

Under cross-validation scheme CV2, the prediction
abilities were very variable, with lower boundaries
spanning-negative-predictive values (Fig. 7). This reflects
difficulties in accurately predicting hybrid performance in
different years. However, it is important to note that for
some specific years and traits the predictive abilities
achieved with CV2 were comparable to those obtained with
SE models. For example, in 2008 the predictive ability of
the STME model for GY was 0.50, similar to the value of
0.36 found with STSE in the same year (Figs. 3 and 7). The
comparison between MT and ST models when using the
CV2 scheme did not show any clear pattern, with sub-
stantial variation across traits and years.

Discussion

Genomic prediction models have been widely adopted in
plant breeding of a variety of species, especially in maize
(Bernardo 2009; Massman et al. 2013; Dias et al. 2018;
Fritsche-Neto et al. 2018; Han et al. 2018). However, the
adoption of models that simultaneously take into account
multiple traits and environments—referred here as MTME
models—have been limited and only recently has gained
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attention in the literature (Montesinos-Lopez et al.
2016, 2018a, 2019b, 2019c, 2019d; Gomes Torres et al.
2018; Ward et al. 2019). In this study, we applied genomic
prediction to MTME trials of second season maize hybrids
and compared their predictive abilities with univariate
models.

It is well known that the genetic correlation between
traits, as well as the fact that the trait of interest be of low
heritability and the correlated trait be of high heritability,
are key factors for the success of multi-trait models (Calus
and Veerkamp 2011; Jia and Jannink 2012; Guo et al.
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2007 2008 2009
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e . Model
&.‘ # % STSE
@ é ¢ B sTME
. MTSE
L]

B MTME
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2014). However, when major quantitative trait loci (QTL)
are not present, that is, for complex polygenic traits, the
benefits of multi-trait models are limited even with differ-
ences in the heritabilities among highly correlated traits (Jia
and Jannink 2012). Our results indicated that multi-trait
models can outperform their single-trait counterparts.
Similar results were also found in studies based on other
maize datasets using genomic prediction models (Mon-
tesinos-Lopez et al. 2016, 2019¢c; Gomes Torres et al.
2018). However, other previous studies reported little ben-
efit of applying multivariate models (Dos Santos et al. 2016;
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Lyra et al. 2017; Lado et al. 2018). These results can be
explained by the low to moderate values of correlation and
heritabilities across the traits evaluated, which collectively
are expected to hinder multi-trait selection. The challenges
faced by breeders under scenarios of low heritability and
low genetic correlation among traits are not specific to
genomic selection, but inherent to the multi-environment
multi-trait breeding process.

Besides the correlation between traits, a model that also
accommodates the GxE interaction mimics in a more rea-
listic way the type of data generated in plant breeding
programs, where genotypes are evaluated for multiple traits
in different environments. Assuming that in single-
environment models the training and testing sets are
exposed to the same environmental effects, it is biologically
reasonable to expect higher predictive abilities than in
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multiple-environment scenarios. Therefore, when we com-
pared STSE and MTSE approaches, we noticed that the
predictive performance of the multivariate models often
outperformed the univariate ones. However, when we
compared SE models with ME models we observed the
opposite behavior. It is worthwhile to highlight that the
correlations and heritabilities varied considerably across
years, showing the challenges of dealing with the quality
and unbalanced nature of our historical data.

In combination, we also assessed the predictive abilities
of different cross-validation schemes that mimic real sce-
narios in the maize breeding program. In the so-called CVg
scheme, a complete pool of individuals was randomly split
in five folds. For CV1, we randomly assigned the hybrids to
a 5-folds scheme, ensuring that hybrids in the testing set had
not been evaluated in any environment. Finally, in CV2, we
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assigned years to folds. For GY, we found similar results
when comparing the CVg with CV1 schemes. However, for
NE and GM the CV1 scheme showed higher predictive
abilities using multi-trait models. Notably, for this particular
dataset, the CVg and CV1 schemes are in fact very similar,
because few hybrids are common between years. In any
case, for two traits we did observe an advantage of multi-
variate models when hybrids had not been evaluated in any
environment, despite this limited connection between trials.
The most challenging scenario was the prediction of hybrid
performance in different years, as we observed with our
cross-validation scheme CV2.

Ward et al. (2019) applied MTME genomic prediction
models to unbalanced wheat trials and reported little or no
advantage when using the CV1 cross-validation scheme to
predict the introduction of new genotypes. However, when
genotypes were tested in some environments but not in
others, a scenario simulated in the CV2 cross-validation
scheme (note that this CV2 scheme is different from the one
used in our study), they reported an increase in the pre-
dictive ability for low-heritability traits. On the other hand,
Jia and Jannink (2012) using simulated datasets found
scenarios in which the use of a multi-trait model out-
performed the univariate one under a CV1 scheme. This
was particularly true for pairs of traits influenced by a few
QTLs that present moderate genetic correlation (r=0.5),
one of them being a very low-heritability trait (h2 =0.1)
and the other a moderate-heritability trait (h2 = 0.5).

It is important to note that the lack of genotypic infor-
mation for all hybrids prompted the use of the single-step
procedure, by combining pedigree records and genomic
information to estimate a blended relationship matrix—here
referred as H. The impact of using an H matrix in genomic
prediction has been widely discussed in the animal breeding
context (Pszczola et al. 2011; Christensen et al. 2012;
Legarra et al. 2014; Martini et al. 2018; Teissier et al. 2019).
Conversely, the use of single-step-procedures for genomic
prediction is lagging behind in the plant literature. To this
end, we estimated the scaling factors T and w,—both
important parameters to define how the A and G matrixes
are combined—as proposed by Misztal et al. (2010) and
Tsuruta et al. (2011). In any case, we note that this blending
is just one of several possibilities to approach the problem.

The use of Bayesian inference in this study emerged as
an alternative to the traditional Restricted Maximum Like-
lihood (REML) estimation method. We had previously
attempted to fit the same models used here with procedures
based on REML, but could not achieve convergence. A
similar issue was also reported in a study using MTME
genomic prediction models in maize (Gomes Torres et al.
2018). Despite reporting the use of REML, Ward et al.
(2019) also documented convergence problems for several
traits, highlighting the limitation of this technique when

using a multivariate approach. As an alternative, we used
algorithms based on Markov Chain Monte Carlo (MCMC)
methods and implemented in the McMcGLMM R-package. As
a limitation, the computational requirements of the Bayesian
method presented here may be challenging for practical
applications. We evaluated different variance-covariance
structures for the genetic and residual terms, and noticed
that the computational time required to fit the more complex
structure (unstructured) was not different from the simplest
one (identity). Because using an unstructured matrix to
model (co)variances reflects assumptions that are biologi-
cally more realistic, we chose to model the genetic and
residual terms using this kind of structure.

The work presented here is an initial investigation of
what can be done with MTME models for prediction of
hybrid maize, and we believe that the results are promising
to justify further research. One important extension would
be to incorporate dominance effects in the genomic pre-
diction models, by leveraging the heterosis phenomenon.
Several studies including non-additive effects have been
conducted and reported the benefits of taking these effects
into account (Dos Santos et al. 2016; Resende et al. 2017,
Dias et al. 2018). It is important to assess whether favoring
more complicated and computationally intensive MTME
models is indeed worthwhile.

Finally, we believe that our work also helps to better
understand the practical challenges to successfully applying
MTME genomic prediction models to a second season
maize breeding program. We demonstrated that the use of
MTME models can increase predictive ability when com-
pared to univariate ones. However, in some cases we did not
observe any improvement, which can at least partly be
explained by the low correlation between traits and small
heritability differences that we found. Besides that, the low
levels of connection between trials in different environ-
ments and the necessity of using the single-step procedure
highlight the complexity of the historical data we used. We
believe that further research is needed to explore ways of
dealing with these limitations, which represent the reality of
a commercial maize breeding program. Recently, the use of
deep learning in multivariate genomic prediction models
was investigated, showing promising results (Montesinos-
Lopez et al. 2018a, 2018b, 2019a). These studies indicated
that the multi-trait deep learning (MTDL) model was very
competitive for performing predictions in the context of GS,
with the important practical advantage that it requires less
computational resources. For this reason, we believe that
more research is needed to investigate the reliability of DL
applied to multivariate genomic prediction models. Ulti-
mately, this methodology may be added to the data science
toolkit of scientists working on breeding programs. Our
study additionally suggests that there is room for further
work in optimizing multivariate genomic prediction models
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in Bayesian and frequentist frameworks, allowing the
practical application of these complex models.
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